Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// This file provides a helper that implements much of the TTI interface in
11
/// terms of the target-independent code generator and TargetLowering
12
/// interfaces.
13
//
14
//===----------------------------------------------------------------------===//
15
 
16
#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17
#define LLVM_CODEGEN_BASICTTIIMPL_H
18
 
19
#include "llvm/ADT/APInt.h"
20
#include "llvm/ADT/ArrayRef.h"
21
#include "llvm/ADT/BitVector.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/Analysis/LoopInfo.h"
25
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
26
#include "llvm/Analysis/TargetTransformInfo.h"
27
#include "llvm/Analysis/TargetTransformInfoImpl.h"
28
#include "llvm/CodeGen/ISDOpcodes.h"
29
#include "llvm/CodeGen/TargetLowering.h"
30
#include "llvm/CodeGen/TargetSubtargetInfo.h"
31
#include "llvm/CodeGen/ValueTypes.h"
32
#include "llvm/IR/BasicBlock.h"
33
#include "llvm/IR/Constant.h"
34
#include "llvm/IR/Constants.h"
35
#include "llvm/IR/DataLayout.h"
36
#include "llvm/IR/DerivedTypes.h"
37
#include "llvm/IR/InstrTypes.h"
38
#include "llvm/IR/Instruction.h"
39
#include "llvm/IR/Instructions.h"
40
#include "llvm/IR/Intrinsics.h"
41
#include "llvm/IR/Operator.h"
42
#include "llvm/IR/Type.h"
43
#include "llvm/IR/Value.h"
44
#include "llvm/Support/Casting.h"
45
#include "llvm/Support/CommandLine.h"
46
#include "llvm/Support/ErrorHandling.h"
47
#include "llvm/Support/MachineValueType.h"
48
#include "llvm/Support/MathExtras.h"
49
#include "llvm/Target/TargetMachine.h"
50
#include "llvm/Target/TargetOptions.h"
51
#include <algorithm>
52
#include <cassert>
53
#include <cstdint>
54
#include <limits>
55
#include <optional>
56
#include <utility>
57
 
58
namespace llvm {
59
 
60
class Function;
61
class GlobalValue;
62
class LLVMContext;
63
class ScalarEvolution;
64
class SCEV;
65
class TargetMachine;
66
 
67
extern cl::opt<unsigned> PartialUnrollingThreshold;
68
 
69
/// Base class which can be used to help build a TTI implementation.
70
///
71
/// This class provides as much implementation of the TTI interface as is
72
/// possible using the target independent parts of the code generator.
73
///
74
/// In order to subclass it, your class must implement a getST() method to
75
/// return the subtarget, and a getTLI() method to return the target lowering.
76
/// We need these methods implemented in the derived class so that this class
77
/// doesn't have to duplicate storage for them.
78
template <typename T>
79
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
80
private:
81
  using BaseT = TargetTransformInfoImplCRTPBase<T>;
82
  using TTI = TargetTransformInfo;
83
 
84
  /// Helper function to access this as a T.
85
  T *thisT() { return static_cast<T *>(this); }
86
 
87
  /// Estimate a cost of Broadcast as an extract and sequence of insert
88
  /// operations.
89
  InstructionCost getBroadcastShuffleOverhead(FixedVectorType *VTy,
90
                                              TTI::TargetCostKind CostKind) {
91
    InstructionCost Cost = 0;
92
    // Broadcast cost is equal to the cost of extracting the zero'th element
93
    // plus the cost of inserting it into every element of the result vector.
94
    Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
95
                                        CostKind, 0, nullptr, nullptr);
96
 
97
    for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
98
      Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
99
                                          CostKind, i, nullptr, nullptr);
100
    }
101
    return Cost;
102
  }
103
 
104
  /// Estimate a cost of shuffle as a sequence of extract and insert
105
  /// operations.
106
  InstructionCost getPermuteShuffleOverhead(FixedVectorType *VTy,
107
                                            TTI::TargetCostKind CostKind) {
108
    InstructionCost Cost = 0;
109
    // Shuffle cost is equal to the cost of extracting element from its argument
110
    // plus the cost of inserting them onto the result vector.
111
 
112
    // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
113
    // index 0 of first vector, index 1 of second vector,index 2 of first
114
    // vector and finally index 3 of second vector and insert them at index
115
    // <0,1,2,3> of result vector.
116
    for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
117
      Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
118
                                          CostKind, i, nullptr, nullptr);
119
      Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
120
                                          CostKind, i, nullptr, nullptr);
121
    }
122
    return Cost;
123
  }
124
 
125
  /// Estimate a cost of subvector extraction as a sequence of extract and
126
  /// insert operations.
127
  InstructionCost getExtractSubvectorOverhead(VectorType *VTy,
128
                                              TTI::TargetCostKind CostKind,
129
                                              int Index,
130
                                              FixedVectorType *SubVTy) {
131
    assert(VTy && SubVTy &&
132
           "Can only extract subvectors from vectors");
133
    int NumSubElts = SubVTy->getNumElements();
134
    assert((!isa<FixedVectorType>(VTy) ||
135
            (Index + NumSubElts) <=
136
                (int)cast<FixedVectorType>(VTy)->getNumElements()) &&
137
           "SK_ExtractSubvector index out of range");
138
 
139
    InstructionCost Cost = 0;
140
    // Subvector extraction cost is equal to the cost of extracting element from
141
    // the source type plus the cost of inserting them into the result vector
142
    // type.
143
    for (int i = 0; i != NumSubElts; ++i) {
144
      Cost +=
145
          thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
146
                                      CostKind, i + Index, nullptr, nullptr);
147
      Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy,
148
                                          CostKind, i, nullptr, nullptr);
149
    }
150
    return Cost;
151
  }
152
 
153
  /// Estimate a cost of subvector insertion as a sequence of extract and
154
  /// insert operations.
155
  InstructionCost getInsertSubvectorOverhead(VectorType *VTy,
156
                                             TTI::TargetCostKind CostKind,
157
                                             int Index,
158
                                             FixedVectorType *SubVTy) {
159
    assert(VTy && SubVTy &&
160
           "Can only insert subvectors into vectors");
161
    int NumSubElts = SubVTy->getNumElements();
162
    assert((!isa<FixedVectorType>(VTy) ||
163
            (Index + NumSubElts) <=
164
                (int)cast<FixedVectorType>(VTy)->getNumElements()) &&
165
           "SK_InsertSubvector index out of range");
166
 
167
    InstructionCost Cost = 0;
168
    // Subvector insertion cost is equal to the cost of extracting element from
169
    // the source type plus the cost of inserting them into the result vector
170
    // type.
171
    for (int i = 0; i != NumSubElts; ++i) {
172
      Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy,
173
                                          CostKind, i, nullptr, nullptr);
174
      Cost +=
175
          thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, CostKind,
176
                                      i + Index, nullptr, nullptr);
177
    }
178
    return Cost;
179
  }
180
 
181
  /// Local query method delegates up to T which *must* implement this!
182
  const TargetSubtargetInfo *getST() const {
183
    return static_cast<const T *>(this)->getST();
184
  }
185
 
186
  /// Local query method delegates up to T which *must* implement this!
187
  const TargetLoweringBase *getTLI() const {
188
    return static_cast<const T *>(this)->getTLI();
189
  }
190
 
191
  static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
192
    switch (M) {
193
      case TTI::MIM_Unindexed:
194
        return ISD::UNINDEXED;
195
      case TTI::MIM_PreInc:
196
        return ISD::PRE_INC;
197
      case TTI::MIM_PreDec:
198
        return ISD::PRE_DEC;
199
      case TTI::MIM_PostInc:
200
        return ISD::POST_INC;
201
      case TTI::MIM_PostDec:
202
        return ISD::POST_DEC;
203
    }
204
    llvm_unreachable("Unexpected MemIndexedMode");
205
  }
206
 
207
  InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
208
                                              Align Alignment,
209
                                              bool VariableMask,
210
                                              bool IsGatherScatter,
211
                                              TTI::TargetCostKind CostKind) {
212
    // We cannot scalarize scalable vectors, so return Invalid.
213
    if (isa<ScalableVectorType>(DataTy))
214
      return InstructionCost::getInvalid();
215
 
216
    auto *VT = cast<FixedVectorType>(DataTy);
217
    // Assume the target does not have support for gather/scatter operations
218
    // and provide a rough estimate.
219
    //
220
    // First, compute the cost of the individual memory operations.
221
    InstructionCost AddrExtractCost =
222
        IsGatherScatter
223
            ? getVectorInstrCost(Instruction::ExtractElement,
224
                                 FixedVectorType::get(
225
                                     PointerType::get(VT->getElementType(), 0),
226
                                     VT->getNumElements()),
227
                                 CostKind, -1, nullptr, nullptr)
228
            : 0;
229
    InstructionCost LoadCost =
230
        VT->getNumElements() *
231
        (AddrExtractCost +
232
         getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind));
233
 
234
    // Next, compute the cost of packing the result in a vector.
235
    InstructionCost PackingCost =
236
        getScalarizationOverhead(VT, Opcode != Instruction::Store,
237
                                 Opcode == Instruction::Store, CostKind);
238
 
239
    InstructionCost ConditionalCost = 0;
240
    if (VariableMask) {
241
      // Compute the cost of conditionally executing the memory operations with
242
      // variable masks. This includes extracting the individual conditions, a
243
      // branches and PHIs to combine the results.
244
      // NOTE: Estimating the cost of conditionally executing the memory
245
      // operations accurately is quite difficult and the current solution
246
      // provides a very rough estimate only.
247
      ConditionalCost =
248
          VT->getNumElements() *
249
          (getVectorInstrCost(
250
               Instruction::ExtractElement,
251
               FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()),
252
                                    VT->getNumElements()),
253
               CostKind, -1, nullptr, nullptr) +
254
           getCFInstrCost(Instruction::Br, CostKind) +
255
           getCFInstrCost(Instruction::PHI, CostKind));
256
    }
257
 
258
    return LoadCost + PackingCost + ConditionalCost;
259
  }
260
 
261
protected:
262
  explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
263
      : BaseT(DL) {}
264
  virtual ~BasicTTIImplBase() = default;
265
 
266
  using TargetTransformInfoImplBase::DL;
267
 
268
public:
269
  /// \name Scalar TTI Implementations
270
  /// @{
271
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
272
                                      unsigned AddressSpace, Align Alignment,
273
                                      unsigned *Fast) const {
274
    EVT E = EVT::getIntegerVT(Context, BitWidth);
275
    return getTLI()->allowsMisalignedMemoryAccesses(
276
        E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
277
  }
278
 
279
  bool hasBranchDivergence() { return false; }
280
 
281
  bool useGPUDivergenceAnalysis() { return false; }
282
 
283
  bool isSourceOfDivergence(const Value *V) { return false; }
284
 
285
  bool isAlwaysUniform(const Value *V) { return false; }
286
 
287
  unsigned getFlatAddressSpace() {
288
    // Return an invalid address space.
289
    return -1;
290
  }
291
 
292
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
293
                                  Intrinsic::ID IID) const {
294
    return false;
295
  }
296
 
297
  bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
298
    return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
299
  }
300
 
301
  unsigned getAssumedAddrSpace(const Value *V) const {
302
    return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
303
  }
304
 
305
  bool isSingleThreaded() const {
306
    return getTLI()->getTargetMachine().Options.ThreadModel ==
307
           ThreadModel::Single;
308
  }
309
 
310
  std::pair<const Value *, unsigned>
311
  getPredicatedAddrSpace(const Value *V) const {
312
    return getTLI()->getTargetMachine().getPredicatedAddrSpace(V);
313
  }
314
 
315
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
316
                                          Value *NewV) const {
317
    return nullptr;
318
  }
319
 
320
  bool isLegalAddImmediate(int64_t imm) {
321
    return getTLI()->isLegalAddImmediate(imm);
322
  }
323
 
324
  bool isLegalICmpImmediate(int64_t imm) {
325
    return getTLI()->isLegalICmpImmediate(imm);
326
  }
327
 
328
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
329
                             bool HasBaseReg, int64_t Scale,
330
                             unsigned AddrSpace, Instruction *I = nullptr) {
331
    TargetLoweringBase::AddrMode AM;
332
    AM.BaseGV = BaseGV;
333
    AM.BaseOffs = BaseOffset;
334
    AM.HasBaseReg = HasBaseReg;
335
    AM.Scale = Scale;
336
    return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
337
  }
338
 
339
  unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
340
                             Type *ScalarValTy) const {
341
    auto &&IsSupportedByTarget = [this, ScalarMemTy, ScalarValTy](unsigned VF) {
342
      auto *SrcTy = FixedVectorType::get(ScalarMemTy, VF / 2);
343
      EVT VT = getTLI()->getValueType(DL, SrcTy);
344
      if (getTLI()->isOperationLegal(ISD::STORE, VT) ||
345
          getTLI()->isOperationCustom(ISD::STORE, VT))
346
        return true;
347
 
348
      EVT ValVT =
349
          getTLI()->getValueType(DL, FixedVectorType::get(ScalarValTy, VF / 2));
350
      EVT LegalizedVT =
351
          getTLI()->getTypeToTransformTo(ScalarMemTy->getContext(), VT);
352
      return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT);
353
    };
354
    while (VF > 2 && IsSupportedByTarget(VF))
355
      VF /= 2;
356
    return VF;
357
  }
358
 
359
  bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
360
                          const DataLayout &DL) const {
361
    EVT VT = getTLI()->getValueType(DL, Ty);
362
    return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
363
  }
364
 
365
  bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
366
                           const DataLayout &DL) const {
367
    EVT VT = getTLI()->getValueType(DL, Ty);
368
    return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
369
  }
370
 
371
  bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
372
    return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
373
  }
374
 
375
  bool isNumRegsMajorCostOfLSR() {
376
    return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR();
377
  }
378
 
379
  bool isProfitableLSRChainElement(Instruction *I) {
380
    return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
381
  }
382
 
383
  InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
384
                                       int64_t BaseOffset, bool HasBaseReg,
385
                                       int64_t Scale, unsigned AddrSpace) {
386
    TargetLoweringBase::AddrMode AM;
387
    AM.BaseGV = BaseGV;
388
    AM.BaseOffs = BaseOffset;
389
    AM.HasBaseReg = HasBaseReg;
390
    AM.Scale = Scale;
391
    if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
392
      return 0;
393
    return -1;
394
  }
395
 
396
  bool isTruncateFree(Type *Ty1, Type *Ty2) {
397
    return getTLI()->isTruncateFree(Ty1, Ty2);
398
  }
399
 
400
  bool isProfitableToHoist(Instruction *I) {
401
    return getTLI()->isProfitableToHoist(I);
402
  }
403
 
404
  bool useAA() const { return getST()->useAA(); }
405
 
406
  bool isTypeLegal(Type *Ty) {
407
    EVT VT = getTLI()->getValueType(DL, Ty);
408
    return getTLI()->isTypeLegal(VT);
409
  }
410
 
411
  unsigned getRegUsageForType(Type *Ty) {
412
    EVT ETy = getTLI()->getValueType(DL, Ty);
413
    return getTLI()->getNumRegisters(Ty->getContext(), ETy);
414
  }
415
 
416
  InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
417
                             ArrayRef<const Value *> Operands,
418
                             TTI::TargetCostKind CostKind) {
419
    return BaseT::getGEPCost(PointeeType, Ptr, Operands, CostKind);
420
  }
421
 
422
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
423
                                            unsigned &JumpTableSize,
424
                                            ProfileSummaryInfo *PSI,
425
                                            BlockFrequencyInfo *BFI) {
426
    /// Try to find the estimated number of clusters. Note that the number of
427
    /// clusters identified in this function could be different from the actual
428
    /// numbers found in lowering. This function ignore switches that are
429
    /// lowered with a mix of jump table / bit test / BTree. This function was
430
    /// initially intended to be used when estimating the cost of switch in
431
    /// inline cost heuristic, but it's a generic cost model to be used in other
432
    /// places (e.g., in loop unrolling).
433
    unsigned N = SI.getNumCases();
434
    const TargetLoweringBase *TLI = getTLI();
435
    const DataLayout &DL = this->getDataLayout();
436
 
437
    JumpTableSize = 0;
438
    bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
439
 
440
    // Early exit if both a jump table and bit test are not allowed.
441
    if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
442
      return N;
443
 
444
    APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
445
    APInt MinCaseVal = MaxCaseVal;
446
    for (auto CI : SI.cases()) {
447
      const APInt &CaseVal = CI.getCaseValue()->getValue();
448
      if (CaseVal.sgt(MaxCaseVal))
449
        MaxCaseVal = CaseVal;
450
      if (CaseVal.slt(MinCaseVal))
451
        MinCaseVal = CaseVal;
452
    }
453
 
454
    // Check if suitable for a bit test
455
    if (N <= DL.getIndexSizeInBits(0u)) {
456
      SmallPtrSet<const BasicBlock *, 4> Dests;
457
      for (auto I : SI.cases())
458
        Dests.insert(I.getCaseSuccessor());
459
 
460
      if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
461
                                     DL))
462
        return 1;
463
    }
464
 
465
    // Check if suitable for a jump table.
466
    if (IsJTAllowed) {
467
      if (N < 2 || N < TLI->getMinimumJumpTableEntries())
468
        return N;
469
      uint64_t Range =
470
          (MaxCaseVal - MinCaseVal)
471
              .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
472
      // Check whether a range of clusters is dense enough for a jump table
473
      if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
474
        JumpTableSize = Range;
475
        return 1;
476
      }
477
    }
478
    return N;
479
  }
480
 
481
  bool shouldBuildLookupTables() {
482
    const TargetLoweringBase *TLI = getTLI();
483
    return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
484
           TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
485
  }
486
 
487
  bool shouldBuildRelLookupTables() const {
488
    const TargetMachine &TM = getTLI()->getTargetMachine();
489
    // If non-PIC mode, do not generate a relative lookup table.
490
    if (!TM.isPositionIndependent())
491
      return false;
492
 
493
    /// Relative lookup table entries consist of 32-bit offsets.
494
    /// Do not generate relative lookup tables for large code models
495
    /// in 64-bit achitectures where 32-bit offsets might not be enough.
496
    if (TM.getCodeModel() == CodeModel::Medium ||
497
        TM.getCodeModel() == CodeModel::Large)
498
      return false;
499
 
500
    Triple TargetTriple = TM.getTargetTriple();
501
    if (!TargetTriple.isArch64Bit())
502
      return false;
503
 
504
    // TODO: Triggers issues on aarch64 on darwin, so temporarily disable it
505
    // there.
506
    if (TargetTriple.getArch() == Triple::aarch64 && TargetTriple.isOSDarwin())
507
      return false;
508
 
509
    return true;
510
  }
511
 
512
  bool haveFastSqrt(Type *Ty) {
513
    const TargetLoweringBase *TLI = getTLI();
514
    EVT VT = TLI->getValueType(DL, Ty);
515
    return TLI->isTypeLegal(VT) &&
516
           TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
517
  }
518
 
519
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
520
    return true;
521
  }
522
 
523
  InstructionCost getFPOpCost(Type *Ty) {
524
    // Check whether FADD is available, as a proxy for floating-point in
525
    // general.
526
    const TargetLoweringBase *TLI = getTLI();
527
    EVT VT = TLI->getValueType(DL, Ty);
528
    if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
529
      return TargetTransformInfo::TCC_Basic;
530
    return TargetTransformInfo::TCC_Expensive;
531
  }
532
 
533
  unsigned getInliningThresholdMultiplier() { return 1; }
534
  unsigned adjustInliningThreshold(const CallBase *CB) { return 0; }
535
 
536
  int getInlinerVectorBonusPercent() { return 150; }
537
 
538
  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
539
                               TTI::UnrollingPreferences &UP,
540
                               OptimizationRemarkEmitter *ORE) {
541
    // This unrolling functionality is target independent, but to provide some
542
    // motivation for its intended use, for x86:
543
 
544
    // According to the Intel 64 and IA-32 Architectures Optimization Reference
545
    // Manual, Intel Core models and later have a loop stream detector (and
546
    // associated uop queue) that can benefit from partial unrolling.
547
    // The relevant requirements are:
548
    //  - The loop must have no more than 4 (8 for Nehalem and later) branches
549
    //    taken, and none of them may be calls.
550
    //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
551
 
552
    // According to the Software Optimization Guide for AMD Family 15h
553
    // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
554
    // and loop buffer which can benefit from partial unrolling.
555
    // The relevant requirements are:
556
    //  - The loop must have fewer than 16 branches
557
    //  - The loop must have less than 40 uops in all executed loop branches
558
 
559
    // The number of taken branches in a loop is hard to estimate here, and
560
    // benchmarking has revealed that it is better not to be conservative when
561
    // estimating the branch count. As a result, we'll ignore the branch limits
562
    // until someone finds a case where it matters in practice.
563
 
564
    unsigned MaxOps;
565
    const TargetSubtargetInfo *ST = getST();
566
    if (PartialUnrollingThreshold.getNumOccurrences() > 0)
567
      MaxOps = PartialUnrollingThreshold;
568
    else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
569
      MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
570
    else
571
      return;
572
 
573
    // Scan the loop: don't unroll loops with calls.
574
    for (BasicBlock *BB : L->blocks()) {
575
      for (Instruction &I : *BB) {
576
        if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
577
          if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
578
            if (!thisT()->isLoweredToCall(F))
579
              continue;
580
          }
581
 
582
          if (ORE) {
583
            ORE->emit([&]() {
584
              return OptimizationRemark("TTI", "DontUnroll", L->getStartLoc(),
585
                                        L->getHeader())
586
                     << "advising against unrolling the loop because it "
587
                        "contains a "
588
                     << ore::NV("Call", &I);
589
            });
590
          }
591
          return;
592
        }
593
      }
594
    }
595
 
596
    // Enable runtime and partial unrolling up to the specified size.
597
    // Enable using trip count upper bound to unroll loops.
598
    UP.Partial = UP.Runtime = UP.UpperBound = true;
599
    UP.PartialThreshold = MaxOps;
600
 
601
    // Avoid unrolling when optimizing for size.
602
    UP.OptSizeThreshold = 0;
603
    UP.PartialOptSizeThreshold = 0;
604
 
605
    // Set number of instructions optimized when "back edge"
606
    // becomes "fall through" to default value of 2.
607
    UP.BEInsns = 2;
608
  }
609
 
610
  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
611
                             TTI::PeelingPreferences &PP) {
612
    PP.PeelCount = 0;
613
    PP.AllowPeeling = true;
614
    PP.AllowLoopNestsPeeling = false;
615
    PP.PeelProfiledIterations = true;
616
  }
617
 
618
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
619
                                AssumptionCache &AC,
620
                                TargetLibraryInfo *LibInfo,
621
                                HardwareLoopInfo &HWLoopInfo) {
622
    return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
623
  }
624
 
625
  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
626
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
627
                                   DominatorTree *DT,
628
                                   LoopVectorizationLegality *LVL,
629
                                   InterleavedAccessInfo *IAI) {
630
    return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
631
  }
632
 
633
  PredicationStyle emitGetActiveLaneMask() {
634
    return BaseT::emitGetActiveLaneMask();
635
  }
636
 
637
  std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
638
                                               IntrinsicInst &II) {
639
    return BaseT::instCombineIntrinsic(IC, II);
640
  }
641
 
642
  std::optional<Value *>
643
  simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
644
                                   APInt DemandedMask, KnownBits &Known,
645
                                   bool &KnownBitsComputed) {
646
    return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
647
                                                   KnownBitsComputed);
648
  }
649
 
650
  std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
651
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
652
      APInt &UndefElts2, APInt &UndefElts3,
653
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
654
          SimplifyAndSetOp) {
655
    return BaseT::simplifyDemandedVectorEltsIntrinsic(
656
        IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
657
        SimplifyAndSetOp);
658
  }
659
 
660
  virtual std::optional<unsigned>
661
  getCacheSize(TargetTransformInfo::CacheLevel Level) const {
662
    return std::optional<unsigned>(
663
        getST()->getCacheSize(static_cast<unsigned>(Level)));
664
  }
665
 
666
  virtual std::optional<unsigned>
667
  getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
668
    std::optional<unsigned> TargetResult =
669
        getST()->getCacheAssociativity(static_cast<unsigned>(Level));
670
 
671
    if (TargetResult)
672
      return TargetResult;
673
 
674
    return BaseT::getCacheAssociativity(Level);
675
  }
676
 
677
  virtual unsigned getCacheLineSize() const {
678
    return getST()->getCacheLineSize();
679
  }
680
 
681
  virtual unsigned getPrefetchDistance() const {
682
    return getST()->getPrefetchDistance();
683
  }
684
 
685
  virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
686
                                        unsigned NumStridedMemAccesses,
687
                                        unsigned NumPrefetches,
688
                                        bool HasCall) const {
689
    return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
690
                                         NumPrefetches, HasCall);
691
  }
692
 
693
  virtual unsigned getMaxPrefetchIterationsAhead() const {
694
    return getST()->getMaxPrefetchIterationsAhead();
695
  }
696
 
697
  virtual bool enableWritePrefetching() const {
698
    return getST()->enableWritePrefetching();
699
  }
700
 
701
  virtual bool shouldPrefetchAddressSpace(unsigned AS) const {
702
    return getST()->shouldPrefetchAddressSpace(AS);
703
  }
704
 
705
  /// @}
706
 
707
  /// \name Vector TTI Implementations
708
  /// @{
709
 
710
  TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
711
    return TypeSize::getFixed(32);
712
  }
713
 
714
  std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
715
  std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; }
716
 
717
  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
718
  /// are set if the demanded result elements need to be inserted and/or
719
  /// extracted from vectors.
720
  InstructionCost getScalarizationOverhead(VectorType *InTy,
721
                                           const APInt &DemandedElts,
722
                                           bool Insert, bool Extract,
723
                                           TTI::TargetCostKind CostKind) {
724
    /// FIXME: a bitfield is not a reasonable abstraction for talking about
725
    /// which elements are needed from a scalable vector
726
    if (isa<ScalableVectorType>(InTy))
727
      return InstructionCost::getInvalid();
728
    auto *Ty = cast<FixedVectorType>(InTy);
729
 
730
    assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
731
           "Vector size mismatch");
732
 
733
    InstructionCost Cost = 0;
734
 
735
    for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
736
      if (!DemandedElts[i])
737
        continue;
738
      if (Insert)
739
        Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty,
740
                                            CostKind, i, nullptr, nullptr);
741
      if (Extract)
742
        Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
743
                                            CostKind, i, nullptr, nullptr);
744
    }
745
 
746
    return Cost;
747
  }
748
 
749
  /// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
750
  InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert,
751
                                           bool Extract,
752
                                           TTI::TargetCostKind CostKind) {
753
    if (isa<ScalableVectorType>(InTy))
754
      return InstructionCost::getInvalid();
755
    auto *Ty = cast<FixedVectorType>(InTy);
756
 
757
    APInt DemandedElts = APInt::getAllOnes(Ty->getNumElements());
758
    return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
759
                                             CostKind);
760
  }
761
 
762
  /// Estimate the overhead of scalarizing an instructions unique
763
  /// non-constant operands. The (potentially vector) types to use for each of
764
  /// argument are passes via Tys.
765
  InstructionCost
766
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
767
                                   ArrayRef<Type *> Tys,
768
                                   TTI::TargetCostKind CostKind) {
769
    assert(Args.size() == Tys.size() && "Expected matching Args and Tys");
770
 
771
    InstructionCost Cost = 0;
772
    SmallPtrSet<const Value*, 4> UniqueOperands;
773
    for (int I = 0, E = Args.size(); I != E; I++) {
774
      // Disregard things like metadata arguments.
775
      const Value *A = Args[I];
776
      Type *Ty = Tys[I];
777
      if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
778
          !Ty->isPtrOrPtrVectorTy())
779
        continue;
780
 
781
      if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
782
        if (auto *VecTy = dyn_cast<VectorType>(Ty))
783
          Cost += getScalarizationOverhead(VecTy, /*Insert*/ false,
784
                                           /*Extract*/ true, CostKind);
785
      }
786
    }
787
 
788
    return Cost;
789
  }
790
 
791
  /// Estimate the overhead of scalarizing the inputs and outputs of an
792
  /// instruction, with return type RetTy and arguments Args of type Tys. If
793
  /// Args are unknown (empty), then the cost associated with one argument is
794
  /// added as a heuristic.
795
  InstructionCost getScalarizationOverhead(VectorType *RetTy,
796
                                           ArrayRef<const Value *> Args,
797
                                           ArrayRef<Type *> Tys,
798
                                           TTI::TargetCostKind CostKind) {
799
    InstructionCost Cost = getScalarizationOverhead(
800
        RetTy, /*Insert*/ true, /*Extract*/ false, CostKind);
801
    if (!Args.empty())
802
      Cost += getOperandsScalarizationOverhead(Args, Tys, CostKind);
803
    else
804
      // When no information on arguments is provided, we add the cost
805
      // associated with one argument as a heuristic.
806
      Cost += getScalarizationOverhead(RetTy, /*Insert*/ false,
807
                                       /*Extract*/ true, CostKind);
808
 
809
    return Cost;
810
  }
811
 
812
  /// Estimate the cost of type-legalization and the legalized type.
813
  std::pair<InstructionCost, MVT> getTypeLegalizationCost(Type *Ty) const {
814
    LLVMContext &C = Ty->getContext();
815
    EVT MTy = getTLI()->getValueType(DL, Ty);
816
 
817
    InstructionCost Cost = 1;
818
    // We keep legalizing the type until we find a legal kind. We assume that
819
    // the only operation that costs anything is the split. After splitting
820
    // we need to handle two types.
821
    while (true) {
822
      TargetLoweringBase::LegalizeKind LK = getTLI()->getTypeConversion(C, MTy);
823
 
824
      if (LK.first == TargetLoweringBase::TypeScalarizeScalableVector) {
825
        // Ensure we return a sensible simple VT here, since many callers of
826
        // this function require it.
827
        MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
828
        return std::make_pair(InstructionCost::getInvalid(), VT);
829
      }
830
 
831
      if (LK.first == TargetLoweringBase::TypeLegal)
832
        return std::make_pair(Cost, MTy.getSimpleVT());
833
 
834
      if (LK.first == TargetLoweringBase::TypeSplitVector ||
835
          LK.first == TargetLoweringBase::TypeExpandInteger)
836
        Cost *= 2;
837
 
838
      // Do not loop with f128 type.
839
      if (MTy == LK.second)
840
        return std::make_pair(Cost, MTy.getSimpleVT());
841
 
842
      // Keep legalizing the type.
843
      MTy = LK.second;
844
    }
845
  }
846
 
847
  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
848
 
849
  InstructionCost getArithmeticInstrCost(
850
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
851
      TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
852
      TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
853
      ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
854
      const Instruction *CxtI = nullptr) {
855
    // Check if any of the operands are vector operands.
856
    const TargetLoweringBase *TLI = getTLI();
857
    int ISD = TLI->InstructionOpcodeToISD(Opcode);
858
    assert(ISD && "Invalid opcode");
859
 
860
    // TODO: Handle more cost kinds.
861
    if (CostKind != TTI::TCK_RecipThroughput)
862
      return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
863
                                           Opd1Info, Opd2Info,
864
                                           Args, CxtI);
865
 
866
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
867
 
868
    bool IsFloat = Ty->isFPOrFPVectorTy();
869
    // Assume that floating point arithmetic operations cost twice as much as
870
    // integer operations.
871
    InstructionCost OpCost = (IsFloat ? 2 : 1);
872
 
873
    if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
874
      // The operation is legal. Assume it costs 1.
875
      // TODO: Once we have extract/insert subvector cost we need to use them.
876
      return LT.first * OpCost;
877
    }
878
 
879
    if (!TLI->isOperationExpand(ISD, LT.second)) {
880
      // If the operation is custom lowered, then assume that the code is twice
881
      // as expensive.
882
      return LT.first * 2 * OpCost;
883
    }
884
 
885
    // An 'Expand' of URem and SRem is special because it may default
886
    // to expanding the operation into a sequence of sub-operations
887
    // i.e. X % Y -> X-(X/Y)*Y.
888
    if (ISD == ISD::UREM || ISD == ISD::SREM) {
889
      bool IsSigned = ISD == ISD::SREM;
890
      if (TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIVREM : ISD::UDIVREM,
891
                                        LT.second) ||
892
          TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIV : ISD::UDIV,
893
                                        LT.second)) {
894
        unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
895
        InstructionCost DivCost = thisT()->getArithmeticInstrCost(
896
            DivOpc, Ty, CostKind, Opd1Info, Opd2Info);
897
        InstructionCost MulCost =
898
            thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind);
899
        InstructionCost SubCost =
900
            thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
901
        return DivCost + MulCost + SubCost;
902
      }
903
    }
904
 
905
    // We cannot scalarize scalable vectors, so return Invalid.
906
    if (isa<ScalableVectorType>(Ty))
907
      return InstructionCost::getInvalid();
908
 
909
    // Else, assume that we need to scalarize this op.
910
    // TODO: If one of the types get legalized by splitting, handle this
911
    // similarly to what getCastInstrCost() does.
912
    if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
913
      InstructionCost Cost = thisT()->getArithmeticInstrCost(
914
          Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
915
          Args, CxtI);
916
      // Return the cost of multiple scalar invocation plus the cost of
917
      // inserting and extracting the values.
918
      SmallVector<Type *> Tys(Args.size(), Ty);
919
      return getScalarizationOverhead(VTy, Args, Tys, CostKind) +
920
             VTy->getNumElements() * Cost;
921
    }
922
 
923
    // We don't know anything about this scalar instruction.
924
    return OpCost;
925
  }
926
 
927
  TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind,
928
                                              ArrayRef<int> Mask) const {
929
    int Limit = Mask.size() * 2;
930
    if (Mask.empty() ||
931
        // Extra check required by isSingleSourceMaskImpl function (called by
932
        // ShuffleVectorInst::isSingleSourceMask).
933
        any_of(Mask, [Limit](int I) { return I >= Limit; }))
934
      return Kind;
935
    int Index;
936
    switch (Kind) {
937
    case TTI::SK_PermuteSingleSrc:
938
      if (ShuffleVectorInst::isReverseMask(Mask))
939
        return TTI::SK_Reverse;
940
      if (ShuffleVectorInst::isZeroEltSplatMask(Mask))
941
        return TTI::SK_Broadcast;
942
      break;
943
    case TTI::SK_PermuteTwoSrc:
944
      if (ShuffleVectorInst::isSelectMask(Mask))
945
        return TTI::SK_Select;
946
      if (ShuffleVectorInst::isTransposeMask(Mask))
947
        return TTI::SK_Transpose;
948
      if (ShuffleVectorInst::isSpliceMask(Mask, Index))
949
        return TTI::SK_Splice;
950
      break;
951
    case TTI::SK_Select:
952
    case TTI::SK_Reverse:
953
    case TTI::SK_Broadcast:
954
    case TTI::SK_Transpose:
955
    case TTI::SK_InsertSubvector:
956
    case TTI::SK_ExtractSubvector:
957
    case TTI::SK_Splice:
958
      break;
959
    }
960
    return Kind;
961
  }
962
 
963
  InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
964
                                 ArrayRef<int> Mask,
965
                                 TTI::TargetCostKind CostKind, int Index,
966
                                 VectorType *SubTp,
967
                                 ArrayRef<const Value *> Args = std::nullopt) {
968
 
969
    switch (improveShuffleKindFromMask(Kind, Mask)) {
970
    case TTI::SK_Broadcast:
971
      if (auto *FVT = dyn_cast<FixedVectorType>(Tp))
972
        return getBroadcastShuffleOverhead(FVT, CostKind);
973
      return InstructionCost::getInvalid();
974
    case TTI::SK_Select:
975
    case TTI::SK_Splice:
976
    case TTI::SK_Reverse:
977
    case TTI::SK_Transpose:
978
    case TTI::SK_PermuteSingleSrc:
979
    case TTI::SK_PermuteTwoSrc:
980
      if (auto *FVT = dyn_cast<FixedVectorType>(Tp))
981
        return getPermuteShuffleOverhead(FVT, CostKind);
982
      return InstructionCost::getInvalid();
983
    case TTI::SK_ExtractSubvector:
984
      return getExtractSubvectorOverhead(Tp, CostKind, Index,
985
                                         cast<FixedVectorType>(SubTp));
986
    case TTI::SK_InsertSubvector:
987
      return getInsertSubvectorOverhead(Tp, CostKind, Index,
988
                                        cast<FixedVectorType>(SubTp));
989
    }
990
    llvm_unreachable("Unknown TTI::ShuffleKind");
991
  }
992
 
993
  InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
994
                                   TTI::CastContextHint CCH,
995
                                   TTI::TargetCostKind CostKind,
996
                                   const Instruction *I = nullptr) {
997
    if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
998
      return 0;
999
 
1000
    const TargetLoweringBase *TLI = getTLI();
1001
    int ISD = TLI->InstructionOpcodeToISD(Opcode);
1002
    assert(ISD && "Invalid opcode");
1003
    std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
1004
    std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
1005
 
1006
    TypeSize SrcSize = SrcLT.second.getSizeInBits();
1007
    TypeSize DstSize = DstLT.second.getSizeInBits();
1008
    bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
1009
    bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
1010
 
1011
    switch (Opcode) {
1012
    default:
1013
      break;
1014
    case Instruction::Trunc:
1015
      // Check for NOOP conversions.
1016
      if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
1017
        return 0;
1018
      [[fallthrough]];
1019
    case Instruction::BitCast:
1020
      // Bitcast between types that are legalized to the same type are free and
1021
      // assume int to/from ptr of the same size is also free.
1022
      if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
1023
          SrcSize == DstSize)
1024
        return 0;
1025
      break;
1026
    case Instruction::FPExt:
1027
      if (I && getTLI()->isExtFree(I))
1028
        return 0;
1029
      break;
1030
    case Instruction::ZExt:
1031
      if (TLI->isZExtFree(SrcLT.second, DstLT.second))
1032
        return 0;
1033
      [[fallthrough]];
1034
    case Instruction::SExt:
1035
      if (I && getTLI()->isExtFree(I))
1036
        return 0;
1037
 
1038
      // If this is a zext/sext of a load, return 0 if the corresponding
1039
      // extending load exists on target and the result type is legal.
1040
      if (CCH == TTI::CastContextHint::Normal) {
1041
        EVT ExtVT = EVT::getEVT(Dst);
1042
        EVT LoadVT = EVT::getEVT(Src);
1043
        unsigned LType =
1044
          ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
1045
        if (DstLT.first == SrcLT.first &&
1046
            TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
1047
          return 0;
1048
      }
1049
      break;
1050
    case Instruction::AddrSpaceCast:
1051
      if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
1052
                                   Dst->getPointerAddressSpace()))
1053
        return 0;
1054
      break;
1055
    }
1056
 
1057
    auto *SrcVTy = dyn_cast<VectorType>(Src);
1058
    auto *DstVTy = dyn_cast<VectorType>(Dst);
1059
 
1060
    // If the cast is marked as legal (or promote) then assume low cost.
1061
    if (SrcLT.first == DstLT.first &&
1062
        TLI->isOperationLegalOrPromote(ISD, DstLT.second))
1063
      return SrcLT.first;
1064
 
1065
    // Handle scalar conversions.
1066
    if (!SrcVTy && !DstVTy) {
1067
      // Just check the op cost. If the operation is legal then assume it costs
1068
      // 1.
1069
      if (!TLI->isOperationExpand(ISD, DstLT.second))
1070
        return 1;
1071
 
1072
      // Assume that illegal scalar instruction are expensive.
1073
      return 4;
1074
    }
1075
 
1076
    // Check vector-to-vector casts.
1077
    if (DstVTy && SrcVTy) {
1078
      // If the cast is between same-sized registers, then the check is simple.
1079
      if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
1080
 
1081
        // Assume that Zext is done using AND.
1082
        if (Opcode == Instruction::ZExt)
1083
          return SrcLT.first;
1084
 
1085
        // Assume that sext is done using SHL and SRA.
1086
        if (Opcode == Instruction::SExt)
1087
          return SrcLT.first * 2;
1088
 
1089
        // Just check the op cost. If the operation is legal then assume it
1090
        // costs
1091
        // 1 and multiply by the type-legalization overhead.
1092
        if (!TLI->isOperationExpand(ISD, DstLT.second))
1093
          return SrcLT.first * 1;
1094
      }
1095
 
1096
      // If we are legalizing by splitting, query the concrete TTI for the cost
1097
      // of casting the original vector twice. We also need to factor in the
1098
      // cost of the split itself. Count that as 1, to be consistent with
1099
      // getTypeLegalizationCost().
1100
      bool SplitSrc =
1101
          TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
1102
          TargetLowering::TypeSplitVector;
1103
      bool SplitDst =
1104
          TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
1105
          TargetLowering::TypeSplitVector;
1106
      if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isVector() &&
1107
          DstVTy->getElementCount().isVector()) {
1108
        Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
1109
        Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
1110
        T *TTI = static_cast<T *>(this);
1111
        // If both types need to be split then the split is free.
1112
        InstructionCost SplitCost =
1113
            (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
1114
        return SplitCost +
1115
               (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
1116
                                          CostKind, I));
1117
      }
1118
 
1119
      // Scalarization cost is Invalid, can't assume any num elements.
1120
      if (isa<ScalableVectorType>(DstVTy))
1121
        return InstructionCost::getInvalid();
1122
 
1123
      // In other cases where the source or destination are illegal, assume
1124
      // the operation will get scalarized.
1125
      unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
1126
      InstructionCost Cost = thisT()->getCastInstrCost(
1127
          Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
1128
 
1129
      // Return the cost of multiple scalar invocation plus the cost of
1130
      // inserting and extracting the values.
1131
      return getScalarizationOverhead(DstVTy, /*Insert*/ true, /*Extract*/ true,
1132
                                      CostKind) +
1133
             Num * Cost;
1134
    }
1135
 
1136
    // We already handled vector-to-vector and scalar-to-scalar conversions.
1137
    // This
1138
    // is where we handle bitcast between vectors and scalars. We need to assume
1139
    //  that the conversion is scalarized in one way or another.
1140
    if (Opcode == Instruction::BitCast) {
1141
      // Illegal bitcasts are done by storing and loading from a stack slot.
1142
      return (SrcVTy ? getScalarizationOverhead(SrcVTy, /*Insert*/ false,
1143
                                                /*Extract*/ true, CostKind)
1144
                     : 0) +
1145
             (DstVTy ? getScalarizationOverhead(DstVTy, /*Insert*/ true,
1146
                                                /*Extract*/ false, CostKind)
1147
                     : 0);
1148
    }
1149
 
1150
    llvm_unreachable("Unhandled cast");
1151
  }
1152
 
1153
  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1154
                                           VectorType *VecTy, unsigned Index) {
1155
    TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1156
    return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1157
                                       CostKind, Index, nullptr, nullptr) +
1158
           thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
1159
                                     TTI::CastContextHint::None, CostKind);
1160
  }
1161
 
1162
  InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
1163
                                 const Instruction *I = nullptr) {
1164
    return BaseT::getCFInstrCost(Opcode, CostKind, I);
1165
  }
1166
 
1167
  InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1168
                                     CmpInst::Predicate VecPred,
1169
                                     TTI::TargetCostKind CostKind,
1170
                                     const Instruction *I = nullptr) {
1171
    const TargetLoweringBase *TLI = getTLI();
1172
    int ISD = TLI->InstructionOpcodeToISD(Opcode);
1173
    assert(ISD && "Invalid opcode");
1174
 
1175
    // TODO: Handle other cost kinds.
1176
    if (CostKind != TTI::TCK_RecipThroughput)
1177
      return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1178
                                       I);
1179
 
1180
    // Selects on vectors are actually vector selects.
1181
    if (ISD == ISD::SELECT) {
1182
      assert(CondTy && "CondTy must exist");
1183
      if (CondTy->isVectorTy())
1184
        ISD = ISD::VSELECT;
1185
    }
1186
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1187
 
1188
    if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
1189
        !TLI->isOperationExpand(ISD, LT.second)) {
1190
      // The operation is legal. Assume it costs 1. Multiply
1191
      // by the type-legalization overhead.
1192
      return LT.first * 1;
1193
    }
1194
 
1195
    // Otherwise, assume that the cast is scalarized.
1196
    // TODO: If one of the types get legalized by splitting, handle this
1197
    // similarly to what getCastInstrCost() does.
1198
    if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
1199
      if (isa<ScalableVectorType>(ValTy))
1200
        return InstructionCost::getInvalid();
1201
 
1202
      unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
1203
      if (CondTy)
1204
        CondTy = CondTy->getScalarType();
1205
      InstructionCost Cost = thisT()->getCmpSelInstrCost(
1206
          Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I);
1207
 
1208
      // Return the cost of multiple scalar invocation plus the cost of
1209
      // inserting and extracting the values.
1210
      return getScalarizationOverhead(ValVTy, /*Insert*/ true,
1211
                                      /*Extract*/ false, CostKind) +
1212
             Num * Cost;
1213
    }
1214
 
1215
    // Unknown scalar opcode.
1216
    return 1;
1217
  }
1218
 
1219
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1220
                                     TTI::TargetCostKind CostKind,
1221
                                     unsigned Index, Value *Op0, Value *Op1) {
1222
    return getRegUsageForType(Val->getScalarType());
1223
  }
1224
 
1225
  InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1226
                                     TTI::TargetCostKind CostKind,
1227
                                     unsigned Index) {
1228
    Value *Op0 = nullptr;
1229
    Value *Op1 = nullptr;
1230
    if (auto *IE = dyn_cast<InsertElementInst>(&I)) {
1231
      Op0 = IE->getOperand(0);
1232
      Op1 = IE->getOperand(1);
1233
    }
1234
    return thisT()->getVectorInstrCost(I.getOpcode(), Val, CostKind, Index, Op0,
1235
                                       Op1);
1236
  }
1237
 
1238
  InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
1239
                                            int VF,
1240
                                            const APInt &DemandedDstElts,
1241
                                            TTI::TargetCostKind CostKind) {
1242
    assert(DemandedDstElts.getBitWidth() == (unsigned)VF * ReplicationFactor &&
1243
           "Unexpected size of DemandedDstElts.");
1244
 
1245
    InstructionCost Cost;
1246
 
1247
    auto *SrcVT = FixedVectorType::get(EltTy, VF);
1248
    auto *ReplicatedVT = FixedVectorType::get(EltTy, VF * ReplicationFactor);
1249
 
1250
    // The Mask shuffling cost is extract all the elements of the Mask
1251
    // and insert each of them Factor times into the wide vector:
1252
    //
1253
    // E.g. an interleaved group with factor 3:
1254
    //    %mask = icmp ult <8 x i32> %vec1, %vec2
1255
    //    %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
1256
    //        <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
1257
    // The cost is estimated as extract all mask elements from the <8xi1> mask
1258
    // vector and insert them factor times into the <24xi1> shuffled mask
1259
    // vector.
1260
    APInt DemandedSrcElts = APIntOps::ScaleBitMask(DemandedDstElts, VF);
1261
    Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts,
1262
                                              /*Insert*/ false,
1263
                                              /*Extract*/ true, CostKind);
1264
    Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts,
1265
                                              /*Insert*/ true,
1266
                                              /*Extract*/ false, CostKind);
1267
 
1268
    return Cost;
1269
  }
1270
 
1271
  InstructionCost
1272
  getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
1273
                  unsigned AddressSpace, TTI::TargetCostKind CostKind,
1274
                  TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None},
1275
                  const Instruction *I = nullptr) {
1276
    assert(!Src->isVoidTy() && "Invalid type");
1277
    // Assume types, such as structs, are expensive.
1278
    if (getTLI()->getValueType(DL, Src,  true) == MVT::Other)
1279
      return 4;
1280
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
1281
 
1282
    // Assuming that all loads of legal types cost 1.
1283
    InstructionCost Cost = LT.first;
1284
    if (CostKind != TTI::TCK_RecipThroughput)
1285
      return Cost;
1286
 
1287
    const DataLayout &DL = this->getDataLayout();
1288
    if (Src->isVectorTy() &&
1289
        // In practice it's not currently possible to have a change in lane
1290
        // length for extending loads or truncating stores so both types should
1291
        // have the same scalable property.
1292
        TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src),
1293
                            LT.second.getSizeInBits())) {
1294
      // This is a vector load that legalizes to a larger type than the vector
1295
      // itself. Unless the corresponding extending load or truncating store is
1296
      // legal, then this will scalarize.
1297
      TargetLowering::LegalizeAction LA = TargetLowering::Expand;
1298
      EVT MemVT = getTLI()->getValueType(DL, Src);
1299
      if (Opcode == Instruction::Store)
1300
        LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
1301
      else
1302
        LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
1303
 
1304
      if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
1305
        // This is a vector load/store for some illegal type that is scalarized.
1306
        // We must account for the cost of building or decomposing the vector.
1307
        Cost += getScalarizationOverhead(
1308
            cast<VectorType>(Src), Opcode != Instruction::Store,
1309
            Opcode == Instruction::Store, CostKind);
1310
      }
1311
    }
1312
 
1313
    return Cost;
1314
  }
1315
 
1316
  InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
1317
                                        Align Alignment, unsigned AddressSpace,
1318
                                        TTI::TargetCostKind CostKind) {
1319
    return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false,
1320
                                       CostKind);
1321
  }
1322
 
1323
  InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1324
                                         const Value *Ptr, bool VariableMask,
1325
                                         Align Alignment,
1326
                                         TTI::TargetCostKind CostKind,
1327
                                         const Instruction *I = nullptr) {
1328
    return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
1329
                                       true, CostKind);
1330
  }
1331
 
1332
  InstructionCost getInterleavedMemoryOpCost(
1333
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1334
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1335
      bool UseMaskForCond = false, bool UseMaskForGaps = false) {
1336
 
1337
    // We cannot scalarize scalable vectors, so return Invalid.
1338
    if (isa<ScalableVectorType>(VecTy))
1339
      return InstructionCost::getInvalid();
1340
 
1341
    auto *VT = cast<FixedVectorType>(VecTy);
1342
 
1343
    unsigned NumElts = VT->getNumElements();
1344
    assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1345
 
1346
    unsigned NumSubElts = NumElts / Factor;
1347
    auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
1348
 
1349
    // Firstly, the cost of load/store operation.
1350
    InstructionCost Cost;
1351
    if (UseMaskForCond || UseMaskForGaps)
1352
      Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
1353
                                            AddressSpace, CostKind);
1354
    else
1355
      Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
1356
                                      CostKind);
1357
 
1358
    // Legalize the vector type, and get the legalized and unlegalized type
1359
    // sizes.
1360
    MVT VecTyLT = getTypeLegalizationCost(VecTy).second;
1361
    unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
1362
    unsigned VecTyLTSize = VecTyLT.getStoreSize();
1363
 
1364
    // Scale the cost of the memory operation by the fraction of legalized
1365
    // instructions that will actually be used. We shouldn't account for the
1366
    // cost of dead instructions since they will be removed.
1367
    //
1368
    // E.g., An interleaved load of factor 8:
1369
    //       %vec = load <16 x i64>, <16 x i64>* %ptr
1370
    //       %v0 = shufflevector %vec, undef, <0, 8>
1371
    //
1372
    // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
1373
    // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
1374
    // type). The other loads are unused.
1375
    //
1376
    // TODO: Note that legalization can turn masked loads/stores into unmasked
1377
    // (legalized) loads/stores. This can be reflected in the cost.
1378
    if (Cost.isValid() && VecTySize > VecTyLTSize) {
1379
      // The number of loads of a legal type it will take to represent a load
1380
      // of the unlegalized vector type.
1381
      unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize);
1382
 
1383
      // The number of elements of the unlegalized type that correspond to a
1384
      // single legal instruction.
1385
      unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts);
1386
 
1387
      // Determine which legal instructions will be used.
1388
      BitVector UsedInsts(NumLegalInsts, false);
1389
      for (unsigned Index : Indices)
1390
        for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
1391
          UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
1392
 
1393
      // Scale the cost of the load by the fraction of legal instructions that
1394
      // will be used.
1395
      Cost = divideCeil(UsedInsts.count() * *Cost.getValue(), NumLegalInsts);
1396
    }
1397
 
1398
    // Then plus the cost of interleave operation.
1399
    assert(Indices.size() <= Factor &&
1400
           "Interleaved memory op has too many members");
1401
 
1402
    const APInt DemandedAllSubElts = APInt::getAllOnes(NumSubElts);
1403
    const APInt DemandedAllResultElts = APInt::getAllOnes(NumElts);
1404
 
1405
    APInt DemandedLoadStoreElts = APInt::getZero(NumElts);
1406
    for (unsigned Index : Indices) {
1407
      assert(Index < Factor && "Invalid index for interleaved memory op");
1408
      for (unsigned Elm = 0; Elm < NumSubElts; Elm++)
1409
        DemandedLoadStoreElts.setBit(Index + Elm * Factor);
1410
    }
1411
 
1412
    if (Opcode == Instruction::Load) {
1413
      // The interleave cost is similar to extract sub vectors' elements
1414
      // from the wide vector, and insert them into sub vectors.
1415
      //
1416
      // E.g. An interleaved load of factor 2 (with one member of index 0):
1417
      //      %vec = load <8 x i32>, <8 x i32>* %ptr
1418
      //      %v0 = shuffle %vec, undef, <0, 2, 4, 6>         ; Index 0
1419
      // The cost is estimated as extract elements at 0, 2, 4, 6 from the
1420
      // <8 x i32> vector and insert them into a <4 x i32> vector.
1421
      InstructionCost InsSubCost = thisT()->getScalarizationOverhead(
1422
          SubVT, DemandedAllSubElts,
1423
          /*Insert*/ true, /*Extract*/ false, CostKind);
1424
      Cost += Indices.size() * InsSubCost;
1425
      Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1426
                                                /*Insert*/ false,
1427
                                                /*Extract*/ true, CostKind);
1428
    } else {
1429
      // The interleave cost is extract elements from sub vectors, and
1430
      // insert them into the wide vector.
1431
      //
1432
      // E.g. An interleaved store of factor 3 with 2 members at indices 0,1:
1433
      // (using VF=4):
1434
      //    %v0_v1 = shuffle %v0, %v1, <0,4,undef,1,5,undef,2,6,undef,3,7,undef>
1435
      //    %gaps.mask = <true, true, false, true, true, false,
1436
      //                  true, true, false, true, true, false>
1437
      //    call llvm.masked.store <12 x i32> %v0_v1, <12 x i32>* %ptr,
1438
      //                           i32 Align, <12 x i1> %gaps.mask
1439
      // The cost is estimated as extract all elements (of actual members,
1440
      // excluding gaps) from both <4 x i32> vectors and insert into the <12 x
1441
      // i32> vector.
1442
      InstructionCost ExtSubCost = thisT()->getScalarizationOverhead(
1443
          SubVT, DemandedAllSubElts,
1444
          /*Insert*/ false, /*Extract*/ true, CostKind);
1445
      Cost += ExtSubCost * Indices.size();
1446
      Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1447
                                                /*Insert*/ true,
1448
                                                /*Extract*/ false, CostKind);
1449
    }
1450
 
1451
    if (!UseMaskForCond)
1452
      return Cost;
1453
 
1454
    Type *I8Type = Type::getInt8Ty(VT->getContext());
1455
 
1456
    Cost += thisT()->getReplicationShuffleCost(
1457
        I8Type, Factor, NumSubElts,
1458
        UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts,
1459
        CostKind);
1460
 
1461
    // The Gaps mask is invariant and created outside the loop, therefore the
1462
    // cost of creating it is not accounted for here. However if we have both
1463
    // a MaskForGaps and some other mask that guards the execution of the
1464
    // memory access, we need to account for the cost of And-ing the two masks
1465
    // inside the loop.
1466
    if (UseMaskForGaps) {
1467
      auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
1468
      Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
1469
                                              CostKind);
1470
    }
1471
 
1472
    return Cost;
1473
  }
1474
 
1475
  /// Get intrinsic cost based on arguments.
1476
  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1477
                                        TTI::TargetCostKind CostKind) {
1478
    // Check for generically free intrinsics.
1479
    if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
1480
      return 0;
1481
 
1482
    // Assume that target intrinsics are cheap.
1483
    Intrinsic::ID IID = ICA.getID();
1484
    if (Function::isTargetIntrinsic(IID))
1485
      return TargetTransformInfo::TCC_Basic;
1486
 
1487
    if (ICA.isTypeBasedOnly())
1488
      return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
1489
 
1490
    Type *RetTy = ICA.getReturnType();
1491
 
1492
    ElementCount RetVF =
1493
        (RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount()
1494
                             : ElementCount::getFixed(1));
1495
    const IntrinsicInst *I = ICA.getInst();
1496
    const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
1497
    FastMathFlags FMF = ICA.getFlags();
1498
    switch (IID) {
1499
    default:
1500
      break;
1501
 
1502
    case Intrinsic::powi:
1503
      if (auto *RHSC = dyn_cast<ConstantInt>(Args[1])) {
1504
        bool ShouldOptForSize = I->getParent()->getParent()->hasOptSize();
1505
        if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(),
1506
                                               ShouldOptForSize)) {
1507
          // The cost is modeled on the expansion performed by ExpandPowI in
1508
          // SelectionDAGBuilder.
1509
          APInt Exponent = RHSC->getValue().abs();
1510
          unsigned ActiveBits = Exponent.getActiveBits();
1511
          unsigned PopCount = Exponent.countPopulation();
1512
          InstructionCost Cost = (ActiveBits + PopCount - 2) *
1513
                                 thisT()->getArithmeticInstrCost(
1514
                                     Instruction::FMul, RetTy, CostKind);
1515
          if (RHSC->getSExtValue() < 0)
1516
            Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy,
1517
                                                    CostKind);
1518
          return Cost;
1519
        }
1520
      }
1521
      break;
1522
    case Intrinsic::cttz:
1523
      // FIXME: If necessary, this should go in target-specific overrides.
1524
      if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy))
1525
        return TargetTransformInfo::TCC_Basic;
1526
      break;
1527
 
1528
    case Intrinsic::ctlz:
1529
      // FIXME: If necessary, this should go in target-specific overrides.
1530
      if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy))
1531
        return TargetTransformInfo::TCC_Basic;
1532
      break;
1533
 
1534
    case Intrinsic::memcpy:
1535
      return thisT()->getMemcpyCost(ICA.getInst());
1536
 
1537
    case Intrinsic::masked_scatter: {
1538
      const Value *Mask = Args[3];
1539
      bool VarMask = !isa<Constant>(Mask);
1540
      Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
1541
      return thisT()->getGatherScatterOpCost(Instruction::Store,
1542
                                             ICA.getArgTypes()[0], Args[1],
1543
                                             VarMask, Alignment, CostKind, I);
1544
    }
1545
    case Intrinsic::masked_gather: {
1546
      const Value *Mask = Args[2];
1547
      bool VarMask = !isa<Constant>(Mask);
1548
      Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
1549
      return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
1550
                                             VarMask, Alignment, CostKind, I);
1551
    }
1552
    case Intrinsic::experimental_stepvector: {
1553
      if (isa<ScalableVectorType>(RetTy))
1554
        return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1555
      // The cost of materialising a constant integer vector.
1556
      return TargetTransformInfo::TCC_Basic;
1557
    }
1558
    case Intrinsic::vector_extract: {
1559
      // FIXME: Handle case where a scalable vector is extracted from a scalable
1560
      // vector
1561
      if (isa<ScalableVectorType>(RetTy))
1562
        return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1563
      unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
1564
      return thisT()->getShuffleCost(
1565
          TTI::SK_ExtractSubvector, cast<VectorType>(Args[0]->getType()),
1566
          std::nullopt, CostKind, Index, cast<VectorType>(RetTy));
1567
    }
1568
    case Intrinsic::vector_insert: {
1569
      // FIXME: Handle case where a scalable vector is inserted into a scalable
1570
      // vector
1571
      if (isa<ScalableVectorType>(Args[1]->getType()))
1572
        return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1573
      unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
1574
      return thisT()->getShuffleCost(
1575
          TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()),
1576
          std::nullopt, CostKind, Index, cast<VectorType>(Args[1]->getType()));
1577
    }
1578
    case Intrinsic::experimental_vector_reverse: {
1579
      return thisT()->getShuffleCost(
1580
          TTI::SK_Reverse, cast<VectorType>(Args[0]->getType()), std::nullopt,
1581
          CostKind, 0, cast<VectorType>(RetTy));
1582
    }
1583
    case Intrinsic::experimental_vector_splice: {
1584
      unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
1585
      return thisT()->getShuffleCost(
1586
          TTI::SK_Splice, cast<VectorType>(Args[0]->getType()), std::nullopt,
1587
          CostKind, Index, cast<VectorType>(RetTy));
1588
    }
1589
    case Intrinsic::vector_reduce_add:
1590
    case Intrinsic::vector_reduce_mul:
1591
    case Intrinsic::vector_reduce_and:
1592
    case Intrinsic::vector_reduce_or:
1593
    case Intrinsic::vector_reduce_xor:
1594
    case Intrinsic::vector_reduce_smax:
1595
    case Intrinsic::vector_reduce_smin:
1596
    case Intrinsic::vector_reduce_fmax:
1597
    case Intrinsic::vector_reduce_fmin:
1598
    case Intrinsic::vector_reduce_umax:
1599
    case Intrinsic::vector_reduce_umin: {
1600
      IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, I, 1);
1601
      return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
1602
    }
1603
    case Intrinsic::vector_reduce_fadd:
1604
    case Intrinsic::vector_reduce_fmul: {
1605
      IntrinsicCostAttributes Attrs(
1606
          IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1);
1607
      return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
1608
    }
1609
    case Intrinsic::fshl:
1610
    case Intrinsic::fshr: {
1611
      const Value *X = Args[0];
1612
      const Value *Y = Args[1];
1613
      const Value *Z = Args[2];
1614
      const TTI::OperandValueInfo OpInfoX = TTI::getOperandInfo(X);
1615
      const TTI::OperandValueInfo OpInfoY = TTI::getOperandInfo(Y);
1616
      const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(Z);
1617
      const TTI::OperandValueInfo OpInfoBW =
1618
        {TTI::OK_UniformConstantValue,
1619
         isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1620
         : TTI::OP_None};
1621
 
1622
      // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1623
      // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1624
      InstructionCost Cost = 0;
1625
      Cost +=
1626
          thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
1627
      Cost +=
1628
          thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
1629
      Cost += thisT()->getArithmeticInstrCost(
1630
          BinaryOperator::Shl, RetTy, CostKind, OpInfoX,
1631
          {OpInfoZ.Kind, TTI::OP_None});
1632
      Cost += thisT()->getArithmeticInstrCost(
1633
          BinaryOperator::LShr, RetTy, CostKind, OpInfoY,
1634
          {OpInfoZ.Kind, TTI::OP_None});
1635
      // Non-constant shift amounts requires a modulo.
1636
      if (!OpInfoZ.isConstant())
1637
        Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
1638
                                                CostKind, OpInfoZ, OpInfoBW);
1639
      // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1640
      if (X != Y) {
1641
        Type *CondTy = RetTy->getWithNewBitWidth(1);
1642
        Cost +=
1643
            thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
1644
                                        CmpInst::ICMP_EQ, CostKind);
1645
        Cost +=
1646
            thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
1647
                                        CmpInst::ICMP_EQ, CostKind);
1648
      }
1649
      return Cost;
1650
    }
1651
    case Intrinsic::get_active_lane_mask: {
1652
      EVT ResVT = getTLI()->getValueType(DL, RetTy, true);
1653
      EVT ArgType = getTLI()->getValueType(DL, ICA.getArgTypes()[0], true);
1654
 
1655
      // If we're not expanding the intrinsic then we assume this is cheap
1656
      // to implement.
1657
      if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgType)) {
1658
        return getTypeLegalizationCost(RetTy).first;
1659
      }
1660
 
1661
      // Create the expanded types that will be used to calculate the uadd_sat
1662
      // operation.
1663
      Type *ExpRetTy = VectorType::get(
1664
          ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
1665
      IntrinsicCostAttributes Attrs(Intrinsic::uadd_sat, ExpRetTy, {}, FMF);
1666
      InstructionCost Cost =
1667
          thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
1668
      Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy,
1669
                                          CmpInst::ICMP_ULT, CostKind);
1670
      return Cost;
1671
    }
1672
    }
1673
 
1674
    // Assume that we need to scalarize this intrinsic.
1675
    // Compute the scalarization overhead based on Args for a vector
1676
    // intrinsic.
1677
    InstructionCost ScalarizationCost = InstructionCost::getInvalid();
1678
    if (RetVF.isVector() && !RetVF.isScalable()) {
1679
      ScalarizationCost = 0;
1680
      if (!RetTy->isVoidTy())
1681
        ScalarizationCost += getScalarizationOverhead(
1682
            cast<VectorType>(RetTy),
1683
            /*Insert*/ true, /*Extract*/ false, CostKind);
1684
      ScalarizationCost +=
1685
          getOperandsScalarizationOverhead(Args, ICA.getArgTypes(), CostKind);
1686
    }
1687
 
1688
    IntrinsicCostAttributes Attrs(IID, RetTy, ICA.getArgTypes(), FMF, I,
1689
                                  ScalarizationCost);
1690
    return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
1691
  }
1692
 
1693
  /// Get intrinsic cost based on argument types.
1694
  /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1695
  /// cost of scalarizing the arguments and the return value will be computed
1696
  /// based on types.
1697
  InstructionCost
1698
  getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1699
                                 TTI::TargetCostKind CostKind) {
1700
    Intrinsic::ID IID = ICA.getID();
1701
    Type *RetTy = ICA.getReturnType();
1702
    const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
1703
    FastMathFlags FMF = ICA.getFlags();
1704
    InstructionCost ScalarizationCostPassed = ICA.getScalarizationCost();
1705
    bool SkipScalarizationCost = ICA.skipScalarizationCost();
1706
 
1707
    VectorType *VecOpTy = nullptr;
1708
    if (!Tys.empty()) {
1709
      // The vector reduction operand is operand 0 except for fadd/fmul.
1710
      // Their operand 0 is a scalar start value, so the vector op is operand 1.
1711
      unsigned VecTyIndex = 0;
1712
      if (IID == Intrinsic::vector_reduce_fadd ||
1713
          IID == Intrinsic::vector_reduce_fmul)
1714
        VecTyIndex = 1;
1715
      assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
1716
      VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
1717
    }
1718
 
1719
    // Library call cost - other than size, make it expensive.
1720
    unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
1721
    unsigned ISD = 0;
1722
    switch (IID) {
1723
    default: {
1724
      // Scalable vectors cannot be scalarized, so return Invalid.
1725
      if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
1726
            return isa<ScalableVectorType>(Ty);
1727
          }))
1728
        return InstructionCost::getInvalid();
1729
 
1730
      // Assume that we need to scalarize this intrinsic.
1731
      InstructionCost ScalarizationCost =
1732
          SkipScalarizationCost ? ScalarizationCostPassed : 0;
1733
      unsigned ScalarCalls = 1;
1734
      Type *ScalarRetTy = RetTy;
1735
      if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
1736
        if (!SkipScalarizationCost)
1737
          ScalarizationCost = getScalarizationOverhead(
1738
              RetVTy, /*Insert*/ true, /*Extract*/ false, CostKind);
1739
        ScalarCalls = std::max(ScalarCalls,
1740
                               cast<FixedVectorType>(RetVTy)->getNumElements());
1741
        ScalarRetTy = RetTy->getScalarType();
1742
      }
1743
      SmallVector<Type *, 4> ScalarTys;
1744
      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1745
        Type *Ty = Tys[i];
1746
        if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1747
          if (!SkipScalarizationCost)
1748
            ScalarizationCost += getScalarizationOverhead(
1749
                VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
1750
          ScalarCalls = std::max(ScalarCalls,
1751
                                 cast<FixedVectorType>(VTy)->getNumElements());
1752
          Ty = Ty->getScalarType();
1753
        }
1754
        ScalarTys.push_back(Ty);
1755
      }
1756
      if (ScalarCalls == 1)
1757
        return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1758
 
1759
      IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
1760
      InstructionCost ScalarCost =
1761
          thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
1762
 
1763
      return ScalarCalls * ScalarCost + ScalarizationCost;
1764
    }
1765
    // Look for intrinsics that can be lowered directly or turned into a scalar
1766
    // intrinsic call.
1767
    case Intrinsic::sqrt:
1768
      ISD = ISD::FSQRT;
1769
      break;
1770
    case Intrinsic::sin:
1771
      ISD = ISD::FSIN;
1772
      break;
1773
    case Intrinsic::cos:
1774
      ISD = ISD::FCOS;
1775
      break;
1776
    case Intrinsic::exp:
1777
      ISD = ISD::FEXP;
1778
      break;
1779
    case Intrinsic::exp2:
1780
      ISD = ISD::FEXP2;
1781
      break;
1782
    case Intrinsic::log:
1783
      ISD = ISD::FLOG;
1784
      break;
1785
    case Intrinsic::log10:
1786
      ISD = ISD::FLOG10;
1787
      break;
1788
    case Intrinsic::log2:
1789
      ISD = ISD::FLOG2;
1790
      break;
1791
    case Intrinsic::fabs:
1792
      ISD = ISD::FABS;
1793
      break;
1794
    case Intrinsic::canonicalize:
1795
      ISD = ISD::FCANONICALIZE;
1796
      break;
1797
    case Intrinsic::minnum:
1798
      ISD = ISD::FMINNUM;
1799
      break;
1800
    case Intrinsic::maxnum:
1801
      ISD = ISD::FMAXNUM;
1802
      break;
1803
    case Intrinsic::minimum:
1804
      ISD = ISD::FMINIMUM;
1805
      break;
1806
    case Intrinsic::maximum:
1807
      ISD = ISD::FMAXIMUM;
1808
      break;
1809
    case Intrinsic::copysign:
1810
      ISD = ISD::FCOPYSIGN;
1811
      break;
1812
    case Intrinsic::floor:
1813
      ISD = ISD::FFLOOR;
1814
      break;
1815
    case Intrinsic::ceil:
1816
      ISD = ISD::FCEIL;
1817
      break;
1818
    case Intrinsic::trunc:
1819
      ISD = ISD::FTRUNC;
1820
      break;
1821
    case Intrinsic::nearbyint:
1822
      ISD = ISD::FNEARBYINT;
1823
      break;
1824
    case Intrinsic::rint:
1825
      ISD = ISD::FRINT;
1826
      break;
1827
    case Intrinsic::round:
1828
      ISD = ISD::FROUND;
1829
      break;
1830
    case Intrinsic::roundeven:
1831
      ISD = ISD::FROUNDEVEN;
1832
      break;
1833
    case Intrinsic::pow:
1834
      ISD = ISD::FPOW;
1835
      break;
1836
    case Intrinsic::fma:
1837
      ISD = ISD::FMA;
1838
      break;
1839
    case Intrinsic::fmuladd:
1840
      ISD = ISD::FMA;
1841
      break;
1842
    case Intrinsic::experimental_constrained_fmuladd:
1843
      ISD = ISD::STRICT_FMA;
1844
      break;
1845
    // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1846
    case Intrinsic::lifetime_start:
1847
    case Intrinsic::lifetime_end:
1848
    case Intrinsic::sideeffect:
1849
    case Intrinsic::pseudoprobe:
1850
    case Intrinsic::arithmetic_fence:
1851
      return 0;
1852
    case Intrinsic::masked_store: {
1853
      Type *Ty = Tys[0];
1854
      Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
1855
      return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
1856
                                            CostKind);
1857
    }
1858
    case Intrinsic::masked_load: {
1859
      Type *Ty = RetTy;
1860
      Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
1861
      return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
1862
                                            CostKind);
1863
    }
1864
    case Intrinsic::vector_reduce_add:
1865
      return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
1866
                                                 std::nullopt, CostKind);
1867
    case Intrinsic::vector_reduce_mul:
1868
      return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
1869
                                                 std::nullopt, CostKind);
1870
    case Intrinsic::vector_reduce_and:
1871
      return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
1872
                                                 std::nullopt, CostKind);
1873
    case Intrinsic::vector_reduce_or:
1874
      return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy,
1875
                                                 std::nullopt, CostKind);
1876
    case Intrinsic::vector_reduce_xor:
1877
      return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
1878
                                                 std::nullopt, CostKind);
1879
    case Intrinsic::vector_reduce_fadd:
1880
      return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
1881
                                                 FMF, CostKind);
1882
    case Intrinsic::vector_reduce_fmul:
1883
      return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
1884
                                                 FMF, CostKind);
1885
    case Intrinsic::vector_reduce_smax:
1886
    case Intrinsic::vector_reduce_smin:
1887
    case Intrinsic::vector_reduce_fmax:
1888
    case Intrinsic::vector_reduce_fmin:
1889
      return thisT()->getMinMaxReductionCost(
1890
          VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
1891
          /*IsUnsigned=*/false, CostKind);
1892
    case Intrinsic::vector_reduce_umax:
1893
    case Intrinsic::vector_reduce_umin:
1894
      return thisT()->getMinMaxReductionCost(
1895
          VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
1896
          /*IsUnsigned=*/true, CostKind);
1897
    case Intrinsic::abs: {
1898
      // abs(X) = select(icmp(X,0),X,sub(0,X))
1899
      Type *CondTy = RetTy->getWithNewBitWidth(1);
1900
      CmpInst::Predicate Pred = CmpInst::ICMP_SGT;
1901
      InstructionCost Cost = 0;
1902
      Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
1903
                                          Pred, CostKind);
1904
      Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
1905
                                          Pred, CostKind);
1906
      // TODO: Should we add an OperandValueProperties::OP_Zero property?
1907
      Cost += thisT()->getArithmeticInstrCost(
1908
         BinaryOperator::Sub, RetTy, CostKind, {TTI::OK_UniformConstantValue, TTI::OP_None});
1909
      return Cost;
1910
    }
1911
    case Intrinsic::smax:
1912
    case Intrinsic::smin:
1913
    case Intrinsic::umax:
1914
    case Intrinsic::umin: {
1915
      // minmax(X,Y) = select(icmp(X,Y),X,Y)
1916
      Type *CondTy = RetTy->getWithNewBitWidth(1);
1917
      bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin;
1918
      CmpInst::Predicate Pred =
1919
          IsUnsigned ? CmpInst::ICMP_UGT : CmpInst::ICMP_SGT;
1920
      InstructionCost Cost = 0;
1921
      Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
1922
                                          Pred, CostKind);
1923
      Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
1924
                                          Pred, CostKind);
1925
      return Cost;
1926
    }
1927
    case Intrinsic::sadd_sat:
1928
    case Intrinsic::ssub_sat: {
1929
      Type *CondTy = RetTy->getWithNewBitWidth(1);
1930
 
1931
      Type *OpTy = StructType::create({RetTy, CondTy});
1932
      Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
1933
                                     ? Intrinsic::sadd_with_overflow
1934
                                     : Intrinsic::ssub_with_overflow;
1935
      CmpInst::Predicate Pred = CmpInst::ICMP_SGT;
1936
 
1937
      // SatMax -> Overflow && SumDiff < 0
1938
      // SatMin -> Overflow && SumDiff >= 0
1939
      InstructionCost Cost = 0;
1940
      IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
1941
                                    nullptr, ScalarizationCostPassed);
1942
      Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
1943
      Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
1944
                                          Pred, CostKind);
1945
      Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1946
                                              CondTy, Pred, CostKind);
1947
      return Cost;
1948
    }
1949
    case Intrinsic::uadd_sat:
1950
    case Intrinsic::usub_sat: {
1951
      Type *CondTy = RetTy->getWithNewBitWidth(1);
1952
 
1953
      Type *OpTy = StructType::create({RetTy, CondTy});
1954
      Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
1955
                                     ? Intrinsic::uadd_with_overflow
1956
                                     : Intrinsic::usub_with_overflow;
1957
 
1958
      InstructionCost Cost = 0;
1959
      IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
1960
                                    nullptr, ScalarizationCostPassed);
1961
      Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
1962
      Cost +=
1963
          thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
1964
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind);
1965
      return Cost;
1966
    }
1967
    case Intrinsic::smul_fix:
1968
    case Intrinsic::umul_fix: {
1969
      unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
1970
      Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
1971
 
1972
      unsigned ExtOp =
1973
          IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1974
      TTI::CastContextHint CCH = TTI::CastContextHint::None;
1975
 
1976
      InstructionCost Cost = 0;
1977
      Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
1978
      Cost +=
1979
          thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
1980
      Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
1981
                                            CCH, CostKind);
1982
      Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
1983
                                              CostKind,
1984
                                              {TTI::OK_AnyValue, TTI::OP_None},
1985
                                              {TTI::OK_UniformConstantValue, TTI::OP_None});
1986
      Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
1987
                                              {TTI::OK_AnyValue, TTI::OP_None},
1988
                                              {TTI::OK_UniformConstantValue, TTI::OP_None});
1989
      Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
1990
      return Cost;
1991
    }
1992
    case Intrinsic::sadd_with_overflow:
1993
    case Intrinsic::ssub_with_overflow: {
1994
      Type *SumTy = RetTy->getContainedType(0);
1995
      Type *OverflowTy = RetTy->getContainedType(1);
1996
      unsigned Opcode = IID == Intrinsic::sadd_with_overflow
1997
                            ? BinaryOperator::Add
1998
                            : BinaryOperator::Sub;
1999
 
2000
      //   Add:
2001
      //   Overflow -> (Result < LHS) ^ (RHS < 0)
2002
      //   Sub:
2003
      //   Overflow -> (Result < LHS) ^ (RHS > 0)
2004
      InstructionCost Cost = 0;
2005
      Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
2006
      Cost += 2 * thisT()->getCmpSelInstrCost(
2007
                      Instruction::ICmp, SumTy, OverflowTy,
2008
                      CmpInst::ICMP_SGT, CostKind);
2009
      Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy,
2010
                                              CostKind);
2011
      return Cost;
2012
    }
2013
    case Intrinsic::uadd_with_overflow:
2014
    case Intrinsic::usub_with_overflow: {
2015
      Type *SumTy = RetTy->getContainedType(0);
2016
      Type *OverflowTy = RetTy->getContainedType(1);
2017
      unsigned Opcode = IID == Intrinsic::uadd_with_overflow
2018
                            ? BinaryOperator::Add
2019
                            : BinaryOperator::Sub;
2020
      CmpInst::Predicate Pred = IID == Intrinsic::uadd_with_overflow
2021
                                    ? CmpInst::ICMP_ULT
2022
                                    : CmpInst::ICMP_UGT;
2023
 
2024
      InstructionCost Cost = 0;
2025
      Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
2026
      Cost +=
2027
          thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy,
2028
                                      Pred, CostKind);
2029
      return Cost;
2030
    }
2031
    case Intrinsic::smul_with_overflow:
2032
    case Intrinsic::umul_with_overflow: {
2033
      Type *MulTy = RetTy->getContainedType(0);
2034
      Type *OverflowTy = RetTy->getContainedType(1);
2035
      unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
2036
      Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
2037
      bool IsSigned = IID == Intrinsic::smul_with_overflow;
2038
 
2039
      unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt;
2040
      TTI::CastContextHint CCH = TTI::CastContextHint::None;
2041
 
2042
      InstructionCost Cost = 0;
2043
      Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
2044
      Cost +=
2045
          thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
2046
      Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
2047
                                            CCH, CostKind);
2048
      Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, ExtTy,
2049
                                              CostKind,
2050
                                              {TTI::OK_AnyValue, TTI::OP_None},
2051
                                              {TTI::OK_UniformConstantValue, TTI::OP_None});
2052
 
2053
      if (IsSigned)
2054
        Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
2055
                                                CostKind,
2056
                                                {TTI::OK_AnyValue, TTI::OP_None},
2057
                                                {TTI::OK_UniformConstantValue, TTI::OP_None});
2058
 
2059
      Cost += thisT()->getCmpSelInstrCost(
2060
          BinaryOperator::ICmp, MulTy, OverflowTy, CmpInst::ICMP_NE, CostKind);
2061
      return Cost;
2062
    }
2063
    case Intrinsic::fptosi_sat:
2064
    case Intrinsic::fptoui_sat: {
2065
      if (Tys.empty())
2066
        break;
2067
      Type *FromTy = Tys[0];
2068
      bool IsSigned = IID == Intrinsic::fptosi_sat;
2069
 
2070
      InstructionCost Cost = 0;
2071
      IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FromTy,
2072
                                     {FromTy, FromTy});
2073
      Cost += thisT()->getIntrinsicInstrCost(Attrs1, CostKind);
2074
      IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FromTy,
2075
                                     {FromTy, FromTy});
2076
      Cost += thisT()->getIntrinsicInstrCost(Attrs2, CostKind);
2077
      Cost += thisT()->getCastInstrCost(
2078
          IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy,
2079
          TTI::CastContextHint::None, CostKind);
2080
      if (IsSigned) {
2081
        Type *CondTy = RetTy->getWithNewBitWidth(1);
2082
        Cost += thisT()->getCmpSelInstrCost(
2083
            BinaryOperator::FCmp, FromTy, CondTy, CmpInst::FCMP_UNO, CostKind);
2084
        Cost += thisT()->getCmpSelInstrCost(
2085
            BinaryOperator::Select, RetTy, CondTy, CmpInst::FCMP_UNO, CostKind);
2086
      }
2087
      return Cost;
2088
    }
2089
    case Intrinsic::ctpop:
2090
      ISD = ISD::CTPOP;
2091
      // In case of legalization use TCC_Expensive. This is cheaper than a
2092
      // library call but still not a cheap instruction.
2093
      SingleCallCost = TargetTransformInfo::TCC_Expensive;
2094
      break;
2095
    case Intrinsic::ctlz:
2096
      ISD = ISD::CTLZ;
2097
      break;
2098
    case Intrinsic::cttz:
2099
      ISD = ISD::CTTZ;
2100
      break;
2101
    case Intrinsic::bswap:
2102
      ISD = ISD::BSWAP;
2103
      break;
2104
    case Intrinsic::bitreverse:
2105
      ISD = ISD::BITREVERSE;
2106
      break;
2107
    }
2108
 
2109
    const TargetLoweringBase *TLI = getTLI();
2110
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
2111
 
2112
    if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
2113
      if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
2114
          TLI->isFAbsFree(LT.second)) {
2115
        return 0;
2116
      }
2117
 
2118
      // The operation is legal. Assume it costs 1.
2119
      // If the type is split to multiple registers, assume that there is some
2120
      // overhead to this.
2121
      // TODO: Once we have extract/insert subvector cost we need to use them.
2122
      if (LT.first > 1)
2123
        return (LT.first * 2);
2124
      else
2125
        return (LT.first * 1);
2126
    } else if (!TLI->isOperationExpand(ISD, LT.second)) {
2127
      // If the operation is custom lowered then assume
2128
      // that the code is twice as expensive.
2129
      return (LT.first * 2);
2130
    }
2131
 
2132
    // If we can't lower fmuladd into an FMA estimate the cost as a floating
2133
    // point mul followed by an add.
2134
    if (IID == Intrinsic::fmuladd)
2135
      return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
2136
                                             CostKind) +
2137
             thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
2138
                                             CostKind);
2139
    if (IID == Intrinsic::experimental_constrained_fmuladd) {
2140
      IntrinsicCostAttributes FMulAttrs(
2141
        Intrinsic::experimental_constrained_fmul, RetTy, Tys);
2142
      IntrinsicCostAttributes FAddAttrs(
2143
        Intrinsic::experimental_constrained_fadd, RetTy, Tys);
2144
      return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
2145
             thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
2146
    }
2147
 
2148
    // Else, assume that we need to scalarize this intrinsic. For math builtins
2149
    // this will emit a costly libcall, adding call overhead and spills. Make it
2150
    // very expensive.
2151
    if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
2152
      // Scalable vectors cannot be scalarized, so return Invalid.
2153
      if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
2154
            return isa<ScalableVectorType>(Ty);
2155
          }))
2156
        return InstructionCost::getInvalid();
2157
 
2158
      InstructionCost ScalarizationCost =
2159
          SkipScalarizationCost
2160
              ? ScalarizationCostPassed
2161
              : getScalarizationOverhead(RetVTy, /*Insert*/ true,
2162
                                         /*Extract*/ false, CostKind);
2163
 
2164
      unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
2165
      SmallVector<Type *, 4> ScalarTys;
2166
      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
2167
        Type *Ty = Tys[i];
2168
        if (Ty->isVectorTy())
2169
          Ty = Ty->getScalarType();
2170
        ScalarTys.push_back(Ty);
2171
      }
2172
      IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
2173
      InstructionCost ScalarCost =
2174
          thisT()->getIntrinsicInstrCost(Attrs, CostKind);
2175
      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
2176
        if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
2177
          if (!ICA.skipScalarizationCost())
2178
            ScalarizationCost += getScalarizationOverhead(
2179
                VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
2180
          ScalarCalls = std::max(ScalarCalls,
2181
                                 cast<FixedVectorType>(VTy)->getNumElements());
2182
        }
2183
      }
2184
      return ScalarCalls * ScalarCost + ScalarizationCost;
2185
    }
2186
 
2187
    // This is going to be turned into a library call, make it expensive.
2188
    return SingleCallCost;
2189
  }
2190
 
2191
  /// Compute a cost of the given call instruction.
2192
  ///
2193
  /// Compute the cost of calling function F with return type RetTy and
2194
  /// argument types Tys. F might be nullptr, in this case the cost of an
2195
  /// arbitrary call with the specified signature will be returned.
2196
  /// This is used, for instance,  when we estimate call of a vector
2197
  /// counterpart of the given function.
2198
  /// \param F Called function, might be nullptr.
2199
  /// \param RetTy Return value types.
2200
  /// \param Tys Argument types.
2201
  /// \returns The cost of Call instruction.
2202
  InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2203
                                   ArrayRef<Type *> Tys,
2204
                                   TTI::TargetCostKind CostKind) {
2205
    return 10;
2206
  }
2207
 
2208
  unsigned getNumberOfParts(Type *Tp) {
2209
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
2210
    return LT.first.isValid() ? *LT.first.getValue() : 0;
2211
  }
2212
 
2213
  InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *,
2214
                                            const SCEV *) {
2215
    return 0;
2216
  }
2217
 
2218
  /// Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
2219
  /// We're assuming that reduction operation are performing the following way:
2220
  ///
2221
  /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
2222
  /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
2223
  ///            \----------------v-------------/  \----------v------------/
2224
  ///                            n/2 elements               n/2 elements
2225
  /// %red1 = op <n x t> %val, <n x t> val1
2226
  /// After this operation we have a vector %red1 where only the first n/2
2227
  /// elements are meaningful, the second n/2 elements are undefined and can be
2228
  /// dropped. All other operations are actually working with the vector of
2229
  /// length n/2, not n, though the real vector length is still n.
2230
  /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
2231
  /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
2232
  ///            \----------------v-------------/  \----------v------------/
2233
  ///                            n/4 elements               3*n/4 elements
2234
  /// %red2 = op <n x t> %red1, <n x t> val2  - working with the vector of
2235
  /// length n/2, the resulting vector has length n/4 etc.
2236
  ///
2237
  /// The cost model should take into account that the actual length of the
2238
  /// vector is reduced on each iteration.
2239
  InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty,
2240
                                       TTI::TargetCostKind CostKind) {
2241
    // Targets must implement a default value for the scalable case, since
2242
    // we don't know how many lanes the vector has.
2243
    if (isa<ScalableVectorType>(Ty))
2244
      return InstructionCost::getInvalid();
2245
 
2246
    Type *ScalarTy = Ty->getElementType();
2247
    unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
2248
    if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
2249
        ScalarTy == IntegerType::getInt1Ty(Ty->getContext()) &&
2250
        NumVecElts >= 2) {
2251
      // Or reduction for i1 is represented as:
2252
      // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2253
      // %res = cmp ne iReduxWidth %val, 0
2254
      // And reduction for i1 is represented as:
2255
      // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2256
      // %res = cmp eq iReduxWidth %val, 11111
2257
      Type *ValTy = IntegerType::get(Ty->getContext(), NumVecElts);
2258
      return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
2259
                                       TTI::CastContextHint::None, CostKind) +
2260
             thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
2261
                                         CmpInst::makeCmpResultType(ValTy),
2262
                                         CmpInst::BAD_ICMP_PREDICATE, CostKind);
2263
    }
2264
    unsigned NumReduxLevels = Log2_32(NumVecElts);
2265
    InstructionCost ArithCost = 0;
2266
    InstructionCost ShuffleCost = 0;
2267
    std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
2268
    unsigned LongVectorCount = 0;
2269
    unsigned MVTLen =
2270
        LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
2271
    while (NumVecElts > MVTLen) {
2272
      NumVecElts /= 2;
2273
      VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
2274
      ShuffleCost +=
2275
          thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
2276
                                  CostKind, NumVecElts, SubTy);
2277
      ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
2278
      Ty = SubTy;
2279
      ++LongVectorCount;
2280
    }
2281
 
2282
    NumReduxLevels -= LongVectorCount;
2283
 
2284
    // The minimal length of the vector is limited by the real length of vector
2285
    // operations performed on the current platform. That's why several final
2286
    // reduction operations are performed on the vectors with the same
2287
    // architecture-dependent length.
2288
 
2289
    // By default reductions need one shuffle per reduction level.
2290
    ShuffleCost +=
2291
        NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
2292
                                                 std::nullopt, CostKind, 0, Ty);
2293
    ArithCost +=
2294
        NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty, CostKind);
2295
    return ShuffleCost + ArithCost +
2296
           thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
2297
                                       CostKind, 0, nullptr, nullptr);
2298
  }
2299
 
2300
  /// Try to calculate the cost of performing strict (in-order) reductions,
2301
  /// which involves doing a sequence of floating point additions in lane
2302
  /// order, starting with an initial value. For example, consider a scalar
2303
  /// initial value 'InitVal' of type float and a vector of type <4 x float>:
2304
  ///
2305
  ///   Vector = <float %v0, float %v1, float %v2, float %v3>
2306
  ///
2307
  ///   %add1 = %InitVal + %v0
2308
  ///   %add2 = %add1 + %v1
2309
  ///   %add3 = %add2 + %v2
2310
  ///   %add4 = %add3 + %v3
2311
  ///
2312
  /// As a simple estimate we can say the cost of such a reduction is 4 times
2313
  /// the cost of a scalar FP addition. We can only estimate the costs for
2314
  /// fixed-width vectors here because for scalable vectors we do not know the
2315
  /// runtime number of operations.
2316
  InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty,
2317
                                          TTI::TargetCostKind CostKind) {
2318
    // Targets must implement a default value for the scalable case, since
2319
    // we don't know how many lanes the vector has.
2320
    if (isa<ScalableVectorType>(Ty))
2321
      return InstructionCost::getInvalid();
2322
 
2323
    auto *VTy = cast<FixedVectorType>(Ty);
2324
    InstructionCost ExtractCost = getScalarizationOverhead(
2325
        VTy, /*Insert=*/false, /*Extract=*/true, CostKind);
2326
    InstructionCost ArithCost = thisT()->getArithmeticInstrCost(
2327
        Opcode, VTy->getElementType(), CostKind);
2328
    ArithCost *= VTy->getNumElements();
2329
 
2330
    return ExtractCost + ArithCost;
2331
  }
2332
 
2333
  InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2334
                                             std::optional<FastMathFlags> FMF,
2335
                                             TTI::TargetCostKind CostKind) {
2336
    if (TTI::requiresOrderedReduction(FMF))
2337
      return getOrderedReductionCost(Opcode, Ty, CostKind);
2338
    return getTreeReductionCost(Opcode, Ty, CostKind);
2339
  }
2340
 
2341
  /// Try to calculate op costs for min/max reduction operations.
2342
  /// \param CondTy Conditional type for the Select instruction.
2343
  InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2344
                                         bool IsUnsigned,
2345
                                         TTI::TargetCostKind CostKind) {
2346
    // Targets must implement a default value for the scalable case, since
2347
    // we don't know how many lanes the vector has.
2348
    if (isa<ScalableVectorType>(Ty))
2349
      return InstructionCost::getInvalid();
2350
 
2351
    Type *ScalarTy = Ty->getElementType();
2352
    Type *ScalarCondTy = CondTy->getElementType();
2353
    unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
2354
    unsigned NumReduxLevels = Log2_32(NumVecElts);
2355
    unsigned CmpOpcode;
2356
    if (Ty->isFPOrFPVectorTy()) {
2357
      CmpOpcode = Instruction::FCmp;
2358
    } else {
2359
      assert(Ty->isIntOrIntVectorTy() &&
2360
             "expecting floating point or integer type for min/max reduction");
2361
      CmpOpcode = Instruction::ICmp;
2362
    }
2363
    InstructionCost MinMaxCost = 0;
2364
    InstructionCost ShuffleCost = 0;
2365
    std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
2366
    unsigned LongVectorCount = 0;
2367
    unsigned MVTLen =
2368
        LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
2369
    while (NumVecElts > MVTLen) {
2370
      NumVecElts /= 2;
2371
      auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
2372
      CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);
2373
 
2374
      ShuffleCost +=
2375
          thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
2376
                                  CostKind, NumVecElts, SubTy);
2377
      MinMaxCost +=
2378
          thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy,
2379
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind) +
2380
          thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
2381
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind);
2382
      Ty = SubTy;
2383
      ++LongVectorCount;
2384
    }
2385
 
2386
    NumReduxLevels -= LongVectorCount;
2387
 
2388
    // The minimal length of the vector is limited by the real length of vector
2389
    // operations performed on the current platform. That's why several final
2390
    // reduction opertions are perfomed on the vectors with the same
2391
    // architecture-dependent length.
2392
    ShuffleCost +=
2393
        NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
2394
                                                 std::nullopt, CostKind, 0, Ty);
2395
    MinMaxCost +=
2396
        NumReduxLevels *
2397
        (thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy,
2398
                                     CmpInst::BAD_ICMP_PREDICATE, CostKind) +
2399
         thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
2400
                                     CmpInst::BAD_ICMP_PREDICATE, CostKind));
2401
    // The last min/max should be in vector registers and we counted it above.
2402
    // So just need a single extractelement.
2403
    return ShuffleCost + MinMaxCost +
2404
           thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
2405
                                       CostKind, 0, nullptr, nullptr);
2406
  }
2407
 
2408
  InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
2409
                                           Type *ResTy, VectorType *Ty,
2410
                                           std::optional<FastMathFlags> FMF,
2411
                                           TTI::TargetCostKind CostKind) {
2412
    // Without any native support, this is equivalent to the cost of
2413
    // vecreduce.opcode(ext(Ty A)).
2414
    VectorType *ExtTy = VectorType::get(ResTy, Ty);
2415
    InstructionCost RedCost =
2416
        thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF, CostKind);
2417
    InstructionCost ExtCost = thisT()->getCastInstrCost(
2418
        IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
2419
        TTI::CastContextHint::None, CostKind);
2420
 
2421
    return RedCost + ExtCost;
2422
  }
2423
 
2424
  InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
2425
                                         VectorType *Ty,
2426
                                         TTI::TargetCostKind CostKind) {
2427
    // Without any native support, this is equivalent to the cost of
2428
    // vecreduce.add(mul(ext(Ty A), ext(Ty B))) or
2429
    // vecreduce.add(mul(A, B)).
2430
    VectorType *ExtTy = VectorType::get(ResTy, Ty);
2431
    InstructionCost RedCost = thisT()->getArithmeticReductionCost(
2432
        Instruction::Add, ExtTy, std::nullopt, CostKind);
2433
    InstructionCost ExtCost = thisT()->getCastInstrCost(
2434
        IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
2435
        TTI::CastContextHint::None, CostKind);
2436
 
2437
    InstructionCost MulCost =
2438
        thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
2439
 
2440
    return RedCost + MulCost + 2 * ExtCost;
2441
  }
2442
 
2443
  InstructionCost getVectorSplitCost() { return 1; }
2444
 
2445
  /// @}
2446
};
2447
 
2448
/// Concrete BasicTTIImpl that can be used if no further customization
2449
/// is needed.
2450
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
2451
  using BaseT = BasicTTIImplBase<BasicTTIImpl>;
2452
 
2453
  friend class BasicTTIImplBase<BasicTTIImpl>;
2454
 
2455
  const TargetSubtargetInfo *ST;
2456
  const TargetLoweringBase *TLI;
2457
 
2458
  const TargetSubtargetInfo *getST() const { return ST; }
2459
  const TargetLoweringBase *getTLI() const { return TLI; }
2460
 
2461
public:
2462
  explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
2463
};
2464
 
2465
} // end namespace llvm
2466
 
2467
#endif // LLVM_CODEGEN_BASICTTIIMPL_H