Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file contains routines that help analyze properties that chains of |
||
10 | // computations have. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_ANALYSIS_VALUETRACKING_H |
||
15 | #define LLVM_ANALYSIS_VALUETRACKING_H |
||
16 | |||
17 | #include "llvm/ADT/ArrayRef.h" |
||
18 | #include "llvm/ADT/SmallSet.h" |
||
19 | #include "llvm/IR/Constants.h" |
||
20 | #include "llvm/IR/DataLayout.h" |
||
21 | #include "llvm/IR/InstrTypes.h" |
||
22 | #include "llvm/IR/Intrinsics.h" |
||
23 | #include <cassert> |
||
24 | #include <cstdint> |
||
25 | |||
26 | namespace llvm { |
||
27 | |||
28 | class Operator; |
||
29 | class AddOperator; |
||
30 | class AllocaInst; |
||
31 | class APInt; |
||
32 | class AssumptionCache; |
||
33 | class DominatorTree; |
||
34 | class GEPOperator; |
||
35 | class LoadInst; |
||
36 | class WithOverflowInst; |
||
37 | struct KnownBits; |
||
38 | class Loop; |
||
39 | class LoopInfo; |
||
40 | class MDNode; |
||
41 | class OptimizationRemarkEmitter; |
||
42 | class StringRef; |
||
43 | class TargetLibraryInfo; |
||
44 | class Value; |
||
45 | |||
46 | constexpr unsigned MaxAnalysisRecursionDepth = 6; |
||
47 | |||
48 | /// Determine which bits of V are known to be either zero or one and return |
||
49 | /// them in the KnownZero/KnownOne bit sets. |
||
50 | /// |
||
51 | /// This function is defined on values with integer type, values with pointer |
||
52 | /// type, and vectors of integers. In the case |
||
53 | /// where V is a vector, the known zero and known one values are the |
||
54 | /// same width as the vector element, and the bit is set only if it is true |
||
55 | /// for all of the elements in the vector. |
||
56 | void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, |
||
57 | unsigned Depth = 0, AssumptionCache *AC = nullptr, |
||
58 | const Instruction *CxtI = nullptr, |
||
59 | const DominatorTree *DT = nullptr, |
||
60 | OptimizationRemarkEmitter *ORE = nullptr, |
||
61 | bool UseInstrInfo = true); |
||
62 | |||
63 | /// Determine which bits of V are known to be either zero or one and return |
||
64 | /// them in the KnownZero/KnownOne bit sets. |
||
65 | /// |
||
66 | /// This function is defined on values with integer type, values with pointer |
||
67 | /// type, and vectors of integers. In the case |
||
68 | /// where V is a vector, the known zero and known one values are the |
||
69 | /// same width as the vector element, and the bit is set only if it is true |
||
70 | /// for all of the demanded elements in the vector. |
||
71 | void computeKnownBits(const Value *V, const APInt &DemandedElts, |
||
72 | KnownBits &Known, const DataLayout &DL, |
||
73 | unsigned Depth = 0, AssumptionCache *AC = nullptr, |
||
74 | const Instruction *CxtI = nullptr, |
||
75 | const DominatorTree *DT = nullptr, |
||
76 | OptimizationRemarkEmitter *ORE = nullptr, |
||
77 | bool UseInstrInfo = true); |
||
78 | |||
79 | /// Returns the known bits rather than passing by reference. |
||
80 | KnownBits computeKnownBits(const Value *V, const DataLayout &DL, |
||
81 | unsigned Depth = 0, AssumptionCache *AC = nullptr, |
||
82 | const Instruction *CxtI = nullptr, |
||
83 | const DominatorTree *DT = nullptr, |
||
84 | OptimizationRemarkEmitter *ORE = nullptr, |
||
85 | bool UseInstrInfo = true); |
||
86 | |||
87 | /// Returns the known bits rather than passing by reference. |
||
88 | KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, |
||
89 | const DataLayout &DL, unsigned Depth = 0, |
||
90 | AssumptionCache *AC = nullptr, |
||
91 | const Instruction *CxtI = nullptr, |
||
92 | const DominatorTree *DT = nullptr, |
||
93 | OptimizationRemarkEmitter *ORE = nullptr, |
||
94 | bool UseInstrInfo = true); |
||
95 | |||
96 | /// Compute known bits from the range metadata. |
||
97 | /// \p KnownZero the set of bits that are known to be zero |
||
98 | /// \p KnownOne the set of bits that are known to be one |
||
99 | void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known); |
||
100 | |||
101 | /// Return true if LHS and RHS have no common bits set. |
||
102 | bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS, |
||
103 | const DataLayout &DL, AssumptionCache *AC = nullptr, |
||
104 | const Instruction *CxtI = nullptr, |
||
105 | const DominatorTree *DT = nullptr, |
||
106 | bool UseInstrInfo = true); |
||
107 | |||
108 | /// Return true if the given value is known to have exactly one bit set when |
||
109 | /// defined. For vectors return true if every element is known to be a power |
||
110 | /// of two when defined. Supports values with integer or pointer type and |
||
111 | /// vectors of integers. If 'OrZero' is set, then return true if the given |
||
112 | /// value is either a power of two or zero. |
||
113 | bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, |
||
114 | bool OrZero = false, unsigned Depth = 0, |
||
115 | AssumptionCache *AC = nullptr, |
||
116 | const Instruction *CxtI = nullptr, |
||
117 | const DominatorTree *DT = nullptr, |
||
118 | bool UseInstrInfo = true); |
||
119 | |||
120 | bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI); |
||
121 | |||
122 | /// Return true if the given value is known to be non-zero when defined. For |
||
123 | /// vectors, return true if every element is known to be non-zero when |
||
124 | /// defined. For pointers, if the context instruction and dominator tree are |
||
125 | /// specified, perform context-sensitive analysis and return true if the |
||
126 | /// pointer couldn't possibly be null at the specified instruction. |
||
127 | /// Supports values with integer or pointer type and vectors of integers. |
||
128 | bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0, |
||
129 | AssumptionCache *AC = nullptr, |
||
130 | const Instruction *CxtI = nullptr, |
||
131 | const DominatorTree *DT = nullptr, |
||
132 | bool UseInstrInfo = true); |
||
133 | |||
134 | /// Return true if the two given values are negation. |
||
135 | /// Currently can recoginze Value pair: |
||
136 | /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X) |
||
137 | /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A) |
||
138 | bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false); |
||
139 | |||
140 | /// Returns true if the give value is known to be non-negative. |
||
141 | bool isKnownNonNegative(const Value *V, const DataLayout &DL, |
||
142 | unsigned Depth = 0, AssumptionCache *AC = nullptr, |
||
143 | const Instruction *CxtI = nullptr, |
||
144 | const DominatorTree *DT = nullptr, |
||
145 | bool UseInstrInfo = true); |
||
146 | |||
147 | /// Returns true if the given value is known be positive (i.e. non-negative |
||
148 | /// and non-zero). |
||
149 | bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0, |
||
150 | AssumptionCache *AC = nullptr, |
||
151 | const Instruction *CxtI = nullptr, |
||
152 | const DominatorTree *DT = nullptr, |
||
153 | bool UseInstrInfo = true); |
||
154 | |||
155 | /// Returns true if the given value is known be negative (i.e. non-positive |
||
156 | /// and non-zero). |
||
157 | bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0, |
||
158 | AssumptionCache *AC = nullptr, |
||
159 | const Instruction *CxtI = nullptr, |
||
160 | const DominatorTree *DT = nullptr, |
||
161 | bool UseInstrInfo = true); |
||
162 | |||
163 | /// Return true if the given values are known to be non-equal when defined. |
||
164 | /// Supports scalar integer types only. |
||
165 | bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL, |
||
166 | AssumptionCache *AC = nullptr, |
||
167 | const Instruction *CxtI = nullptr, |
||
168 | const DominatorTree *DT = nullptr, |
||
169 | bool UseInstrInfo = true); |
||
170 | |||
171 | /// Return true if 'V & Mask' is known to be zero. We use this predicate to |
||
172 | /// simplify operations downstream. Mask is known to be zero for bits that V |
||
173 | /// cannot have. |
||
174 | /// |
||
175 | /// This function is defined on values with integer type, values with pointer |
||
176 | /// type, and vectors of integers. In the case |
||
177 | /// where V is a vector, the mask, known zero, and known one values are the |
||
178 | /// same width as the vector element, and the bit is set only if it is true |
||
179 | /// for all of the elements in the vector. |
||
180 | bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, |
||
181 | unsigned Depth = 0, AssumptionCache *AC = nullptr, |
||
182 | const Instruction *CxtI = nullptr, |
||
183 | const DominatorTree *DT = nullptr, |
||
184 | bool UseInstrInfo = true); |
||
185 | |||
186 | /// Return the number of times the sign bit of the register is replicated into |
||
187 | /// the other bits. We know that at least 1 bit is always equal to the sign |
||
188 | /// bit (itself), but other cases can give us information. For example, |
||
189 | /// immediately after an "ashr X, 2", we know that the top 3 bits are all |
||
190 | /// equal to each other, so we return 3. For vectors, return the number of |
||
191 | /// sign bits for the vector element with the mininum number of known sign |
||
192 | /// bits. |
||
193 | unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, |
||
194 | unsigned Depth = 0, AssumptionCache *AC = nullptr, |
||
195 | const Instruction *CxtI = nullptr, |
||
196 | const DominatorTree *DT = nullptr, |
||
197 | bool UseInstrInfo = true); |
||
198 | |||
199 | /// Get the upper bound on bit size for this Value \p Op as a signed integer. |
||
200 | /// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)). |
||
201 | /// Similar to the APInt::getSignificantBits function. |
||
202 | unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, |
||
203 | unsigned Depth = 0, |
||
204 | AssumptionCache *AC = nullptr, |
||
205 | const Instruction *CxtI = nullptr, |
||
206 | const DominatorTree *DT = nullptr); |
||
207 | |||
208 | /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent |
||
209 | /// intrinsics are treated as-if they were intrinsics. |
||
210 | Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, |
||
211 | const TargetLibraryInfo *TLI); |
||
212 | |||
213 | /// Return true if we can prove that the specified FP value is never equal to |
||
214 | /// -0.0. |
||
215 | bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, |
||
216 | unsigned Depth = 0); |
||
217 | |||
218 | /// Return true if we can prove that the specified FP value is either NaN or |
||
219 | /// never less than -0.0. |
||
220 | /// |
||
221 | /// NaN --> true |
||
222 | /// +0 --> true |
||
223 | /// -0 --> true |
||
224 | /// x > +0 --> true |
||
225 | /// x < -0 --> false |
||
226 | bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI); |
||
227 | |||
228 | /// Return true if the floating-point scalar value is not an infinity or if |
||
229 | /// the floating-point vector value has no infinities. Return false if a value |
||
230 | /// could ever be infinity. |
||
231 | bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, |
||
232 | unsigned Depth = 0); |
||
233 | |||
234 | /// Return true if the floating-point scalar value is not a NaN or if the |
||
235 | /// floating-point vector value has no NaN elements. Return false if a value |
||
236 | /// could ever be NaN. |
||
237 | bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, |
||
238 | unsigned Depth = 0); |
||
239 | |||
240 | /// Return true if we can prove that the specified FP value's sign bit is 0. |
||
241 | /// |
||
242 | /// NaN --> true/false (depending on the NaN's sign bit) |
||
243 | /// +0 --> true |
||
244 | /// -0 --> false |
||
245 | /// x > +0 --> true |
||
246 | /// x < -0 --> false |
||
247 | bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI); |
||
248 | |||
249 | /// If the specified value can be set by repeating the same byte in memory, |
||
250 | /// return the i8 value that it is represented with. This is true for all i8 |
||
251 | /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double |
||
252 | /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g. |
||
253 | /// i16 0x1234), return null. If the value is entirely undef and padding, |
||
254 | /// return undef. |
||
255 | Value *isBytewiseValue(Value *V, const DataLayout &DL); |
||
256 | |||
257 | /// Given an aggregate and an sequence of indices, see if the scalar value |
||
258 | /// indexed is already around as a register, for example if it were inserted |
||
259 | /// directly into the aggregate. |
||
260 | /// |
||
261 | /// If InsertBefore is not null, this function will duplicate (modified) |
||
262 | /// insertvalues when a part of a nested struct is extracted. |
||
263 | Value *FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, |
||
264 | Instruction *InsertBefore = nullptr); |
||
265 | |||
266 | /// Analyze the specified pointer to see if it can be expressed as a base |
||
267 | /// pointer plus a constant offset. Return the base and offset to the caller. |
||
268 | /// |
||
269 | /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that |
||
270 | /// creates and later unpacks the required APInt. |
||
271 | inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, |
||
272 | const DataLayout &DL, |
||
273 | bool AllowNonInbounds = true) { |
||
274 | APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); |
||
275 | Value *Base = |
||
276 | Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds); |
||
277 | |||
278 | Offset = OffsetAPInt.getSExtValue(); |
||
279 | return Base; |
||
280 | } |
||
281 | inline const Value * |
||
282 | GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset, |
||
283 | const DataLayout &DL, |
||
284 | bool AllowNonInbounds = true) { |
||
285 | return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL, |
||
286 | AllowNonInbounds); |
||
287 | } |
||
288 | |||
289 | /// Returns true if the GEP is based on a pointer to a string (array of |
||
290 | // \p CharSize integers) and is indexing into this string. |
||
291 | bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8); |
||
292 | |||
293 | /// Represents offset+length into a ConstantDataArray. |
||
294 | struct ConstantDataArraySlice { |
||
295 | /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid |
||
296 | /// initializer, it just doesn't fit the ConstantDataArray interface). |
||
297 | const ConstantDataArray *Array; |
||
298 | |||
299 | /// Slice starts at this Offset. |
||
300 | uint64_t Offset; |
||
301 | |||
302 | /// Length of the slice. |
||
303 | uint64_t Length; |
||
304 | |||
305 | /// Moves the Offset and adjusts Length accordingly. |
||
306 | void move(uint64_t Delta) { |
||
307 | assert(Delta < Length); |
||
308 | Offset += Delta; |
||
309 | Length -= Delta; |
||
310 | } |
||
311 | |||
312 | /// Convenience accessor for elements in the slice. |
||
313 | uint64_t operator[](unsigned I) const { |
||
314 | return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset); |
||
315 | } |
||
316 | }; |
||
317 | |||
318 | /// Returns true if the value \p V is a pointer into a ConstantDataArray. |
||
319 | /// If successful \p Slice will point to a ConstantDataArray info object |
||
320 | /// with an appropriate offset. |
||
321 | bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, |
||
322 | unsigned ElementSize, uint64_t Offset = 0); |
||
323 | |||
324 | /// This function computes the length of a null-terminated C string pointed to |
||
325 | /// by V. If successful, it returns true and returns the string in Str. If |
||
326 | /// unsuccessful, it returns false. This does not include the trailing null |
||
327 | /// character by default. If TrimAtNul is set to false, then this returns any |
||
328 | /// trailing null characters as well as any other characters that come after |
||
329 | /// it. |
||
330 | bool getConstantStringInfo(const Value *V, StringRef &Str, |
||
331 | bool TrimAtNul = true); |
||
332 | |||
333 | /// If we can compute the length of the string pointed to by the specified |
||
334 | /// pointer, return 'len+1'. If we can't, return 0. |
||
335 | uint64_t GetStringLength(const Value *V, unsigned CharSize = 8); |
||
336 | |||
337 | /// This function returns call pointer argument that is considered the same by |
||
338 | /// aliasing rules. You CAN'T use it to replace one value with another. If |
||
339 | /// \p MustPreserveNullness is true, the call must preserve the nullness of |
||
340 | /// the pointer. |
||
341 | const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call, |
||
342 | bool MustPreserveNullness); |
||
343 | inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call, |
||
344 | bool MustPreserveNullness) { |
||
345 | return const_cast<Value *>(getArgumentAliasingToReturnedPointer( |
||
346 | const_cast<const CallBase *>(Call), MustPreserveNullness)); |
||
347 | } |
||
348 | |||
349 | /// {launder,strip}.invariant.group returns pointer that aliases its argument, |
||
350 | /// and it only captures pointer by returning it. |
||
351 | /// These intrinsics are not marked as nocapture, because returning is |
||
352 | /// considered as capture. The arguments are not marked as returned neither, |
||
353 | /// because it would make it useless. If \p MustPreserveNullness is true, |
||
354 | /// the intrinsic must preserve the nullness of the pointer. |
||
355 | bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( |
||
356 | const CallBase *Call, bool MustPreserveNullness); |
||
357 | |||
358 | /// This method strips off any GEP address adjustments and pointer casts from |
||
359 | /// the specified value, returning the original object being addressed. Note |
||
360 | /// that the returned value has pointer type if the specified value does. If |
||
361 | /// the MaxLookup value is non-zero, it limits the number of instructions to |
||
362 | /// be stripped off. |
||
363 | const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6); |
||
364 | inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) { |
||
365 | // Force const to avoid infinite recursion. |
||
366 | const Value *VConst = V; |
||
367 | return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup)); |
||
368 | } |
||
369 | |||
370 | /// This method is similar to getUnderlyingObject except that it can |
||
371 | /// look through phi and select instructions and return multiple objects. |
||
372 | /// |
||
373 | /// If LoopInfo is passed, loop phis are further analyzed. If a pointer |
||
374 | /// accesses different objects in each iteration, we don't look through the |
||
375 | /// phi node. E.g. consider this loop nest: |
||
376 | /// |
||
377 | /// int **A; |
||
378 | /// for (i) |
||
379 | /// for (j) { |
||
380 | /// A[i][j] = A[i-1][j] * B[j] |
||
381 | /// } |
||
382 | /// |
||
383 | /// This is transformed by Load-PRE to stash away A[i] for the next iteration |
||
384 | /// of the outer loop: |
||
385 | /// |
||
386 | /// Curr = A[0]; // Prev_0 |
||
387 | /// for (i: 1..N) { |
||
388 | /// Prev = Curr; // Prev = PHI (Prev_0, Curr) |
||
389 | /// Curr = A[i]; |
||
390 | /// for (j: 0..N) { |
||
391 | /// Curr[j] = Prev[j] * B[j] |
||
392 | /// } |
||
393 | /// } |
||
394 | /// |
||
395 | /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects |
||
396 | /// should not assume that Curr and Prev share the same underlying object thus |
||
397 | /// it shouldn't look through the phi above. |
||
398 | void getUnderlyingObjects(const Value *V, |
||
399 | SmallVectorImpl<const Value *> &Objects, |
||
400 | LoopInfo *LI = nullptr, unsigned MaxLookup = 6); |
||
401 | |||
402 | /// This is a wrapper around getUnderlyingObjects and adds support for basic |
||
403 | /// ptrtoint+arithmetic+inttoptr sequences. |
||
404 | bool getUnderlyingObjectsForCodeGen(const Value *V, |
||
405 | SmallVectorImpl<Value *> &Objects); |
||
406 | |||
407 | /// Returns unique alloca where the value comes from, or nullptr. |
||
408 | /// If OffsetZero is true check that V points to the begining of the alloca. |
||
409 | AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false); |
||
410 | inline const AllocaInst *findAllocaForValue(const Value *V, |
||
411 | bool OffsetZero = false) { |
||
412 | return findAllocaForValue(const_cast<Value *>(V), OffsetZero); |
||
413 | } |
||
414 | |||
415 | /// Return true if the only users of this pointer are lifetime markers. |
||
416 | bool onlyUsedByLifetimeMarkers(const Value *V); |
||
417 | |||
418 | /// Return true if the only users of this pointer are lifetime markers or |
||
419 | /// droppable instructions. |
||
420 | bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V); |
||
421 | |||
422 | /// Return true if speculation of the given load must be suppressed to avoid |
||
423 | /// ordering or interfering with an active sanitizer. If not suppressed, |
||
424 | /// dereferenceability and alignment must be proven separately. Note: This |
||
425 | /// is only needed for raw reasoning; if you use the interface below |
||
426 | /// (isSafeToSpeculativelyExecute), this is handled internally. |
||
427 | bool mustSuppressSpeculation(const LoadInst &LI); |
||
428 | |||
429 | /// Return true if the instruction does not have any effects besides |
||
430 | /// calculating the result and does not have undefined behavior. |
||
431 | /// |
||
432 | /// This method never returns true for an instruction that returns true for |
||
433 | /// mayHaveSideEffects; however, this method also does some other checks in |
||
434 | /// addition. It checks for undefined behavior, like dividing by zero or |
||
435 | /// loading from an invalid pointer (but not for undefined results, like a |
||
436 | /// shift with a shift amount larger than the width of the result). It checks |
||
437 | /// for malloc and alloca because speculatively executing them might cause a |
||
438 | /// memory leak. It also returns false for instructions related to control |
||
439 | /// flow, specifically terminators and PHI nodes. |
||
440 | /// |
||
441 | /// If the CtxI is specified this method performs context-sensitive analysis |
||
442 | /// and returns true if it is safe to execute the instruction immediately |
||
443 | /// before the CtxI. |
||
444 | /// |
||
445 | /// If the CtxI is NOT specified this method only looks at the instruction |
||
446 | /// itself and its operands, so if this method returns true, it is safe to |
||
447 | /// move the instruction as long as the correct dominance relationships for |
||
448 | /// the operands and users hold. |
||
449 | /// |
||
450 | /// This method can return true for instructions that read memory; |
||
451 | /// for such instructions, moving them may change the resulting value. |
||
452 | bool isSafeToSpeculativelyExecute(const Instruction *I, |
||
453 | const Instruction *CtxI = nullptr, |
||
454 | AssumptionCache *AC = nullptr, |
||
455 | const DominatorTree *DT = nullptr, |
||
456 | const TargetLibraryInfo *TLI = nullptr); |
||
457 | |||
458 | /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is |
||
459 | /// the actual opcode of Inst. If the provided and actual opcode differ, the |
||
460 | /// function (virtually) overrides the opcode of Inst with the provided |
||
461 | /// Opcode. There are come constraints in this case: |
||
462 | /// * If Opcode has a fixed number of operands (eg, as binary operators do), |
||
463 | /// then Inst has to have at least as many leading operands. The function |
||
464 | /// will ignore all trailing operands beyond that number. |
||
465 | /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts |
||
466 | /// do), then all operands are considered. |
||
467 | /// * The virtual instruction has to satisfy all typing rules of the provided |
||
468 | /// Opcode. |
||
469 | /// * This function is pessimistic in the following sense: If one actually |
||
470 | /// materialized the virtual instruction, then isSafeToSpeculativelyExecute |
||
471 | /// may say that the materialized instruction is speculatable whereas this |
||
472 | /// function may have said that the instruction wouldn't be speculatable. |
||
473 | /// This behavior is a shortcoming in the current implementation and not |
||
474 | /// intentional. |
||
475 | bool isSafeToSpeculativelyExecuteWithOpcode( |
||
476 | unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr, |
||
477 | AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr, |
||
478 | const TargetLibraryInfo *TLI = nullptr); |
||
479 | |||
480 | /// Returns true if the result or effects of the given instructions \p I |
||
481 | /// depend values not reachable through the def use graph. |
||
482 | /// * Memory dependence arises for example if the instruction reads from |
||
483 | /// memory or may produce effects or undefined behaviour. Memory dependent |
||
484 | /// instructions generally cannot be reorderd with respect to other memory |
||
485 | /// dependent instructions. |
||
486 | /// * Control dependence arises for example if the instruction may fault |
||
487 | /// if lifted above a throwing call or infinite loop. |
||
488 | bool mayHaveNonDefUseDependency(const Instruction &I); |
||
489 | |||
490 | /// Return true if it is an intrinsic that cannot be speculated but also |
||
491 | /// cannot trap. |
||
492 | bool isAssumeLikeIntrinsic(const Instruction *I); |
||
493 | |||
494 | /// Return true if it is valid to use the assumptions provided by an |
||
495 | /// assume intrinsic, I, at the point in the control-flow identified by the |
||
496 | /// context instruction, CxtI. |
||
497 | bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, |
||
498 | const DominatorTree *DT = nullptr); |
||
499 | |||
500 | enum class OverflowResult { |
||
501 | /// Always overflows in the direction of signed/unsigned min value. |
||
502 | AlwaysOverflowsLow, |
||
503 | /// Always overflows in the direction of signed/unsigned max value. |
||
504 | AlwaysOverflowsHigh, |
||
505 | /// May or may not overflow. |
||
506 | MayOverflow, |
||
507 | /// Never overflows. |
||
508 | NeverOverflows, |
||
509 | }; |
||
510 | |||
511 | OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, |
||
512 | const DataLayout &DL, |
||
513 | AssumptionCache *AC, |
||
514 | const Instruction *CxtI, |
||
515 | const DominatorTree *DT, |
||
516 | bool UseInstrInfo = true); |
||
517 | OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, |
||
518 | const DataLayout &DL, |
||
519 | AssumptionCache *AC, |
||
520 | const Instruction *CxtI, |
||
521 | const DominatorTree *DT, |
||
522 | bool UseInstrInfo = true); |
||
523 | OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, |
||
524 | const DataLayout &DL, |
||
525 | AssumptionCache *AC, |
||
526 | const Instruction *CxtI, |
||
527 | const DominatorTree *DT, |
||
528 | bool UseInstrInfo = true); |
||
529 | OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, |
||
530 | const DataLayout &DL, |
||
531 | AssumptionCache *AC = nullptr, |
||
532 | const Instruction *CxtI = nullptr, |
||
533 | const DominatorTree *DT = nullptr); |
||
534 | /// This version also leverages the sign bit of Add if known. |
||
535 | OverflowResult computeOverflowForSignedAdd(const AddOperator *Add, |
||
536 | const DataLayout &DL, |
||
537 | AssumptionCache *AC = nullptr, |
||
538 | const Instruction *CxtI = nullptr, |
||
539 | const DominatorTree *DT = nullptr); |
||
540 | OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, |
||
541 | const DataLayout &DL, |
||
542 | AssumptionCache *AC, |
||
543 | const Instruction *CxtI, |
||
544 | const DominatorTree *DT); |
||
545 | OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, |
||
546 | const DataLayout &DL, |
||
547 | AssumptionCache *AC, |
||
548 | const Instruction *CxtI, |
||
549 | const DominatorTree *DT); |
||
550 | |||
551 | /// Returns true if the arithmetic part of the \p WO 's result is |
||
552 | /// used only along the paths control dependent on the computation |
||
553 | /// not overflowing, \p WO being an <op>.with.overflow intrinsic. |
||
554 | bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, |
||
555 | const DominatorTree &DT); |
||
556 | |||
557 | /// Determine the possible constant range of an integer or vector of integer |
||
558 | /// value. This is intended as a cheap, non-recursive check. |
||
559 | ConstantRange computeConstantRange(const Value *V, bool ForSigned, |
||
560 | bool UseInstrInfo = true, |
||
561 | AssumptionCache *AC = nullptr, |
||
562 | const Instruction *CtxI = nullptr, |
||
563 | const DominatorTree *DT = nullptr, |
||
564 | unsigned Depth = 0); |
||
565 | |||
566 | /// Return true if this function can prove that the instruction I will |
||
567 | /// always transfer execution to one of its successors (including the next |
||
568 | /// instruction that follows within a basic block). E.g. this is not |
||
569 | /// guaranteed for function calls that could loop infinitely. |
||
570 | /// |
||
571 | /// In other words, this function returns false for instructions that may |
||
572 | /// transfer execution or fail to transfer execution in a way that is not |
||
573 | /// captured in the CFG nor in the sequence of instructions within a basic |
||
574 | /// block. |
||
575 | /// |
||
576 | /// Undefined behavior is assumed not to happen, so e.g. division is |
||
577 | /// guaranteed to transfer execution to the following instruction even |
||
578 | /// though division by zero might cause undefined behavior. |
||
579 | bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I); |
||
580 | |||
581 | /// Returns true if this block does not contain a potential implicit exit. |
||
582 | /// This is equivelent to saying that all instructions within the basic block |
||
583 | /// are guaranteed to transfer execution to their successor within the basic |
||
584 | /// block. This has the same assumptions w.r.t. undefined behavior as the |
||
585 | /// instruction variant of this function. |
||
586 | bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB); |
||
587 | |||
588 | /// Return true if every instruction in the range (Begin, End) is |
||
589 | /// guaranteed to transfer execution to its static successor. \p ScanLimit |
||
590 | /// bounds the search to avoid scanning huge blocks. |
||
591 | bool isGuaranteedToTransferExecutionToSuccessor( |
||
592 | BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, |
||
593 | unsigned ScanLimit = 32); |
||
594 | |||
595 | /// Same as previous, but with range expressed via iterator_range. |
||
596 | bool isGuaranteedToTransferExecutionToSuccessor( |
||
597 | iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32); |
||
598 | |||
599 | /// Return true if this function can prove that the instruction I |
||
600 | /// is executed for every iteration of the loop L. |
||
601 | /// |
||
602 | /// Note that this currently only considers the loop header. |
||
603 | bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, |
||
604 | const Loop *L); |
||
605 | |||
606 | /// Return true if \p PoisonOp's user yields poison or raises UB if its |
||
607 | /// operand \p PoisonOp is poison. |
||
608 | /// |
||
609 | /// If \p PoisonOp is a vector or an aggregate and the operation's result is a |
||
610 | /// single value, any poison element in /p PoisonOp should make the result |
||
611 | /// poison or raise UB. |
||
612 | /// |
||
613 | /// To filter out operands that raise UB on poison, you can use |
||
614 | /// getGuaranteedNonPoisonOp. |
||
615 | bool propagatesPoison(const Use &PoisonOp); |
||
616 | |||
617 | /// Insert operands of I into Ops such that I will trigger undefined behavior |
||
618 | /// if I is executed and that operand has a poison value. |
||
619 | void getGuaranteedNonPoisonOps(const Instruction *I, |
||
620 | SmallVectorImpl<const Value *> &Ops); |
||
621 | |||
622 | /// Insert operands of I into Ops such that I will trigger undefined behavior |
||
623 | /// if I is executed and that operand is not a well-defined value |
||
624 | /// (i.e. has undef bits or poison). |
||
625 | void getGuaranteedWellDefinedOps(const Instruction *I, |
||
626 | SmallVectorImpl<const Value *> &Ops); |
||
627 | |||
628 | /// Return true if the given instruction must trigger undefined behavior |
||
629 | /// when I is executed with any operands which appear in KnownPoison holding |
||
630 | /// a poison value at the point of execution. |
||
631 | bool mustTriggerUB(const Instruction *I, |
||
632 | const SmallSet<const Value *, 16> &KnownPoison); |
||
633 | |||
634 | /// Return true if this function can prove that if Inst is executed |
||
635 | /// and yields a poison value or undef bits, then that will trigger |
||
636 | /// undefined behavior. |
||
637 | /// |
||
638 | /// Note that this currently only considers the basic block that is |
||
639 | /// the parent of Inst. |
||
640 | bool programUndefinedIfUndefOrPoison(const Instruction *Inst); |
||
641 | bool programUndefinedIfPoison(const Instruction *Inst); |
||
642 | |||
643 | /// canCreateUndefOrPoison returns true if Op can create undef or poison from |
||
644 | /// non-undef & non-poison operands. |
||
645 | /// For vectors, canCreateUndefOrPoison returns true if there is potential |
||
646 | /// poison or undef in any element of the result when vectors without |
||
647 | /// undef/poison poison are given as operands. |
||
648 | /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns |
||
649 | /// true. If Op raises immediate UB but never creates poison or undef |
||
650 | /// (e.g. sdiv I, 0), canCreatePoison returns false. |
||
651 | /// |
||
652 | /// \p ConsiderFlagsAndMetadata controls whether poison producing flags and |
||
653 | /// metadata on the instruction are considered. This can be used to see if the |
||
654 | /// instruction could still introduce undef or poison even without poison |
||
655 | /// generating flags and metadata which might be on the instruction. |
||
656 | /// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create |
||
657 | /// poison or undef) |
||
658 | /// |
||
659 | /// canCreatePoison returns true if Op can create poison from non-poison |
||
660 | /// operands. |
||
661 | bool canCreateUndefOrPoison(const Operator *Op, |
||
662 | bool ConsiderFlagsAndMetadata = true); |
||
663 | bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true); |
||
664 | |||
665 | /// Return true if V is poison given that ValAssumedPoison is already poison. |
||
666 | /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`, |
||
667 | /// impliesPoison returns true. |
||
668 | bool impliesPoison(const Value *ValAssumedPoison, const Value *V); |
||
669 | |||
670 | /// Return true if this function can prove that V does not have undef bits |
||
671 | /// and is never poison. If V is an aggregate value or vector, check whether |
||
672 | /// all elements (except padding) are not undef or poison. |
||
673 | /// Note that this is different from canCreateUndefOrPoison because the |
||
674 | /// function assumes Op's operands are not poison/undef. |
||
675 | /// |
||
676 | /// If CtxI and DT are specified this method performs flow-sensitive analysis |
||
677 | /// and returns true if it is guaranteed to be never undef or poison |
||
678 | /// immediately before the CtxI. |
||
679 | bool isGuaranteedNotToBeUndefOrPoison(const Value *V, |
||
680 | AssumptionCache *AC = nullptr, |
||
681 | const Instruction *CtxI = nullptr, |
||
682 | const DominatorTree *DT = nullptr, |
||
683 | unsigned Depth = 0); |
||
684 | bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr, |
||
685 | const Instruction *CtxI = nullptr, |
||
686 | const DominatorTree *DT = nullptr, |
||
687 | unsigned Depth = 0); |
||
688 | |||
689 | /// Specific patterns of select instructions we can match. |
||
690 | enum SelectPatternFlavor { |
||
691 | SPF_UNKNOWN = 0, |
||
692 | SPF_SMIN, /// Signed minimum |
||
693 | SPF_UMIN, /// Unsigned minimum |
||
694 | SPF_SMAX, /// Signed maximum |
||
695 | SPF_UMAX, /// Unsigned maximum |
||
696 | SPF_FMINNUM, /// Floating point minnum |
||
697 | SPF_FMAXNUM, /// Floating point maxnum |
||
698 | SPF_ABS, /// Absolute value |
||
699 | SPF_NABS /// Negated absolute value |
||
700 | }; |
||
701 | |||
702 | /// Behavior when a floating point min/max is given one NaN and one |
||
703 | /// non-NaN as input. |
||
704 | enum SelectPatternNaNBehavior { |
||
705 | SPNB_NA = 0, /// NaN behavior not applicable. |
||
706 | SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN. |
||
707 | SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN. |
||
708 | SPNB_RETURNS_ANY /// Given one NaN input, can return either (or |
||
709 | /// it has been determined that no operands can |
||
710 | /// be NaN). |
||
711 | }; |
||
712 | |||
713 | struct SelectPatternResult { |
||
714 | SelectPatternFlavor Flavor; |
||
715 | SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is |
||
716 | /// SPF_FMINNUM or SPF_FMAXNUM. |
||
717 | bool Ordered; /// When implementing this min/max pattern as |
||
718 | /// fcmp; select, does the fcmp have to be |
||
719 | /// ordered? |
||
720 | |||
721 | /// Return true if \p SPF is a min or a max pattern. |
||
722 | static bool isMinOrMax(SelectPatternFlavor SPF) { |
||
723 | return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS; |
||
724 | } |
||
725 | }; |
||
726 | |||
727 | /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind |
||
728 | /// and providing the out parameter results if we successfully match. |
||
729 | /// |
||
730 | /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be |
||
731 | /// the negation instruction from the idiom. |
||
732 | /// |
||
733 | /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does |
||
734 | /// not match that of the original select. If this is the case, the cast |
||
735 | /// operation (one of Trunc,SExt,Zext) that must be done to transform the |
||
736 | /// type of LHS and RHS into the type of V is returned in CastOp. |
||
737 | /// |
||
738 | /// For example: |
||
739 | /// %1 = icmp slt i32 %a, i32 4 |
||
740 | /// %2 = sext i32 %a to i64 |
||
741 | /// %3 = select i1 %1, i64 %2, i64 4 |
||
742 | /// |
||
743 | /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt |
||
744 | /// |
||
745 | SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, |
||
746 | Instruction::CastOps *CastOp = nullptr, |
||
747 | unsigned Depth = 0); |
||
748 | |||
749 | inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS, |
||
750 | const Value *&RHS) { |
||
751 | Value *L = const_cast<Value *>(LHS); |
||
752 | Value *R = const_cast<Value *>(RHS); |
||
753 | auto Result = matchSelectPattern(const_cast<Value *>(V), L, R); |
||
754 | LHS = L; |
||
755 | RHS = R; |
||
756 | return Result; |
||
757 | } |
||
758 | |||
759 | /// Determine the pattern that a select with the given compare as its |
||
760 | /// predicate and given values as its true/false operands would match. |
||
761 | SelectPatternResult matchDecomposedSelectPattern( |
||
762 | CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, |
||
763 | Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0); |
||
764 | |||
765 | /// Return the canonical comparison predicate for the specified |
||
766 | /// minimum/maximum flavor. |
||
767 | CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false); |
||
768 | |||
769 | /// Return the inverse minimum/maximum flavor of the specified flavor. |
||
770 | /// For example, signed minimum is the inverse of signed maximum. |
||
771 | SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF); |
||
772 | |||
773 | Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID); |
||
774 | |||
775 | /// Return the minimum or maximum constant value for the specified integer |
||
776 | /// min/max flavor and type. |
||
777 | APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth); |
||
778 | |||
779 | /// Check if the values in \p VL are select instructions that can be converted |
||
780 | /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a |
||
781 | /// conversion is possible, together with a bool indicating whether all select |
||
782 | /// conditions are only used by the selects. Otherwise return |
||
783 | /// Intrinsic::not_intrinsic. |
||
784 | std::pair<Intrinsic::ID, bool> |
||
785 | canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL); |
||
786 | |||
787 | /// Attempt to match a simple first order recurrence cycle of the form: |
||
788 | /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge] |
||
789 | /// %inc = binop %iv, %step |
||
790 | /// OR |
||
791 | /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge] |
||
792 | /// %inc = binop %step, %iv |
||
793 | /// |
||
794 | /// A first order recurrence is a formula with the form: X_n = f(X_(n-1)) |
||
795 | /// |
||
796 | /// A couple of notes on subtleties in that definition: |
||
797 | /// * The Step does not have to be loop invariant. In math terms, it can |
||
798 | /// be a free variable. We allow recurrences with both constant and |
||
799 | /// variable coefficients. Callers may wish to filter cases where Step |
||
800 | /// does not dominate P. |
||
801 | /// * For non-commutative operators, we will match both forms. This |
||
802 | /// results in some odd recurrence structures. Callers may wish to filter |
||
803 | /// out recurrences where the phi is not the LHS of the returned operator. |
||
804 | /// * Because of the structure matched, the caller can assume as a post |
||
805 | /// condition of the match the presence of a Loop with P's parent as it's |
||
806 | /// header *except* in unreachable code. (Dominance decays in unreachable |
||
807 | /// code.) |
||
808 | /// |
||
809 | /// NOTE: This is intentional simple. If you want the ability to analyze |
||
810 | /// non-trivial loop conditons, see ScalarEvolution instead. |
||
811 | bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, |
||
812 | Value *&Step); |
||
813 | |||
814 | /// Analogous to the above, but starting from the binary operator |
||
815 | bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start, |
||
816 | Value *&Step); |
||
817 | |||
818 | /// Return true if RHS is known to be implied true by LHS. Return false if |
||
819 | /// RHS is known to be implied false by LHS. Otherwise, return std::nullopt if |
||
820 | /// no implication can be made. A & B must be i1 (boolean) values or a vector of |
||
821 | /// such values. Note that the truth table for implication is the same as <=u on |
||
822 | /// i1 values (but not |
||
823 | /// <=s!). The truth table for both is: |
||
824 | /// | T | F (B) |
||
825 | /// T | T | F |
||
826 | /// F | T | T |
||
827 | /// (A) |
||
828 | std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS, |
||
829 | const DataLayout &DL, |
||
830 | bool LHSIsTrue = true, |
||
831 | unsigned Depth = 0); |
||
832 | std::optional<bool> isImpliedCondition(const Value *LHS, |
||
833 | CmpInst::Predicate RHSPred, |
||
834 | const Value *RHSOp0, const Value *RHSOp1, |
||
835 | const DataLayout &DL, |
||
836 | bool LHSIsTrue = true, |
||
837 | unsigned Depth = 0); |
||
838 | |||
839 | /// Return the boolean condition value in the context of the given instruction |
||
840 | /// if it is known based on dominating conditions. |
||
841 | std::optional<bool> isImpliedByDomCondition(const Value *Cond, |
||
842 | const Instruction *ContextI, |
||
843 | const DataLayout &DL); |
||
844 | std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred, |
||
845 | const Value *LHS, const Value *RHS, |
||
846 | const Instruction *ContextI, |
||
847 | const DataLayout &DL); |
||
848 | |||
849 | /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that |
||
850 | /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In |
||
851 | /// this case offset would be -8. |
||
852 | std::optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2, |
||
853 | const DataLayout &DL); |
||
854 | } // end namespace llvm |
||
855 | |||
856 | #endif // LLVM_ANALYSIS_VALUETRACKING_H |