Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
/// This pass exposes codegen information to IR-level passes. Every
10
/// transformation that uses codegen information is broken into three parts:
11
/// 1. The IR-level analysis pass.
12
/// 2. The IR-level transformation interface which provides the needed
13
///    information.
14
/// 3. Codegen-level implementation which uses target-specific hooks.
15
///
16
/// This file defines #2, which is the interface that IR-level transformations
17
/// use for querying the codegen.
18
///
19
//===----------------------------------------------------------------------===//
20
 
21
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
 
24
#include "llvm/ADT/SmallBitVector.h"
25
#include "llvm/IR/FMF.h"
26
#include "llvm/IR/InstrTypes.h"
27
#include "llvm/IR/PassManager.h"
28
#include "llvm/Pass.h"
29
#include "llvm/Support/AtomicOrdering.h"
30
#include "llvm/Support/BranchProbability.h"
31
#include "llvm/Support/InstructionCost.h"
32
#include <functional>
33
#include <optional>
34
#include <utility>
35
 
36
namespace llvm {
37
 
38
namespace Intrinsic {
39
typedef unsigned ID;
40
}
41
 
42
class AssumptionCache;
43
class BlockFrequencyInfo;
44
class DominatorTree;
45
class BranchInst;
46
class CallBase;
47
class Function;
48
class GlobalValue;
49
class InstCombiner;
50
class OptimizationRemarkEmitter;
51
class InterleavedAccessInfo;
52
class IntrinsicInst;
53
class LoadInst;
54
class Loop;
55
class LoopInfo;
56
class LoopVectorizationLegality;
57
class ProfileSummaryInfo;
58
class RecurrenceDescriptor;
59
class SCEV;
60
class ScalarEvolution;
61
class StoreInst;
62
class SwitchInst;
63
class TargetLibraryInfo;
64
class Type;
65
class User;
66
class Value;
67
class VPIntrinsic;
68
struct KnownBits;
69
 
70
/// Information about a load/store intrinsic defined by the target.
71
struct MemIntrinsicInfo {
72
  /// This is the pointer that the intrinsic is loading from or storing to.
73
  /// If this is non-null, then analysis/optimization passes can assume that
74
  /// this intrinsic is functionally equivalent to a load/store from this
75
  /// pointer.
76
  Value *PtrVal = nullptr;
77
 
78
  // Ordering for atomic operations.
79
  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
80
 
81
  // Same Id is set by the target for corresponding load/store intrinsics.
82
  unsigned short MatchingId = 0;
83
 
84
  bool ReadMem = false;
85
  bool WriteMem = false;
86
  bool IsVolatile = false;
87
 
88
  bool isUnordered() const {
89
    return (Ordering == AtomicOrdering::NotAtomic ||
90
            Ordering == AtomicOrdering::Unordered) &&
91
           !IsVolatile;
92
  }
93
};
94
 
95
/// Attributes of a target dependent hardware loop.
96
struct HardwareLoopInfo {
97
  HardwareLoopInfo() = delete;
98
  HardwareLoopInfo(Loop *L) : L(L) {}
99
  Loop *L = nullptr;
100
  BasicBlock *ExitBlock = nullptr;
101
  BranchInst *ExitBranch = nullptr;
102
  const SCEV *ExitCount = nullptr;
103
  IntegerType *CountType = nullptr;
104
  Value *LoopDecrement = nullptr; // Decrement the loop counter by this
105
                                  // value in every iteration.
106
  bool IsNestingLegal = false;    // Can a hardware loop be a parent to
107
                                  // another hardware loop?
108
  bool CounterInReg = false;      // Should loop counter be updated in
109
                                  // the loop via a phi?
110
  bool PerformEntryTest = false;  // Generate the intrinsic which also performs
111
                                  // icmp ne zero on the loop counter value and
112
                                  // produces an i1 to guard the loop entry.
113
  bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
114
                               DominatorTree &DT, bool ForceNestedLoop = false,
115
                               bool ForceHardwareLoopPHI = false);
116
  bool canAnalyze(LoopInfo &LI);
117
};
118
 
119
class IntrinsicCostAttributes {
120
  const IntrinsicInst *II = nullptr;
121
  Type *RetTy = nullptr;
122
  Intrinsic::ID IID;
123
  SmallVector<Type *, 4> ParamTys;
124
  SmallVector<const Value *, 4> Arguments;
125
  FastMathFlags FMF;
126
  // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
127
  // arguments and the return value will be computed based on types.
128
  InstructionCost ScalarizationCost = InstructionCost::getInvalid();
129
 
130
public:
131
  IntrinsicCostAttributes(
132
      Intrinsic::ID Id, const CallBase &CI,
133
      InstructionCost ScalarCost = InstructionCost::getInvalid(),
134
      bool TypeBasedOnly = false);
135
 
136
  IntrinsicCostAttributes(
137
      Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
138
      FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
139
      InstructionCost ScalarCost = InstructionCost::getInvalid());
140
 
141
  IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
142
                          ArrayRef<const Value *> Args);
143
 
144
  IntrinsicCostAttributes(
145
      Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
146
      ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
147
      const IntrinsicInst *I = nullptr,
148
      InstructionCost ScalarCost = InstructionCost::getInvalid());
149
 
150
  Intrinsic::ID getID() const { return IID; }
151
  const IntrinsicInst *getInst() const { return II; }
152
  Type *getReturnType() const { return RetTy; }
153
  FastMathFlags getFlags() const { return FMF; }
154
  InstructionCost getScalarizationCost() const { return ScalarizationCost; }
155
  const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
156
  const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
157
 
158
  bool isTypeBasedOnly() const {
159
    return Arguments.empty();
160
  }
161
 
162
  bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
163
};
164
 
165
enum class PredicationStyle { None, Data, DataAndControlFlow };
166
 
167
class TargetTransformInfo;
168
typedef TargetTransformInfo TTI;
169
 
170
/// This pass provides access to the codegen interfaces that are needed
171
/// for IR-level transformations.
172
class TargetTransformInfo {
173
public:
174
  /// Construct a TTI object using a type implementing the \c Concept
175
  /// API below.
176
  ///
177
  /// This is used by targets to construct a TTI wrapping their target-specific
178
  /// implementation that encodes appropriate costs for their target.
179
  template <typename T> TargetTransformInfo(T Impl);
180
 
181
  /// Construct a baseline TTI object using a minimal implementation of
182
  /// the \c Concept API below.
183
  ///
184
  /// The TTI implementation will reflect the information in the DataLayout
185
  /// provided if non-null.
186
  explicit TargetTransformInfo(const DataLayout &DL);
187
 
188
  // Provide move semantics.
189
  TargetTransformInfo(TargetTransformInfo &&Arg);
190
  TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
191
 
192
  // We need to define the destructor out-of-line to define our sub-classes
193
  // out-of-line.
194
  ~TargetTransformInfo();
195
 
196
  /// Handle the invalidation of this information.
197
  ///
198
  /// When used as a result of \c TargetIRAnalysis this method will be called
199
  /// when the function this was computed for changes. When it returns false,
200
  /// the information is preserved across those changes.
201
  bool invalidate(Function &, const PreservedAnalyses &,
202
                  FunctionAnalysisManager::Invalidator &) {
203
    // FIXME: We should probably in some way ensure that the subtarget
204
    // information for a function hasn't changed.
205
    return false;
206
  }
207
 
208
  /// \name Generic Target Information
209
  /// @{
210
 
211
  /// The kind of cost model.
212
  ///
213
  /// There are several different cost models that can be customized by the
214
  /// target. The normalization of each cost model may be target specific.
215
  /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
216
  /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
217
  enum TargetCostKind {
218
    TCK_RecipThroughput, ///< Reciprocal throughput.
219
    TCK_Latency,         ///< The latency of instruction.
220
    TCK_CodeSize,        ///< Instruction code size.
221
    TCK_SizeAndLatency   ///< The weighted sum of size and latency.
222
  };
223
 
224
  /// Underlying constants for 'cost' values in this interface.
225
  ///
226
  /// Many APIs in this interface return a cost. This enum defines the
227
  /// fundamental values that should be used to interpret (and produce) those
228
  /// costs. The costs are returned as an int rather than a member of this
229
  /// enumeration because it is expected that the cost of one IR instruction
230
  /// may have a multiplicative factor to it or otherwise won't fit directly
231
  /// into the enum. Moreover, it is common to sum or average costs which works
232
  /// better as simple integral values. Thus this enum only provides constants.
233
  /// Also note that the returned costs are signed integers to make it natural
234
  /// to add, subtract, and test with zero (a common boundary condition). It is
235
  /// not expected that 2^32 is a realistic cost to be modeling at any point.
236
  ///
237
  /// Note that these costs should usually reflect the intersection of code-size
238
  /// cost and execution cost. A free instruction is typically one that folds
239
  /// into another instruction. For example, reg-to-reg moves can often be
240
  /// skipped by renaming the registers in the CPU, but they still are encoded
241
  /// and thus wouldn't be considered 'free' here.
242
  enum TargetCostConstants {
243
    TCC_Free = 0,     ///< Expected to fold away in lowering.
244
    TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
245
    TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
246
  };
247
 
248
  /// Estimate the cost of a GEP operation when lowered.
249
  InstructionCost
250
  getGEPCost(Type *PointeeType, const Value *Ptr,
251
             ArrayRef<const Value *> Operands,
252
             TargetCostKind CostKind = TCK_SizeAndLatency) const;
253
 
254
  /// \returns A value by which our inlining threshold should be multiplied.
255
  /// This is primarily used to bump up the inlining threshold wholesale on
256
  /// targets where calls are unusually expensive.
257
  ///
258
  /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
259
  /// individual classes of instructions would be better.
260
  unsigned getInliningThresholdMultiplier() const;
261
 
262
  /// \returns A value to be added to the inlining threshold.
263
  unsigned adjustInliningThreshold(const CallBase *CB) const;
264
 
265
  /// \returns Vector bonus in percent.
266
  ///
267
  /// Vector bonuses: We want to more aggressively inline vector-dense kernels
268
  /// and apply this bonus based on the percentage of vector instructions. A
269
  /// bonus is applied if the vector instructions exceed 50% and half that
270
  /// amount is applied if it exceeds 10%. Note that these bonuses are some what
271
  /// arbitrary and evolved over time by accident as much as because they are
272
  /// principled bonuses.
273
  /// FIXME: It would be nice to base the bonus values on something more
274
  /// scientific. A target may has no bonus on vector instructions.
275
  int getInlinerVectorBonusPercent() const;
276
 
277
  /// \return the expected cost of a memcpy, which could e.g. depend on the
278
  /// source/destination type and alignment and the number of bytes copied.
279
  InstructionCost getMemcpyCost(const Instruction *I) const;
280
 
281
  /// \return The estimated number of case clusters when lowering \p 'SI'.
282
  /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
283
  /// table.
284
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
285
                                            unsigned &JTSize,
286
                                            ProfileSummaryInfo *PSI,
287
                                            BlockFrequencyInfo *BFI) const;
288
 
289
  /// Estimate the cost of a given IR user when lowered.
290
  ///
291
  /// This can estimate the cost of either a ConstantExpr or Instruction when
292
  /// lowered.
293
  ///
294
  /// \p Operands is a list of operands which can be a result of transformations
295
  /// of the current operands. The number of the operands on the list must equal
296
  /// to the number of the current operands the IR user has. Their order on the
297
  /// list must be the same as the order of the current operands the IR user
298
  /// has.
299
  ///
300
  /// The returned cost is defined in terms of \c TargetCostConstants, see its
301
  /// comments for a detailed explanation of the cost values.
302
  InstructionCost getInstructionCost(const User *U,
303
                                     ArrayRef<const Value *> Operands,
304
                                     TargetCostKind CostKind) const;
305
 
306
  /// This is a helper function which calls the three-argument
307
  /// getInstructionCost with \p Operands which are the current operands U has.
308
  InstructionCost getInstructionCost(const User *U,
309
                                     TargetCostKind CostKind) const {
310
    SmallVector<const Value *, 4> Operands(U->operand_values());
311
    return getInstructionCost(U, Operands, CostKind);
312
  }
313
 
314
  /// If a branch or a select condition is skewed in one direction by more than
315
  /// this factor, it is very likely to be predicted correctly.
316
  BranchProbability getPredictableBranchThreshold() const;
317
 
318
  /// Return true if branch divergence exists.
319
  ///
320
  /// Branch divergence has a significantly negative impact on GPU performance
321
  /// when threads in the same wavefront take different paths due to conditional
322
  /// branches.
323
  bool hasBranchDivergence() const;
324
 
325
  /// Return true if the target prefers to use GPU divergence analysis to
326
  /// replace the legacy version.
327
  bool useGPUDivergenceAnalysis() const;
328
 
329
  /// Returns whether V is a source of divergence.
330
  ///
331
  /// This function provides the target-dependent information for
332
  /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
333
  /// first builds the dependency graph, and then runs the reachability
334
  /// algorithm starting with the sources of divergence.
335
  bool isSourceOfDivergence(const Value *V) const;
336
 
337
  // Returns true for the target specific
338
  // set of operations which produce uniform result
339
  // even taking non-uniform arguments
340
  bool isAlwaysUniform(const Value *V) const;
341
 
342
  /// Returns the address space ID for a target's 'flat' address space. Note
343
  /// this is not necessarily the same as addrspace(0), which LLVM sometimes
344
  /// refers to as the generic address space. The flat address space is a
345
  /// generic address space that can be used access multiple segments of memory
346
  /// with different address spaces. Access of a memory location through a
347
  /// pointer with this address space is expected to be legal but slower
348
  /// compared to the same memory location accessed through a pointer with a
349
  /// different address space.
350
  //
351
  /// This is for targets with different pointer representations which can
352
  /// be converted with the addrspacecast instruction. If a pointer is converted
353
  /// to this address space, optimizations should attempt to replace the access
354
  /// with the source address space.
355
  ///
356
  /// \returns ~0u if the target does not have such a flat address space to
357
  /// optimize away.
358
  unsigned getFlatAddressSpace() const;
359
 
360
  /// Return any intrinsic address operand indexes which may be rewritten if
361
  /// they use a flat address space pointer.
362
  ///
363
  /// \returns true if the intrinsic was handled.
364
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
365
                                  Intrinsic::ID IID) const;
366
 
367
  bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
368
 
369
  /// Return true if globals in this address space can have initializers other
370
  /// than `undef`.
371
  bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
372
 
373
  unsigned getAssumedAddrSpace(const Value *V) const;
374
 
375
  bool isSingleThreaded() const;
376
 
377
  std::pair<const Value *, unsigned>
378
  getPredicatedAddrSpace(const Value *V) const;
379
 
380
  /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
381
  /// NewV, which has a different address space. This should happen for every
382
  /// operand index that collectFlatAddressOperands returned for the intrinsic.
383
  /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
384
  /// new value (which may be the original \p II with modified operands).
385
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
386
                                          Value *NewV) const;
387
 
388
  /// Test whether calls to a function lower to actual program function
389
  /// calls.
390
  ///
391
  /// The idea is to test whether the program is likely to require a 'call'
392
  /// instruction or equivalent in order to call the given function.
393
  ///
394
  /// FIXME: It's not clear that this is a good or useful query API. Client's
395
  /// should probably move to simpler cost metrics using the above.
396
  /// Alternatively, we could split the cost interface into distinct code-size
397
  /// and execution-speed costs. This would allow modelling the core of this
398
  /// query more accurately as a call is a single small instruction, but
399
  /// incurs significant execution cost.
400
  bool isLoweredToCall(const Function *F) const;
401
 
402
  struct LSRCost {
403
    /// TODO: Some of these could be merged. Also, a lexical ordering
404
    /// isn't always optimal.
405
    unsigned Insns;
406
    unsigned NumRegs;
407
    unsigned AddRecCost;
408
    unsigned NumIVMuls;
409
    unsigned NumBaseAdds;
410
    unsigned ImmCost;
411
    unsigned SetupCost;
412
    unsigned ScaleCost;
413
  };
414
 
415
  /// Parameters that control the generic loop unrolling transformation.
416
  struct UnrollingPreferences {
417
    /// The cost threshold for the unrolled loop. Should be relative to the
418
    /// getInstructionCost values returned by this API, and the expectation is
419
    /// that the unrolled loop's instructions when run through that interface
420
    /// should not exceed this cost. However, this is only an estimate. Also,
421
    /// specific loops may be unrolled even with a cost above this threshold if
422
    /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
423
    /// restriction.
424
    unsigned Threshold;
425
    /// If complete unrolling will reduce the cost of the loop, we will boost
426
    /// the Threshold by a certain percent to allow more aggressive complete
427
    /// unrolling. This value provides the maximum boost percentage that we
428
    /// can apply to Threshold (The value should be no less than 100).
429
    /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
430
    ///                                    MaxPercentThresholdBoost / 100)
431
    /// E.g. if complete unrolling reduces the loop execution time by 50%
432
    /// then we boost the threshold by the factor of 2x. If unrolling is not
433
    /// expected to reduce the running time, then we do not increase the
434
    /// threshold.
435
    unsigned MaxPercentThresholdBoost;
436
    /// The cost threshold for the unrolled loop when optimizing for size (set
437
    /// to UINT_MAX to disable).
438
    unsigned OptSizeThreshold;
439
    /// The cost threshold for the unrolled loop, like Threshold, but used
440
    /// for partial/runtime unrolling (set to UINT_MAX to disable).
441
    unsigned PartialThreshold;
442
    /// The cost threshold for the unrolled loop when optimizing for size, like
443
    /// OptSizeThreshold, but used for partial/runtime unrolling (set to
444
    /// UINT_MAX to disable).
445
    unsigned PartialOptSizeThreshold;
446
    /// A forced unrolling factor (the number of concatenated bodies of the
447
    /// original loop in the unrolled loop body). When set to 0, the unrolling
448
    /// transformation will select an unrolling factor based on the current cost
449
    /// threshold and other factors.
450
    unsigned Count;
451
    /// Default unroll count for loops with run-time trip count.
452
    unsigned DefaultUnrollRuntimeCount;
453
    // Set the maximum unrolling factor. The unrolling factor may be selected
454
    // using the appropriate cost threshold, but may not exceed this number
455
    // (set to UINT_MAX to disable). This does not apply in cases where the
456
    // loop is being fully unrolled.
457
    unsigned MaxCount;
458
    /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
459
    /// applies even if full unrolling is selected. This allows a target to fall
460
    /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
461
    unsigned FullUnrollMaxCount;
462
    // Represents number of instructions optimized when "back edge"
463
    // becomes "fall through" in unrolled loop.
464
    // For now we count a conditional branch on a backedge and a comparison
465
    // feeding it.
466
    unsigned BEInsns;
467
    /// Allow partial unrolling (unrolling of loops to expand the size of the
468
    /// loop body, not only to eliminate small constant-trip-count loops).
469
    bool Partial;
470
    /// Allow runtime unrolling (unrolling of loops to expand the size of the
471
    /// loop body even when the number of loop iterations is not known at
472
    /// compile time).
473
    bool Runtime;
474
    /// Allow generation of a loop remainder (extra iterations after unroll).
475
    bool AllowRemainder;
476
    /// Allow emitting expensive instructions (such as divisions) when computing
477
    /// the trip count of a loop for runtime unrolling.
478
    bool AllowExpensiveTripCount;
479
    /// Apply loop unroll on any kind of loop
480
    /// (mainly to loops that fail runtime unrolling).
481
    bool Force;
482
    /// Allow using trip count upper bound to unroll loops.
483
    bool UpperBound;
484
    /// Allow unrolling of all the iterations of the runtime loop remainder.
485
    bool UnrollRemainder;
486
    /// Allow unroll and jam. Used to enable unroll and jam for the target.
487
    bool UnrollAndJam;
488
    /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
489
    /// value above is used during unroll and jam for the outer loop size.
490
    /// This value is used in the same manner to limit the size of the inner
491
    /// loop.
492
    unsigned UnrollAndJamInnerLoopThreshold;
493
    /// Don't allow loop unrolling to simulate more than this number of
494
    /// iterations when checking full unroll profitability
495
    unsigned MaxIterationsCountToAnalyze;
496
  };
497
 
498
  /// Get target-customized preferences for the generic loop unrolling
499
  /// transformation. The caller will initialize UP with the current
500
  /// target-independent defaults.
501
  void getUnrollingPreferences(Loop *L, ScalarEvolution &,
502
                               UnrollingPreferences &UP,
503
                               OptimizationRemarkEmitter *ORE) const;
504
 
505
  /// Query the target whether it would be profitable to convert the given loop
506
  /// into a hardware loop.
507
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
508
                                AssumptionCache &AC, TargetLibraryInfo *LibInfo,
509
                                HardwareLoopInfo &HWLoopInfo) const;
510
 
511
  /// Query the target whether it would be prefered to create a predicated
512
  /// vector loop, which can avoid the need to emit a scalar epilogue loop.
513
  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
514
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
515
                                   DominatorTree *DT,
516
                                   LoopVectorizationLegality *LVL,
517
                                   InterleavedAccessInfo *IAI) const;
518
 
519
  /// Query the target whether lowering of the llvm.get.active.lane.mask
520
  /// intrinsic is supported and how the mask should be used. A return value
521
  /// of PredicationStyle::Data indicates the mask is used as data only,
522
  /// whereas PredicationStyle::DataAndControlFlow indicates we should also use
523
  /// the mask for control flow in the loop. If unsupported the return value is
524
  /// PredicationStyle::None.
525
  PredicationStyle emitGetActiveLaneMask() const;
526
 
527
  // Parameters that control the loop peeling transformation
528
  struct PeelingPreferences {
529
    /// A forced peeling factor (the number of bodied of the original loop
530
    /// that should be peeled off before the loop body). When set to 0, the
531
    /// a peeling factor based on profile information and other factors.
532
    unsigned PeelCount;
533
    /// Allow peeling off loop iterations.
534
    bool AllowPeeling;
535
    /// Allow peeling off loop iterations for loop nests.
536
    bool AllowLoopNestsPeeling;
537
    /// Allow peeling basing on profile. Uses to enable peeling off all
538
    /// iterations basing on provided profile.
539
    /// If the value is true the peeling cost model can decide to peel only
540
    /// some iterations and in this case it will set this to false.
541
    bool PeelProfiledIterations;
542
  };
543
 
544
  /// Get target-customized preferences for the generic loop peeling
545
  /// transformation. The caller will initialize \p PP with the current
546
  /// target-independent defaults with information from \p L and \p SE.
547
  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
548
                             PeelingPreferences &PP) const;
549
 
550
  /// Targets can implement their own combinations for target-specific
551
  /// intrinsics. This function will be called from the InstCombine pass every
552
  /// time a target-specific intrinsic is encountered.
553
  ///
554
  /// \returns std::nullopt to not do anything target specific or a value that
555
  /// will be returned from the InstCombiner. It is possible to return null and
556
  /// stop further processing of the intrinsic by returning nullptr.
557
  std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
558
                                                    IntrinsicInst & II) const;
559
  /// Can be used to implement target-specific instruction combining.
560
  /// \see instCombineIntrinsic
561
  std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
562
      InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
563
      KnownBits & Known, bool &KnownBitsComputed) const;
564
  /// Can be used to implement target-specific instruction combining.
565
  /// \see instCombineIntrinsic
566
  std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
567
      InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
568
      APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
569
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
570
          SimplifyAndSetOp) const;
571
  /// @}
572
 
573
  /// \name Scalar Target Information
574
  /// @{
575
 
576
  /// Flags indicating the kind of support for population count.
577
  ///
578
  /// Compared to the SW implementation, HW support is supposed to
579
  /// significantly boost the performance when the population is dense, and it
580
  /// may or may not degrade performance if the population is sparse. A HW
581
  /// support is considered as "Fast" if it can outperform, or is on a par
582
  /// with, SW implementation when the population is sparse; otherwise, it is
583
  /// considered as "Slow".
584
  enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
585
 
586
  /// Return true if the specified immediate is legal add immediate, that
587
  /// is the target has add instructions which can add a register with the
588
  /// immediate without having to materialize the immediate into a register.
589
  bool isLegalAddImmediate(int64_t Imm) const;
590
 
591
  /// Return true if the specified immediate is legal icmp immediate,
592
  /// that is the target has icmp instructions which can compare a register
593
  /// against the immediate without having to materialize the immediate into a
594
  /// register.
595
  bool isLegalICmpImmediate(int64_t Imm) const;
596
 
597
  /// Return true if the addressing mode represented by AM is legal for
598
  /// this target, for a load/store of the specified type.
599
  /// The type may be VoidTy, in which case only return true if the addressing
600
  /// mode is legal for a load/store of any legal type.
601
  /// If target returns true in LSRWithInstrQueries(), I may be valid.
602
  /// TODO: Handle pre/postinc as well.
603
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
604
                             bool HasBaseReg, int64_t Scale,
605
                             unsigned AddrSpace = 0,
606
                             Instruction *I = nullptr) const;
607
 
608
  /// Return true if LSR cost of C1 is lower than C2.
609
  bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
610
                     const TargetTransformInfo::LSRCost &C2) const;
611
 
612
  /// Return true if LSR major cost is number of registers. Targets which
613
  /// implement their own isLSRCostLess and unset number of registers as major
614
  /// cost should return false, otherwise return true.
615
  bool isNumRegsMajorCostOfLSR() const;
616
 
617
  /// \returns true if LSR should not optimize a chain that includes \p I.
618
  bool isProfitableLSRChainElement(Instruction *I) const;
619
 
620
  /// Return true if the target can fuse a compare and branch.
621
  /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
622
  /// calculation for the instructions in a loop.
623
  bool canMacroFuseCmp() const;
624
 
625
  /// Return true if the target can save a compare for loop count, for example
626
  /// hardware loop saves a compare.
627
  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
628
                  DominatorTree *DT, AssumptionCache *AC,
629
                  TargetLibraryInfo *LibInfo) const;
630
 
631
  enum AddressingModeKind {
632
    AMK_PreIndexed,
633
    AMK_PostIndexed,
634
    AMK_None
635
  };
636
 
637
  /// Return the preferred addressing mode LSR should make efforts to generate.
638
  AddressingModeKind getPreferredAddressingMode(const Loop *L,
639
                                                ScalarEvolution *SE) const;
640
 
641
  /// Return true if the target supports masked store.
642
  bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
643
  /// Return true if the target supports masked load.
644
  bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
645
 
646
  /// Return true if the target supports nontemporal store.
647
  bool isLegalNTStore(Type *DataType, Align Alignment) const;
648
  /// Return true if the target supports nontemporal load.
649
  bool isLegalNTLoad(Type *DataType, Align Alignment) const;
650
 
651
  /// \Returns true if the target supports broadcasting a load to a vector of
652
  /// type <NumElements x ElementTy>.
653
  bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
654
 
655
  /// Return true if the target supports masked scatter.
656
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
657
  /// Return true if the target supports masked gather.
658
  bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
659
  /// Return true if the target forces scalarizing of llvm.masked.gather
660
  /// intrinsics.
661
  bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
662
  /// Return true if the target forces scalarizing of llvm.masked.scatter
663
  /// intrinsics.
664
  bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
665
 
666
  /// Return true if the target supports masked compress store.
667
  bool isLegalMaskedCompressStore(Type *DataType) const;
668
  /// Return true if the target supports masked expand load.
669
  bool isLegalMaskedExpandLoad(Type *DataType) const;
670
 
671
  /// Return true if this is an alternating opcode pattern that can be lowered
672
  /// to a single instruction on the target. In X86 this is for the addsub
673
  /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
674
  /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
675
  /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
676
  /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
677
  /// \p VecTy is the vector type of the instruction to be generated.
678
  bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
679
                       const SmallBitVector &OpcodeMask) const;
680
 
681
  /// Return true if we should be enabling ordered reductions for the target.
682
  bool enableOrderedReductions() const;
683
 
684
  /// Return true if the target has a unified operation to calculate division
685
  /// and remainder. If so, the additional implicit multiplication and
686
  /// subtraction required to calculate a remainder from division are free. This
687
  /// can enable more aggressive transformations for division and remainder than
688
  /// would typically be allowed using throughput or size cost models.
689
  bool hasDivRemOp(Type *DataType, bool IsSigned) const;
690
 
691
  /// Return true if the given instruction (assumed to be a memory access
692
  /// instruction) has a volatile variant. If that's the case then we can avoid
693
  /// addrspacecast to generic AS for volatile loads/stores. Default
694
  /// implementation returns false, which prevents address space inference for
695
  /// volatile loads/stores.
696
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
697
 
698
  /// Return true if target doesn't mind addresses in vectors.
699
  bool prefersVectorizedAddressing() const;
700
 
701
  /// Return the cost of the scaling factor used in the addressing
702
  /// mode represented by AM for this target, for a load/store
703
  /// of the specified type.
704
  /// If the AM is supported, the return value must be >= 0.
705
  /// If the AM is not supported, it returns a negative value.
706
  /// TODO: Handle pre/postinc as well.
707
  InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
708
                                       int64_t BaseOffset, bool HasBaseReg,
709
                                       int64_t Scale,
710
                                       unsigned AddrSpace = 0) const;
711
 
712
  /// Return true if the loop strength reduce pass should make
713
  /// Instruction* based TTI queries to isLegalAddressingMode(). This is
714
  /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
715
  /// immediate offset and no index register.
716
  bool LSRWithInstrQueries() const;
717
 
718
  /// Return true if it's free to truncate a value of type Ty1 to type
719
  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
720
  /// by referencing its sub-register AX.
721
  bool isTruncateFree(Type *Ty1, Type *Ty2) const;
722
 
723
  /// Return true if it is profitable to hoist instruction in the
724
  /// then/else to before if.
725
  bool isProfitableToHoist(Instruction *I) const;
726
 
727
  bool useAA() const;
728
 
729
  /// Return true if this type is legal.
730
  bool isTypeLegal(Type *Ty) const;
731
 
732
  /// Returns the estimated number of registers required to represent \p Ty.
733
  unsigned getRegUsageForType(Type *Ty) const;
734
 
735
  /// Return true if switches should be turned into lookup tables for the
736
  /// target.
737
  bool shouldBuildLookupTables() const;
738
 
739
  /// Return true if switches should be turned into lookup tables
740
  /// containing this constant value for the target.
741
  bool shouldBuildLookupTablesForConstant(Constant *C) const;
742
 
743
  /// Return true if lookup tables should be turned into relative lookup tables.
744
  bool shouldBuildRelLookupTables() const;
745
 
746
  /// Return true if the input function which is cold at all call sites,
747
  ///  should use coldcc calling convention.
748
  bool useColdCCForColdCall(Function &F) const;
749
 
750
  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
751
  /// are set if the demanded result elements need to be inserted and/or
752
  /// extracted from vectors.
753
  InstructionCost getScalarizationOverhead(VectorType *Ty,
754
                                           const APInt &DemandedElts,
755
                                           bool Insert, bool Extract,
756
                                           TTI::TargetCostKind CostKind) const;
757
 
758
  /// Estimate the overhead of scalarizing an instructions unique
759
  /// non-constant operands. The (potentially vector) types to use for each of
760
  /// argument are passes via Tys.
761
  InstructionCost
762
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
763
                                   ArrayRef<Type *> Tys,
764
                                   TTI::TargetCostKind CostKind) const;
765
 
766
  /// If target has efficient vector element load/store instructions, it can
767
  /// return true here so that insertion/extraction costs are not added to
768
  /// the scalarization cost of a load/store.
769
  bool supportsEfficientVectorElementLoadStore() const;
770
 
771
  /// If the target supports tail calls.
772
  bool supportsTailCalls() const;
773
 
774
  /// If target supports tail call on \p CB
775
  bool supportsTailCallFor(const CallBase *CB) const;
776
 
777
  /// Don't restrict interleaved unrolling to small loops.
778
  bool enableAggressiveInterleaving(bool LoopHasReductions) const;
779
 
780
  /// Returns options for expansion of memcmp. IsZeroCmp is
781
  // true if this is the expansion of memcmp(p1, p2, s) == 0.
782
  struct MemCmpExpansionOptions {
783
    // Return true if memcmp expansion is enabled.
784
    operator bool() const { return MaxNumLoads > 0; }
785
 
786
    // Maximum number of load operations.
787
    unsigned MaxNumLoads = 0;
788
 
789
    // The list of available load sizes (in bytes), sorted in decreasing order.
790
    SmallVector<unsigned, 8> LoadSizes;
791
 
792
    // For memcmp expansion when the memcmp result is only compared equal or
793
    // not-equal to 0, allow up to this number of load pairs per block. As an
794
    // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
795
    //   a0 = load2bytes &a[0]
796
    //   b0 = load2bytes &b[0]
797
    //   a2 = load1byte  &a[2]
798
    //   b2 = load1byte  &b[2]
799
    //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
800
    unsigned NumLoadsPerBlock = 1;
801
 
802
    // Set to true to allow overlapping loads. For example, 7-byte compares can
803
    // be done with two 4-byte compares instead of 4+2+1-byte compares. This
804
    // requires all loads in LoadSizes to be doable in an unaligned way.
805
    bool AllowOverlappingLoads = false;
806
  };
807
  MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
808
                                               bool IsZeroCmp) const;
809
 
810
  /// Should the Select Optimization pass be enabled and ran.
811
  bool enableSelectOptimize() const;
812
 
813
  /// Enable matching of interleaved access groups.
814
  bool enableInterleavedAccessVectorization() const;
815
 
816
  /// Enable matching of interleaved access groups that contain predicated
817
  /// accesses or gaps and therefore vectorized using masked
818
  /// vector loads/stores.
819
  bool enableMaskedInterleavedAccessVectorization() const;
820
 
821
  /// Indicate that it is potentially unsafe to automatically vectorize
822
  /// floating-point operations because the semantics of vector and scalar
823
  /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
824
  /// does not support IEEE-754 denormal numbers, while depending on the
825
  /// platform, scalar floating-point math does.
826
  /// This applies to floating-point math operations and calls, not memory
827
  /// operations, shuffles, or casts.
828
  bool isFPVectorizationPotentiallyUnsafe() const;
829
 
830
  /// Determine if the target supports unaligned memory accesses.
831
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
832
                                      unsigned AddressSpace = 0,
833
                                      Align Alignment = Align(1),
834
                                      unsigned *Fast = nullptr) const;
835
 
836
  /// Return hardware support for population count.
837
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
838
 
839
  /// Return true if the hardware has a fast square-root instruction.
840
  bool haveFastSqrt(Type *Ty) const;
841
 
842
  /// Return true if the cost of the instruction is too high to speculatively
843
  /// execute and should be kept behind a branch.
844
  /// This normally just wraps around a getInstructionCost() call, but some
845
  /// targets might report a low TCK_SizeAndLatency value that is incompatible
846
  /// with the fixed TCC_Expensive value.
847
  /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
848
  bool isExpensiveToSpeculativelyExecute(const Instruction *I) const;
849
 
850
  /// Return true if it is faster to check if a floating-point value is NaN
851
  /// (or not-NaN) versus a comparison against a constant FP zero value.
852
  /// Targets should override this if materializing a 0.0 for comparison is
853
  /// generally as cheap as checking for ordered/unordered.
854
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
855
 
856
  /// Return the expected cost of supporting the floating point operation
857
  /// of the specified type.
858
  InstructionCost getFPOpCost(Type *Ty) const;
859
 
860
  /// Return the expected cost of materializing for the given integer
861
  /// immediate of the specified type.
862
  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
863
                                TargetCostKind CostKind) const;
864
 
865
  /// Return the expected cost of materialization for the given integer
866
  /// immediate of the specified type for a given instruction. The cost can be
867
  /// zero if the immediate can be folded into the specified instruction.
868
  InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
869
                                    const APInt &Imm, Type *Ty,
870
                                    TargetCostKind CostKind,
871
                                    Instruction *Inst = nullptr) const;
872
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
873
                                      const APInt &Imm, Type *Ty,
874
                                      TargetCostKind CostKind) const;
875
 
876
  /// Return the expected cost for the given integer when optimising
877
  /// for size. This is different than the other integer immediate cost
878
  /// functions in that it is subtarget agnostic. This is useful when you e.g.
879
  /// target one ISA such as Aarch32 but smaller encodings could be possible
880
  /// with another such as Thumb. This return value is used as a penalty when
881
  /// the total costs for a constant is calculated (the bigger the cost, the
882
  /// more beneficial constant hoisting is).
883
  InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
884
                                        const APInt &Imm, Type *Ty) const;
885
  /// @}
886
 
887
  /// \name Vector Target Information
888
  /// @{
889
 
890
  /// The various kinds of shuffle patterns for vector queries.
891
  enum ShuffleKind {
892
    SK_Broadcast,        ///< Broadcast element 0 to all other elements.
893
    SK_Reverse,          ///< Reverse the order of the vector.
894
    SK_Select,           ///< Selects elements from the corresponding lane of
895
                         ///< either source operand. This is equivalent to a
896
                         ///< vector select with a constant condition operand.
897
    SK_Transpose,        ///< Transpose two vectors.
898
    SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
899
    SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
900
    SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
901
                         ///< with any shuffle mask.
902
    SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
903
                         ///< shuffle mask.
904
    SK_Splice            ///< Concatenates elements from the first input vector
905
                         ///< with elements of the second input vector. Returning
906
                         ///< a vector of the same type as the input vectors.
907
                         ///< Index indicates start offset in first input vector.
908
  };
909
 
910
  /// Additional information about an operand's possible values.
911
  enum OperandValueKind {
912
    OK_AnyValue,               // Operand can have any value.
913
    OK_UniformValue,           // Operand is uniform (splat of a value).
914
    OK_UniformConstantValue,   // Operand is uniform constant.
915
    OK_NonUniformConstantValue // Operand is a non uniform constant value.
916
  };
917
 
918
  /// Additional properties of an operand's values.
919
  enum OperandValueProperties {
920
    OP_None = 0,
921
    OP_PowerOf2 = 1,
922
    OP_NegatedPowerOf2 = 2,
923
  };
924
 
925
  // Describe the values an operand can take.  We're in the process
926
  // of migrating uses of OperandValueKind and OperandValueProperties
927
  // to use this class, and then will change the internal representation.
928
  struct OperandValueInfo {
929
    OperandValueKind Kind = OK_AnyValue;
930
    OperandValueProperties Properties = OP_None;
931
 
932
    bool isConstant() const {
933
      return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue;
934
    }
935
    bool isUniform() const {
936
      return Kind == OK_UniformConstantValue || Kind == OK_UniformValue;
937
    }
938
    bool isPowerOf2() const {
939
      return Properties == OP_PowerOf2;
940
    }
941
    bool isNegatedPowerOf2() const {
942
      return Properties == OP_NegatedPowerOf2;
943
    }
944
 
945
    OperandValueInfo getNoProps() const {
946
      return {Kind, OP_None};
947
    }
948
  };
949
 
950
  /// \return the number of registers in the target-provided register class.
951
  unsigned getNumberOfRegisters(unsigned ClassID) const;
952
 
953
  /// \return the target-provided register class ID for the provided type,
954
  /// accounting for type promotion and other type-legalization techniques that
955
  /// the target might apply. However, it specifically does not account for the
956
  /// scalarization or splitting of vector types. Should a vector type require
957
  /// scalarization or splitting into multiple underlying vector registers, that
958
  /// type should be mapped to a register class containing no registers.
959
  /// Specifically, this is designed to provide a simple, high-level view of the
960
  /// register allocation later performed by the backend. These register classes
961
  /// don't necessarily map onto the register classes used by the backend.
962
  /// FIXME: It's not currently possible to determine how many registers
963
  /// are used by the provided type.
964
  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
965
 
966
  /// \return the target-provided register class name
967
  const char *getRegisterClassName(unsigned ClassID) const;
968
 
969
  enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
970
 
971
  /// \return The width of the largest scalar or vector register type.
972
  TypeSize getRegisterBitWidth(RegisterKind K) const;
973
 
974
  /// \return The width of the smallest vector register type.
975
  unsigned getMinVectorRegisterBitWidth() const;
976
 
977
  /// \return The maximum value of vscale if the target specifies an
978
  ///  architectural maximum vector length, and std::nullopt otherwise.
979
  std::optional<unsigned> getMaxVScale() const;
980
 
981
  /// \return the value of vscale to tune the cost model for.
982
  std::optional<unsigned> getVScaleForTuning() const;
983
 
984
  /// \return True if the vectorization factor should be chosen to
985
  /// make the vector of the smallest element type match the size of a
986
  /// vector register. For wider element types, this could result in
987
  /// creating vectors that span multiple vector registers.
988
  /// If false, the vectorization factor will be chosen based on the
989
  /// size of the widest element type.
990
  /// \p K Register Kind for vectorization.
991
  bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
992
 
993
  /// \return The minimum vectorization factor for types of given element
994
  /// bit width, or 0 if there is no minimum VF. The returned value only
995
  /// applies when shouldMaximizeVectorBandwidth returns true.
996
  /// If IsScalable is true, the returned ElementCount must be a scalable VF.
997
  ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
998
 
999
  /// \return The maximum vectorization factor for types of given element
1000
  /// bit width and opcode, or 0 if there is no maximum VF.
1001
  /// Currently only used by the SLP vectorizer.
1002
  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1003
 
1004
  /// \return The minimum vectorization factor for the store instruction. Given
1005
  /// the initial estimation of the minimum vector factor and store value type,
1006
  /// it tries to find possible lowest VF, which still might be profitable for
1007
  /// the vectorization.
1008
  /// \param VF Initial estimation of the minimum vector factor.
1009
  /// \param ScalarMemTy Scalar memory type of the store operation.
1010
  /// \param ScalarValTy Scalar type of the stored value.
1011
  /// Currently only used by the SLP vectorizer.
1012
  unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1013
                             Type *ScalarValTy) const;
1014
 
1015
  /// \return True if it should be considered for address type promotion.
1016
  /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1017
  /// profitable without finding other extensions fed by the same input.
1018
  bool shouldConsiderAddressTypePromotion(
1019
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1020
 
1021
  /// \return The size of a cache line in bytes.
1022
  unsigned getCacheLineSize() const;
1023
 
1024
  /// The possible cache levels
1025
  enum class CacheLevel {
1026
    L1D, // The L1 data cache
1027
    L2D, // The L2 data cache
1028
 
1029
    // We currently do not model L3 caches, as their sizes differ widely between
1030
    // microarchitectures. Also, we currently do not have a use for L3 cache
1031
    // size modeling yet.
1032
  };
1033
 
1034
  /// \return The size of the cache level in bytes, if available.
1035
  std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1036
 
1037
  /// \return The associativity of the cache level, if available.
1038
  std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
1039
 
1040
  /// \return How much before a load we should place the prefetch
1041
  /// instruction.  This is currently measured in number of
1042
  /// instructions.
1043
  unsigned getPrefetchDistance() const;
1044
 
1045
  /// Some HW prefetchers can handle accesses up to a certain constant stride.
1046
  /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1047
  /// and the arguments provided are meant to serve as a basis for deciding this
1048
  /// for a particular loop.
1049
  ///
1050
  /// \param NumMemAccesses        Number of memory accesses in the loop.
1051
  /// \param NumStridedMemAccesses Number of the memory accesses that
1052
  ///                              ScalarEvolution could find a known stride
1053
  ///                              for.
1054
  /// \param NumPrefetches         Number of software prefetches that will be
1055
  ///                              emitted as determined by the addresses
1056
  ///                              involved and the cache line size.
1057
  /// \param HasCall               True if the loop contains a call.
1058
  ///
1059
  /// \return This is the minimum stride in bytes where it makes sense to start
1060
  ///         adding SW prefetches. The default is 1, i.e. prefetch with any
1061
  ///         stride.
1062
  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1063
                                unsigned NumStridedMemAccesses,
1064
                                unsigned NumPrefetches, bool HasCall) const;
1065
 
1066
  /// \return The maximum number of iterations to prefetch ahead.  If
1067
  /// the required number of iterations is more than this number, no
1068
  /// prefetching is performed.
1069
  unsigned getMaxPrefetchIterationsAhead() const;
1070
 
1071
  /// \return True if prefetching should also be done for writes.
1072
  bool enableWritePrefetching() const;
1073
 
1074
  /// \return if target want to issue a prefetch in address space \p AS.
1075
  bool shouldPrefetchAddressSpace(unsigned AS) const;
1076
 
1077
  /// \return The maximum interleave factor that any transform should try to
1078
  /// perform for this target. This number depends on the level of parallelism
1079
  /// and the number of execution units in the CPU.
1080
  unsigned getMaxInterleaveFactor(unsigned VF) const;
1081
 
1082
  /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1083
  static OperandValueInfo getOperandInfo(const Value *V);
1084
 
1085
  /// This is an approximation of reciprocal throughput of a math/logic op.
1086
  /// A higher cost indicates less expected throughput.
1087
  /// From Agner Fog's guides, reciprocal throughput is "the average number of
1088
  /// clock cycles per instruction when the instructions are not part of a
1089
  /// limiting dependency chain."
1090
  /// Therefore, costs should be scaled to account for multiple execution units
1091
  /// on the target that can process this type of instruction. For example, if
1092
  /// there are 5 scalar integer units and 2 vector integer units that can
1093
  /// calculate an 'add' in a single cycle, this model should indicate that the
1094
  /// cost of the vector add instruction is 2.5 times the cost of the scalar
1095
  /// add instruction.
1096
  /// \p Args is an optional argument which holds the instruction operands
1097
  /// values so the TTI can analyze those values searching for special
1098
  /// cases or optimizations based on those values.
1099
  /// \p CxtI is the optional original context instruction, if one exists, to
1100
  /// provide even more information.
1101
  InstructionCost getArithmeticInstrCost(
1102
      unsigned Opcode, Type *Ty,
1103
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1104
      TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
1105
      TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
1106
      ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
1107
      const Instruction *CxtI = nullptr) const;
1108
 
1109
  /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1110
  /// The exact mask may be passed as Mask, or else the array will be empty.
1111
  /// The index and subtype parameters are used by the subvector insertion and
1112
  /// extraction shuffle kinds to show the insert/extract point and the type of
1113
  /// the subvector being inserted/extracted. The operands of the shuffle can be
1114
  /// passed through \p Args, which helps improve the cost estimation in some
1115
  /// cases, like in broadcast loads.
1116
  /// NOTE: For subvector extractions Tp represents the source type.
1117
  InstructionCost
1118
  getShuffleCost(ShuffleKind Kind, VectorType *Tp,
1119
                 ArrayRef<int> Mask = std::nullopt,
1120
                 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1121
                 int Index = 0, VectorType *SubTp = nullptr,
1122
                 ArrayRef<const Value *> Args = std::nullopt) const;
1123
 
1124
  /// Represents a hint about the context in which a cast is used.
1125
  ///
1126
  /// For zext/sext, the context of the cast is the operand, which must be a
1127
  /// load of some kind. For trunc, the context is of the cast is the single
1128
  /// user of the instruction, which must be a store of some kind.
1129
  ///
1130
  /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1131
  /// type of cast it's dealing with, as not every cast is equal. For instance,
1132
  /// the zext of a load may be free, but the zext of an interleaving load can
1133
  //// be (very) expensive!
1134
  ///
1135
  /// See \c getCastContextHint to compute a CastContextHint from a cast
1136
  /// Instruction*. Callers can use it if they don't need to override the
1137
  /// context and just want it to be calculated from the instruction.
1138
  ///
1139
  /// FIXME: This handles the types of load/store that the vectorizer can
1140
  /// produce, which are the cases where the context instruction is most
1141
  /// likely to be incorrect. There are other situations where that can happen
1142
  /// too, which might be handled here but in the long run a more general
1143
  /// solution of costing multiple instructions at the same times may be better.
1144
  enum class CastContextHint : uint8_t {
1145
    None,          ///< The cast is not used with a load/store of any kind.
1146
    Normal,        ///< The cast is used with a normal load/store.
1147
    Masked,        ///< The cast is used with a masked load/store.
1148
    GatherScatter, ///< The cast is used with a gather/scatter.
1149
    Interleave,    ///< The cast is used with an interleaved load/store.
1150
    Reversed,      ///< The cast is used with a reversed load/store.
1151
  };
1152
 
1153
  /// Calculates a CastContextHint from \p I.
1154
  /// This should be used by callers of getCastInstrCost if they wish to
1155
  /// determine the context from some instruction.
1156
  /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1157
  /// or if it's another type of cast.
1158
  static CastContextHint getCastContextHint(const Instruction *I);
1159
 
1160
  /// \return The expected cost of cast instructions, such as bitcast, trunc,
1161
  /// zext, etc. If there is an existing instruction that holds Opcode, it
1162
  /// may be passed in the 'I' parameter.
1163
  InstructionCost
1164
  getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1165
                   TTI::CastContextHint CCH,
1166
                   TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1167
                   const Instruction *I = nullptr) const;
1168
 
1169
  /// \return The expected cost of a sign- or zero-extended vector extract. Use
1170
  /// Index = -1 to indicate that there is no information about the index value.
1171
  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1172
                                           VectorType *VecTy,
1173
                                           unsigned Index) const;
1174
 
1175
  /// \return The expected cost of control-flow related instructions such as
1176
  /// Phi, Ret, Br, Switch.
1177
  InstructionCost
1178
  getCFInstrCost(unsigned Opcode,
1179
                 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1180
                 const Instruction *I = nullptr) const;
1181
 
1182
  /// \returns The expected cost of compare and select instructions. If there
1183
  /// is an existing instruction that holds Opcode, it may be passed in the
1184
  /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1185
  /// is using a compare with the specified predicate as condition. When vector
1186
  /// types are passed, \p VecPred must be used for all lanes.
1187
  InstructionCost
1188
  getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1189
                     CmpInst::Predicate VecPred,
1190
                     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1191
                     const Instruction *I = nullptr) const;
1192
 
1193
  /// \return The expected cost of vector Insert and Extract.
1194
  /// Use -1 to indicate that there is no information on the index value.
1195
  /// This is used when the instruction is not available; a typical use
1196
  /// case is to provision the cost of vectorization/scalarization in
1197
  /// vectorizer passes.
1198
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1199
                                     TTI::TargetCostKind CostKind,
1200
                                     unsigned Index = -1, Value *Op0 = nullptr,
1201
                                     Value *Op1 = nullptr) const;
1202
 
1203
  /// \return The expected cost of vector Insert and Extract.
1204
  /// This is used when instruction is available, and implementation
1205
  /// asserts 'I' is not nullptr.
1206
  ///
1207
  /// A typical suitable use case is cost estimation when vector instruction
1208
  /// exists (e.g., from basic blocks during transformation).
1209
  InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1210
                                     TTI::TargetCostKind CostKind,
1211
                                     unsigned Index = -1) const;
1212
 
1213
  /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1214
  /// \p ReplicationFactor times.
1215
  ///
1216
  /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1217
  ///   <0,0,0,1,1,1,2,2,2,3,3,3>
1218
  InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
1219
                                            int VF,
1220
                                            const APInt &DemandedDstElts,
1221
                                            TTI::TargetCostKind CostKind);
1222
 
1223
  /// \return The cost of Load and Store instructions.
1224
  InstructionCost
1225
  getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1226
                  unsigned AddressSpace,
1227
                  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1228
                  OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
1229
                  const Instruction *I = nullptr) const;
1230
 
1231
  /// \return The cost of VP Load and Store instructions.
1232
  InstructionCost
1233
  getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1234
                    unsigned AddressSpace,
1235
                    TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1236
                    const Instruction *I = nullptr) const;
1237
 
1238
  /// \return The cost of masked Load and Store instructions.
1239
  InstructionCost getMaskedMemoryOpCost(
1240
      unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1241
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1242
 
1243
  /// \return The cost of Gather or Scatter operation
1244
  /// \p Opcode - is a type of memory access Load or Store
1245
  /// \p DataTy - a vector type of the data to be loaded or stored
1246
  /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1247
  /// \p VariableMask - true when the memory access is predicated with a mask
1248
  ///                   that is not a compile-time constant
1249
  /// \p Alignment - alignment of single element
1250
  /// \p I - the optional original context instruction, if one exists, e.g. the
1251
  ///        load/store to transform or the call to the gather/scatter intrinsic
1252
  InstructionCost getGatherScatterOpCost(
1253
      unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1254
      Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1255
      const Instruction *I = nullptr) const;
1256
 
1257
  /// \return The cost of the interleaved memory operation.
1258
  /// \p Opcode is the memory operation code
1259
  /// \p VecTy is the vector type of the interleaved access.
1260
  /// \p Factor is the interleave factor
1261
  /// \p Indices is the indices for interleaved load members (as interleaved
1262
  ///    load allows gaps)
1263
  /// \p Alignment is the alignment of the memory operation
1264
  /// \p AddressSpace is address space of the pointer.
1265
  /// \p UseMaskForCond indicates if the memory access is predicated.
1266
  /// \p UseMaskForGaps indicates if gaps should be masked.
1267
  InstructionCost getInterleavedMemoryOpCost(
1268
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1269
      Align Alignment, unsigned AddressSpace,
1270
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1271
      bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1272
 
1273
  /// A helper function to determine the type of reduction algorithm used
1274
  /// for a given \p Opcode and set of FastMathFlags \p FMF.
1275
  static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1276
    return FMF && !(*FMF).allowReassoc();
1277
  }
1278
 
1279
  /// Calculate the cost of vector reduction intrinsics.
1280
  ///
1281
  /// This is the cost of reducing the vector value of type \p Ty to a scalar
1282
  /// value using the operation denoted by \p Opcode. The FastMathFlags
1283
  /// parameter \p FMF indicates what type of reduction we are performing:
1284
  ///   1. Tree-wise. This is the typical 'fast' reduction performed that
1285
  ///   involves successively splitting a vector into half and doing the
1286
  ///   operation on the pair of halves until you have a scalar value. For
1287
  ///   example:
1288
  ///     (v0, v1, v2, v3)
1289
  ///     ((v0+v2), (v1+v3), undef, undef)
1290
  ///     ((v0+v2+v1+v3), undef, undef, undef)
1291
  ///   This is the default behaviour for integer operations, whereas for
1292
  ///   floating point we only do this if \p FMF indicates that
1293
  ///   reassociation is allowed.
1294
  ///   2. Ordered. For a vector with N elements this involves performing N
1295
  ///   operations in lane order, starting with an initial scalar value, i.e.
1296
  ///     result = InitVal + v0
1297
  ///     result = result + v1
1298
  ///     result = result + v2
1299
  ///     result = result + v3
1300
  ///   This is only the case for FP operations and when reassociation is not
1301
  ///   allowed.
1302
  ///
1303
  InstructionCost getArithmeticReductionCost(
1304
      unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1305
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1306
 
1307
  InstructionCost getMinMaxReductionCost(
1308
      VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
1309
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1310
 
1311
  /// Calculate the cost of an extended reduction pattern, similar to
1312
  /// getArithmeticReductionCost of an Add reduction with multiply and optional
1313
  /// extensions. This is the cost of as:
1314
  /// ResTy vecreduce.add(mul (A, B)).
1315
  /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
1316
  InstructionCost getMulAccReductionCost(
1317
      bool IsUnsigned, Type *ResTy, VectorType *Ty,
1318
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1319
 
1320
  /// Calculate the cost of an extended reduction pattern, similar to
1321
  /// getArithmeticReductionCost of a reduction with an extension.
1322
  /// This is the cost of as:
1323
  /// ResTy vecreduce.opcode(ext(Ty A)).
1324
  InstructionCost getExtendedReductionCost(
1325
      unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1326
      std::optional<FastMathFlags> FMF,
1327
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1328
 
1329
  /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1330
  /// Three cases are handled: 1. scalar instruction 2. vector instruction
1331
  /// 3. scalar instruction which is to be vectorized.
1332
  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1333
                                        TTI::TargetCostKind CostKind) const;
1334
 
1335
  /// \returns The cost of Call instructions.
1336
  InstructionCost getCallInstrCost(
1337
      Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1338
      TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1339
 
1340
  /// \returns The number of pieces into which the provided type must be
1341
  /// split during legalization. Zero is returned when the answer is unknown.
1342
  unsigned getNumberOfParts(Type *Tp) const;
1343
 
1344
  /// \returns The cost of the address computation. For most targets this can be
1345
  /// merged into the instruction indexing mode. Some targets might want to
1346
  /// distinguish between address computation for memory operations on vector
1347
  /// types and scalar types. Such targets should override this function.
1348
  /// The 'SE' parameter holds pointer for the scalar evolution object which
1349
  /// is used in order to get the Ptr step value in case of constant stride.
1350
  /// The 'Ptr' parameter holds SCEV of the access pointer.
1351
  InstructionCost getAddressComputationCost(Type *Ty,
1352
                                            ScalarEvolution *SE = nullptr,
1353
                                            const SCEV *Ptr = nullptr) const;
1354
 
1355
  /// \returns The cost, if any, of keeping values of the given types alive
1356
  /// over a callsite.
1357
  ///
1358
  /// Some types may require the use of register classes that do not have
1359
  /// any callee-saved registers, so would require a spill and fill.
1360
  InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1361
 
1362
  /// \returns True if the intrinsic is a supported memory intrinsic.  Info
1363
  /// will contain additional information - whether the intrinsic may write
1364
  /// or read to memory, volatility and the pointer.  Info is undefined
1365
  /// if false is returned.
1366
  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1367
 
1368
  /// \returns The maximum element size, in bytes, for an element
1369
  /// unordered-atomic memory intrinsic.
1370
  unsigned getAtomicMemIntrinsicMaxElementSize() const;
1371
 
1372
  /// \returns A value which is the result of the given memory intrinsic.  New
1373
  /// instructions may be created to extract the result from the given intrinsic
1374
  /// memory operation.  Returns nullptr if the target cannot create a result
1375
  /// from the given intrinsic.
1376
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1377
                                           Type *ExpectedType) const;
1378
 
1379
  /// \returns The type to use in a loop expansion of a memcpy call.
1380
  Type *getMemcpyLoopLoweringType(
1381
      LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1382
      unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1383
      std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1384
 
1385
  /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1386
  /// \param RemainingBytes The number of bytes to copy.
1387
  ///
1388
  /// Calculates the operand types to use when copying \p RemainingBytes of
1389
  /// memory, where source and destination alignments are \p SrcAlign and
1390
  /// \p DestAlign respectively.
1391
  void getMemcpyLoopResidualLoweringType(
1392
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1393
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1394
      unsigned SrcAlign, unsigned DestAlign,
1395
      std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1396
 
1397
  /// \returns True if the two functions have compatible attributes for inlining
1398
  /// purposes.
1399
  bool areInlineCompatible(const Function *Caller,
1400
                           const Function *Callee) const;
1401
 
1402
  /// \returns True if the caller and callee agree on how \p Types will be
1403
  /// passed to or returned from the callee.
1404
  /// to the callee.
1405
  /// \param Types List of types to check.
1406
  bool areTypesABICompatible(const Function *Caller, const Function *Callee,
1407
                             const ArrayRef<Type *> &Types) const;
1408
 
1409
  /// The type of load/store indexing.
1410
  enum MemIndexedMode {
1411
    MIM_Unindexed, ///< No indexing.
1412
    MIM_PreInc,    ///< Pre-incrementing.
1413
    MIM_PreDec,    ///< Pre-decrementing.
1414
    MIM_PostInc,   ///< Post-incrementing.
1415
    MIM_PostDec    ///< Post-decrementing.
1416
  };
1417
 
1418
  /// \returns True if the specified indexed load for the given type is legal.
1419
  bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1420
 
1421
  /// \returns True if the specified indexed store for the given type is legal.
1422
  bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1423
 
1424
  /// \returns The bitwidth of the largest vector type that should be used to
1425
  /// load/store in the given address space.
1426
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1427
 
1428
  /// \returns True if the load instruction is legal to vectorize.
1429
  bool isLegalToVectorizeLoad(LoadInst *LI) const;
1430
 
1431
  /// \returns True if the store instruction is legal to vectorize.
1432
  bool isLegalToVectorizeStore(StoreInst *SI) const;
1433
 
1434
  /// \returns True if it is legal to vectorize the given load chain.
1435
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1436
                                   unsigned AddrSpace) const;
1437
 
1438
  /// \returns True if it is legal to vectorize the given store chain.
1439
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1440
                                    unsigned AddrSpace) const;
1441
 
1442
  /// \returns True if it is legal to vectorize the given reduction kind.
1443
  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
1444
                                   ElementCount VF) const;
1445
 
1446
  /// \returns True if the given type is supported for scalable vectors
1447
  bool isElementTypeLegalForScalableVector(Type *Ty) const;
1448
 
1449
  /// \returns The new vector factor value if the target doesn't support \p
1450
  /// SizeInBytes loads or has a better vector factor.
1451
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1452
                               unsigned ChainSizeInBytes,
1453
                               VectorType *VecTy) const;
1454
 
1455
  /// \returns The new vector factor value if the target doesn't support \p
1456
  /// SizeInBytes stores or has a better vector factor.
1457
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1458
                                unsigned ChainSizeInBytes,
1459
                                VectorType *VecTy) const;
1460
 
1461
  /// Flags describing the kind of vector reduction.
1462
  struct ReductionFlags {
1463
    ReductionFlags() = default;
1464
    bool IsMaxOp =
1465
        false; ///< If the op a min/max kind, true if it's a max operation.
1466
    bool IsSigned = false; ///< Whether the operation is a signed int reduction.
1467
    bool NoNaN =
1468
        false; ///< If op is an fp min/max, whether NaNs may be present.
1469
  };
1470
 
1471
  /// \returns True if the target prefers reductions in loop.
1472
  bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1473
                             ReductionFlags Flags) const;
1474
 
1475
  /// \returns True if the target prefers reductions select kept in the loop
1476
  /// when tail folding. i.e.
1477
  /// loop:
1478
  ///   p = phi (0, s)
1479
  ///   a = add (p, x)
1480
  ///   s = select (mask, a, p)
1481
  /// vecreduce.add(s)
1482
  ///
1483
  /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1484
  /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1485
  /// by the target, this can lead to cleaner code generation.
1486
  bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1487
                                       ReductionFlags Flags) const;
1488
 
1489
  /// Return true if the loop vectorizer should consider vectorizing an
1490
  /// otherwise scalar epilogue loop.
1491
  bool preferEpilogueVectorization() const;
1492
 
1493
  /// \returns True if the target wants to expand the given reduction intrinsic
1494
  /// into a shuffle sequence.
1495
  bool shouldExpandReduction(const IntrinsicInst *II) const;
1496
 
1497
  /// \returns the size cost of rematerializing a GlobalValue address relative
1498
  /// to a stack reload.
1499
  unsigned getGISelRematGlobalCost() const;
1500
 
1501
  /// \returns the lower bound of a trip count to decide on vectorization
1502
  /// while tail-folding.
1503
  unsigned getMinTripCountTailFoldingThreshold() const;
1504
 
1505
  /// \returns True if the target supports scalable vectors.
1506
  bool supportsScalableVectors() const;
1507
 
1508
  /// \return true when scalable vectorization is preferred.
1509
  bool enableScalableVectorization() const;
1510
 
1511
  /// \name Vector Predication Information
1512
  /// @{
1513
  /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1514
  /// in hardware, for the given opcode and type/alignment. (see LLVM Language
1515
  /// Reference - "Vector Predication Intrinsics").
1516
  /// Use of %evl is discouraged when that is not the case.
1517
  bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
1518
                             Align Alignment) const;
1519
 
1520
  struct VPLegalization {
1521
    enum VPTransform {
1522
      // keep the predicating parameter
1523
      Legal = 0,
1524
      // where legal, discard the predicate parameter
1525
      Discard = 1,
1526
      // transform into something else that is also predicating
1527
      Convert = 2
1528
    };
1529
 
1530
    // How to transform the EVL parameter.
1531
    // Legal:   keep the EVL parameter as it is.
1532
    // Discard: Ignore the EVL parameter where it is safe to do so.
1533
    // Convert: Fold the EVL into the mask parameter.
1534
    VPTransform EVLParamStrategy;
1535
 
1536
    // How to transform the operator.
1537
    // Legal:   The target supports this operator.
1538
    // Convert: Convert this to a non-VP operation.
1539
    // The 'Discard' strategy is invalid.
1540
    VPTransform OpStrategy;
1541
 
1542
    bool shouldDoNothing() const {
1543
      return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1544
    }
1545
    VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
1546
        : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
1547
  };
1548
 
1549
  /// \returns How the target needs this vector-predicated operation to be
1550
  /// transformed.
1551
  VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1552
  /// @}
1553
 
1554
  /// @}
1555
 
1556
private:
1557
  /// The abstract base class used to type erase specific TTI
1558
  /// implementations.
1559
  class Concept;
1560
 
1561
  /// The template model for the base class which wraps a concrete
1562
  /// implementation in a type erased interface.
1563
  template <typename T> class Model;
1564
 
1565
  std::unique_ptr<Concept> TTIImpl;
1566
};
1567
 
1568
class TargetTransformInfo::Concept {
1569
public:
1570
  virtual ~Concept() = 0;
1571
  virtual const DataLayout &getDataLayout() const = 0;
1572
  virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
1573
                                     ArrayRef<const Value *> Operands,
1574
                                     TTI::TargetCostKind CostKind) = 0;
1575
  virtual unsigned getInliningThresholdMultiplier() = 0;
1576
  virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1577
  virtual int getInlinerVectorBonusPercent() = 0;
1578
  virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
1579
  virtual unsigned
1580
  getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
1581
                                   ProfileSummaryInfo *PSI,
1582
                                   BlockFrequencyInfo *BFI) = 0;
1583
  virtual InstructionCost getInstructionCost(const User *U,
1584
                                             ArrayRef<const Value *> Operands,
1585
                                             TargetCostKind CostKind) = 0;
1586
  virtual BranchProbability getPredictableBranchThreshold() = 0;
1587
  virtual bool hasBranchDivergence() = 0;
1588
  virtual bool useGPUDivergenceAnalysis() = 0;
1589
  virtual bool isSourceOfDivergence(const Value *V) = 0;
1590
  virtual bool isAlwaysUniform(const Value *V) = 0;
1591
  virtual unsigned getFlatAddressSpace() = 0;
1592
  virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1593
                                          Intrinsic::ID IID) const = 0;
1594
  virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1595
  virtual bool
1596
  canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
1597
  virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1598
  virtual bool isSingleThreaded() const = 0;
1599
  virtual std::pair<const Value *, unsigned>
1600
  getPredicatedAddrSpace(const Value *V) const = 0;
1601
  virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1602
                                                  Value *OldV,
1603
                                                  Value *NewV) const = 0;
1604
  virtual bool isLoweredToCall(const Function *F) = 0;
1605
  virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1606
                                       UnrollingPreferences &UP,
1607
                                       OptimizationRemarkEmitter *ORE) = 0;
1608
  virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1609
                                     PeelingPreferences &PP) = 0;
1610
  virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1611
                                        AssumptionCache &AC,
1612
                                        TargetLibraryInfo *LibInfo,
1613
                                        HardwareLoopInfo &HWLoopInfo) = 0;
1614
  virtual bool
1615
  preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1616
                              AssumptionCache &AC, TargetLibraryInfo *TLI,
1617
                              DominatorTree *DT, LoopVectorizationLegality *LVL,
1618
                              InterleavedAccessInfo *IAI) = 0;
1619
  virtual PredicationStyle emitGetActiveLaneMask() = 0;
1620
  virtual std::optional<Instruction *> instCombineIntrinsic(
1621
      InstCombiner &IC, IntrinsicInst &II) = 0;
1622
  virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
1623
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
1624
      KnownBits & Known, bool &KnownBitsComputed) = 0;
1625
  virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1626
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
1627
      APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1628
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
1629
          SimplifyAndSetOp) = 0;
1630
  virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1631
  virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1632
  virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1633
                                     int64_t BaseOffset, bool HasBaseReg,
1634
                                     int64_t Scale, unsigned AddrSpace,
1635
                                     Instruction *I) = 0;
1636
  virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
1637
                             const TargetTransformInfo::LSRCost &C2) = 0;
1638
  virtual bool isNumRegsMajorCostOfLSR() = 0;
1639
  virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
1640
  virtual bool canMacroFuseCmp() = 0;
1641
  virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1642
                          LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1643
                          TargetLibraryInfo *LibInfo) = 0;
1644
  virtual AddressingModeKind
1645
    getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
1646
  virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1647
  virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1648
  virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1649
  virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1650
  virtual bool isLegalBroadcastLoad(Type *ElementTy,
1651
                                    ElementCount NumElements) const = 0;
1652
  virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1653
  virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
1654
  virtual bool forceScalarizeMaskedGather(VectorType *DataType,
1655
                                          Align Alignment) = 0;
1656
  virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
1657
                                           Align Alignment) = 0;
1658
  virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
1659
  virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
1660
  virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
1661
                               unsigned Opcode1,
1662
                               const SmallBitVector &OpcodeMask) const = 0;
1663
  virtual bool enableOrderedReductions() = 0;
1664
  virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1665
  virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1666
  virtual bool prefersVectorizedAddressing() = 0;
1667
  virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1668
                                               int64_t BaseOffset,
1669
                                               bool HasBaseReg, int64_t Scale,
1670
                                               unsigned AddrSpace) = 0;
1671
  virtual bool LSRWithInstrQueries() = 0;
1672
  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1673
  virtual bool isProfitableToHoist(Instruction *I) = 0;
1674
  virtual bool useAA() = 0;
1675
  virtual bool isTypeLegal(Type *Ty) = 0;
1676
  virtual unsigned getRegUsageForType(Type *Ty) = 0;
1677
  virtual bool shouldBuildLookupTables() = 0;
1678
  virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1679
  virtual bool shouldBuildRelLookupTables() = 0;
1680
  virtual bool useColdCCForColdCall(Function &F) = 0;
1681
  virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
1682
                                                   const APInt &DemandedElts,
1683
                                                   bool Insert, bool Extract,
1684
                                                   TargetCostKind CostKind) = 0;
1685
  virtual InstructionCost
1686
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1687
                                   ArrayRef<Type *> Tys,
1688
                                   TargetCostKind CostKind) = 0;
1689
  virtual bool supportsEfficientVectorElementLoadStore() = 0;
1690
  virtual bool supportsTailCalls() = 0;
1691
  virtual bool supportsTailCallFor(const CallBase *CB) = 0;
1692
  virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1693
  virtual MemCmpExpansionOptions
1694
  enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1695
  virtual bool enableSelectOptimize() = 0;
1696
  virtual bool enableInterleavedAccessVectorization() = 0;
1697
  virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1698
  virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1699
  virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1700
                                              unsigned BitWidth,
1701
                                              unsigned AddressSpace,
1702
                                              Align Alignment,
1703
                                              unsigned *Fast) = 0;
1704
  virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1705
  virtual bool haveFastSqrt(Type *Ty) = 0;
1706
  virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0;
1707
  virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1708
  virtual InstructionCost getFPOpCost(Type *Ty) = 0;
1709
  virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1710
                                                const APInt &Imm, Type *Ty) = 0;
1711
  virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1712
                                        TargetCostKind CostKind) = 0;
1713
  virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1714
                                            const APInt &Imm, Type *Ty,
1715
                                            TargetCostKind CostKind,
1716
                                            Instruction *Inst = nullptr) = 0;
1717
  virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1718
                                              const APInt &Imm, Type *Ty,
1719
                                              TargetCostKind CostKind) = 0;
1720
  virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1721
  virtual unsigned getRegisterClassForType(bool Vector,
1722
                                           Type *Ty = nullptr) const = 0;
1723
  virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
1724
  virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
1725
  virtual unsigned getMinVectorRegisterBitWidth() const = 0;
1726
  virtual std::optional<unsigned> getMaxVScale() const = 0;
1727
  virtual std::optional<unsigned> getVScaleForTuning() const = 0;
1728
  virtual bool
1729
  shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
1730
  virtual ElementCount getMinimumVF(unsigned ElemWidth,
1731
                                    bool IsScalable) const = 0;
1732
  virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
1733
  virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1734
                                     Type *ScalarValTy) const = 0;
1735
  virtual bool shouldConsiderAddressTypePromotion(
1736
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1737
  virtual unsigned getCacheLineSize() const = 0;
1738
  virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1739
  virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
1740
      const = 0;
1741
 
1742
  /// \return How much before a load we should place the prefetch
1743
  /// instruction.  This is currently measured in number of
1744
  /// instructions.
1745
  virtual unsigned getPrefetchDistance() const = 0;
1746
 
1747
  /// \return Some HW prefetchers can handle accesses up to a certain
1748
  /// constant stride.  This is the minimum stride in bytes where it
1749
  /// makes sense to start adding SW prefetches.  The default is 1,
1750
  /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
1751
  /// even below the HW prefetcher limit, and the arguments provided are
1752
  /// meant to serve as a basis for deciding this for a particular loop.
1753
  virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1754
                                        unsigned NumStridedMemAccesses,
1755
                                        unsigned NumPrefetches,
1756
                                        bool HasCall) const = 0;
1757
 
1758
  /// \return The maximum number of iterations to prefetch ahead.  If
1759
  /// the required number of iterations is more than this number, no
1760
  /// prefetching is performed.
1761
  virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1762
 
1763
  /// \return True if prefetching should also be done for writes.
1764
  virtual bool enableWritePrefetching() const = 0;
1765
 
1766
  /// \return if target want to issue a prefetch in address space \p AS.
1767
  virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
1768
 
1769
  virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1770
  virtual InstructionCost getArithmeticInstrCost(
1771
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1772
      OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
1773
      ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
1774
 
1775
  virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
1776
                                         ArrayRef<int> Mask,
1777
                                         TTI::TargetCostKind CostKind,
1778
                                         int Index, VectorType *SubTp,
1779
                                         ArrayRef<const Value *> Args) = 0;
1780
  virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
1781
                                           Type *Src, CastContextHint CCH,
1782
                                           TTI::TargetCostKind CostKind,
1783
                                           const Instruction *I) = 0;
1784
  virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1785
                                                   VectorType *VecTy,
1786
                                                   unsigned Index) = 0;
1787
  virtual InstructionCost getCFInstrCost(unsigned Opcode,
1788
                                         TTI::TargetCostKind CostKind,
1789
                                         const Instruction *I = nullptr) = 0;
1790
  virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1791
                                             Type *CondTy,
1792
                                             CmpInst::Predicate VecPred,
1793
                                             TTI::TargetCostKind CostKind,
1794
                                             const Instruction *I) = 0;
1795
  virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1796
                                             TTI::TargetCostKind CostKind,
1797
                                             unsigned Index, Value *Op0,
1798
                                             Value *Op1) = 0;
1799
  virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1800
                                             TTI::TargetCostKind CostKind,
1801
                                             unsigned Index) = 0;
1802
 
1803
  virtual InstructionCost
1804
  getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
1805
                            const APInt &DemandedDstElts,
1806
                            TTI::TargetCostKind CostKind) = 0;
1807
 
1808
  virtual InstructionCost
1809
  getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1810
                  unsigned AddressSpace, TTI::TargetCostKind CostKind,
1811
                  OperandValueInfo OpInfo, const Instruction *I) = 0;
1812
  virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
1813
                                            Align Alignment,
1814
                                            unsigned AddressSpace,
1815
                                            TTI::TargetCostKind CostKind,
1816
                                            const Instruction *I) = 0;
1817
  virtual InstructionCost
1818
  getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1819
                        unsigned AddressSpace,
1820
                        TTI::TargetCostKind CostKind) = 0;
1821
  virtual InstructionCost
1822
  getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
1823
                         bool VariableMask, Align Alignment,
1824
                         TTI::TargetCostKind CostKind,
1825
                         const Instruction *I = nullptr) = 0;
1826
 
1827
  virtual InstructionCost getInterleavedMemoryOpCost(
1828
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1829
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1830
      bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
1831
  virtual InstructionCost
1832
  getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
1833
                             std::optional<FastMathFlags> FMF,
1834
                             TTI::TargetCostKind CostKind) = 0;
1835
  virtual InstructionCost
1836
  getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
1837
                         TTI::TargetCostKind CostKind) = 0;
1838
  virtual InstructionCost getExtendedReductionCost(
1839
      unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1840
      std::optional<FastMathFlags> FMF,
1841
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
1842
  virtual InstructionCost getMulAccReductionCost(
1843
      bool IsUnsigned, Type *ResTy, VectorType *Ty,
1844
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
1845
  virtual InstructionCost
1846
  getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1847
                        TTI::TargetCostKind CostKind) = 0;
1848
  virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
1849
                                           ArrayRef<Type *> Tys,
1850
                                           TTI::TargetCostKind CostKind) = 0;
1851
  virtual unsigned getNumberOfParts(Type *Tp) = 0;
1852
  virtual InstructionCost
1853
  getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
1854
  virtual InstructionCost
1855
  getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1856
  virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1857
                                  MemIntrinsicInfo &Info) = 0;
1858
  virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1859
  virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1860
                                                   Type *ExpectedType) = 0;
1861
  virtual Type *getMemcpyLoopLoweringType(
1862
      LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1863
      unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1864
      std::optional<uint32_t> AtomicElementSize) const = 0;
1865
 
1866
  virtual void getMemcpyLoopResidualLoweringType(
1867
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1868
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1869
      unsigned SrcAlign, unsigned DestAlign,
1870
      std::optional<uint32_t> AtomicCpySize) const = 0;
1871
  virtual bool areInlineCompatible(const Function *Caller,
1872
                                   const Function *Callee) const = 0;
1873
  virtual bool areTypesABICompatible(const Function *Caller,
1874
                                     const Function *Callee,
1875
                                     const ArrayRef<Type *> &Types) const = 0;
1876
  virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1877
  virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1878
  virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1879
  virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1880
  virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1881
  virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1882
                                           Align Alignment,
1883
                                           unsigned AddrSpace) const = 0;
1884
  virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1885
                                            Align Alignment,
1886
                                            unsigned AddrSpace) const = 0;
1887
  virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
1888
                                           ElementCount VF) const = 0;
1889
  virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
1890
  virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1891
                                       unsigned ChainSizeInBytes,
1892
                                       VectorType *VecTy) const = 0;
1893
  virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1894
                                        unsigned ChainSizeInBytes,
1895
                                        VectorType *VecTy) const = 0;
1896
  virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1897
                                     ReductionFlags) const = 0;
1898
  virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1899
                                               ReductionFlags) const = 0;
1900
  virtual bool preferEpilogueVectorization() const = 0;
1901
 
1902
  virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1903
  virtual unsigned getGISelRematGlobalCost() const = 0;
1904
  virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
1905
  virtual bool enableScalableVectorization() const = 0;
1906
  virtual bool supportsScalableVectors() const = 0;
1907
  virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
1908
                                     Align Alignment) const = 0;
1909
  virtual VPLegalization
1910
  getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
1911
};
1912
 
1913
template <typename T>
1914
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1915
  T Impl;
1916
 
1917
public:
1918
  Model(T Impl) : Impl(std::move(Impl)) {}
1919
  ~Model() override = default;
1920
 
1921
  const DataLayout &getDataLayout() const override {
1922
    return Impl.getDataLayout();
1923
  }
1924
 
1925
  InstructionCost
1926
  getGEPCost(Type *PointeeType, const Value *Ptr,
1927
             ArrayRef<const Value *> Operands,
1928
             TargetTransformInfo::TargetCostKind CostKind) override {
1929
    return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind);
1930
  }
1931
  unsigned getInliningThresholdMultiplier() override {
1932
    return Impl.getInliningThresholdMultiplier();
1933
  }
1934
  unsigned adjustInliningThreshold(const CallBase *CB) override {
1935
    return Impl.adjustInliningThreshold(CB);
1936
  }
1937
  int getInlinerVectorBonusPercent() override {
1938
    return Impl.getInlinerVectorBonusPercent();
1939
  }
1940
  InstructionCost getMemcpyCost(const Instruction *I) override {
1941
    return Impl.getMemcpyCost(I);
1942
  }
1943
  InstructionCost getInstructionCost(const User *U,
1944
                                     ArrayRef<const Value *> Operands,
1945
                                     TargetCostKind CostKind) override {
1946
    return Impl.getInstructionCost(U, Operands, CostKind);
1947
  }
1948
  BranchProbability getPredictableBranchThreshold() override {
1949
    return Impl.getPredictableBranchThreshold();
1950
  }
1951
  bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
1952
  bool useGPUDivergenceAnalysis() override {
1953
    return Impl.useGPUDivergenceAnalysis();
1954
  }
1955
  bool isSourceOfDivergence(const Value *V) override {
1956
    return Impl.isSourceOfDivergence(V);
1957
  }
1958
 
1959
  bool isAlwaysUniform(const Value *V) override {
1960
    return Impl.isAlwaysUniform(V);
1961
  }
1962
 
1963
  unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
1964
 
1965
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1966
                                  Intrinsic::ID IID) const override {
1967
    return Impl.collectFlatAddressOperands(OpIndexes, IID);
1968
  }
1969
 
1970
  bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
1971
    return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
1972
  }
1973
 
1974
  bool
1975
  canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
1976
    return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
1977
  }
1978
 
1979
  unsigned getAssumedAddrSpace(const Value *V) const override {
1980
    return Impl.getAssumedAddrSpace(V);
1981
  }
1982
 
1983
  bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
1984
 
1985
  std::pair<const Value *, unsigned>
1986
  getPredicatedAddrSpace(const Value *V) const override {
1987
    return Impl.getPredicatedAddrSpace(V);
1988
  }
1989
 
1990
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
1991
                                          Value *NewV) const override {
1992
    return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
1993
  }
1994
 
1995
  bool isLoweredToCall(const Function *F) override {
1996
    return Impl.isLoweredToCall(F);
1997
  }
1998
  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1999
                               UnrollingPreferences &UP,
2000
                               OptimizationRemarkEmitter *ORE) override {
2001
    return Impl.getUnrollingPreferences(L, SE, UP, ORE);
2002
  }
2003
  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2004
                             PeelingPreferences &PP) override {
2005
    return Impl.getPeelingPreferences(L, SE, PP);
2006
  }
2007
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2008
                                AssumptionCache &AC, TargetLibraryInfo *LibInfo,
2009
                                HardwareLoopInfo &HWLoopInfo) override {
2010
    return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
2011
  }
2012
  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
2013
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
2014
                                   DominatorTree *DT,
2015
                                   LoopVectorizationLegality *LVL,
2016
                                   InterleavedAccessInfo *IAI) override {
2017
    return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
2018
  }
2019
  PredicationStyle emitGetActiveLaneMask() override {
2020
    return Impl.emitGetActiveLaneMask();
2021
  }
2022
  std::optional<Instruction *>
2023
  instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
2024
    return Impl.instCombineIntrinsic(IC, II);
2025
  }
2026
  std::optional<Value *>
2027
  simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
2028
                                   APInt DemandedMask, KnownBits &Known,
2029
                                   bool &KnownBitsComputed) override {
2030
    return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
2031
                                                 KnownBitsComputed);
2032
  }
2033
  std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
2034
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
2035
      APInt &UndefElts2, APInt &UndefElts3,
2036
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
2037
          SimplifyAndSetOp) override {
2038
    return Impl.simplifyDemandedVectorEltsIntrinsic(
2039
        IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
2040
        SimplifyAndSetOp);
2041
  }
2042
  bool isLegalAddImmediate(int64_t Imm) override {
2043
    return Impl.isLegalAddImmediate(Imm);
2044
  }
2045
  bool isLegalICmpImmediate(int64_t Imm) override {
2046
    return Impl.isLegalICmpImmediate(Imm);
2047
  }
2048
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
2049
                             bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
2050
                             Instruction *I) override {
2051
    return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2052
                                      AddrSpace, I);
2053
  }
2054
  bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
2055
                     const TargetTransformInfo::LSRCost &C2) override {
2056
    return Impl.isLSRCostLess(C1, C2);
2057
  }
2058
  bool isNumRegsMajorCostOfLSR() override {
2059
    return Impl.isNumRegsMajorCostOfLSR();
2060
  }
2061
  bool isProfitableLSRChainElement(Instruction *I) override {
2062
    return Impl.isProfitableLSRChainElement(I);
2063
  }
2064
  bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
2065
  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
2066
                  DominatorTree *DT, AssumptionCache *AC,
2067
                  TargetLibraryInfo *LibInfo) override {
2068
    return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
2069
  }
2070
  AddressingModeKind
2071
    getPreferredAddressingMode(const Loop *L,
2072
                               ScalarEvolution *SE) const override {
2073
    return Impl.getPreferredAddressingMode(L, SE);
2074
  }
2075
  bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
2076
    return Impl.isLegalMaskedStore(DataType, Alignment);
2077
  }
2078
  bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
2079
    return Impl.isLegalMaskedLoad(DataType, Alignment);
2080
  }
2081
  bool isLegalNTStore(Type *DataType, Align Alignment) override {
2082
    return Impl.isLegalNTStore(DataType, Alignment);
2083
  }
2084
  bool isLegalNTLoad(Type *DataType, Align Alignment) override {
2085
    return Impl.isLegalNTLoad(DataType, Alignment);
2086
  }
2087
  bool isLegalBroadcastLoad(Type *ElementTy,
2088
                            ElementCount NumElements) const override {
2089
    return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
2090
  }
2091
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
2092
    return Impl.isLegalMaskedScatter(DataType, Alignment);
2093
  }
2094
  bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
2095
    return Impl.isLegalMaskedGather(DataType, Alignment);
2096
  }
2097
  bool forceScalarizeMaskedGather(VectorType *DataType,
2098
                                  Align Alignment) override {
2099
    return Impl.forceScalarizeMaskedGather(DataType, Alignment);
2100
  }
2101
  bool forceScalarizeMaskedScatter(VectorType *DataType,
2102
                                   Align Alignment) override {
2103
    return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
2104
  }
2105
  bool isLegalMaskedCompressStore(Type *DataType) override {
2106
    return Impl.isLegalMaskedCompressStore(DataType);
2107
  }
2108
  bool isLegalMaskedExpandLoad(Type *DataType) override {
2109
    return Impl.isLegalMaskedExpandLoad(DataType);
2110
  }
2111
  bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2112
                       const SmallBitVector &OpcodeMask) const override {
2113
    return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
2114
  }
2115
  bool enableOrderedReductions() override {
2116
    return Impl.enableOrderedReductions();
2117
  }
2118
  bool hasDivRemOp(Type *DataType, bool IsSigned) override {
2119
    return Impl.hasDivRemOp(DataType, IsSigned);
2120
  }
2121
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
2122
    return Impl.hasVolatileVariant(I, AddrSpace);
2123
  }
2124
  bool prefersVectorizedAddressing() override {
2125
    return Impl.prefersVectorizedAddressing();
2126
  }
2127
  InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2128
                                       int64_t BaseOffset, bool HasBaseReg,
2129
                                       int64_t Scale,
2130
                                       unsigned AddrSpace) override {
2131
    return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2132
                                     AddrSpace);
2133
  }
2134
  bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
2135
  bool isTruncateFree(Type *Ty1, Type *Ty2) override {
2136
    return Impl.isTruncateFree(Ty1, Ty2);
2137
  }
2138
  bool isProfitableToHoist(Instruction *I) override {
2139
    return Impl.isProfitableToHoist(I);
2140
  }
2141
  bool useAA() override { return Impl.useAA(); }
2142
  bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
2143
  unsigned getRegUsageForType(Type *Ty) override {
2144
    return Impl.getRegUsageForType(Ty);
2145
  }
2146
  bool shouldBuildLookupTables() override {
2147
    return Impl.shouldBuildLookupTables();
2148
  }
2149
  bool shouldBuildLookupTablesForConstant(Constant *C) override {
2150
    return Impl.shouldBuildLookupTablesForConstant(C);
2151
  }
2152
  bool shouldBuildRelLookupTables() override {
2153
    return Impl.shouldBuildRelLookupTables();
2154
  }
2155
  bool useColdCCForColdCall(Function &F) override {
2156
    return Impl.useColdCCForColdCall(F);
2157
  }
2158
 
2159
  InstructionCost getScalarizationOverhead(VectorType *Ty,
2160
                                           const APInt &DemandedElts,
2161
                                           bool Insert, bool Extract,
2162
                                           TargetCostKind CostKind) override {
2163
    return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
2164
                                         CostKind);
2165
  }
2166
  InstructionCost
2167
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
2168
                                   ArrayRef<Type *> Tys,
2169
                                   TargetCostKind CostKind) override {
2170
    return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
2171
  }
2172
 
2173
  bool supportsEfficientVectorElementLoadStore() override {
2174
    return Impl.supportsEfficientVectorElementLoadStore();
2175
  }
2176
 
2177
  bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
2178
  bool supportsTailCallFor(const CallBase *CB) override {
2179
    return Impl.supportsTailCallFor(CB);
2180
  }
2181
 
2182
  bool enableAggressiveInterleaving(bool LoopHasReductions) override {
2183
    return Impl.enableAggressiveInterleaving(LoopHasReductions);
2184
  }
2185
  MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
2186
                                               bool IsZeroCmp) const override {
2187
    return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
2188
  }
2189
  bool enableInterleavedAccessVectorization() override {
2190
    return Impl.enableInterleavedAccessVectorization();
2191
  }
2192
  bool enableSelectOptimize() override {
2193
    return Impl.enableSelectOptimize();
2194
  }
2195
  bool enableMaskedInterleavedAccessVectorization() override {
2196
    return Impl.enableMaskedInterleavedAccessVectorization();
2197
  }
2198
  bool isFPVectorizationPotentiallyUnsafe() override {
2199
    return Impl.isFPVectorizationPotentiallyUnsafe();
2200
  }
2201
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
2202
                                      unsigned AddressSpace, Align Alignment,
2203
                                      unsigned *Fast) override {
2204
    return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
2205
                                               Alignment, Fast);
2206
  }
2207
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
2208
    return Impl.getPopcntSupport(IntTyWidthInBit);
2209
  }
2210
  bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
2211
 
2212
  bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
2213
    return Impl.isExpensiveToSpeculativelyExecute(I);
2214
  }
2215
 
2216
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
2217
    return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
2218
  }
2219
 
2220
  InstructionCost getFPOpCost(Type *Ty) override {
2221
    return Impl.getFPOpCost(Ty);
2222
  }
2223
 
2224
  InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
2225
                                        const APInt &Imm, Type *Ty) override {
2226
    return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
2227
  }
2228
  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
2229
                                TargetCostKind CostKind) override {
2230
    return Impl.getIntImmCost(Imm, Ty, CostKind);
2231
  }
2232
  InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
2233
                                    const APInt &Imm, Type *Ty,
2234
                                    TargetCostKind CostKind,
2235
                                    Instruction *Inst = nullptr) override {
2236
    return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
2237
  }
2238
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
2239
                                      const APInt &Imm, Type *Ty,
2240
                                      TargetCostKind CostKind) override {
2241
    return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
2242
  }
2243
  unsigned getNumberOfRegisters(unsigned ClassID) const override {
2244
    return Impl.getNumberOfRegisters(ClassID);
2245
  }
2246
  unsigned getRegisterClassForType(bool Vector,
2247
                                   Type *Ty = nullptr) const override {
2248
    return Impl.getRegisterClassForType(Vector, Ty);
2249
  }
2250
  const char *getRegisterClassName(unsigned ClassID) const override {
2251
    return Impl.getRegisterClassName(ClassID);
2252
  }
2253
  TypeSize getRegisterBitWidth(RegisterKind K) const override {
2254
    return Impl.getRegisterBitWidth(K);
2255
  }
2256
  unsigned getMinVectorRegisterBitWidth() const override {
2257
    return Impl.getMinVectorRegisterBitWidth();
2258
  }
2259
  std::optional<unsigned> getMaxVScale() const override {
2260
    return Impl.getMaxVScale();
2261
  }
2262
  std::optional<unsigned> getVScaleForTuning() const override {
2263
    return Impl.getVScaleForTuning();
2264
  }
2265
  bool shouldMaximizeVectorBandwidth(
2266
      TargetTransformInfo::RegisterKind K) const override {
2267
    return Impl.shouldMaximizeVectorBandwidth(K);
2268
  }
2269
  ElementCount getMinimumVF(unsigned ElemWidth,
2270
                            bool IsScalable) const override {
2271
    return Impl.getMinimumVF(ElemWidth, IsScalable);
2272
  }
2273
  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
2274
    return Impl.getMaximumVF(ElemWidth, Opcode);
2275
  }
2276
  unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
2277
                             Type *ScalarValTy) const override {
2278
    return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
2279
  }
2280
  bool shouldConsiderAddressTypePromotion(
2281
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
2282
    return Impl.shouldConsiderAddressTypePromotion(
2283
        I, AllowPromotionWithoutCommonHeader);
2284
  }
2285
  unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
2286
  std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
2287
    return Impl.getCacheSize(Level);
2288
  }
2289
  std::optional<unsigned>
2290
  getCacheAssociativity(CacheLevel Level) const override {
2291
    return Impl.getCacheAssociativity(Level);
2292
  }
2293
 
2294
  /// Return the preferred prefetch distance in terms of instructions.
2295
  ///
2296
  unsigned getPrefetchDistance() const override {
2297
    return Impl.getPrefetchDistance();
2298
  }
2299
 
2300
  /// Return the minimum stride necessary to trigger software
2301
  /// prefetching.
2302
  ///
2303
  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2304
                                unsigned NumStridedMemAccesses,
2305
                                unsigned NumPrefetches,
2306
                                bool HasCall) const override {
2307
    return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
2308
                                     NumPrefetches, HasCall);
2309
  }
2310
 
2311
  /// Return the maximum prefetch distance in terms of loop
2312
  /// iterations.
2313
  ///
2314
  unsigned getMaxPrefetchIterationsAhead() const override {
2315
    return Impl.getMaxPrefetchIterationsAhead();
2316
  }
2317
 
2318
  /// \return True if prefetching should also be done for writes.
2319
  bool enableWritePrefetching() const override {
2320
    return Impl.enableWritePrefetching();
2321
  }
2322
 
2323
  /// \return if target want to issue a prefetch in address space \p AS.
2324
  bool shouldPrefetchAddressSpace(unsigned AS) const override {
2325
    return Impl.shouldPrefetchAddressSpace(AS);
2326
  }
2327
 
2328
  unsigned getMaxInterleaveFactor(unsigned VF) override {
2329
    return Impl.getMaxInterleaveFactor(VF);
2330
  }
2331
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2332
                                            unsigned &JTSize,
2333
                                            ProfileSummaryInfo *PSI,
2334
                                            BlockFrequencyInfo *BFI) override {
2335
    return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2336
  }
2337
  InstructionCost getArithmeticInstrCost(
2338
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2339
      OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2340
      ArrayRef<const Value *> Args,
2341
      const Instruction *CxtI = nullptr) override {
2342
    return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2343
                                       Args, CxtI);
2344
  }
2345
 
2346
  InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
2347
                                 ArrayRef<int> Mask,
2348
                                 TTI::TargetCostKind CostKind, int Index,
2349
                                 VectorType *SubTp,
2350
                                 ArrayRef<const Value *> Args) override {
2351
    return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
2352
  }
2353
  InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2354
                                   CastContextHint CCH,
2355
                                   TTI::TargetCostKind CostKind,
2356
                                   const Instruction *I) override {
2357
    return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2358
  }
2359
  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2360
                                           VectorType *VecTy,
2361
                                           unsigned Index) override {
2362
    return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2363
  }
2364
  InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
2365
                                 const Instruction *I = nullptr) override {
2366
    return Impl.getCFInstrCost(Opcode, CostKind, I);
2367
  }
2368
  InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2369
                                     CmpInst::Predicate VecPred,
2370
                                     TTI::TargetCostKind CostKind,
2371
                                     const Instruction *I) override {
2372
    return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2373
  }
2374
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2375
                                     TTI::TargetCostKind CostKind,
2376
                                     unsigned Index, Value *Op0,
2377
                                     Value *Op1) override {
2378
    return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
2379
  }
2380
  InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2381
                                     TTI::TargetCostKind CostKind,
2382
                                     unsigned Index) override {
2383
    return Impl.getVectorInstrCost(I, Val, CostKind, Index);
2384
  }
2385
  InstructionCost
2386
  getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2387
                            const APInt &DemandedDstElts,
2388
                            TTI::TargetCostKind CostKind) override {
2389
    return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
2390
                                          DemandedDstElts, CostKind);
2391
  }
2392
  InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2393
                                  unsigned AddressSpace,
2394
                                  TTI::TargetCostKind CostKind,
2395
                                  OperandValueInfo OpInfo,
2396
                                  const Instruction *I) override {
2397
    return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
2398
                                OpInfo, I);
2399
  }
2400
  InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2401
                                    unsigned AddressSpace,
2402
                                    TTI::TargetCostKind CostKind,
2403
                                    const Instruction *I) override {
2404
    return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2405
                                  CostKind, I);
2406
  }
2407
  InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
2408
                                        Align Alignment, unsigned AddressSpace,
2409
                                        TTI::TargetCostKind CostKind) override {
2410
    return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2411
                                      CostKind);
2412
  }
2413
  InstructionCost
2414
  getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2415
                         bool VariableMask, Align Alignment,
2416
                         TTI::TargetCostKind CostKind,
2417
                         const Instruction *I = nullptr) override {
2418
    return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2419
                                       Alignment, CostKind, I);
2420
  }
2421
  InstructionCost getInterleavedMemoryOpCost(
2422
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2423
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2424
      bool UseMaskForCond, bool UseMaskForGaps) override {
2425
    return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2426
                                           Alignment, AddressSpace, CostKind,
2427
                                           UseMaskForCond, UseMaskForGaps);
2428
  }
2429
  InstructionCost
2430
  getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2431
                             std::optional<FastMathFlags> FMF,
2432
                             TTI::TargetCostKind CostKind) override {
2433
    return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
2434
  }
2435
  InstructionCost
2436
  getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
2437
                         TTI::TargetCostKind CostKind) override {
2438
    return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
2439
  }
2440
  InstructionCost getExtendedReductionCost(
2441
      unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2442
      std::optional<FastMathFlags> FMF,
2443
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
2444
    return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
2445
                                         CostKind);
2446
  }
2447
  InstructionCost getMulAccReductionCost(
2448
      bool IsUnsigned, Type *ResTy, VectorType *Ty,
2449
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
2450
    return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
2451
  }
2452
  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2453
                                        TTI::TargetCostKind CostKind) override {
2454
    return Impl.getIntrinsicInstrCost(ICA, CostKind);
2455
  }
2456
  InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2457
                                   ArrayRef<Type *> Tys,
2458
                                   TTI::TargetCostKind CostKind) override {
2459
    return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
2460
  }
2461
  unsigned getNumberOfParts(Type *Tp) override {
2462
    return Impl.getNumberOfParts(Tp);
2463
  }
2464
  InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2465
                                            const SCEV *Ptr) override {
2466
    return Impl.getAddressComputationCost(Ty, SE, Ptr);
2467
  }
2468
  InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2469
    return Impl.getCostOfKeepingLiveOverCall(Tys);
2470
  }
2471
  bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2472
                          MemIntrinsicInfo &Info) override {
2473
    return Impl.getTgtMemIntrinsic(Inst, Info);
2474
  }
2475
  unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2476
    return Impl.getAtomicMemIntrinsicMaxElementSize();
2477
  }
2478
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2479
                                           Type *ExpectedType) override {
2480
    return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2481
  }
2482
  Type *getMemcpyLoopLoweringType(
2483
      LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2484
      unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2485
      std::optional<uint32_t> AtomicElementSize) const override {
2486
    return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2487
                                          DestAddrSpace, SrcAlign, DestAlign,
2488
                                          AtomicElementSize);
2489
  }
2490
  void getMemcpyLoopResidualLoweringType(
2491
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2492
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2493
      unsigned SrcAlign, unsigned DestAlign,
2494
      std::optional<uint32_t> AtomicCpySize) const override {
2495
    Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
2496
                                           SrcAddrSpace, DestAddrSpace,
2497
                                           SrcAlign, DestAlign, AtomicCpySize);
2498
  }
2499
  bool areInlineCompatible(const Function *Caller,
2500
                           const Function *Callee) const override {
2501
    return Impl.areInlineCompatible(Caller, Callee);
2502
  }
2503
  bool areTypesABICompatible(const Function *Caller, const Function *Callee,
2504
                             const ArrayRef<Type *> &Types) const override {
2505
    return Impl.areTypesABICompatible(Caller, Callee, Types);
2506
  }
2507
  bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2508
    return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2509
  }
2510
  bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2511
    return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2512
  }
2513
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2514
    return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2515
  }
2516
  bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2517
    return Impl.isLegalToVectorizeLoad(LI);
2518
  }
2519
  bool isLegalToVectorizeStore(StoreInst *SI) const override {
2520
    return Impl.isLegalToVectorizeStore(SI);
2521
  }
2522
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
2523
                                   unsigned AddrSpace) const override {
2524
    return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2525
                                            AddrSpace);
2526
  }
2527
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
2528
                                    unsigned AddrSpace) const override {
2529
    return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2530
                                             AddrSpace);
2531
  }
2532
  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
2533
                                   ElementCount VF) const override {
2534
    return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
2535
  }
2536
  bool isElementTypeLegalForScalableVector(Type *Ty) const override {
2537
    return Impl.isElementTypeLegalForScalableVector(Ty);
2538
  }
2539
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2540
                               unsigned ChainSizeInBytes,
2541
                               VectorType *VecTy) const override {
2542
    return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2543
  }
2544
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2545
                                unsigned ChainSizeInBytes,
2546
                                VectorType *VecTy) const override {
2547
    return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2548
  }
2549
  bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2550
                             ReductionFlags Flags) const override {
2551
    return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2552
  }
2553
  bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2554
                                       ReductionFlags Flags) const override {
2555
    return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2556
  }
2557
  bool preferEpilogueVectorization() const override {
2558
    return Impl.preferEpilogueVectorization();
2559
  }
2560
 
2561
  bool shouldExpandReduction(const IntrinsicInst *II) const override {
2562
    return Impl.shouldExpandReduction(II);
2563
  }
2564
 
2565
  unsigned getGISelRematGlobalCost() const override {
2566
    return Impl.getGISelRematGlobalCost();
2567
  }
2568
 
2569
  unsigned getMinTripCountTailFoldingThreshold() const override {
2570
    return Impl.getMinTripCountTailFoldingThreshold();
2571
  }
2572
 
2573
  bool supportsScalableVectors() const override {
2574
    return Impl.supportsScalableVectors();
2575
  }
2576
 
2577
  bool enableScalableVectorization() const override {
2578
    return Impl.enableScalableVectorization();
2579
  }
2580
 
2581
  bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2582
                             Align Alignment) const override {
2583
    return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
2584
  }
2585
 
2586
  VPLegalization
2587
  getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
2588
    return Impl.getVPLegalizationStrategy(PI);
2589
  }
2590
};
2591
 
2592
template <typename T>
2593
TargetTransformInfo::TargetTransformInfo(T Impl)
2594
    : TTIImpl(new Model<T>(Impl)) {}
2595
 
2596
/// Analysis pass providing the \c TargetTransformInfo.
2597
///
2598
/// The core idea of the TargetIRAnalysis is to expose an interface through
2599
/// which LLVM targets can analyze and provide information about the middle
2600
/// end's target-independent IR. This supports use cases such as target-aware
2601
/// cost modeling of IR constructs.
2602
///
2603
/// This is a function analysis because much of the cost modeling for targets
2604
/// is done in a subtarget specific way and LLVM supports compiling different
2605
/// functions targeting different subtargets in order to support runtime
2606
/// dispatch according to the observed subtarget.
2607
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2608
public:
2609
  typedef TargetTransformInfo Result;
2610
 
2611
  /// Default construct a target IR analysis.
2612
  ///
2613
  /// This will use the module's datalayout to construct a baseline
2614
  /// conservative TTI result.
2615
  TargetIRAnalysis();
2616
 
2617
  /// Construct an IR analysis pass around a target-provide callback.
2618
  ///
2619
  /// The callback will be called with a particular function for which the TTI
2620
  /// is needed and must return a TTI object for that function.
2621
  TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2622
 
2623
  // Value semantics. We spell out the constructors for MSVC.
2624
  TargetIRAnalysis(const TargetIRAnalysis &Arg)
2625
      : TTICallback(Arg.TTICallback) {}
2626
  TargetIRAnalysis(TargetIRAnalysis &&Arg)
2627
      : TTICallback(std::move(Arg.TTICallback)) {}
2628
  TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
2629
    TTICallback = RHS.TTICallback;
2630
    return *this;
2631
  }
2632
  TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
2633
    TTICallback = std::move(RHS.TTICallback);
2634
    return *this;
2635
  }
2636
 
2637
  Result run(const Function &F, FunctionAnalysisManager &);
2638
 
2639
private:
2640
  friend AnalysisInfoMixin<TargetIRAnalysis>;
2641
  static AnalysisKey Key;
2642
 
2643
  /// The callback used to produce a result.
2644
  ///
2645
  /// We use a completely opaque callback so that targets can provide whatever
2646
  /// mechanism they desire for constructing the TTI for a given function.
2647
  ///
2648
  /// FIXME: Should we really use std::function? It's relatively inefficient.
2649
  /// It might be possible to arrange for even stateful callbacks to outlive
2650
  /// the analysis and thus use a function_ref which would be lighter weight.
2651
  /// This may also be less error prone as the callback is likely to reference
2652
  /// the external TargetMachine, and that reference needs to never dangle.
2653
  std::function<Result(const Function &)> TTICallback;
2654
 
2655
  /// Helper function used as the callback in the default constructor.
2656
  static Result getDefaultTTI(const Function &F);
2657
};
2658
 
2659
/// Wrapper pass for TargetTransformInfo.
2660
///
2661
/// This pass can be constructed from a TTI object which it stores internally
2662
/// and is queried by passes.
2663
class TargetTransformInfoWrapperPass : public ImmutablePass {
2664
  TargetIRAnalysis TIRA;
2665
  std::optional<TargetTransformInfo> TTI;
2666
 
2667
  virtual void anchor();
2668
 
2669
public:
2670
  static char ID;
2671
 
2672
  /// We must provide a default constructor for the pass but it should
2673
  /// never be used.
2674
  ///
2675
  /// Use the constructor below or call one of the creation routines.
2676
  TargetTransformInfoWrapperPass();
2677
 
2678
  explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2679
 
2680
  TargetTransformInfo &getTTI(const Function &F);
2681
};
2682
 
2683
/// Create an analysis pass wrapper around a TTI object.
2684
///
2685
/// This analysis pass just holds the TTI instance and makes it available to
2686
/// clients.
2687
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2688
 
2689
} // namespace llvm
2690
 
2691
#endif