Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This header contains common, non-processor-specific data structures and |
||
| 10 | // constants for the ELF file format. |
||
| 11 | // |
||
| 12 | // The details of the ELF32 bits in this file are largely based on the Tool |
||
| 13 | // Interface Standard (TIS) Executable and Linking Format (ELF) Specification |
||
| 14 | // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format |
||
| 15 | // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. |
||
| 16 | // |
||
| 17 | //===----------------------------------------------------------------------===// |
||
| 18 | |||
| 19 | #ifndef LLVM_BINARYFORMAT_ELF_H |
||
| 20 | #define LLVM_BINARYFORMAT_ELF_H |
||
| 21 | |||
| 22 | #include "llvm/ADT/StringRef.h" |
||
| 23 | #include <cstdint> |
||
| 24 | #include <cstring> |
||
| 25 | |||
| 26 | namespace llvm { |
||
| 27 | namespace ELF { |
||
| 28 | |||
| 29 | using Elf32_Addr = uint32_t; // Program address |
||
| 30 | using Elf32_Off = uint32_t; // File offset |
||
| 31 | using Elf32_Half = uint16_t; |
||
| 32 | using Elf32_Word = uint32_t; |
||
| 33 | using Elf32_Sword = int32_t; |
||
| 34 | |||
| 35 | using Elf64_Addr = uint64_t; |
||
| 36 | using Elf64_Off = uint64_t; |
||
| 37 | using Elf64_Half = uint16_t; |
||
| 38 | using Elf64_Word = uint32_t; |
||
| 39 | using Elf64_Sword = int32_t; |
||
| 40 | using Elf64_Xword = uint64_t; |
||
| 41 | using Elf64_Sxword = int64_t; |
||
| 42 | |||
| 43 | // Object file magic string. |
||
| 44 | static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'}; |
||
| 45 | |||
| 46 | // e_ident size and indices. |
||
| 47 | enum { |
||
| 48 | EI_MAG0 = 0, // File identification index. |
||
| 49 | EI_MAG1 = 1, // File identification index. |
||
| 50 | EI_MAG2 = 2, // File identification index. |
||
| 51 | EI_MAG3 = 3, // File identification index. |
||
| 52 | EI_CLASS = 4, // File class. |
||
| 53 | EI_DATA = 5, // Data encoding. |
||
| 54 | EI_VERSION = 6, // File version. |
||
| 55 | EI_OSABI = 7, // OS/ABI identification. |
||
| 56 | EI_ABIVERSION = 8, // ABI version. |
||
| 57 | EI_PAD = 9, // Start of padding bytes. |
||
| 58 | EI_NIDENT = 16 // Number of bytes in e_ident. |
||
| 59 | }; |
||
| 60 | |||
| 61 | struct Elf32_Ehdr { |
||
| 62 | unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes |
||
| 63 | Elf32_Half e_type; // Type of file (see ET_* below) |
||
| 64 | Elf32_Half e_machine; // Required architecture for this file (see EM_*) |
||
| 65 | Elf32_Word e_version; // Must be equal to 1 |
||
| 66 | Elf32_Addr e_entry; // Address to jump to in order to start program |
||
| 67 | Elf32_Off e_phoff; // Program header table's file offset, in bytes |
||
| 68 | Elf32_Off e_shoff; // Section header table's file offset, in bytes |
||
| 69 | Elf32_Word e_flags; // Processor-specific flags |
||
| 70 | Elf32_Half e_ehsize; // Size of ELF header, in bytes |
||
| 71 | Elf32_Half e_phentsize; // Size of an entry in the program header table |
||
| 72 | Elf32_Half e_phnum; // Number of entries in the program header table |
||
| 73 | Elf32_Half e_shentsize; // Size of an entry in the section header table |
||
| 74 | Elf32_Half e_shnum; // Number of entries in the section header table |
||
| 75 | Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table |
||
| 76 | |||
| 77 | bool checkMagic() const { |
||
| 78 | return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; |
||
| 79 | } |
||
| 80 | |||
| 81 | unsigned char getFileClass() const { return e_ident[EI_CLASS]; } |
||
| 82 | unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } |
||
| 83 | }; |
||
| 84 | |||
| 85 | // 64-bit ELF header. Fields are the same as for ELF32, but with different |
||
| 86 | // types (see above). |
||
| 87 | struct Elf64_Ehdr { |
||
| 88 | unsigned char e_ident[EI_NIDENT]; |
||
| 89 | Elf64_Half e_type; |
||
| 90 | Elf64_Half e_machine; |
||
| 91 | Elf64_Word e_version; |
||
| 92 | Elf64_Addr e_entry; |
||
| 93 | Elf64_Off e_phoff; |
||
| 94 | Elf64_Off e_shoff; |
||
| 95 | Elf64_Word e_flags; |
||
| 96 | Elf64_Half e_ehsize; |
||
| 97 | Elf64_Half e_phentsize; |
||
| 98 | Elf64_Half e_phnum; |
||
| 99 | Elf64_Half e_shentsize; |
||
| 100 | Elf64_Half e_shnum; |
||
| 101 | Elf64_Half e_shstrndx; |
||
| 102 | |||
| 103 | bool checkMagic() const { |
||
| 104 | return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; |
||
| 105 | } |
||
| 106 | |||
| 107 | unsigned char getFileClass() const { return e_ident[EI_CLASS]; } |
||
| 108 | unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } |
||
| 109 | }; |
||
| 110 | |||
| 111 | // File types. |
||
| 112 | // See current registered ELF types at: |
||
| 113 | // http://www.sco.com/developers/gabi/latest/ch4.eheader.html |
||
| 114 | enum { |
||
| 115 | ET_NONE = 0, // No file type |
||
| 116 | ET_REL = 1, // Relocatable file |
||
| 117 | ET_EXEC = 2, // Executable file |
||
| 118 | ET_DYN = 3, // Shared object file |
||
| 119 | ET_CORE = 4, // Core file |
||
| 120 | ET_LOOS = 0xfe00, // Beginning of operating system-specific codes |
||
| 121 | ET_HIOS = 0xfeff, // Operating system-specific |
||
| 122 | ET_LOPROC = 0xff00, // Beginning of processor-specific codes |
||
| 123 | ET_HIPROC = 0xffff // Processor-specific |
||
| 124 | }; |
||
| 125 | |||
| 126 | // Versioning |
||
| 127 | enum { EV_NONE = 0, EV_CURRENT = 1 }; |
||
| 128 | |||
| 129 | // Machine architectures |
||
| 130 | // See current registered ELF machine architectures at: |
||
| 131 | // http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html |
||
| 132 | enum { |
||
| 133 | EM_NONE = 0, // No machine |
||
| 134 | EM_M32 = 1, // AT&T WE 32100 |
||
| 135 | EM_SPARC = 2, // SPARC |
||
| 136 | EM_386 = 3, // Intel 386 |
||
| 137 | EM_68K = 4, // Motorola 68000 |
||
| 138 | EM_88K = 5, // Motorola 88000 |
||
| 139 | EM_IAMCU = 6, // Intel MCU |
||
| 140 | EM_860 = 7, // Intel 80860 |
||
| 141 | EM_MIPS = 8, // MIPS R3000 |
||
| 142 | EM_S370 = 9, // IBM System/370 |
||
| 143 | EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian |
||
| 144 | EM_PARISC = 15, // Hewlett-Packard PA-RISC |
||
| 145 | EM_VPP500 = 17, // Fujitsu VPP500 |
||
| 146 | EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC |
||
| 147 | EM_960 = 19, // Intel 80960 |
||
| 148 | EM_PPC = 20, // PowerPC |
||
| 149 | EM_PPC64 = 21, // PowerPC64 |
||
| 150 | EM_S390 = 22, // IBM System/390 |
||
| 151 | EM_SPU = 23, // IBM SPU/SPC |
||
| 152 | EM_V800 = 36, // NEC V800 |
||
| 153 | EM_FR20 = 37, // Fujitsu FR20 |
||
| 154 | EM_RH32 = 38, // TRW RH-32 |
||
| 155 | EM_RCE = 39, // Motorola RCE |
||
| 156 | EM_ARM = 40, // ARM |
||
| 157 | EM_ALPHA = 41, // DEC Alpha |
||
| 158 | EM_SH = 42, // Hitachi SH |
||
| 159 | EM_SPARCV9 = 43, // SPARC V9 |
||
| 160 | EM_TRICORE = 44, // Siemens TriCore |
||
| 161 | EM_ARC = 45, // Argonaut RISC Core |
||
| 162 | EM_H8_300 = 46, // Hitachi H8/300 |
||
| 163 | EM_H8_300H = 47, // Hitachi H8/300H |
||
| 164 | EM_H8S = 48, // Hitachi H8S |
||
| 165 | EM_H8_500 = 49, // Hitachi H8/500 |
||
| 166 | EM_IA_64 = 50, // Intel IA-64 processor architecture |
||
| 167 | EM_MIPS_X = 51, // Stanford MIPS-X |
||
| 168 | EM_COLDFIRE = 52, // Motorola ColdFire |
||
| 169 | EM_68HC12 = 53, // Motorola M68HC12 |
||
| 170 | EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator |
||
| 171 | EM_PCP = 55, // Siemens PCP |
||
| 172 | EM_NCPU = 56, // Sony nCPU embedded RISC processor |
||
| 173 | EM_NDR1 = 57, // Denso NDR1 microprocessor |
||
| 174 | EM_STARCORE = 58, // Motorola Star*Core processor |
||
| 175 | EM_ME16 = 59, // Toyota ME16 processor |
||
| 176 | EM_ST100 = 60, // STMicroelectronics ST100 processor |
||
| 177 | EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family |
||
| 178 | EM_X86_64 = 62, // AMD x86-64 architecture |
||
| 179 | EM_PDSP = 63, // Sony DSP Processor |
||
| 180 | EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 |
||
| 181 | EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 |
||
| 182 | EM_FX66 = 66, // Siemens FX66 microcontroller |
||
| 183 | EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller |
||
| 184 | EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller |
||
| 185 | EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller |
||
| 186 | EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller |
||
| 187 | EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller |
||
| 188 | EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller |
||
| 189 | EM_SVX = 73, // Silicon Graphics SVx |
||
| 190 | EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller |
||
| 191 | EM_VAX = 75, // Digital VAX |
||
| 192 | EM_CRIS = 76, // Axis Communications 32-bit embedded processor |
||
| 193 | EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor |
||
| 194 | EM_FIREPATH = 78, // Element 14 64-bit DSP Processor |
||
| 195 | EM_ZSP = 79, // LSI Logic 16-bit DSP Processor |
||
| 196 | EM_MMIX = 80, // Donald Knuth's educational 64-bit processor |
||
| 197 | EM_HUANY = 81, // Harvard University machine-independent object files |
||
| 198 | EM_PRISM = 82, // SiTera Prism |
||
| 199 | EM_AVR = 83, // Atmel AVR 8-bit microcontroller |
||
| 200 | EM_FR30 = 84, // Fujitsu FR30 |
||
| 201 | EM_D10V = 85, // Mitsubishi D10V |
||
| 202 | EM_D30V = 86, // Mitsubishi D30V |
||
| 203 | EM_V850 = 87, // NEC v850 |
||
| 204 | EM_M32R = 88, // Mitsubishi M32R |
||
| 205 | EM_MN10300 = 89, // Matsushita MN10300 |
||
| 206 | EM_MN10200 = 90, // Matsushita MN10200 |
||
| 207 | EM_PJ = 91, // picoJava |
||
| 208 | EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor |
||
| 209 | EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old |
||
| 210 | // spelling/synonym: EM_ARC_A5) |
||
| 211 | EM_XTENSA = 94, // Tensilica Xtensa Architecture |
||
| 212 | EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor |
||
| 213 | EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor |
||
| 214 | EM_NS32K = 97, // National Semiconductor 32000 series |
||
| 215 | EM_TPC = 98, // Tenor Network TPC processor |
||
| 216 | EM_SNP1K = 99, // Trebia SNP 1000 processor |
||
| 217 | EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 |
||
| 218 | EM_IP2K = 101, // Ubicom IP2xxx microcontroller family |
||
| 219 | EM_MAX = 102, // MAX Processor |
||
| 220 | EM_CR = 103, // National Semiconductor CompactRISC microprocessor |
||
| 221 | EM_F2MC16 = 104, // Fujitsu F2MC16 |
||
| 222 | EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 |
||
| 223 | EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor |
||
| 224 | EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors |
||
| 225 | EM_SEP = 108, // Sharp embedded microprocessor |
||
| 226 | EM_ARCA = 109, // Arca RISC Microprocessor |
||
| 227 | EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC |
||
| 228 | // of Peking University |
||
| 229 | EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU |
||
| 230 | EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor |
||
| 231 | EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor |
||
| 232 | EM_CRX = 114, // National Semiconductor CompactRISC CRX |
||
| 233 | EM_XGATE = 115, // Motorola XGATE embedded processor |
||
| 234 | EM_C166 = 116, // Infineon C16x/XC16x processor |
||
| 235 | EM_M16C = 117, // Renesas M16C series microprocessors |
||
| 236 | EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal |
||
| 237 | // Controller |
||
| 238 | EM_CE = 119, // Freescale Communication Engine RISC core |
||
| 239 | EM_M32C = 120, // Renesas M32C series microprocessors |
||
| 240 | EM_TSK3000 = 131, // Altium TSK3000 core |
||
| 241 | EM_RS08 = 132, // Freescale RS08 embedded processor |
||
| 242 | EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP |
||
| 243 | // processors |
||
| 244 | EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor |
||
| 245 | EM_SCORE7 = 135, // Sunplus S+core7 RISC processor |
||
| 246 | EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor |
||
| 247 | EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor |
||
| 248 | EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture |
||
| 249 | EM_SE_C17 = 139, // Seiko Epson C17 family |
||
| 250 | EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family |
||
| 251 | EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family |
||
| 252 | EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family |
||
| 253 | EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor |
||
| 254 | EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor |
||
| 255 | EM_R32C = 162, // Renesas R32C series microprocessors |
||
| 256 | EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family |
||
| 257 | EM_HEXAGON = 164, // Qualcomm Hexagon processor |
||
| 258 | EM_8051 = 165, // Intel 8051 and variants |
||
| 259 | EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable |
||
| 260 | // and extensible RISC processors |
||
| 261 | EM_NDS32 = 167, // Andes Technology compact code size embedded RISC |
||
| 262 | // processor family |
||
| 263 | EM_ECOG1 = 168, // Cyan Technology eCOG1X family |
||
| 264 | EM_ECOG1X = 168, // Cyan Technology eCOG1X family |
||
| 265 | EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers |
||
| 266 | EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor |
||
| 267 | EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor |
||
| 268 | EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture |
||
| 269 | EM_RX = 173, // Renesas RX family |
||
| 270 | EM_METAG = 174, // Imagination Technologies META processor |
||
| 271 | // architecture |
||
| 272 | EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture |
||
| 273 | EM_ECOG16 = 176, // Cyan Technology eCOG16 family |
||
| 274 | EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit |
||
| 275 | // microprocessor |
||
| 276 | EM_ETPU = 178, // Freescale Extended Time Processing Unit |
||
| 277 | EM_SLE9X = 179, // Infineon Technologies SLE9X core |
||
| 278 | EM_L10M = 180, // Intel L10M |
||
| 279 | EM_K10M = 181, // Intel K10M |
||
| 280 | EM_AARCH64 = 183, // ARM AArch64 |
||
| 281 | EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family |
||
| 282 | EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller |
||
| 283 | EM_TILE64 = 187, // Tilera TILE64 multicore architecture family |
||
| 284 | EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family |
||
| 285 | EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core |
||
| 286 | EM_CUDA = 190, // NVIDIA CUDA architecture |
||
| 287 | EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family |
||
| 288 | EM_CLOUDSHIELD = 192, // CloudShield architecture family |
||
| 289 | EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family |
||
| 290 | EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family |
||
| 291 | EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 |
||
| 292 | EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core |
||
| 293 | EM_RL78 = 197, // Renesas RL78 family |
||
| 294 | EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor |
||
| 295 | EM_78KOR = 199, // Renesas 78KOR family |
||
| 296 | EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC) |
||
| 297 | EM_BA1 = 201, // Beyond BA1 CPU architecture |
||
| 298 | EM_BA2 = 202, // Beyond BA2 CPU architecture |
||
| 299 | EM_XCORE = 203, // XMOS xCORE processor family |
||
| 300 | EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family |
||
| 301 | EM_INTEL205 = 205, // Reserved by Intel |
||
| 302 | EM_INTEL206 = 206, // Reserved by Intel |
||
| 303 | EM_INTEL207 = 207, // Reserved by Intel |
||
| 304 | EM_INTEL208 = 208, // Reserved by Intel |
||
| 305 | EM_INTEL209 = 209, // Reserved by Intel |
||
| 306 | EM_KM32 = 210, // KM211 KM32 32-bit processor |
||
| 307 | EM_KMX32 = 211, // KM211 KMX32 32-bit processor |
||
| 308 | EM_KMX16 = 212, // KM211 KMX16 16-bit processor |
||
| 309 | EM_KMX8 = 213, // KM211 KMX8 8-bit processor |
||
| 310 | EM_KVARC = 214, // KM211 KVARC processor |
||
| 311 | EM_CDP = 215, // Paneve CDP architecture family |
||
| 312 | EM_COGE = 216, // Cognitive Smart Memory Processor |
||
| 313 | EM_COOL = 217, // iCelero CoolEngine |
||
| 314 | EM_NORC = 218, // Nanoradio Optimized RISC |
||
| 315 | EM_CSR_KALIMBA = 219, // CSR Kalimba architecture family |
||
| 316 | EM_AMDGPU = 224, // AMD GPU architecture |
||
| 317 | EM_RISCV = 243, // RISC-V |
||
| 318 | EM_LANAI = 244, // Lanai 32-bit processor |
||
| 319 | EM_BPF = 247, // Linux kernel bpf virtual machine |
||
| 320 | EM_VE = 251, // NEC SX-Aurora VE |
||
| 321 | EM_CSKY = 252, // C-SKY 32-bit processor |
||
| 322 | EM_LOONGARCH = 258, // LoongArch |
||
| 323 | }; |
||
| 324 | |||
| 325 | // Object file classes. |
||
| 326 | enum { |
||
| 327 | ELFCLASSNONE = 0, |
||
| 328 | ELFCLASS32 = 1, // 32-bit object file |
||
| 329 | ELFCLASS64 = 2 // 64-bit object file |
||
| 330 | }; |
||
| 331 | |||
| 332 | // Object file byte orderings. |
||
| 333 | enum { |
||
| 334 | ELFDATANONE = 0, // Invalid data encoding. |
||
| 335 | ELFDATA2LSB = 1, // Little-endian object file |
||
| 336 | ELFDATA2MSB = 2 // Big-endian object file |
||
| 337 | }; |
||
| 338 | |||
| 339 | // OS ABI identification. |
||
| 340 | enum { |
||
| 341 | ELFOSABI_NONE = 0, // UNIX System V ABI |
||
| 342 | ELFOSABI_HPUX = 1, // HP-UX operating system |
||
| 343 | ELFOSABI_NETBSD = 2, // NetBSD |
||
| 344 | ELFOSABI_GNU = 3, // GNU/Linux |
||
| 345 | ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU. |
||
| 346 | ELFOSABI_HURD = 4, // GNU/Hurd |
||
| 347 | ELFOSABI_SOLARIS = 6, // Solaris |
||
| 348 | ELFOSABI_AIX = 7, // AIX |
||
| 349 | ELFOSABI_IRIX = 8, // IRIX |
||
| 350 | ELFOSABI_FREEBSD = 9, // FreeBSD |
||
| 351 | ELFOSABI_TRU64 = 10, // TRU64 UNIX |
||
| 352 | ELFOSABI_MODESTO = 11, // Novell Modesto |
||
| 353 | ELFOSABI_OPENBSD = 12, // OpenBSD |
||
| 354 | ELFOSABI_OPENVMS = 13, // OpenVMS |
||
| 355 | ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel |
||
| 356 | ELFOSABI_AROS = 15, // AROS |
||
| 357 | ELFOSABI_FENIXOS = 16, // FenixOS |
||
| 358 | ELFOSABI_CLOUDABI = 17, // Nuxi CloudABI |
||
| 359 | ELFOSABI_FIRST_ARCH = 64, // First architecture-specific OS ABI |
||
| 360 | ELFOSABI_AMDGPU_HSA = 64, // AMD HSA runtime |
||
| 361 | ELFOSABI_AMDGPU_PAL = 65, // AMD PAL runtime |
||
| 362 | ELFOSABI_AMDGPU_MESA3D = 66, // AMD GCN GPUs (GFX6+) for MESA runtime |
||
| 363 | ELFOSABI_ARM = 97, // ARM |
||
| 364 | ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 |
||
| 365 | ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 |
||
| 366 | ELFOSABI_STANDALONE = 255, // Standalone (embedded) application |
||
| 367 | ELFOSABI_LAST_ARCH = 255 // Last Architecture-specific OS ABI |
||
| 368 | }; |
||
| 369 | |||
| 370 | // AMDGPU OS ABI Version identification. |
||
| 371 | enum { |
||
| 372 | // ELFABIVERSION_AMDGPU_HSA_V1 does not exist because OS ABI identification |
||
| 373 | // was never defined for V1. |
||
| 374 | ELFABIVERSION_AMDGPU_HSA_V2 = 0, |
||
| 375 | ELFABIVERSION_AMDGPU_HSA_V3 = 1, |
||
| 376 | ELFABIVERSION_AMDGPU_HSA_V4 = 2, |
||
| 377 | ELFABIVERSION_AMDGPU_HSA_V5 = 3 |
||
| 378 | }; |
||
| 379 | |||
| 380 | #define ELF_RELOC(name, value) name = value, |
||
| 381 | |||
| 382 | // X86_64 relocations. |
||
| 383 | enum { |
||
| 384 | #include "ELFRelocs/x86_64.def" |
||
| 385 | }; |
||
| 386 | |||
| 387 | // i386 relocations. |
||
| 388 | enum { |
||
| 389 | #include "ELFRelocs/i386.def" |
||
| 390 | }; |
||
| 391 | |||
| 392 | // ELF Relocation types for PPC32 |
||
| 393 | enum { |
||
| 394 | #include "ELFRelocs/PowerPC.def" |
||
| 395 | }; |
||
| 396 | |||
| 397 | // Specific e_flags for PPC64 |
||
| 398 | enum { |
||
| 399 | // e_flags bits specifying ABI: |
||
| 400 | // 1 for original ABI using function descriptors, |
||
| 401 | // 2 for revised ABI without function descriptors, |
||
| 402 | // 0 for unspecified or not using any features affected by the differences. |
||
| 403 | EF_PPC64_ABI = 3 |
||
| 404 | }; |
||
| 405 | |||
| 406 | // Special values for the st_other field in the symbol table entry for PPC64. |
||
| 407 | enum { |
||
| 408 | STO_PPC64_LOCAL_BIT = 5, |
||
| 409 | STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT) |
||
| 410 | }; |
||
| 411 | static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) { |
||
| 412 | unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT; |
||
| 413 | return ((1 << Val) >> 2) << 2; |
||
| 414 | } |
||
| 415 | |||
| 416 | // ELF Relocation types for PPC64 |
||
| 417 | enum { |
||
| 418 | #include "ELFRelocs/PowerPC64.def" |
||
| 419 | }; |
||
| 420 | |||
| 421 | // ELF Relocation types for AArch64 |
||
| 422 | enum { |
||
| 423 | #include "ELFRelocs/AArch64.def" |
||
| 424 | }; |
||
| 425 | |||
| 426 | // Special values for the st_other field in the symbol table entry for AArch64. |
||
| 427 | enum { |
||
| 428 | // Symbol may follow different calling convention than base PCS. |
||
| 429 | STO_AARCH64_VARIANT_PCS = 0x80 |
||
| 430 | }; |
||
| 431 | |||
| 432 | // ARM Specific e_flags |
||
| 433 | enum : unsigned { |
||
| 434 | EF_ARM_SOFT_FLOAT = 0x00000200U, // Legacy pre EABI_VER5 |
||
| 435 | EF_ARM_ABI_FLOAT_SOFT = 0x00000200U, // EABI_VER5 |
||
| 436 | EF_ARM_VFP_FLOAT = 0x00000400U, // Legacy pre EABI_VER5 |
||
| 437 | EF_ARM_ABI_FLOAT_HARD = 0x00000400U, // EABI_VER5 |
||
| 438 | EF_ARM_BE8 = 0x00800000U, |
||
| 439 | EF_ARM_EABI_UNKNOWN = 0x00000000U, |
||
| 440 | EF_ARM_EABI_VER1 = 0x01000000U, |
||
| 441 | EF_ARM_EABI_VER2 = 0x02000000U, |
||
| 442 | EF_ARM_EABI_VER3 = 0x03000000U, |
||
| 443 | EF_ARM_EABI_VER4 = 0x04000000U, |
||
| 444 | EF_ARM_EABI_VER5 = 0x05000000U, |
||
| 445 | EF_ARM_EABIMASK = 0xFF000000U |
||
| 446 | }; |
||
| 447 | |||
| 448 | // ELF Relocation types for ARM |
||
| 449 | enum { |
||
| 450 | #include "ELFRelocs/ARM.def" |
||
| 451 | }; |
||
| 452 | |||
| 453 | // ARC Specific e_flags |
||
| 454 | enum : unsigned { |
||
| 455 | EF_ARC_MACH_MSK = 0x000000ff, |
||
| 456 | EF_ARC_OSABI_MSK = 0x00000f00, |
||
| 457 | E_ARC_MACH_ARC600 = 0x00000002, |
||
| 458 | E_ARC_MACH_ARC601 = 0x00000004, |
||
| 459 | E_ARC_MACH_ARC700 = 0x00000003, |
||
| 460 | EF_ARC_CPU_ARCV2EM = 0x00000005, |
||
| 461 | EF_ARC_CPU_ARCV2HS = 0x00000006, |
||
| 462 | E_ARC_OSABI_ORIG = 0x00000000, |
||
| 463 | E_ARC_OSABI_V2 = 0x00000200, |
||
| 464 | E_ARC_OSABI_V3 = 0x00000300, |
||
| 465 | E_ARC_OSABI_V4 = 0x00000400, |
||
| 466 | EF_ARC_PIC = 0x00000100 |
||
| 467 | }; |
||
| 468 | |||
| 469 | // ELF Relocation types for ARC |
||
| 470 | enum { |
||
| 471 | #include "ELFRelocs/ARC.def" |
||
| 472 | }; |
||
| 473 | |||
| 474 | // AVR specific e_flags |
||
| 475 | enum : unsigned { |
||
| 476 | EF_AVR_ARCH_AVR1 = 1, |
||
| 477 | EF_AVR_ARCH_AVR2 = 2, |
||
| 478 | EF_AVR_ARCH_AVR25 = 25, |
||
| 479 | EF_AVR_ARCH_AVR3 = 3, |
||
| 480 | EF_AVR_ARCH_AVR31 = 31, |
||
| 481 | EF_AVR_ARCH_AVR35 = 35, |
||
| 482 | EF_AVR_ARCH_AVR4 = 4, |
||
| 483 | EF_AVR_ARCH_AVR5 = 5, |
||
| 484 | EF_AVR_ARCH_AVR51 = 51, |
||
| 485 | EF_AVR_ARCH_AVR6 = 6, |
||
| 486 | EF_AVR_ARCH_AVRTINY = 100, |
||
| 487 | EF_AVR_ARCH_XMEGA1 = 101, |
||
| 488 | EF_AVR_ARCH_XMEGA2 = 102, |
||
| 489 | EF_AVR_ARCH_XMEGA3 = 103, |
||
| 490 | EF_AVR_ARCH_XMEGA4 = 104, |
||
| 491 | EF_AVR_ARCH_XMEGA5 = 105, |
||
| 492 | EF_AVR_ARCH_XMEGA6 = 106, |
||
| 493 | EF_AVR_ARCH_XMEGA7 = 107, |
||
| 494 | |||
| 495 | EF_AVR_ARCH_MASK = 0x7f, // EF_AVR_ARCH_xxx selection mask |
||
| 496 | |||
| 497 | EF_AVR_LINKRELAX_PREPARED = 0x80, // The file is prepared for linker |
||
| 498 | // relaxation to be applied |
||
| 499 | }; |
||
| 500 | |||
| 501 | // ELF Relocation types for AVR |
||
| 502 | enum { |
||
| 503 | #include "ELFRelocs/AVR.def" |
||
| 504 | }; |
||
| 505 | |||
| 506 | // Mips Specific e_flags |
||
| 507 | enum : unsigned { |
||
| 508 | EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions |
||
| 509 | EF_MIPS_PIC = 0x00000002, // Position independent code |
||
| 510 | EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code |
||
| 511 | EF_MIPS_ABI2 = 0x00000020, // File uses N32 ABI |
||
| 512 | EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine |
||
| 513 | // in 32-bit mode |
||
| 514 | EF_MIPS_FP64 = 0x00000200, // Code compiled for a 32-bit machine |
||
| 515 | // but uses 64-bit FP registers |
||
| 516 | EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding |
||
| 517 | |||
| 518 | // ABI flags |
||
| 519 | EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI |
||
| 520 | EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture. |
||
| 521 | EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode. |
||
| 522 | EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode. |
||
| 523 | EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant. |
||
| 524 | |||
| 525 | // MIPS machine variant |
||
| 526 | EF_MIPS_MACH_NONE = 0x00000000, // A standard MIPS implementation. |
||
| 527 | EF_MIPS_MACH_3900 = 0x00810000, // Toshiba R3900 |
||
| 528 | EF_MIPS_MACH_4010 = 0x00820000, // LSI R4010 |
||
| 529 | EF_MIPS_MACH_4100 = 0x00830000, // NEC VR4100 |
||
| 530 | EF_MIPS_MACH_4650 = 0x00850000, // MIPS R4650 |
||
| 531 | EF_MIPS_MACH_4120 = 0x00870000, // NEC VR4120 |
||
| 532 | EF_MIPS_MACH_4111 = 0x00880000, // NEC VR4111/VR4181 |
||
| 533 | EF_MIPS_MACH_SB1 = 0x008a0000, // Broadcom SB-1 |
||
| 534 | EF_MIPS_MACH_OCTEON = 0x008b0000, // Cavium Networks Octeon |
||
| 535 | EF_MIPS_MACH_XLR = 0x008c0000, // RMI Xlr |
||
| 536 | EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2 |
||
| 537 | EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3 |
||
| 538 | EF_MIPS_MACH_5400 = 0x00910000, // NEC VR5400 |
||
| 539 | EF_MIPS_MACH_5900 = 0x00920000, // MIPS R5900 |
||
| 540 | EF_MIPS_MACH_5500 = 0x00980000, // NEC VR5500 |
||
| 541 | EF_MIPS_MACH_9000 = 0x00990000, // Unknown |
||
| 542 | EF_MIPS_MACH_LS2E = 0x00a00000, // ST Microelectronics Loongson 2E |
||
| 543 | EF_MIPS_MACH_LS2F = 0x00a10000, // ST Microelectronics Loongson 2F |
||
| 544 | EF_MIPS_MACH_LS3A = 0x00a20000, // Loongson 3A |
||
| 545 | EF_MIPS_MACH = 0x00ff0000, // EF_MIPS_MACH_xxx selection mask |
||
| 546 | |||
| 547 | // ARCH_ASE |
||
| 548 | EF_MIPS_MICROMIPS = 0x02000000, // microMIPS |
||
| 549 | EF_MIPS_ARCH_ASE_M16 = 0x04000000, // Has Mips-16 ISA extensions |
||
| 550 | EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions |
||
| 551 | EF_MIPS_ARCH_ASE = 0x0f000000, // Mask for EF_MIPS_ARCH_ASE_xxx flags |
||
| 552 | |||
| 553 | // ARCH |
||
| 554 | EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set |
||
| 555 | EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set |
||
| 556 | EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set |
||
| 557 | EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set |
||
| 558 | EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set |
||
| 559 | EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h |
||
| 560 | EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h |
||
| 561 | EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5 |
||
| 562 | EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5 |
||
| 563 | EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6 |
||
| 564 | EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6 |
||
| 565 | EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant |
||
| 566 | }; |
||
| 567 | |||
| 568 | // MIPS-specific section indexes |
||
| 569 | enum { |
||
| 570 | SHN_MIPS_ACOMMON = 0xff00, // Common symbols which are defined and allocated |
||
| 571 | SHN_MIPS_TEXT = 0xff01, // Not ABI compliant |
||
| 572 | SHN_MIPS_DATA = 0xff02, // Not ABI compliant |
||
| 573 | SHN_MIPS_SCOMMON = 0xff03, // Common symbols for global data area |
||
| 574 | SHN_MIPS_SUNDEFINED = 0xff04 // Undefined symbols for global data area |
||
| 575 | }; |
||
| 576 | |||
| 577 | // ELF Relocation types for Mips |
||
| 578 | enum { |
||
| 579 | #include "ELFRelocs/Mips.def" |
||
| 580 | }; |
||
| 581 | |||
| 582 | // Special values for the st_other field in the symbol table entry for MIPS. |
||
| 583 | enum { |
||
| 584 | STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional |
||
| 585 | STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record |
||
| 586 | STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC |
||
| 587 | STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips |
||
| 588 | STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16 |
||
| 589 | }; |
||
| 590 | |||
| 591 | // .MIPS.options section descriptor kinds |
||
| 592 | enum { |
||
| 593 | ODK_NULL = 0, // Undefined |
||
| 594 | ODK_REGINFO = 1, // Register usage information |
||
| 595 | ODK_EXCEPTIONS = 2, // Exception processing options |
||
| 596 | ODK_PAD = 3, // Section padding options |
||
| 597 | ODK_HWPATCH = 4, // Hardware patches applied |
||
| 598 | ODK_FILL = 5, // Linker fill value |
||
| 599 | ODK_TAGS = 6, // Space for tool identification |
||
| 600 | ODK_HWAND = 7, // Hardware AND patches applied |
||
| 601 | ODK_HWOR = 8, // Hardware OR patches applied |
||
| 602 | ODK_GP_GROUP = 9, // GP group to use for text/data sections |
||
| 603 | ODK_IDENT = 10, // ID information |
||
| 604 | ODK_PAGESIZE = 11 // Page size information |
||
| 605 | }; |
||
| 606 | |||
| 607 | // Hexagon-specific e_flags |
||
| 608 | enum { |
||
| 609 | // Object processor version flags, bits[11:0] |
||
| 610 | EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2 |
||
| 611 | EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3 |
||
| 612 | EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4 |
||
| 613 | EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5 |
||
| 614 | EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55 |
||
| 615 | EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60 |
||
| 616 | EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62 |
||
| 617 | EF_HEXAGON_MACH_V65 = 0x00000065, // Hexagon V65 |
||
| 618 | EF_HEXAGON_MACH_V66 = 0x00000066, // Hexagon V66 |
||
| 619 | EF_HEXAGON_MACH_V67 = 0x00000067, // Hexagon V67 |
||
| 620 | EF_HEXAGON_MACH_V67T = 0x00008067, // Hexagon V67T |
||
| 621 | EF_HEXAGON_MACH_V68 = 0x00000068, // Hexagon V68 |
||
| 622 | EF_HEXAGON_MACH_V69 = 0x00000069, // Hexagon V69 |
||
| 623 | EF_HEXAGON_MACH_V71 = 0x00000071, // Hexagon V71 |
||
| 624 | EF_HEXAGON_MACH_V71T = 0x00008071, // Hexagon V71T |
||
| 625 | EF_HEXAGON_MACH_V73 = 0x00000073, // Hexagon V73 |
||
| 626 | EF_HEXAGON_MACH = 0x000003ff, // Hexagon V.. |
||
| 627 | |||
| 628 | // Highest ISA version flags |
||
| 629 | EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0] |
||
| 630 | // of e_flags |
||
| 631 | EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA |
||
| 632 | EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA |
||
| 633 | EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA |
||
| 634 | EF_HEXAGON_ISA_V5 = 0x00000040, // Hexagon V5 ISA |
||
| 635 | EF_HEXAGON_ISA_V55 = 0x00000050, // Hexagon V55 ISA |
||
| 636 | EF_HEXAGON_ISA_V60 = 0x00000060, // Hexagon V60 ISA |
||
| 637 | EF_HEXAGON_ISA_V62 = 0x00000062, // Hexagon V62 ISA |
||
| 638 | EF_HEXAGON_ISA_V65 = 0x00000065, // Hexagon V65 ISA |
||
| 639 | EF_HEXAGON_ISA_V66 = 0x00000066, // Hexagon V66 ISA |
||
| 640 | EF_HEXAGON_ISA_V67 = 0x00000067, // Hexagon V67 ISA |
||
| 641 | EF_HEXAGON_ISA_V68 = 0x00000068, // Hexagon V68 ISA |
||
| 642 | EF_HEXAGON_ISA_V69 = 0x00000069, // Hexagon V69 ISA |
||
| 643 | EF_HEXAGON_ISA_V71 = 0x00000071, // Hexagon V71 ISA |
||
| 644 | EF_HEXAGON_ISA_V73 = 0x00000073, // Hexagon V73 ISA |
||
| 645 | EF_HEXAGON_ISA_V75 = 0x00000075, // Hexagon V75 ISA |
||
| 646 | EF_HEXAGON_ISA = 0x000003ff, // Hexagon V.. ISA |
||
| 647 | }; |
||
| 648 | |||
| 649 | // Hexagon-specific section indexes for common small data |
||
| 650 | enum { |
||
| 651 | SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes |
||
| 652 | SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access |
||
| 653 | SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access |
||
| 654 | SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access |
||
| 655 | SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access |
||
| 656 | }; |
||
| 657 | |||
| 658 | // ELF Relocation types for Hexagon |
||
| 659 | enum { |
||
| 660 | #include "ELFRelocs/Hexagon.def" |
||
| 661 | }; |
||
| 662 | |||
| 663 | // ELF Relocation type for Lanai. |
||
| 664 | enum { |
||
| 665 | #include "ELFRelocs/Lanai.def" |
||
| 666 | }; |
||
| 667 | |||
| 668 | // RISCV Specific e_flags |
||
| 669 | enum : unsigned { |
||
| 670 | EF_RISCV_RVC = 0x0001, |
||
| 671 | EF_RISCV_FLOAT_ABI = 0x0006, |
||
| 672 | EF_RISCV_FLOAT_ABI_SOFT = 0x0000, |
||
| 673 | EF_RISCV_FLOAT_ABI_SINGLE = 0x0002, |
||
| 674 | EF_RISCV_FLOAT_ABI_DOUBLE = 0x0004, |
||
| 675 | EF_RISCV_FLOAT_ABI_QUAD = 0x0006, |
||
| 676 | EF_RISCV_RVE = 0x0008, |
||
| 677 | EF_RISCV_TSO = 0x0010, |
||
| 678 | }; |
||
| 679 | |||
| 680 | // ELF Relocation types for RISC-V |
||
| 681 | enum { |
||
| 682 | #include "ELFRelocs/RISCV.def" |
||
| 683 | }; |
||
| 684 | |||
| 685 | enum { |
||
| 686 | // Symbol may follow different calling convention than the standard calling |
||
| 687 | // convention. |
||
| 688 | STO_RISCV_VARIANT_CC = 0x80 |
||
| 689 | }; |
||
| 690 | |||
| 691 | // ELF Relocation types for S390/zSeries |
||
| 692 | enum { |
||
| 693 | #include "ELFRelocs/SystemZ.def" |
||
| 694 | }; |
||
| 695 | |||
| 696 | // ELF Relocation type for Sparc. |
||
| 697 | enum { |
||
| 698 | #include "ELFRelocs/Sparc.def" |
||
| 699 | }; |
||
| 700 | |||
| 701 | // AMDGPU specific e_flags. |
||
| 702 | enum : unsigned { |
||
| 703 | // Processor selection mask for EF_AMDGPU_MACH_* values. |
||
| 704 | EF_AMDGPU_MACH = 0x0ff, |
||
| 705 | |||
| 706 | // Not specified processor. |
||
| 707 | EF_AMDGPU_MACH_NONE = 0x000, |
||
| 708 | |||
| 709 | // R600-based processors. |
||
| 710 | |||
| 711 | // Radeon HD 2000/3000 Series (R600). |
||
| 712 | EF_AMDGPU_MACH_R600_R600 = 0x001, |
||
| 713 | EF_AMDGPU_MACH_R600_R630 = 0x002, |
||
| 714 | EF_AMDGPU_MACH_R600_RS880 = 0x003, |
||
| 715 | EF_AMDGPU_MACH_R600_RV670 = 0x004, |
||
| 716 | // Radeon HD 4000 Series (R700). |
||
| 717 | EF_AMDGPU_MACH_R600_RV710 = 0x005, |
||
| 718 | EF_AMDGPU_MACH_R600_RV730 = 0x006, |
||
| 719 | EF_AMDGPU_MACH_R600_RV770 = 0x007, |
||
| 720 | // Radeon HD 5000 Series (Evergreen). |
||
| 721 | EF_AMDGPU_MACH_R600_CEDAR = 0x008, |
||
| 722 | EF_AMDGPU_MACH_R600_CYPRESS = 0x009, |
||
| 723 | EF_AMDGPU_MACH_R600_JUNIPER = 0x00a, |
||
| 724 | EF_AMDGPU_MACH_R600_REDWOOD = 0x00b, |
||
| 725 | EF_AMDGPU_MACH_R600_SUMO = 0x00c, |
||
| 726 | // Radeon HD 6000 Series (Northern Islands). |
||
| 727 | EF_AMDGPU_MACH_R600_BARTS = 0x00d, |
||
| 728 | EF_AMDGPU_MACH_R600_CAICOS = 0x00e, |
||
| 729 | EF_AMDGPU_MACH_R600_CAYMAN = 0x00f, |
||
| 730 | EF_AMDGPU_MACH_R600_TURKS = 0x010, |
||
| 731 | |||
| 732 | // Reserved for R600-based processors. |
||
| 733 | EF_AMDGPU_MACH_R600_RESERVED_FIRST = 0x011, |
||
| 734 | EF_AMDGPU_MACH_R600_RESERVED_LAST = 0x01f, |
||
| 735 | |||
| 736 | // First/last R600-based processors. |
||
| 737 | EF_AMDGPU_MACH_R600_FIRST = EF_AMDGPU_MACH_R600_R600, |
||
| 738 | EF_AMDGPU_MACH_R600_LAST = EF_AMDGPU_MACH_R600_TURKS, |
||
| 739 | |||
| 740 | // AMDGCN-based processors. |
||
| 741 | EF_AMDGPU_MACH_AMDGCN_GFX600 = 0x020, |
||
| 742 | EF_AMDGPU_MACH_AMDGCN_GFX601 = 0x021, |
||
| 743 | EF_AMDGPU_MACH_AMDGCN_GFX700 = 0x022, |
||
| 744 | EF_AMDGPU_MACH_AMDGCN_GFX701 = 0x023, |
||
| 745 | EF_AMDGPU_MACH_AMDGCN_GFX702 = 0x024, |
||
| 746 | EF_AMDGPU_MACH_AMDGCN_GFX703 = 0x025, |
||
| 747 | EF_AMDGPU_MACH_AMDGCN_GFX704 = 0x026, |
||
| 748 | EF_AMDGPU_MACH_AMDGCN_RESERVED_0X27 = 0x027, |
||
| 749 | EF_AMDGPU_MACH_AMDGCN_GFX801 = 0x028, |
||
| 750 | EF_AMDGPU_MACH_AMDGCN_GFX802 = 0x029, |
||
| 751 | EF_AMDGPU_MACH_AMDGCN_GFX803 = 0x02a, |
||
| 752 | EF_AMDGPU_MACH_AMDGCN_GFX810 = 0x02b, |
||
| 753 | EF_AMDGPU_MACH_AMDGCN_GFX900 = 0x02c, |
||
| 754 | EF_AMDGPU_MACH_AMDGCN_GFX902 = 0x02d, |
||
| 755 | EF_AMDGPU_MACH_AMDGCN_GFX904 = 0x02e, |
||
| 756 | EF_AMDGPU_MACH_AMDGCN_GFX906 = 0x02f, |
||
| 757 | EF_AMDGPU_MACH_AMDGCN_GFX908 = 0x030, |
||
| 758 | EF_AMDGPU_MACH_AMDGCN_GFX909 = 0x031, |
||
| 759 | EF_AMDGPU_MACH_AMDGCN_GFX90C = 0x032, |
||
| 760 | EF_AMDGPU_MACH_AMDGCN_GFX1010 = 0x033, |
||
| 761 | EF_AMDGPU_MACH_AMDGCN_GFX1011 = 0x034, |
||
| 762 | EF_AMDGPU_MACH_AMDGCN_GFX1012 = 0x035, |
||
| 763 | EF_AMDGPU_MACH_AMDGCN_GFX1030 = 0x036, |
||
| 764 | EF_AMDGPU_MACH_AMDGCN_GFX1031 = 0x037, |
||
| 765 | EF_AMDGPU_MACH_AMDGCN_GFX1032 = 0x038, |
||
| 766 | EF_AMDGPU_MACH_AMDGCN_GFX1033 = 0x039, |
||
| 767 | EF_AMDGPU_MACH_AMDGCN_GFX602 = 0x03a, |
||
| 768 | EF_AMDGPU_MACH_AMDGCN_GFX705 = 0x03b, |
||
| 769 | EF_AMDGPU_MACH_AMDGCN_GFX805 = 0x03c, |
||
| 770 | EF_AMDGPU_MACH_AMDGCN_GFX1035 = 0x03d, |
||
| 771 | EF_AMDGPU_MACH_AMDGCN_GFX1034 = 0x03e, |
||
| 772 | EF_AMDGPU_MACH_AMDGCN_GFX90A = 0x03f, |
||
| 773 | EF_AMDGPU_MACH_AMDGCN_GFX940 = 0x040, |
||
| 774 | EF_AMDGPU_MACH_AMDGCN_GFX1100 = 0x041, |
||
| 775 | EF_AMDGPU_MACH_AMDGCN_GFX1013 = 0x042, |
||
| 776 | EF_AMDGPU_MACH_AMDGCN_RESERVED_0X43 = 0x043, |
||
| 777 | EF_AMDGPU_MACH_AMDGCN_GFX1103 = 0x044, |
||
| 778 | EF_AMDGPU_MACH_AMDGCN_GFX1036 = 0x045, |
||
| 779 | EF_AMDGPU_MACH_AMDGCN_GFX1101 = 0x046, |
||
| 780 | EF_AMDGPU_MACH_AMDGCN_GFX1102 = 0x047, |
||
| 781 | |||
| 782 | // First/last AMDGCN-based processors. |
||
| 783 | EF_AMDGPU_MACH_AMDGCN_FIRST = EF_AMDGPU_MACH_AMDGCN_GFX600, |
||
| 784 | EF_AMDGPU_MACH_AMDGCN_LAST = EF_AMDGPU_MACH_AMDGCN_GFX1102, |
||
| 785 | |||
| 786 | // Indicates if the "xnack" target feature is enabled for all code contained |
||
| 787 | // in the object. |
||
| 788 | // |
||
| 789 | // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2. |
||
| 790 | EF_AMDGPU_FEATURE_XNACK_V2 = 0x01, |
||
| 791 | // Indicates if the trap handler is enabled for all code contained |
||
| 792 | // in the object. |
||
| 793 | // |
||
| 794 | // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2. |
||
| 795 | EF_AMDGPU_FEATURE_TRAP_HANDLER_V2 = 0x02, |
||
| 796 | |||
| 797 | // Indicates if the "xnack" target feature is enabled for all code contained |
||
| 798 | // in the object. |
||
| 799 | // |
||
| 800 | // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3. |
||
| 801 | EF_AMDGPU_FEATURE_XNACK_V3 = 0x100, |
||
| 802 | // Indicates if the "sramecc" target feature is enabled for all code |
||
| 803 | // contained in the object. |
||
| 804 | // |
||
| 805 | // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3. |
||
| 806 | EF_AMDGPU_FEATURE_SRAMECC_V3 = 0x200, |
||
| 807 | |||
| 808 | // XNACK selection mask for EF_AMDGPU_FEATURE_XNACK_* values. |
||
| 809 | // |
||
| 810 | // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4. |
||
| 811 | EF_AMDGPU_FEATURE_XNACK_V4 = 0x300, |
||
| 812 | // XNACK is not supported. |
||
| 813 | EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4 = 0x000, |
||
| 814 | // XNACK is any/default/unspecified. |
||
| 815 | EF_AMDGPU_FEATURE_XNACK_ANY_V4 = 0x100, |
||
| 816 | // XNACK is off. |
||
| 817 | EF_AMDGPU_FEATURE_XNACK_OFF_V4 = 0x200, |
||
| 818 | // XNACK is on. |
||
| 819 | EF_AMDGPU_FEATURE_XNACK_ON_V4 = 0x300, |
||
| 820 | |||
| 821 | // SRAMECC selection mask for EF_AMDGPU_FEATURE_SRAMECC_* values. |
||
| 822 | // |
||
| 823 | // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4. |
||
| 824 | EF_AMDGPU_FEATURE_SRAMECC_V4 = 0xc00, |
||
| 825 | // SRAMECC is not supported. |
||
| 826 | EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4 = 0x000, |
||
| 827 | // SRAMECC is any/default/unspecified. |
||
| 828 | EF_AMDGPU_FEATURE_SRAMECC_ANY_V4 = 0x400, |
||
| 829 | // SRAMECC is off. |
||
| 830 | EF_AMDGPU_FEATURE_SRAMECC_OFF_V4 = 0x800, |
||
| 831 | // SRAMECC is on. |
||
| 832 | EF_AMDGPU_FEATURE_SRAMECC_ON_V4 = 0xc00, |
||
| 833 | }; |
||
| 834 | |||
| 835 | // ELF Relocation types for AMDGPU |
||
| 836 | enum { |
||
| 837 | #include "ELFRelocs/AMDGPU.def" |
||
| 838 | }; |
||
| 839 | |||
| 840 | // ELF Relocation types for BPF |
||
| 841 | enum { |
||
| 842 | #include "ELFRelocs/BPF.def" |
||
| 843 | }; |
||
| 844 | |||
| 845 | // ELF Relocation types for M68k |
||
| 846 | enum { |
||
| 847 | #include "ELFRelocs/M68k.def" |
||
| 848 | }; |
||
| 849 | |||
| 850 | // MSP430 specific e_flags |
||
| 851 | enum : unsigned { |
||
| 852 | EF_MSP430_MACH_MSP430x11 = 11, |
||
| 853 | EF_MSP430_MACH_MSP430x11x1 = 110, |
||
| 854 | EF_MSP430_MACH_MSP430x12 = 12, |
||
| 855 | EF_MSP430_MACH_MSP430x13 = 13, |
||
| 856 | EF_MSP430_MACH_MSP430x14 = 14, |
||
| 857 | EF_MSP430_MACH_MSP430x15 = 15, |
||
| 858 | EF_MSP430_MACH_MSP430x16 = 16, |
||
| 859 | EF_MSP430_MACH_MSP430x20 = 20, |
||
| 860 | EF_MSP430_MACH_MSP430x22 = 22, |
||
| 861 | EF_MSP430_MACH_MSP430x23 = 23, |
||
| 862 | EF_MSP430_MACH_MSP430x24 = 24, |
||
| 863 | EF_MSP430_MACH_MSP430x26 = 26, |
||
| 864 | EF_MSP430_MACH_MSP430x31 = 31, |
||
| 865 | EF_MSP430_MACH_MSP430x32 = 32, |
||
| 866 | EF_MSP430_MACH_MSP430x33 = 33, |
||
| 867 | EF_MSP430_MACH_MSP430x41 = 41, |
||
| 868 | EF_MSP430_MACH_MSP430x42 = 42, |
||
| 869 | EF_MSP430_MACH_MSP430x43 = 43, |
||
| 870 | EF_MSP430_MACH_MSP430x44 = 44, |
||
| 871 | EF_MSP430_MACH_MSP430X = 45, |
||
| 872 | EF_MSP430_MACH_MSP430x46 = 46, |
||
| 873 | EF_MSP430_MACH_MSP430x47 = 47, |
||
| 874 | EF_MSP430_MACH_MSP430x54 = 54, |
||
| 875 | }; |
||
| 876 | |||
| 877 | // ELF Relocation types for MSP430 |
||
| 878 | enum { |
||
| 879 | #include "ELFRelocs/MSP430.def" |
||
| 880 | }; |
||
| 881 | |||
| 882 | // ELF Relocation type for VE. |
||
| 883 | enum { |
||
| 884 | #include "ELFRelocs/VE.def" |
||
| 885 | }; |
||
| 886 | |||
| 887 | // CSKY Specific e_flags |
||
| 888 | enum : unsigned { |
||
| 889 | EF_CSKY_801 = 0xa, |
||
| 890 | EF_CSKY_802 = 0x10, |
||
| 891 | EF_CSKY_803 = 0x9, |
||
| 892 | EF_CSKY_805 = 0x11, |
||
| 893 | EF_CSKY_807 = 0x6, |
||
| 894 | EF_CSKY_810 = 0x8, |
||
| 895 | EF_CSKY_860 = 0xb, |
||
| 896 | EF_CSKY_800 = 0x1f, |
||
| 897 | EF_CSKY_FLOAT = 0x2000, |
||
| 898 | EF_CSKY_DSP = 0x4000, |
||
| 899 | EF_CSKY_ABIV2 = 0x20000000, |
||
| 900 | EF_CSKY_EFV1 = 0x1000000, |
||
| 901 | EF_CSKY_EFV2 = 0x2000000, |
||
| 902 | EF_CSKY_EFV3 = 0x3000000 |
||
| 903 | }; |
||
| 904 | |||
| 905 | // ELF Relocation types for CSKY |
||
| 906 | enum { |
||
| 907 | #include "ELFRelocs/CSKY.def" |
||
| 908 | }; |
||
| 909 | |||
| 910 | // LoongArch Specific e_flags |
||
| 911 | enum : unsigned { |
||
| 912 | // Definitions from LoongArch ELF psABI v2.01. |
||
| 913 | // Reference: https://github.com/loongson/LoongArch-Documentation |
||
| 914 | // (commit hash 296de4def055c871809068e0816325a4ac04eb12) |
||
| 915 | |||
| 916 | // Base ABI Modifiers |
||
| 917 | EF_LOONGARCH_ABI_SOFT_FLOAT = 0x1, |
||
| 918 | EF_LOONGARCH_ABI_SINGLE_FLOAT = 0x2, |
||
| 919 | EF_LOONGARCH_ABI_DOUBLE_FLOAT = 0x3, |
||
| 920 | EF_LOONGARCH_ABI_MODIFIER_MASK = 0x7, |
||
| 921 | |||
| 922 | // Object file ABI versions |
||
| 923 | EF_LOONGARCH_OBJABI_V0 = 0x0, |
||
| 924 | EF_LOONGARCH_OBJABI_V1 = 0x40, |
||
| 925 | EF_LOONGARCH_OBJABI_MASK = 0xC0, |
||
| 926 | }; |
||
| 927 | |||
| 928 | // ELF Relocation types for LoongArch |
||
| 929 | enum { |
||
| 930 | #include "ELFRelocs/LoongArch.def" |
||
| 931 | }; |
||
| 932 | |||
| 933 | // Xtensa specific e_flags |
||
| 934 | enum : unsigned { |
||
| 935 | // Four-bit Xtensa machine type mask. |
||
| 936 | EF_XTENSA_MACH = 0x0000000f, |
||
| 937 | // Various CPU types. |
||
| 938 | EF_XTENSA_MACH_NONE = 0x00000000, // A base Xtensa implementation |
||
| 939 | EF_XTENSA_XT_INSN = 0x00000100, |
||
| 940 | EF_XTENSA_XT_LIT = 0x00000200, |
||
| 941 | }; |
||
| 942 | |||
| 943 | // ELF Relocation types for Xtensa |
||
| 944 | enum { |
||
| 945 | #include "ELFRelocs/Xtensa.def" |
||
| 946 | }; |
||
| 947 | |||
| 948 | #undef ELF_RELOC |
||
| 949 | |||
| 950 | // Section header. |
||
| 951 | struct Elf32_Shdr { |
||
| 952 | Elf32_Word sh_name; // Section name (index into string table) |
||
| 953 | Elf32_Word sh_type; // Section type (SHT_*) |
||
| 954 | Elf32_Word sh_flags; // Section flags (SHF_*) |
||
| 955 | Elf32_Addr sh_addr; // Address where section is to be loaded |
||
| 956 | Elf32_Off sh_offset; // File offset of section data, in bytes |
||
| 957 | Elf32_Word sh_size; // Size of section, in bytes |
||
| 958 | Elf32_Word sh_link; // Section type-specific header table index link |
||
| 959 | Elf32_Word sh_info; // Section type-specific extra information |
||
| 960 | Elf32_Word sh_addralign; // Section address alignment |
||
| 961 | Elf32_Word sh_entsize; // Size of records contained within the section |
||
| 962 | }; |
||
| 963 | |||
| 964 | // Section header for ELF64 - same fields as ELF32, different types. |
||
| 965 | struct Elf64_Shdr { |
||
| 966 | Elf64_Word sh_name; |
||
| 967 | Elf64_Word sh_type; |
||
| 968 | Elf64_Xword sh_flags; |
||
| 969 | Elf64_Addr sh_addr; |
||
| 970 | Elf64_Off sh_offset; |
||
| 971 | Elf64_Xword sh_size; |
||
| 972 | Elf64_Word sh_link; |
||
| 973 | Elf64_Word sh_info; |
||
| 974 | Elf64_Xword sh_addralign; |
||
| 975 | Elf64_Xword sh_entsize; |
||
| 976 | }; |
||
| 977 | |||
| 978 | // Special section indices. |
||
| 979 | enum { |
||
| 980 | SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless |
||
| 981 | SHN_LORESERVE = 0xff00, // Lowest reserved index |
||
| 982 | SHN_LOPROC = 0xff00, // Lowest processor-specific index |
||
| 983 | SHN_HIPROC = 0xff1f, // Highest processor-specific index |
||
| 984 | SHN_LOOS = 0xff20, // Lowest operating system-specific index |
||
| 985 | SHN_HIOS = 0xff3f, // Highest operating system-specific index |
||
| 986 | SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation |
||
| 987 | SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables |
||
| 988 | SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE |
||
| 989 | SHN_HIRESERVE = 0xffff // Highest reserved index |
||
| 990 | }; |
||
| 991 | |||
| 992 | // Section types. |
||
| 993 | enum : unsigned { |
||
| 994 | SHT_NULL = 0, // No associated section (inactive entry). |
||
| 995 | SHT_PROGBITS = 1, // Program-defined contents. |
||
| 996 | SHT_SYMTAB = 2, // Symbol table. |
||
| 997 | SHT_STRTAB = 3, // String table. |
||
| 998 | SHT_RELA = 4, // Relocation entries; explicit addends. |
||
| 999 | SHT_HASH = 5, // Symbol hash table. |
||
| 1000 | SHT_DYNAMIC = 6, // Information for dynamic linking. |
||
| 1001 | SHT_NOTE = 7, // Information about the file. |
||
| 1002 | SHT_NOBITS = 8, // Data occupies no space in the file. |
||
| 1003 | SHT_REL = 9, // Relocation entries; no explicit addends. |
||
| 1004 | SHT_SHLIB = 10, // Reserved. |
||
| 1005 | SHT_DYNSYM = 11, // Symbol table. |
||
| 1006 | SHT_INIT_ARRAY = 14, // Pointers to initialization functions. |
||
| 1007 | SHT_FINI_ARRAY = 15, // Pointers to termination functions. |
||
| 1008 | SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. |
||
| 1009 | SHT_GROUP = 17, // Section group. |
||
| 1010 | SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. |
||
| 1011 | // Experimental support for SHT_RELR sections. For details, see proposal |
||
| 1012 | // at https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg |
||
| 1013 | SHT_RELR = 19, // Relocation entries; only offsets. |
||
| 1014 | SHT_LOOS = 0x60000000, // Lowest operating system-specific type. |
||
| 1015 | // Android packed relocation section types. |
||
| 1016 | // https://android.googlesource.com/platform/bionic/+/6f12bfece5dcc01325e0abba56a46b1bcf991c69/tools/relocation_packer/src/elf_file.cc#37 |
||
| 1017 | SHT_ANDROID_REL = 0x60000001, |
||
| 1018 | SHT_ANDROID_RELA = 0x60000002, |
||
| 1019 | SHT_LLVM_ODRTAB = 0x6fff4c00, // LLVM ODR table. |
||
| 1020 | SHT_LLVM_LINKER_OPTIONS = 0x6fff4c01, // LLVM Linker Options. |
||
| 1021 | SHT_LLVM_ADDRSIG = 0x6fff4c03, // List of address-significant symbols |
||
| 1022 | // for safe ICF. |
||
| 1023 | SHT_LLVM_DEPENDENT_LIBRARIES = |
||
| 1024 | 0x6fff4c04, // LLVM Dependent Library Specifiers. |
||
| 1025 | SHT_LLVM_SYMPART = 0x6fff4c05, // Symbol partition specification. |
||
| 1026 | SHT_LLVM_PART_EHDR = 0x6fff4c06, // ELF header for loadable partition. |
||
| 1027 | SHT_LLVM_PART_PHDR = 0x6fff4c07, // Phdrs for loadable partition. |
||
| 1028 | SHT_LLVM_BB_ADDR_MAP_V0 = |
||
| 1029 | 0x6fff4c08, // LLVM Basic Block Address Map (old version kept for |
||
| 1030 | // backward-compatibility). |
||
| 1031 | SHT_LLVM_CALL_GRAPH_PROFILE = 0x6fff4c09, // LLVM Call Graph Profile. |
||
| 1032 | SHT_LLVM_BB_ADDR_MAP = 0x6fff4c0a, // LLVM Basic Block Address Map. |
||
| 1033 | SHT_LLVM_OFFLOADING = 0x6fff4c0b, // LLVM device offloading data. |
||
| 1034 | // Android's experimental support for SHT_RELR sections. |
||
| 1035 | // https://android.googlesource.com/platform/bionic/+/b7feec74547f84559a1467aca02708ff61346d2a/libc/include/elf.h#512 |
||
| 1036 | SHT_ANDROID_RELR = 0x6fffff00, // Relocation entries; only offsets. |
||
| 1037 | SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes. |
||
| 1038 | SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table. |
||
| 1039 | SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions. |
||
| 1040 | SHT_GNU_verneed = 0x6ffffffe, // GNU version references. |
||
| 1041 | SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table. |
||
| 1042 | SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. |
||
| 1043 | SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type. |
||
| 1044 | // Fixme: All this is duplicated in MCSectionELF. Why?? |
||
| 1045 | // Exception Index table |
||
| 1046 | SHT_ARM_EXIDX = 0x70000001U, |
||
| 1047 | // BPABI DLL dynamic linking pre-emption map |
||
| 1048 | SHT_ARM_PREEMPTMAP = 0x70000002U, |
||
| 1049 | // Object file compatibility attributes |
||
| 1050 | SHT_ARM_ATTRIBUTES = 0x70000003U, |
||
| 1051 | SHT_ARM_DEBUGOVERLAY = 0x70000004U, |
||
| 1052 | SHT_ARM_OVERLAYSECTION = 0x70000005U, |
||
| 1053 | // Special aarch64-specific sections for MTE support, as described in: |
||
| 1054 | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#7section-types |
||
| 1055 | SHT_AARCH64_MEMTAG_GLOBALS_STATIC = 0x70000007U, |
||
| 1056 | SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC = 0x70000008U, |
||
| 1057 | SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in |
||
| 1058 | // this section based on their sizes |
||
| 1059 | SHT_X86_64_UNWIND = 0x70000001, // Unwind information |
||
| 1060 | |||
| 1061 | SHT_MIPS_REGINFO = 0x70000006, // Register usage information |
||
| 1062 | SHT_MIPS_OPTIONS = 0x7000000d, // General options |
||
| 1063 | SHT_MIPS_DWARF = 0x7000001e, // DWARF debugging section. |
||
| 1064 | SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information. |
||
| 1065 | |||
| 1066 | SHT_MSP430_ATTRIBUTES = 0x70000003U, |
||
| 1067 | |||
| 1068 | SHT_RISCV_ATTRIBUTES = 0x70000003U, |
||
| 1069 | |||
| 1070 | SHT_CSKY_ATTRIBUTES = 0x70000001U, |
||
| 1071 | |||
| 1072 | SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type. |
||
| 1073 | SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. |
||
| 1074 | SHT_HIUSER = 0xffffffff // Highest type reserved for applications. |
||
| 1075 | }; |
||
| 1076 | |||
| 1077 | // Section flags. |
||
| 1078 | enum : unsigned { |
||
| 1079 | // Section data should be writable during execution. |
||
| 1080 | SHF_WRITE = 0x1, |
||
| 1081 | |||
| 1082 | // Section occupies memory during program execution. |
||
| 1083 | SHF_ALLOC = 0x2, |
||
| 1084 | |||
| 1085 | // Section contains executable machine instructions. |
||
| 1086 | SHF_EXECINSTR = 0x4, |
||
| 1087 | |||
| 1088 | // The data in this section may be merged. |
||
| 1089 | SHF_MERGE = 0x10, |
||
| 1090 | |||
| 1091 | // The data in this section is null-terminated strings. |
||
| 1092 | SHF_STRINGS = 0x20, |
||
| 1093 | |||
| 1094 | // A field in this section holds a section header table index. |
||
| 1095 | SHF_INFO_LINK = 0x40U, |
||
| 1096 | |||
| 1097 | // Adds special ordering requirements for link editors. |
||
| 1098 | SHF_LINK_ORDER = 0x80U, |
||
| 1099 | |||
| 1100 | // This section requires special OS-specific processing to avoid incorrect |
||
| 1101 | // behavior. |
||
| 1102 | SHF_OS_NONCONFORMING = 0x100U, |
||
| 1103 | |||
| 1104 | // This section is a member of a section group. |
||
| 1105 | SHF_GROUP = 0x200U, |
||
| 1106 | |||
| 1107 | // This section holds Thread-Local Storage. |
||
| 1108 | SHF_TLS = 0x400U, |
||
| 1109 | |||
| 1110 | // Identifies a section containing compressed data. |
||
| 1111 | SHF_COMPRESSED = 0x800U, |
||
| 1112 | |||
| 1113 | // This section should not be garbage collected by the linker. |
||
| 1114 | SHF_GNU_RETAIN = 0x200000, |
||
| 1115 | |||
| 1116 | // This section is excluded from the final executable or shared library. |
||
| 1117 | SHF_EXCLUDE = 0x80000000U, |
||
| 1118 | |||
| 1119 | // Start of target-specific flags. |
||
| 1120 | |||
| 1121 | SHF_MASKOS = 0x0ff00000, |
||
| 1122 | |||
| 1123 | // Solaris equivalent of SHF_GNU_RETAIN. |
||
| 1124 | SHF_SUNW_NODISCARD = 0x00100000, |
||
| 1125 | |||
| 1126 | // Bits indicating processor-specific flags. |
||
| 1127 | SHF_MASKPROC = 0xf0000000, |
||
| 1128 | |||
| 1129 | /// All sections with the "d" flag are grouped together by the linker to form |
||
| 1130 | /// the data section and the dp register is set to the start of the section by |
||
| 1131 | /// the boot code. |
||
| 1132 | XCORE_SHF_DP_SECTION = 0x10000000, |
||
| 1133 | |||
| 1134 | /// All sections with the "c" flag are grouped together by the linker to form |
||
| 1135 | /// the constant pool and the cp register is set to the start of the constant |
||
| 1136 | /// pool by the boot code. |
||
| 1137 | XCORE_SHF_CP_SECTION = 0x20000000, |
||
| 1138 | |||
| 1139 | // If an object file section does not have this flag set, then it may not hold |
||
| 1140 | // more than 2GB and can be freely referred to in objects using smaller code |
||
| 1141 | // models. Otherwise, only objects using larger code models can refer to them. |
||
| 1142 | // For example, a medium code model object can refer to data in a section that |
||
| 1143 | // sets this flag besides being able to refer to data in a section that does |
||
| 1144 | // not set it; likewise, a small code model object can refer only to code in a |
||
| 1145 | // section that does not set this flag. |
||
| 1146 | SHF_X86_64_LARGE = 0x10000000, |
||
| 1147 | |||
| 1148 | // All sections with the GPREL flag are grouped into a global data area |
||
| 1149 | // for faster accesses |
||
| 1150 | SHF_HEX_GPREL = 0x10000000, |
||
| 1151 | |||
| 1152 | // Section contains text/data which may be replicated in other sections. |
||
| 1153 | // Linker must retain only one copy. |
||
| 1154 | SHF_MIPS_NODUPES = 0x01000000, |
||
| 1155 | |||
| 1156 | // Linker must generate implicit hidden weak names. |
||
| 1157 | SHF_MIPS_NAMES = 0x02000000, |
||
| 1158 | |||
| 1159 | // Section data local to process. |
||
| 1160 | SHF_MIPS_LOCAL = 0x04000000, |
||
| 1161 | |||
| 1162 | // Do not strip this section. |
||
| 1163 | SHF_MIPS_NOSTRIP = 0x08000000, |
||
| 1164 | |||
| 1165 | // Section must be part of global data area. |
||
| 1166 | SHF_MIPS_GPREL = 0x10000000, |
||
| 1167 | |||
| 1168 | // This section should be merged. |
||
| 1169 | SHF_MIPS_MERGE = 0x20000000, |
||
| 1170 | |||
| 1171 | // Address size to be inferred from section entry size. |
||
| 1172 | SHF_MIPS_ADDR = 0x40000000, |
||
| 1173 | |||
| 1174 | // Section data is string data by default. |
||
| 1175 | SHF_MIPS_STRING = 0x80000000, |
||
| 1176 | |||
| 1177 | // Make code section unreadable when in execute-only mode |
||
| 1178 | SHF_ARM_PURECODE = 0x20000000 |
||
| 1179 | }; |
||
| 1180 | |||
| 1181 | // Section Group Flags |
||
| 1182 | enum : unsigned { |
||
| 1183 | GRP_COMDAT = 0x1, |
||
| 1184 | GRP_MASKOS = 0x0ff00000, |
||
| 1185 | GRP_MASKPROC = 0xf0000000 |
||
| 1186 | }; |
||
| 1187 | |||
| 1188 | // Symbol table entries for ELF32. |
||
| 1189 | struct Elf32_Sym { |
||
| 1190 | Elf32_Word st_name; // Symbol name (index into string table) |
||
| 1191 | Elf32_Addr st_value; // Value or address associated with the symbol |
||
| 1192 | Elf32_Word st_size; // Size of the symbol |
||
| 1193 | unsigned char st_info; // Symbol's type and binding attributes |
||
| 1194 | unsigned char st_other; // Must be zero; reserved |
||
| 1195 | Elf32_Half st_shndx; // Which section (header table index) it's defined in |
||
| 1196 | |||
| 1197 | // These accessors and mutators correspond to the ELF32_ST_BIND, |
||
| 1198 | // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: |
||
| 1199 | unsigned char getBinding() const { return st_info >> 4; } |
||
| 1200 | unsigned char getType() const { return st_info & 0x0f; } |
||
| 1201 | void setBinding(unsigned char b) { setBindingAndType(b, getType()); } |
||
| 1202 | void setType(unsigned char t) { setBindingAndType(getBinding(), t); } |
||
| 1203 | void setBindingAndType(unsigned char b, unsigned char t) { |
||
| 1204 | st_info = (b << 4) + (t & 0x0f); |
||
| 1205 | } |
||
| 1206 | }; |
||
| 1207 | |||
| 1208 | // Symbol table entries for ELF64. |
||
| 1209 | struct Elf64_Sym { |
||
| 1210 | Elf64_Word st_name; // Symbol name (index into string table) |
||
| 1211 | unsigned char st_info; // Symbol's type and binding attributes |
||
| 1212 | unsigned char st_other; // Must be zero; reserved |
||
| 1213 | Elf64_Half st_shndx; // Which section (header tbl index) it's defined in |
||
| 1214 | Elf64_Addr st_value; // Value or address associated with the symbol |
||
| 1215 | Elf64_Xword st_size; // Size of the symbol |
||
| 1216 | |||
| 1217 | // These accessors and mutators are identical to those defined for ELF32 |
||
| 1218 | // symbol table entries. |
||
| 1219 | unsigned char getBinding() const { return st_info >> 4; } |
||
| 1220 | unsigned char getType() const { return st_info & 0x0f; } |
||
| 1221 | void setBinding(unsigned char b) { setBindingAndType(b, getType()); } |
||
| 1222 | void setType(unsigned char t) { setBindingAndType(getBinding(), t); } |
||
| 1223 | void setBindingAndType(unsigned char b, unsigned char t) { |
||
| 1224 | st_info = (b << 4) + (t & 0x0f); |
||
| 1225 | } |
||
| 1226 | }; |
||
| 1227 | |||
| 1228 | // The size (in bytes) of symbol table entries. |
||
| 1229 | enum { |
||
| 1230 | SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size |
||
| 1231 | SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. |
||
| 1232 | }; |
||
| 1233 | |||
| 1234 | // Symbol bindings. |
||
| 1235 | enum { |
||
| 1236 | STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def |
||
| 1237 | STB_GLOBAL = 1, // Global symbol, visible to all object files being combined |
||
| 1238 | STB_WEAK = 2, // Weak symbol, like global but lower-precedence |
||
| 1239 | STB_GNU_UNIQUE = 10, |
||
| 1240 | STB_LOOS = 10, // Lowest operating system-specific binding type |
||
| 1241 | STB_HIOS = 12, // Highest operating system-specific binding type |
||
| 1242 | STB_LOPROC = 13, // Lowest processor-specific binding type |
||
| 1243 | STB_HIPROC = 15 // Highest processor-specific binding type |
||
| 1244 | }; |
||
| 1245 | |||
| 1246 | // Symbol types. |
||
| 1247 | enum { |
||
| 1248 | STT_NOTYPE = 0, // Symbol's type is not specified |
||
| 1249 | STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) |
||
| 1250 | STT_FUNC = 2, // Symbol is executable code (function, etc.) |
||
| 1251 | STT_SECTION = 3, // Symbol refers to a section |
||
| 1252 | STT_FILE = 4, // Local, absolute symbol that refers to a file |
||
| 1253 | STT_COMMON = 5, // An uninitialized common block |
||
| 1254 | STT_TLS = 6, // Thread local data object |
||
| 1255 | STT_GNU_IFUNC = 10, // GNU indirect function |
||
| 1256 | STT_LOOS = 10, // Lowest operating system-specific symbol type |
||
| 1257 | STT_HIOS = 12, // Highest operating system-specific symbol type |
||
| 1258 | STT_LOPROC = 13, // Lowest processor-specific symbol type |
||
| 1259 | STT_HIPROC = 15, // Highest processor-specific symbol type |
||
| 1260 | |||
| 1261 | // AMDGPU symbol types |
||
| 1262 | STT_AMDGPU_HSA_KERNEL = 10 |
||
| 1263 | }; |
||
| 1264 | |||
| 1265 | enum { |
||
| 1266 | STV_DEFAULT = 0, // Visibility is specified by binding type |
||
| 1267 | STV_INTERNAL = 1, // Defined by processor supplements |
||
| 1268 | STV_HIDDEN = 2, // Not visible to other components |
||
| 1269 | STV_PROTECTED = 3 // Visible in other components but not preemptable |
||
| 1270 | }; |
||
| 1271 | |||
| 1272 | // Symbol number. |
||
| 1273 | enum { STN_UNDEF = 0 }; |
||
| 1274 | |||
| 1275 | // Special relocation symbols used in the MIPS64 ELF relocation entries |
||
| 1276 | enum { |
||
| 1277 | RSS_UNDEF = 0, // None |
||
| 1278 | RSS_GP = 1, // Value of gp |
||
| 1279 | RSS_GP0 = 2, // Value of gp used to create object being relocated |
||
| 1280 | RSS_LOC = 3 // Address of location being relocated |
||
| 1281 | }; |
||
| 1282 | |||
| 1283 | // Relocation entry, without explicit addend. |
||
| 1284 | struct Elf32_Rel { |
||
| 1285 | Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) |
||
| 1286 | Elf32_Word r_info; // Symbol table index and type of relocation to apply |
||
| 1287 | |||
| 1288 | // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, |
||
| 1289 | // and ELF32_R_INFO macros defined in the ELF specification: |
||
| 1290 | Elf32_Word getSymbol() const { return (r_info >> 8); } |
||
| 1291 | unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } |
||
| 1292 | void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } |
||
| 1293 | void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } |
||
| 1294 | void setSymbolAndType(Elf32_Word s, unsigned char t) { |
||
| 1295 | r_info = (s << 8) + t; |
||
| 1296 | } |
||
| 1297 | }; |
||
| 1298 | |||
| 1299 | // Relocation entry with explicit addend. |
||
| 1300 | struct Elf32_Rela { |
||
| 1301 | Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) |
||
| 1302 | Elf32_Word r_info; // Symbol table index and type of relocation to apply |
||
| 1303 | Elf32_Sword r_addend; // Compute value for relocatable field by adding this |
||
| 1304 | |||
| 1305 | // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, |
||
| 1306 | // and ELF32_R_INFO macros defined in the ELF specification: |
||
| 1307 | Elf32_Word getSymbol() const { return (r_info >> 8); } |
||
| 1308 | unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } |
||
| 1309 | void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } |
||
| 1310 | void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } |
||
| 1311 | void setSymbolAndType(Elf32_Word s, unsigned char t) { |
||
| 1312 | r_info = (s << 8) + t; |
||
| 1313 | } |
||
| 1314 | }; |
||
| 1315 | |||
| 1316 | // Relocation entry without explicit addend or info (relative relocations only). |
||
| 1317 | typedef Elf32_Word Elf32_Relr; // offset/bitmap for relative relocations |
||
| 1318 | |||
| 1319 | // Relocation entry, without explicit addend. |
||
| 1320 | struct Elf64_Rel { |
||
| 1321 | Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). |
||
| 1322 | Elf64_Xword r_info; // Symbol table index and type of relocation to apply. |
||
| 1323 | |||
| 1324 | // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, |
||
| 1325 | // and ELF64_R_INFO macros defined in the ELF specification: |
||
| 1326 | Elf64_Word getSymbol() const { return (r_info >> 32); } |
||
| 1327 | Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } |
||
| 1328 | void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } |
||
| 1329 | void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } |
||
| 1330 | void setSymbolAndType(Elf64_Word s, Elf64_Word t) { |
||
| 1331 | r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); |
||
| 1332 | } |
||
| 1333 | }; |
||
| 1334 | |||
| 1335 | // Relocation entry with explicit addend. |
||
| 1336 | struct Elf64_Rela { |
||
| 1337 | Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). |
||
| 1338 | Elf64_Xword r_info; // Symbol table index and type of relocation to apply. |
||
| 1339 | Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. |
||
| 1340 | |||
| 1341 | // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, |
||
| 1342 | // and ELF64_R_INFO macros defined in the ELF specification: |
||
| 1343 | Elf64_Word getSymbol() const { return (r_info >> 32); } |
||
| 1344 | Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } |
||
| 1345 | void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } |
||
| 1346 | void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } |
||
| 1347 | void setSymbolAndType(Elf64_Word s, Elf64_Word t) { |
||
| 1348 | r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); |
||
| 1349 | } |
||
| 1350 | }; |
||
| 1351 | |||
| 1352 | // Relocation entry without explicit addend or info (relative relocations only). |
||
| 1353 | typedef Elf64_Xword Elf64_Relr; // offset/bitmap for relative relocations |
||
| 1354 | |||
| 1355 | // Program header for ELF32. |
||
| 1356 | struct Elf32_Phdr { |
||
| 1357 | Elf32_Word p_type; // Type of segment |
||
| 1358 | Elf32_Off p_offset; // File offset where segment is located, in bytes |
||
| 1359 | Elf32_Addr p_vaddr; // Virtual address of beginning of segment |
||
| 1360 | Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) |
||
| 1361 | Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) |
||
| 1362 | Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) |
||
| 1363 | Elf32_Word p_flags; // Segment flags |
||
| 1364 | Elf32_Word p_align; // Segment alignment constraint |
||
| 1365 | }; |
||
| 1366 | |||
| 1367 | // Program header for ELF64. |
||
| 1368 | struct Elf64_Phdr { |
||
| 1369 | Elf64_Word p_type; // Type of segment |
||
| 1370 | Elf64_Word p_flags; // Segment flags |
||
| 1371 | Elf64_Off p_offset; // File offset where segment is located, in bytes |
||
| 1372 | Elf64_Addr p_vaddr; // Virtual address of beginning of segment |
||
| 1373 | Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific) |
||
| 1374 | Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) |
||
| 1375 | Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) |
||
| 1376 | Elf64_Xword p_align; // Segment alignment constraint |
||
| 1377 | }; |
||
| 1378 | |||
| 1379 | // Segment types. |
||
| 1380 | enum { |
||
| 1381 | PT_NULL = 0, // Unused segment. |
||
| 1382 | PT_LOAD = 1, // Loadable segment. |
||
| 1383 | PT_DYNAMIC = 2, // Dynamic linking information. |
||
| 1384 | PT_INTERP = 3, // Interpreter pathname. |
||
| 1385 | PT_NOTE = 4, // Auxiliary information. |
||
| 1386 | PT_SHLIB = 5, // Reserved. |
||
| 1387 | PT_PHDR = 6, // The program header table itself. |
||
| 1388 | PT_TLS = 7, // The thread-local storage template. |
||
| 1389 | PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. |
||
| 1390 | PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. |
||
| 1391 | PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. |
||
| 1392 | PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type. |
||
| 1393 | |||
| 1394 | // x86-64 program header types. |
||
| 1395 | // These all contain stack unwind tables. |
||
| 1396 | PT_GNU_EH_FRAME = 0x6474e550, |
||
| 1397 | PT_SUNW_EH_FRAME = 0x6474e550, |
||
| 1398 | PT_SUNW_UNWIND = 0x6464e550, |
||
| 1399 | |||
| 1400 | PT_GNU_STACK = 0x6474e551, // Indicates stack executability. |
||
| 1401 | PT_GNU_RELRO = 0x6474e552, // Read-only after relocation. |
||
| 1402 | PT_GNU_PROPERTY = 0x6474e553, // .note.gnu.property notes sections. |
||
| 1403 | |||
| 1404 | PT_OPENBSD_MUTABLE = 0x65a3dbe5, // Like bss, but not immutable. |
||
| 1405 | PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data. |
||
| 1406 | PT_OPENBSD_WXNEEDED = 0x65a3dbe7, // Program does W^X violations. |
||
| 1407 | PT_OPENBSD_BOOTDATA = 0x65a41be6, // Section for boot arguments. |
||
| 1408 | |||
| 1409 | // ARM program header types. |
||
| 1410 | PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info |
||
| 1411 | // These all contain stack unwind tables. |
||
| 1412 | PT_ARM_EXIDX = 0x70000001, |
||
| 1413 | PT_ARM_UNWIND = 0x70000001, |
||
| 1414 | // MTE memory tag segment type |
||
| 1415 | PT_AARCH64_MEMTAG_MTE = 0x70000002, |
||
| 1416 | |||
| 1417 | // MIPS program header types. |
||
| 1418 | PT_MIPS_REGINFO = 0x70000000, // Register usage information. |
||
| 1419 | PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table. |
||
| 1420 | PT_MIPS_OPTIONS = 0x70000002, // Options segment. |
||
| 1421 | PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment. |
||
| 1422 | |||
| 1423 | // RISCV program header types. |
||
| 1424 | PT_RISCV_ATTRIBUTES = 0x70000003, |
||
| 1425 | }; |
||
| 1426 | |||
| 1427 | // Segment flag bits. |
||
| 1428 | enum : unsigned { |
||
| 1429 | PF_X = 1, // Execute |
||
| 1430 | PF_W = 2, // Write |
||
| 1431 | PF_R = 4, // Read |
||
| 1432 | PF_MASKOS = 0x0ff00000, // Bits for operating system-specific semantics. |
||
| 1433 | PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. |
||
| 1434 | }; |
||
| 1435 | |||
| 1436 | // Dynamic table entry for ELF32. |
||
| 1437 | struct Elf32_Dyn { |
||
| 1438 | Elf32_Sword d_tag; // Type of dynamic table entry. |
||
| 1439 | union { |
||
| 1440 | Elf32_Word d_val; // Integer value of entry. |
||
| 1441 | Elf32_Addr d_ptr; // Pointer value of entry. |
||
| 1442 | } d_un; |
||
| 1443 | }; |
||
| 1444 | |||
| 1445 | // Dynamic table entry for ELF64. |
||
| 1446 | struct Elf64_Dyn { |
||
| 1447 | Elf64_Sxword d_tag; // Type of dynamic table entry. |
||
| 1448 | union { |
||
| 1449 | Elf64_Xword d_val; // Integer value of entry. |
||
| 1450 | Elf64_Addr d_ptr; // Pointer value of entry. |
||
| 1451 | } d_un; |
||
| 1452 | }; |
||
| 1453 | |||
| 1454 | // Dynamic table entry tags. |
||
| 1455 | enum { |
||
| 1456 | #define DYNAMIC_TAG(name, value) DT_##name = value, |
||
| 1457 | #include "DynamicTags.def" |
||
| 1458 | #undef DYNAMIC_TAG |
||
| 1459 | }; |
||
| 1460 | |||
| 1461 | // DT_FLAGS values. |
||
| 1462 | enum { |
||
| 1463 | DF_ORIGIN = 0x01, // The object may reference $ORIGIN. |
||
| 1464 | DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. |
||
| 1465 | DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. |
||
| 1466 | DF_BIND_NOW = 0x08, // Process all relocations on load. |
||
| 1467 | DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. |
||
| 1468 | }; |
||
| 1469 | |||
| 1470 | // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry. |
||
| 1471 | enum { |
||
| 1472 | DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object. |
||
| 1473 | DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object. |
||
| 1474 | DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object. |
||
| 1475 | DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object. |
||
| 1476 | DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime. |
||
| 1477 | DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object. |
||
| 1478 | DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object. |
||
| 1479 | DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled. |
||
| 1480 | DF_1_DIRECT = 0x00000100, // Direct binding enabled. |
||
| 1481 | DF_1_TRANS = 0x00000200, |
||
| 1482 | DF_1_INTERPOSE = 0x00000400, // Object is used to interpose. |
||
| 1483 | DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path. |
||
| 1484 | DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed. |
||
| 1485 | DF_1_CONFALT = 0x00002000, // Configuration alternative created. |
||
| 1486 | DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search. |
||
| 1487 | DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time. |
||
| 1488 | DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time. |
||
| 1489 | DF_1_NODIRECT = 0x00020000, // Object has no-direct binding. |
||
| 1490 | DF_1_IGNMULDEF = 0x00040000, |
||
| 1491 | DF_1_NOKSYMS = 0x00080000, |
||
| 1492 | DF_1_NOHDR = 0x00100000, |
||
| 1493 | DF_1_EDITED = 0x00200000, // Object is modified after built. |
||
| 1494 | DF_1_NORELOC = 0x00400000, |
||
| 1495 | DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers. |
||
| 1496 | DF_1_GLOBAUDIT = 0x01000000, // Global auditing required. |
||
| 1497 | DF_1_SINGLETON = 0x02000000, // Singleton symbols are used. |
||
| 1498 | DF_1_PIE = 0x08000000, // Object is a position-independent executable. |
||
| 1499 | }; |
||
| 1500 | |||
| 1501 | // DT_MIPS_FLAGS values. |
||
| 1502 | enum { |
||
| 1503 | RHF_NONE = 0x00000000, // No flags. |
||
| 1504 | RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers. |
||
| 1505 | RHF_NOTPOT = 0x00000002, // Hash size is not a power of two. |
||
| 1506 | RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH. |
||
| 1507 | RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated. |
||
| 1508 | RHF_SGI_ONLY = 0x00000010, // SGI specific features. |
||
| 1509 | RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish |
||
| 1510 | // executing before any non-init |
||
| 1511 | // code in DSO is called. |
||
| 1512 | RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code. |
||
| 1513 | RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start |
||
| 1514 | // executing before any non-init |
||
| 1515 | // code in DSO is called. |
||
| 1516 | RHF_PIXIE = 0x00000100, // Generated by pixie. |
||
| 1517 | RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default. |
||
| 1518 | RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted |
||
| 1519 | RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted |
||
| 1520 | RHF_CORD = 0x00001000, // Generated by cord. |
||
| 1521 | RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved |
||
| 1522 | // undef symbols. |
||
| 1523 | RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order. |
||
| 1524 | }; |
||
| 1525 | |||
| 1526 | // ElfXX_VerDef structure version (GNU versioning) |
||
| 1527 | enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 }; |
||
| 1528 | |||
| 1529 | // VerDef Flags (ElfXX_VerDef::vd_flags) |
||
| 1530 | enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 }; |
||
| 1531 | |||
| 1532 | // Special constants for the version table. (SHT_GNU_versym/.gnu.version) |
||
| 1533 | enum { |
||
| 1534 | VER_NDX_LOCAL = 0, // Unversioned local symbol |
||
| 1535 | VER_NDX_GLOBAL = 1, // Unversioned global symbol |
||
| 1536 | VERSYM_VERSION = 0x7fff, // Version Index mask |
||
| 1537 | VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version) |
||
| 1538 | }; |
||
| 1539 | |||
| 1540 | // ElfXX_VerNeed structure version (GNU versioning) |
||
| 1541 | enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 }; |
||
| 1542 | |||
| 1543 | // SHT_NOTE section types. |
||
| 1544 | |||
| 1545 | // Generic note types. |
||
| 1546 | enum : unsigned { |
||
| 1547 | NT_VERSION = 1, |
||
| 1548 | NT_ARCH = 2, |
||
| 1549 | NT_GNU_BUILD_ATTRIBUTE_OPEN = 0x100, |
||
| 1550 | NT_GNU_BUILD_ATTRIBUTE_FUNC = 0x101, |
||
| 1551 | }; |
||
| 1552 | |||
| 1553 | // Core note types. |
||
| 1554 | enum : unsigned { |
||
| 1555 | NT_PRSTATUS = 1, |
||
| 1556 | NT_FPREGSET = 2, |
||
| 1557 | NT_PRPSINFO = 3, |
||
| 1558 | NT_TASKSTRUCT = 4, |
||
| 1559 | NT_AUXV = 6, |
||
| 1560 | NT_PSTATUS = 10, |
||
| 1561 | NT_FPREGS = 12, |
||
| 1562 | NT_PSINFO = 13, |
||
| 1563 | NT_LWPSTATUS = 16, |
||
| 1564 | NT_LWPSINFO = 17, |
||
| 1565 | NT_WIN32PSTATUS = 18, |
||
| 1566 | |||
| 1567 | NT_PPC_VMX = 0x100, |
||
| 1568 | NT_PPC_VSX = 0x102, |
||
| 1569 | NT_PPC_TAR = 0x103, |
||
| 1570 | NT_PPC_PPR = 0x104, |
||
| 1571 | NT_PPC_DSCR = 0x105, |
||
| 1572 | NT_PPC_EBB = 0x106, |
||
| 1573 | NT_PPC_PMU = 0x107, |
||
| 1574 | NT_PPC_TM_CGPR = 0x108, |
||
| 1575 | NT_PPC_TM_CFPR = 0x109, |
||
| 1576 | NT_PPC_TM_CVMX = 0x10a, |
||
| 1577 | NT_PPC_TM_CVSX = 0x10b, |
||
| 1578 | NT_PPC_TM_SPR = 0x10c, |
||
| 1579 | NT_PPC_TM_CTAR = 0x10d, |
||
| 1580 | NT_PPC_TM_CPPR = 0x10e, |
||
| 1581 | NT_PPC_TM_CDSCR = 0x10f, |
||
| 1582 | |||
| 1583 | NT_386_TLS = 0x200, |
||
| 1584 | NT_386_IOPERM = 0x201, |
||
| 1585 | NT_X86_XSTATE = 0x202, |
||
| 1586 | |||
| 1587 | NT_S390_HIGH_GPRS = 0x300, |
||
| 1588 | NT_S390_TIMER = 0x301, |
||
| 1589 | NT_S390_TODCMP = 0x302, |
||
| 1590 | NT_S390_TODPREG = 0x303, |
||
| 1591 | NT_S390_CTRS = 0x304, |
||
| 1592 | NT_S390_PREFIX = 0x305, |
||
| 1593 | NT_S390_LAST_BREAK = 0x306, |
||
| 1594 | NT_S390_SYSTEM_CALL = 0x307, |
||
| 1595 | NT_S390_TDB = 0x308, |
||
| 1596 | NT_S390_VXRS_LOW = 0x309, |
||
| 1597 | NT_S390_VXRS_HIGH = 0x30a, |
||
| 1598 | NT_S390_GS_CB = 0x30b, |
||
| 1599 | NT_S390_GS_BC = 0x30c, |
||
| 1600 | |||
| 1601 | NT_ARM_VFP = 0x400, |
||
| 1602 | NT_ARM_TLS = 0x401, |
||
| 1603 | NT_ARM_HW_BREAK = 0x402, |
||
| 1604 | NT_ARM_HW_WATCH = 0x403, |
||
| 1605 | NT_ARM_SVE = 0x405, |
||
| 1606 | NT_ARM_PAC_MASK = 0x406, |
||
| 1607 | |||
| 1608 | NT_FILE = 0x46494c45, |
||
| 1609 | NT_PRXFPREG = 0x46e62b7f, |
||
| 1610 | NT_SIGINFO = 0x53494749, |
||
| 1611 | }; |
||
| 1612 | |||
| 1613 | // LLVM-specific notes. |
||
| 1614 | enum { |
||
| 1615 | NT_LLVM_HWASAN_GLOBALS = 3, |
||
| 1616 | }; |
||
| 1617 | |||
| 1618 | // GNU note types. |
||
| 1619 | enum { |
||
| 1620 | NT_GNU_ABI_TAG = 1, |
||
| 1621 | NT_GNU_HWCAP = 2, |
||
| 1622 | NT_GNU_BUILD_ID = 3, |
||
| 1623 | NT_GNU_GOLD_VERSION = 4, |
||
| 1624 | NT_GNU_PROPERTY_TYPE_0 = 5, |
||
| 1625 | FDO_PACKAGING_METADATA = 0xcafe1a7e, |
||
| 1626 | }; |
||
| 1627 | |||
| 1628 | // Android note types. |
||
| 1629 | enum { |
||
| 1630 | NT_ANDROID_TYPE_IDENT = 1, |
||
| 1631 | NT_ANDROID_TYPE_KUSER = 3, |
||
| 1632 | NT_ANDROID_TYPE_MEMTAG = 4, |
||
| 1633 | }; |
||
| 1634 | |||
| 1635 | // Memory tagging values used in NT_ANDROID_TYPE_MEMTAG notes. |
||
| 1636 | enum { |
||
| 1637 | // Enumeration to determine the tagging mode. In Android-land, 'SYNC' means |
||
| 1638 | // running all threads in MTE Synchronous mode, and 'ASYNC' means to use the |
||
| 1639 | // kernels auto-upgrade feature to allow for either MTE Asynchronous, |
||
| 1640 | // Asymmetric, or Synchronous mode. This allows silicon vendors to specify, on |
||
| 1641 | // a per-cpu basis what 'ASYNC' should mean. Generally, the expectation is |
||
| 1642 | // "pick the most precise mode that's very fast". |
||
| 1643 | NT_MEMTAG_LEVEL_NONE = 0, |
||
| 1644 | NT_MEMTAG_LEVEL_ASYNC = 1, |
||
| 1645 | NT_MEMTAG_LEVEL_SYNC = 2, |
||
| 1646 | NT_MEMTAG_LEVEL_MASK = 3, |
||
| 1647 | // Bits indicating whether the loader should prepare for MTE to be enabled on |
||
| 1648 | // the heap and/or stack. |
||
| 1649 | NT_MEMTAG_HEAP = 4, |
||
| 1650 | NT_MEMTAG_STACK = 8, |
||
| 1651 | }; |
||
| 1652 | |||
| 1653 | // Property types used in GNU_PROPERTY_TYPE_0 notes. |
||
| 1654 | enum : unsigned { |
||
| 1655 | GNU_PROPERTY_STACK_SIZE = 1, |
||
| 1656 | GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2, |
||
| 1657 | GNU_PROPERTY_AARCH64_FEATURE_1_AND = 0xc0000000, |
||
| 1658 | GNU_PROPERTY_X86_FEATURE_1_AND = 0xc0000002, |
||
| 1659 | |||
| 1660 | GNU_PROPERTY_X86_UINT32_OR_LO = 0xc0008000, |
||
| 1661 | GNU_PROPERTY_X86_FEATURE_2_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 1, |
||
| 1662 | GNU_PROPERTY_X86_ISA_1_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 2, |
||
| 1663 | |||
| 1664 | GNU_PROPERTY_X86_UINT32_OR_AND_LO = 0xc0010000, |
||
| 1665 | GNU_PROPERTY_X86_FEATURE_2_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 1, |
||
| 1666 | GNU_PROPERTY_X86_ISA_1_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2, |
||
| 1667 | }; |
||
| 1668 | |||
| 1669 | // aarch64 processor feature bits. |
||
| 1670 | enum : unsigned { |
||
| 1671 | GNU_PROPERTY_AARCH64_FEATURE_1_BTI = 1 << 0, |
||
| 1672 | GNU_PROPERTY_AARCH64_FEATURE_1_PAC = 1 << 1, |
||
| 1673 | }; |
||
| 1674 | |||
| 1675 | // x86 processor feature bits. |
||
| 1676 | enum : unsigned { |
||
| 1677 | GNU_PROPERTY_X86_FEATURE_1_IBT = 1 << 0, |
||
| 1678 | GNU_PROPERTY_X86_FEATURE_1_SHSTK = 1 << 1, |
||
| 1679 | |||
| 1680 | GNU_PROPERTY_X86_FEATURE_2_X86 = 1 << 0, |
||
| 1681 | GNU_PROPERTY_X86_FEATURE_2_X87 = 1 << 1, |
||
| 1682 | GNU_PROPERTY_X86_FEATURE_2_MMX = 1 << 2, |
||
| 1683 | GNU_PROPERTY_X86_FEATURE_2_XMM = 1 << 3, |
||
| 1684 | GNU_PROPERTY_X86_FEATURE_2_YMM = 1 << 4, |
||
| 1685 | GNU_PROPERTY_X86_FEATURE_2_ZMM = 1 << 5, |
||
| 1686 | GNU_PROPERTY_X86_FEATURE_2_FXSR = 1 << 6, |
||
| 1687 | GNU_PROPERTY_X86_FEATURE_2_XSAVE = 1 << 7, |
||
| 1688 | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT = 1 << 8, |
||
| 1689 | GNU_PROPERTY_X86_FEATURE_2_XSAVEC = 1 << 9, |
||
| 1690 | |||
| 1691 | GNU_PROPERTY_X86_ISA_1_BASELINE = 1 << 0, |
||
| 1692 | GNU_PROPERTY_X86_ISA_1_V2 = 1 << 1, |
||
| 1693 | GNU_PROPERTY_X86_ISA_1_V3 = 1 << 2, |
||
| 1694 | GNU_PROPERTY_X86_ISA_1_V4 = 1 << 3, |
||
| 1695 | }; |
||
| 1696 | |||
| 1697 | // FreeBSD note types. |
||
| 1698 | enum { |
||
| 1699 | NT_FREEBSD_ABI_TAG = 1, |
||
| 1700 | NT_FREEBSD_NOINIT_TAG = 2, |
||
| 1701 | NT_FREEBSD_ARCH_TAG = 3, |
||
| 1702 | NT_FREEBSD_FEATURE_CTL = 4, |
||
| 1703 | }; |
||
| 1704 | |||
| 1705 | // NT_FREEBSD_FEATURE_CTL values (see FreeBSD's sys/sys/elf_common.h). |
||
| 1706 | enum { |
||
| 1707 | NT_FREEBSD_FCTL_ASLR_DISABLE = 0x00000001, |
||
| 1708 | NT_FREEBSD_FCTL_PROTMAX_DISABLE = 0x00000002, |
||
| 1709 | NT_FREEBSD_FCTL_STKGAP_DISABLE = 0x00000004, |
||
| 1710 | NT_FREEBSD_FCTL_WXNEEDED = 0x00000008, |
||
| 1711 | NT_FREEBSD_FCTL_LA48 = 0x00000010, |
||
| 1712 | NT_FREEBSD_FCTL_ASG_DISABLE = 0x00000020, |
||
| 1713 | }; |
||
| 1714 | |||
| 1715 | // FreeBSD core note types. |
||
| 1716 | enum { |
||
| 1717 | NT_FREEBSD_THRMISC = 7, |
||
| 1718 | NT_FREEBSD_PROCSTAT_PROC = 8, |
||
| 1719 | NT_FREEBSD_PROCSTAT_FILES = 9, |
||
| 1720 | NT_FREEBSD_PROCSTAT_VMMAP = 10, |
||
| 1721 | NT_FREEBSD_PROCSTAT_GROUPS = 11, |
||
| 1722 | NT_FREEBSD_PROCSTAT_UMASK = 12, |
||
| 1723 | NT_FREEBSD_PROCSTAT_RLIMIT = 13, |
||
| 1724 | NT_FREEBSD_PROCSTAT_OSREL = 14, |
||
| 1725 | NT_FREEBSD_PROCSTAT_PSSTRINGS = 15, |
||
| 1726 | NT_FREEBSD_PROCSTAT_AUXV = 16, |
||
| 1727 | }; |
||
| 1728 | |||
| 1729 | // NetBSD core note types. |
||
| 1730 | enum { |
||
| 1731 | NT_NETBSDCORE_PROCINFO = 1, |
||
| 1732 | NT_NETBSDCORE_AUXV = 2, |
||
| 1733 | NT_NETBSDCORE_LWPSTATUS = 24, |
||
| 1734 | }; |
||
| 1735 | |||
| 1736 | // OpenBSD core note types. |
||
| 1737 | enum { |
||
| 1738 | NT_OPENBSD_PROCINFO = 10, |
||
| 1739 | NT_OPENBSD_AUXV = 11, |
||
| 1740 | NT_OPENBSD_REGS = 20, |
||
| 1741 | NT_OPENBSD_FPREGS = 21, |
||
| 1742 | NT_OPENBSD_XFPREGS = 22, |
||
| 1743 | NT_OPENBSD_WCOOKIE = 23, |
||
| 1744 | }; |
||
| 1745 | |||
| 1746 | // AMDGPU-specific section indices. |
||
| 1747 | enum { |
||
| 1748 | SHN_AMDGPU_LDS = 0xff00, // Variable in LDS; symbol encoded like SHN_COMMON |
||
| 1749 | }; |
||
| 1750 | |||
| 1751 | // AMD vendor specific notes. (Code Object V2) |
||
| 1752 | enum { |
||
| 1753 | NT_AMD_HSA_CODE_OBJECT_VERSION = 1, |
||
| 1754 | NT_AMD_HSA_HSAIL = 2, |
||
| 1755 | NT_AMD_HSA_ISA_VERSION = 3, |
||
| 1756 | // Note types with values between 4 and 9 (inclusive) are reserved. |
||
| 1757 | NT_AMD_HSA_METADATA = 10, |
||
| 1758 | NT_AMD_HSA_ISA_NAME = 11, |
||
| 1759 | NT_AMD_PAL_METADATA = 12 |
||
| 1760 | }; |
||
| 1761 | |||
| 1762 | // AMDGPU vendor specific notes. (Code Object V3) |
||
| 1763 | enum { |
||
| 1764 | // Note types with values between 0 and 31 (inclusive) are reserved. |
||
| 1765 | NT_AMDGPU_METADATA = 32 |
||
| 1766 | }; |
||
| 1767 | |||
| 1768 | // LLVMOMPOFFLOAD specific notes. |
||
| 1769 | enum : unsigned { |
||
| 1770 | NT_LLVM_OPENMP_OFFLOAD_VERSION = 1, |
||
| 1771 | NT_LLVM_OPENMP_OFFLOAD_PRODUCER = 2, |
||
| 1772 | NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION = 3 |
||
| 1773 | }; |
||
| 1774 | |||
| 1775 | enum { |
||
| 1776 | GNU_ABI_TAG_LINUX = 0, |
||
| 1777 | GNU_ABI_TAG_HURD = 1, |
||
| 1778 | GNU_ABI_TAG_SOLARIS = 2, |
||
| 1779 | GNU_ABI_TAG_FREEBSD = 3, |
||
| 1780 | GNU_ABI_TAG_NETBSD = 4, |
||
| 1781 | GNU_ABI_TAG_SYLLABLE = 5, |
||
| 1782 | GNU_ABI_TAG_NACL = 6, |
||
| 1783 | }; |
||
| 1784 | |||
| 1785 | constexpr const char *ELF_NOTE_GNU = "GNU"; |
||
| 1786 | |||
| 1787 | // Android packed relocation group flags. |
||
| 1788 | enum { |
||
| 1789 | RELOCATION_GROUPED_BY_INFO_FLAG = 1, |
||
| 1790 | RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG = 2, |
||
| 1791 | RELOCATION_GROUPED_BY_ADDEND_FLAG = 4, |
||
| 1792 | RELOCATION_GROUP_HAS_ADDEND_FLAG = 8, |
||
| 1793 | }; |
||
| 1794 | |||
| 1795 | // Compressed section header for ELF32. |
||
| 1796 | struct Elf32_Chdr { |
||
| 1797 | Elf32_Word ch_type; |
||
| 1798 | Elf32_Word ch_size; |
||
| 1799 | Elf32_Word ch_addralign; |
||
| 1800 | }; |
||
| 1801 | |||
| 1802 | // Compressed section header for ELF64. |
||
| 1803 | struct Elf64_Chdr { |
||
| 1804 | Elf64_Word ch_type; |
||
| 1805 | Elf64_Word ch_reserved; |
||
| 1806 | Elf64_Xword ch_size; |
||
| 1807 | Elf64_Xword ch_addralign; |
||
| 1808 | }; |
||
| 1809 | |||
| 1810 | // Note header for ELF32. |
||
| 1811 | struct Elf32_Nhdr { |
||
| 1812 | Elf32_Word n_namesz; |
||
| 1813 | Elf32_Word n_descsz; |
||
| 1814 | Elf32_Word n_type; |
||
| 1815 | }; |
||
| 1816 | |||
| 1817 | // Note header for ELF64. |
||
| 1818 | struct Elf64_Nhdr { |
||
| 1819 | Elf64_Word n_namesz; |
||
| 1820 | Elf64_Word n_descsz; |
||
| 1821 | Elf64_Word n_type; |
||
| 1822 | }; |
||
| 1823 | |||
| 1824 | // Legal values for ch_type field of compressed section header. |
||
| 1825 | enum { |
||
| 1826 | ELFCOMPRESS_ZLIB = 1, // ZLIB/DEFLATE algorithm. |
||
| 1827 | ELFCOMPRESS_ZSTD = 2, // Zstandard algorithm |
||
| 1828 | ELFCOMPRESS_LOOS = 0x60000000, // Start of OS-specific. |
||
| 1829 | ELFCOMPRESS_HIOS = 0x6fffffff, // End of OS-specific. |
||
| 1830 | ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific. |
||
| 1831 | ELFCOMPRESS_HIPROC = 0x7fffffff // End of processor-specific. |
||
| 1832 | }; |
||
| 1833 | |||
| 1834 | /// Convert an architecture name into ELF's e_machine value. |
||
| 1835 | uint16_t convertArchNameToEMachine(StringRef Arch); |
||
| 1836 | |||
| 1837 | /// Convert an ELF's e_machine value into an architecture name. |
||
| 1838 | StringRef convertEMachineToArchName(uint16_t EMachine); |
||
| 1839 | |||
| 1840 | } // end namespace ELF |
||
| 1841 | } // end namespace llvm |
||
| 1842 | |||
| 1843 | #endif // LLVM_BINARYFORMAT_ELF_H |