Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- TrainingLogger.h - mlgo feature/reward logging ----------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // The design goals of the logger are: |
||
| 10 | // - no dependencies that llvm doesn't already have. |
||
| 11 | // - support streaming, so that we don't need to buffer data during compilation |
||
| 12 | // - 0-decoding tensor values. Tensor values are potentially very large buffers |
||
| 13 | // of scalars. Because of their potentially large size, avoiding |
||
| 14 | // serialization/deserialization overhead is preferred. |
||
| 15 | // |
||
| 16 | // The simple logger produces an output of the form (each line item on its line) |
||
| 17 | // - header: a json object describing the data that will follow. |
||
| 18 | // - context: e.g. function name, for regalloc, or "default" for module-wide |
||
| 19 | // optimizations like the inliner. This is the context to which the subsequent |
||
| 20 | // data corresponds. |
||
| 21 | // - observation number. |
||
| 22 | // - tensor values - raw bytes of the tensors, in the order given in the header. |
||
| 23 | // The values are in succession, i.e. no separator is found between successive |
||
| 24 | // tensor values. At the end, there is a new line character. |
||
| 25 | // - [score] - this is optional, and is present if it was present in the header. |
||
| 26 | // Currently, for final rewards, we output "0" scores after each observation, |
||
| 27 | // except for the last one. |
||
| 28 | // <repeat> |
||
| 29 | // The file should be read as binary, but the reason we use newlines is mostly |
||
| 30 | // ease of debugging: the log can be opened in a text editor and, while tensor |
||
| 31 | // values are inscrutable, at least the sequence of data can be easily observed. |
||
| 32 | // Of course, the buffer of tensor values could contain '\n' bytes. A reader |
||
| 33 | // should use the header information to know how much data to read for the |
||
| 34 | // tensor values, and not use line information for that. |
||
| 35 | // |
||
| 36 | // An example reader, used for test, is available at |
||
| 37 | // Analysis/models/log_reader.py |
||
| 38 | // |
||
| 39 | // Example: |
||
| 40 | // {"features":[list of TensorSpecs], "score":<a tensor spec>} |
||
| 41 | // {"context": "aFunction"} |
||
| 42 | // {"observation": 0} |
||
| 43 | // <bytes> |
||
| 44 | // {"outcome": 0} |
||
| 45 | // <bytes for the tensor corresponding to the "score" spec in the header> |
||
| 46 | // {"observation": 1} |
||
| 47 | // ... |
||
| 48 | // {"context": "anotherFunction"} |
||
| 49 | // {"observation": 0} |
||
| 50 | // ... |
||
| 51 | // |
||
| 52 | |||
| 53 | #ifndef LLVM_ANALYSIS_UTILS_TRAININGLOGGER_H |
||
| 54 | #define LLVM_ANALYSIS_UTILS_TRAININGLOGGER_H |
||
| 55 | |||
| 56 | #include "llvm/Config/llvm-config.h" |
||
| 57 | |||
| 58 | #include "llvm/ADT/StringMap.h" |
||
| 59 | #include "llvm/Analysis/TensorSpec.h" |
||
| 60 | #include "llvm/IR/LLVMContext.h" |
||
| 61 | #include "llvm/Support/JSON.h" |
||
| 62 | |||
| 63 | #include <memory> |
||
| 64 | #include <optional> |
||
| 65 | #include <vector> |
||
| 66 | |||
| 67 | namespace llvm { |
||
| 68 | |||
| 69 | /// Logging utility - given an ordered specification of features, and assuming |
||
| 70 | /// a scalar reward, allow logging feature values and rewards. |
||
| 71 | /// The assumption is that, for an event to be logged (i.e. a set of feature |
||
| 72 | /// values and a reward), the user calls the log* API for each feature exactly |
||
| 73 | /// once, providing the index matching the position in the feature spec list |
||
| 74 | /// provided at construction. The example assumes the first feature's element |
||
| 75 | /// type is float, the second is int64, and the reward is float: |
||
| 76 | /// |
||
| 77 | /// event 0: |
||
| 78 | /// logFloatValue(0, ...) |
||
| 79 | /// logInt64Value(1, ...) |
||
| 80 | /// ... |
||
| 81 | /// logFloatReward(...) |
||
| 82 | /// event 1: |
||
| 83 | /// logFloatValue(0, ...) |
||
| 84 | /// logInt64Value(1, ...) |
||
| 85 | /// ... |
||
| 86 | /// logFloatReward(...) |
||
| 87 | /// |
||
| 88 | /// At the end, call print to generate the log. |
||
| 89 | /// Alternatively, don't call logReward at the end of each event, just |
||
| 90 | /// log{Float|Int32|Int64}FinalReward at the end. |
||
| 91 | class Logger final { |
||
| 92 | std::unique_ptr<raw_ostream> OS; |
||
| 93 | const std::vector<TensorSpec> FeatureSpecs; |
||
| 94 | const TensorSpec RewardSpec; |
||
| 95 | const bool IncludeReward; |
||
| 96 | StringMap<size_t> ObservationIDs; |
||
| 97 | std::string CurrentContext; |
||
| 98 | |||
| 99 | void writeHeader(); |
||
| 100 | void writeTensor(const TensorSpec &Spec, const char *RawData) { |
||
| 101 | OS->write(RawData, Spec.getTotalTensorBufferSize()); |
||
| 102 | } |
||
| 103 | void logRewardImpl(const char *RawData); |
||
| 104 | |||
| 105 | public: |
||
| 106 | /// Construct a Logger. If IncludeReward is false, then logReward or |
||
| 107 | /// logFinalReward shouldn't be called, and the reward feature won't be |
||
| 108 | /// printed out. |
||
| 109 | /// NOTE: the FeatureSpecs are expected to be in the same order (i.e. have |
||
| 110 | /// corresponding indices) with any MLModelRunner implementations |
||
| 111 | /// corresponding to the model being trained/logged. |
||
| 112 | Logger(std::unique_ptr<raw_ostream> OS, |
||
| 113 | const std::vector<TensorSpec> &FeatureSpecs, |
||
| 114 | const TensorSpec &RewardSpec, bool IncludeReward); |
||
| 115 | |||
| 116 | void switchContext(StringRef Name); |
||
| 117 | void startObservation(); |
||
| 118 | void endObservation(); |
||
| 119 | |||
| 120 | const std::string ¤tContext() const { return CurrentContext; } |
||
| 121 | |||
| 122 | bool hasObservationInProgress() const { |
||
| 123 | return ObservationIDs.find(CurrentContext) != ObservationIDs.end(); |
||
| 124 | } |
||
| 125 | |||
| 126 | template <typename T> void logReward(T Value) { |
||
| 127 | logRewardImpl(reinterpret_cast<const char *>(&Value)); |
||
| 128 | } |
||
| 129 | |||
| 130 | void logTensorValue(size_t FeatureID, const char *RawData) { |
||
| 131 | writeTensor(FeatureSpecs[FeatureID], RawData); |
||
| 132 | } |
||
| 133 | }; |
||
| 134 | |||
| 135 | } // namespace llvm |
||
| 136 | #endif // LLVM_ANALYSIS_UTILS_TRAININGLOGGER_H |