Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// \file |
||
| 9 | /// This pass exposes codegen information to IR-level passes. Every |
||
| 10 | /// transformation that uses codegen information is broken into three parts: |
||
| 11 | /// 1. The IR-level analysis pass. |
||
| 12 | /// 2. The IR-level transformation interface which provides the needed |
||
| 13 | /// information. |
||
| 14 | /// 3. Codegen-level implementation which uses target-specific hooks. |
||
| 15 | /// |
||
| 16 | /// This file defines #2, which is the interface that IR-level transformations |
||
| 17 | /// use for querying the codegen. |
||
| 18 | /// |
||
| 19 | //===----------------------------------------------------------------------===// |
||
| 20 | |||
| 21 | #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
||
| 22 | #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
||
| 23 | |||
| 24 | #include "llvm/ADT/SmallBitVector.h" |
||
| 25 | #include "llvm/IR/FMF.h" |
||
| 26 | #include "llvm/IR/InstrTypes.h" |
||
| 27 | #include "llvm/IR/PassManager.h" |
||
| 28 | #include "llvm/Pass.h" |
||
| 29 | #include "llvm/Support/AtomicOrdering.h" |
||
| 30 | #include "llvm/Support/BranchProbability.h" |
||
| 31 | #include "llvm/Support/InstructionCost.h" |
||
| 32 | #include <functional> |
||
| 33 | #include <optional> |
||
| 34 | #include <utility> |
||
| 35 | |||
| 36 | namespace llvm { |
||
| 37 | |||
| 38 | namespace Intrinsic { |
||
| 39 | typedef unsigned ID; |
||
| 40 | } |
||
| 41 | |||
| 42 | class AssumptionCache; |
||
| 43 | class BlockFrequencyInfo; |
||
| 44 | class DominatorTree; |
||
| 45 | class BranchInst; |
||
| 46 | class CallBase; |
||
| 47 | class Function; |
||
| 48 | class GlobalValue; |
||
| 49 | class InstCombiner; |
||
| 50 | class OptimizationRemarkEmitter; |
||
| 51 | class InterleavedAccessInfo; |
||
| 52 | class IntrinsicInst; |
||
| 53 | class LoadInst; |
||
| 54 | class Loop; |
||
| 55 | class LoopInfo; |
||
| 56 | class LoopVectorizationLegality; |
||
| 57 | class ProfileSummaryInfo; |
||
| 58 | class RecurrenceDescriptor; |
||
| 59 | class SCEV; |
||
| 60 | class ScalarEvolution; |
||
| 61 | class StoreInst; |
||
| 62 | class SwitchInst; |
||
| 63 | class TargetLibraryInfo; |
||
| 64 | class Type; |
||
| 65 | class User; |
||
| 66 | class Value; |
||
| 67 | class VPIntrinsic; |
||
| 68 | struct KnownBits; |
||
| 69 | |||
| 70 | /// Information about a load/store intrinsic defined by the target. |
||
| 71 | struct MemIntrinsicInfo { |
||
| 72 | /// This is the pointer that the intrinsic is loading from or storing to. |
||
| 73 | /// If this is non-null, then analysis/optimization passes can assume that |
||
| 74 | /// this intrinsic is functionally equivalent to a load/store from this |
||
| 75 | /// pointer. |
||
| 76 | Value *PtrVal = nullptr; |
||
| 77 | |||
| 78 | // Ordering for atomic operations. |
||
| 79 | AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
||
| 80 | |||
| 81 | // Same Id is set by the target for corresponding load/store intrinsics. |
||
| 82 | unsigned short MatchingId = 0; |
||
| 83 | |||
| 84 | bool ReadMem = false; |
||
| 85 | bool WriteMem = false; |
||
| 86 | bool IsVolatile = false; |
||
| 87 | |||
| 88 | bool isUnordered() const { |
||
| 89 | return (Ordering == AtomicOrdering::NotAtomic || |
||
| 90 | Ordering == AtomicOrdering::Unordered) && |
||
| 91 | !IsVolatile; |
||
| 92 | } |
||
| 93 | }; |
||
| 94 | |||
| 95 | /// Attributes of a target dependent hardware loop. |
||
| 96 | struct HardwareLoopInfo { |
||
| 97 | HardwareLoopInfo() = delete; |
||
| 98 | HardwareLoopInfo(Loop *L) : L(L) {} |
||
| 99 | Loop *L = nullptr; |
||
| 100 | BasicBlock *ExitBlock = nullptr; |
||
| 101 | BranchInst *ExitBranch = nullptr; |
||
| 102 | const SCEV *ExitCount = nullptr; |
||
| 103 | IntegerType *CountType = nullptr; |
||
| 104 | Value *LoopDecrement = nullptr; // Decrement the loop counter by this |
||
| 105 | // value in every iteration. |
||
| 106 | bool IsNestingLegal = false; // Can a hardware loop be a parent to |
||
| 107 | // another hardware loop? |
||
| 108 | bool CounterInReg = false; // Should loop counter be updated in |
||
| 109 | // the loop via a phi? |
||
| 110 | bool PerformEntryTest = false; // Generate the intrinsic which also performs |
||
| 111 | // icmp ne zero on the loop counter value and |
||
| 112 | // produces an i1 to guard the loop entry. |
||
| 113 | bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, |
||
| 114 | DominatorTree &DT, bool ForceNestedLoop = false, |
||
| 115 | bool ForceHardwareLoopPHI = false); |
||
| 116 | bool canAnalyze(LoopInfo &LI); |
||
| 117 | }; |
||
| 118 | |||
| 119 | class IntrinsicCostAttributes { |
||
| 120 | const IntrinsicInst *II = nullptr; |
||
| 121 | Type *RetTy = nullptr; |
||
| 122 | Intrinsic::ID IID; |
||
| 123 | SmallVector<Type *, 4> ParamTys; |
||
| 124 | SmallVector<const Value *, 4> Arguments; |
||
| 125 | FastMathFlags FMF; |
||
| 126 | // If ScalarizationCost is UINT_MAX, the cost of scalarizing the |
||
| 127 | // arguments and the return value will be computed based on types. |
||
| 128 | InstructionCost ScalarizationCost = InstructionCost::getInvalid(); |
||
| 129 | |||
| 130 | public: |
||
| 131 | IntrinsicCostAttributes( |
||
| 132 | Intrinsic::ID Id, const CallBase &CI, |
||
| 133 | InstructionCost ScalarCost = InstructionCost::getInvalid(), |
||
| 134 | bool TypeBasedOnly = false); |
||
| 135 | |||
| 136 | IntrinsicCostAttributes( |
||
| 137 | Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys, |
||
| 138 | FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr, |
||
| 139 | InstructionCost ScalarCost = InstructionCost::getInvalid()); |
||
| 140 | |||
| 141 | IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, |
||
| 142 | ArrayRef<const Value *> Args); |
||
| 143 | |||
| 144 | IntrinsicCostAttributes( |
||
| 145 | Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args, |
||
| 146 | ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(), |
||
| 147 | const IntrinsicInst *I = nullptr, |
||
| 148 | InstructionCost ScalarCost = InstructionCost::getInvalid()); |
||
| 149 | |||
| 150 | Intrinsic::ID getID() const { return IID; } |
||
| 151 | const IntrinsicInst *getInst() const { return II; } |
||
| 152 | Type *getReturnType() const { return RetTy; } |
||
| 153 | FastMathFlags getFlags() const { return FMF; } |
||
| 154 | InstructionCost getScalarizationCost() const { return ScalarizationCost; } |
||
| 155 | const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; } |
||
| 156 | const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; } |
||
| 157 | |||
| 158 | bool isTypeBasedOnly() const { |
||
| 159 | return Arguments.empty(); |
||
| 160 | } |
||
| 161 | |||
| 162 | bool skipScalarizationCost() const { return ScalarizationCost.isValid(); } |
||
| 163 | }; |
||
| 164 | |||
| 165 | enum class PredicationStyle { None, Data, DataAndControlFlow }; |
||
| 166 | |||
| 167 | class TargetTransformInfo; |
||
| 168 | typedef TargetTransformInfo TTI; |
||
| 169 | |||
| 170 | /// This pass provides access to the codegen interfaces that are needed |
||
| 171 | /// for IR-level transformations. |
||
| 172 | class TargetTransformInfo { |
||
| 173 | public: |
||
| 174 | /// Construct a TTI object using a type implementing the \c Concept |
||
| 175 | /// API below. |
||
| 176 | /// |
||
| 177 | /// This is used by targets to construct a TTI wrapping their target-specific |
||
| 178 | /// implementation that encodes appropriate costs for their target. |
||
| 179 | template <typename T> TargetTransformInfo(T Impl); |
||
| 180 | |||
| 181 | /// Construct a baseline TTI object using a minimal implementation of |
||
| 182 | /// the \c Concept API below. |
||
| 183 | /// |
||
| 184 | /// The TTI implementation will reflect the information in the DataLayout |
||
| 185 | /// provided if non-null. |
||
| 186 | explicit TargetTransformInfo(const DataLayout &DL); |
||
| 187 | |||
| 188 | // Provide move semantics. |
||
| 189 | TargetTransformInfo(TargetTransformInfo &&Arg); |
||
| 190 | TargetTransformInfo &operator=(TargetTransformInfo &&RHS); |
||
| 191 | |||
| 192 | // We need to define the destructor out-of-line to define our sub-classes |
||
| 193 | // out-of-line. |
||
| 194 | ~TargetTransformInfo(); |
||
| 195 | |||
| 196 | /// Handle the invalidation of this information. |
||
| 197 | /// |
||
| 198 | /// When used as a result of \c TargetIRAnalysis this method will be called |
||
| 199 | /// when the function this was computed for changes. When it returns false, |
||
| 200 | /// the information is preserved across those changes. |
||
| 201 | bool invalidate(Function &, const PreservedAnalyses &, |
||
| 202 | FunctionAnalysisManager::Invalidator &) { |
||
| 203 | // FIXME: We should probably in some way ensure that the subtarget |
||
| 204 | // information for a function hasn't changed. |
||
| 205 | return false; |
||
| 206 | } |
||
| 207 | |||
| 208 | /// \name Generic Target Information |
||
| 209 | /// @{ |
||
| 210 | |||
| 211 | /// The kind of cost model. |
||
| 212 | /// |
||
| 213 | /// There are several different cost models that can be customized by the |
||
| 214 | /// target. The normalization of each cost model may be target specific. |
||
| 215 | /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as |
||
| 216 | /// those derived from MCSchedModel::LoopMicroOpBufferSize etc. |
||
| 217 | enum TargetCostKind { |
||
| 218 | TCK_RecipThroughput, ///< Reciprocal throughput. |
||
| 219 | TCK_Latency, ///< The latency of instruction. |
||
| 220 | TCK_CodeSize, ///< Instruction code size. |
||
| 221 | TCK_SizeAndLatency ///< The weighted sum of size and latency. |
||
| 222 | }; |
||
| 223 | |||
| 224 | /// Underlying constants for 'cost' values in this interface. |
||
| 225 | /// |
||
| 226 | /// Many APIs in this interface return a cost. This enum defines the |
||
| 227 | /// fundamental values that should be used to interpret (and produce) those |
||
| 228 | /// costs. The costs are returned as an int rather than a member of this |
||
| 229 | /// enumeration because it is expected that the cost of one IR instruction |
||
| 230 | /// may have a multiplicative factor to it or otherwise won't fit directly |
||
| 231 | /// into the enum. Moreover, it is common to sum or average costs which works |
||
| 232 | /// better as simple integral values. Thus this enum only provides constants. |
||
| 233 | /// Also note that the returned costs are signed integers to make it natural |
||
| 234 | /// to add, subtract, and test with zero (a common boundary condition). It is |
||
| 235 | /// not expected that 2^32 is a realistic cost to be modeling at any point. |
||
| 236 | /// |
||
| 237 | /// Note that these costs should usually reflect the intersection of code-size |
||
| 238 | /// cost and execution cost. A free instruction is typically one that folds |
||
| 239 | /// into another instruction. For example, reg-to-reg moves can often be |
||
| 240 | /// skipped by renaming the registers in the CPU, but they still are encoded |
||
| 241 | /// and thus wouldn't be considered 'free' here. |
||
| 242 | enum TargetCostConstants { |
||
| 243 | TCC_Free = 0, ///< Expected to fold away in lowering. |
||
| 244 | TCC_Basic = 1, ///< The cost of a typical 'add' instruction. |
||
| 245 | TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. |
||
| 246 | }; |
||
| 247 | |||
| 248 | /// Estimate the cost of a GEP operation when lowered. |
||
| 249 | InstructionCost |
||
| 250 | getGEPCost(Type *PointeeType, const Value *Ptr, |
||
| 251 | ArrayRef<const Value *> Operands, |
||
| 252 | TargetCostKind CostKind = TCK_SizeAndLatency) const; |
||
| 253 | |||
| 254 | /// \returns A value by which our inlining threshold should be multiplied. |
||
| 255 | /// This is primarily used to bump up the inlining threshold wholesale on |
||
| 256 | /// targets where calls are unusually expensive. |
||
| 257 | /// |
||
| 258 | /// TODO: This is a rather blunt instrument. Perhaps altering the costs of |
||
| 259 | /// individual classes of instructions would be better. |
||
| 260 | unsigned getInliningThresholdMultiplier() const; |
||
| 261 | |||
| 262 | /// \returns A value to be added to the inlining threshold. |
||
| 263 | unsigned adjustInliningThreshold(const CallBase *CB) const; |
||
| 264 | |||
| 265 | /// \returns Vector bonus in percent. |
||
| 266 | /// |
||
| 267 | /// Vector bonuses: We want to more aggressively inline vector-dense kernels |
||
| 268 | /// and apply this bonus based on the percentage of vector instructions. A |
||
| 269 | /// bonus is applied if the vector instructions exceed 50% and half that |
||
| 270 | /// amount is applied if it exceeds 10%. Note that these bonuses are some what |
||
| 271 | /// arbitrary and evolved over time by accident as much as because they are |
||
| 272 | /// principled bonuses. |
||
| 273 | /// FIXME: It would be nice to base the bonus values on something more |
||
| 274 | /// scientific. A target may has no bonus on vector instructions. |
||
| 275 | int getInlinerVectorBonusPercent() const; |
||
| 276 | |||
| 277 | /// \return the expected cost of a memcpy, which could e.g. depend on the |
||
| 278 | /// source/destination type and alignment and the number of bytes copied. |
||
| 279 | InstructionCost getMemcpyCost(const Instruction *I) const; |
||
| 280 | |||
| 281 | /// \return The estimated number of case clusters when lowering \p 'SI'. |
||
| 282 | /// \p JTSize Set a jump table size only when \p SI is suitable for a jump |
||
| 283 | /// table. |
||
| 284 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
||
| 285 | unsigned &JTSize, |
||
| 286 | ProfileSummaryInfo *PSI, |
||
| 287 | BlockFrequencyInfo *BFI) const; |
||
| 288 | |||
| 289 | /// Estimate the cost of a given IR user when lowered. |
||
| 290 | /// |
||
| 291 | /// This can estimate the cost of either a ConstantExpr or Instruction when |
||
| 292 | /// lowered. |
||
| 293 | /// |
||
| 294 | /// \p Operands is a list of operands which can be a result of transformations |
||
| 295 | /// of the current operands. The number of the operands on the list must equal |
||
| 296 | /// to the number of the current operands the IR user has. Their order on the |
||
| 297 | /// list must be the same as the order of the current operands the IR user |
||
| 298 | /// has. |
||
| 299 | /// |
||
| 300 | /// The returned cost is defined in terms of \c TargetCostConstants, see its |
||
| 301 | /// comments for a detailed explanation of the cost values. |
||
| 302 | InstructionCost getInstructionCost(const User *U, |
||
| 303 | ArrayRef<const Value *> Operands, |
||
| 304 | TargetCostKind CostKind) const; |
||
| 305 | |||
| 306 | /// This is a helper function which calls the three-argument |
||
| 307 | /// getInstructionCost with \p Operands which are the current operands U has. |
||
| 308 | InstructionCost getInstructionCost(const User *U, |
||
| 309 | TargetCostKind CostKind) const { |
||
| 310 | SmallVector<const Value *, 4> Operands(U->operand_values()); |
||
| 311 | return getInstructionCost(U, Operands, CostKind); |
||
| 312 | } |
||
| 313 | |||
| 314 | /// If a branch or a select condition is skewed in one direction by more than |
||
| 315 | /// this factor, it is very likely to be predicted correctly. |
||
| 316 | BranchProbability getPredictableBranchThreshold() const; |
||
| 317 | |||
| 318 | /// Return true if branch divergence exists. |
||
| 319 | /// |
||
| 320 | /// Branch divergence has a significantly negative impact on GPU performance |
||
| 321 | /// when threads in the same wavefront take different paths due to conditional |
||
| 322 | /// branches. |
||
| 323 | bool hasBranchDivergence() const; |
||
| 324 | |||
| 325 | /// Return true if the target prefers to use GPU divergence analysis to |
||
| 326 | /// replace the legacy version. |
||
| 327 | bool useGPUDivergenceAnalysis() const; |
||
| 328 | |||
| 329 | /// Returns whether V is a source of divergence. |
||
| 330 | /// |
||
| 331 | /// This function provides the target-dependent information for |
||
| 332 | /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis |
||
| 333 | /// first builds the dependency graph, and then runs the reachability |
||
| 334 | /// algorithm starting with the sources of divergence. |
||
| 335 | bool isSourceOfDivergence(const Value *V) const; |
||
| 336 | |||
| 337 | // Returns true for the target specific |
||
| 338 | // set of operations which produce uniform result |
||
| 339 | // even taking non-uniform arguments |
||
| 340 | bool isAlwaysUniform(const Value *V) const; |
||
| 341 | |||
| 342 | /// Returns the address space ID for a target's 'flat' address space. Note |
||
| 343 | /// this is not necessarily the same as addrspace(0), which LLVM sometimes |
||
| 344 | /// refers to as the generic address space. The flat address space is a |
||
| 345 | /// generic address space that can be used access multiple segments of memory |
||
| 346 | /// with different address spaces. Access of a memory location through a |
||
| 347 | /// pointer with this address space is expected to be legal but slower |
||
| 348 | /// compared to the same memory location accessed through a pointer with a |
||
| 349 | /// different address space. |
||
| 350 | // |
||
| 351 | /// This is for targets with different pointer representations which can |
||
| 352 | /// be converted with the addrspacecast instruction. If a pointer is converted |
||
| 353 | /// to this address space, optimizations should attempt to replace the access |
||
| 354 | /// with the source address space. |
||
| 355 | /// |
||
| 356 | /// \returns ~0u if the target does not have such a flat address space to |
||
| 357 | /// optimize away. |
||
| 358 | unsigned getFlatAddressSpace() const; |
||
| 359 | |||
| 360 | /// Return any intrinsic address operand indexes which may be rewritten if |
||
| 361 | /// they use a flat address space pointer. |
||
| 362 | /// |
||
| 363 | /// \returns true if the intrinsic was handled. |
||
| 364 | bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
| 365 | Intrinsic::ID IID) const; |
||
| 366 | |||
| 367 | bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; |
||
| 368 | |||
| 369 | /// Return true if globals in this address space can have initializers other |
||
| 370 | /// than `undef`. |
||
| 371 | bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const; |
||
| 372 | |||
| 373 | unsigned getAssumedAddrSpace(const Value *V) const; |
||
| 374 | |||
| 375 | bool isSingleThreaded() const; |
||
| 376 | |||
| 377 | std::pair<const Value *, unsigned> |
||
| 378 | getPredicatedAddrSpace(const Value *V) const; |
||
| 379 | |||
| 380 | /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p |
||
| 381 | /// NewV, which has a different address space. This should happen for every |
||
| 382 | /// operand index that collectFlatAddressOperands returned for the intrinsic. |
||
| 383 | /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the |
||
| 384 | /// new value (which may be the original \p II with modified operands). |
||
| 385 | Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, |
||
| 386 | Value *NewV) const; |
||
| 387 | |||
| 388 | /// Test whether calls to a function lower to actual program function |
||
| 389 | /// calls. |
||
| 390 | /// |
||
| 391 | /// The idea is to test whether the program is likely to require a 'call' |
||
| 392 | /// instruction or equivalent in order to call the given function. |
||
| 393 | /// |
||
| 394 | /// FIXME: It's not clear that this is a good or useful query API. Client's |
||
| 395 | /// should probably move to simpler cost metrics using the above. |
||
| 396 | /// Alternatively, we could split the cost interface into distinct code-size |
||
| 397 | /// and execution-speed costs. This would allow modelling the core of this |
||
| 398 | /// query more accurately as a call is a single small instruction, but |
||
| 399 | /// incurs significant execution cost. |
||
| 400 | bool isLoweredToCall(const Function *F) const; |
||
| 401 | |||
| 402 | struct LSRCost { |
||
| 403 | /// TODO: Some of these could be merged. Also, a lexical ordering |
||
| 404 | /// isn't always optimal. |
||
| 405 | unsigned Insns; |
||
| 406 | unsigned NumRegs; |
||
| 407 | unsigned AddRecCost; |
||
| 408 | unsigned NumIVMuls; |
||
| 409 | unsigned NumBaseAdds; |
||
| 410 | unsigned ImmCost; |
||
| 411 | unsigned SetupCost; |
||
| 412 | unsigned ScaleCost; |
||
| 413 | }; |
||
| 414 | |||
| 415 | /// Parameters that control the generic loop unrolling transformation. |
||
| 416 | struct UnrollingPreferences { |
||
| 417 | /// The cost threshold for the unrolled loop. Should be relative to the |
||
| 418 | /// getInstructionCost values returned by this API, and the expectation is |
||
| 419 | /// that the unrolled loop's instructions when run through that interface |
||
| 420 | /// should not exceed this cost. However, this is only an estimate. Also, |
||
| 421 | /// specific loops may be unrolled even with a cost above this threshold if |
||
| 422 | /// deemed profitable. Set this to UINT_MAX to disable the loop body cost |
||
| 423 | /// restriction. |
||
| 424 | unsigned Threshold; |
||
| 425 | /// If complete unrolling will reduce the cost of the loop, we will boost |
||
| 426 | /// the Threshold by a certain percent to allow more aggressive complete |
||
| 427 | /// unrolling. This value provides the maximum boost percentage that we |
||
| 428 | /// can apply to Threshold (The value should be no less than 100). |
||
| 429 | /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, |
||
| 430 | /// MaxPercentThresholdBoost / 100) |
||
| 431 | /// E.g. if complete unrolling reduces the loop execution time by 50% |
||
| 432 | /// then we boost the threshold by the factor of 2x. If unrolling is not |
||
| 433 | /// expected to reduce the running time, then we do not increase the |
||
| 434 | /// threshold. |
||
| 435 | unsigned MaxPercentThresholdBoost; |
||
| 436 | /// The cost threshold for the unrolled loop when optimizing for size (set |
||
| 437 | /// to UINT_MAX to disable). |
||
| 438 | unsigned OptSizeThreshold; |
||
| 439 | /// The cost threshold for the unrolled loop, like Threshold, but used |
||
| 440 | /// for partial/runtime unrolling (set to UINT_MAX to disable). |
||
| 441 | unsigned PartialThreshold; |
||
| 442 | /// The cost threshold for the unrolled loop when optimizing for size, like |
||
| 443 | /// OptSizeThreshold, but used for partial/runtime unrolling (set to |
||
| 444 | /// UINT_MAX to disable). |
||
| 445 | unsigned PartialOptSizeThreshold; |
||
| 446 | /// A forced unrolling factor (the number of concatenated bodies of the |
||
| 447 | /// original loop in the unrolled loop body). When set to 0, the unrolling |
||
| 448 | /// transformation will select an unrolling factor based on the current cost |
||
| 449 | /// threshold and other factors. |
||
| 450 | unsigned Count; |
||
| 451 | /// Default unroll count for loops with run-time trip count. |
||
| 452 | unsigned DefaultUnrollRuntimeCount; |
||
| 453 | // Set the maximum unrolling factor. The unrolling factor may be selected |
||
| 454 | // using the appropriate cost threshold, but may not exceed this number |
||
| 455 | // (set to UINT_MAX to disable). This does not apply in cases where the |
||
| 456 | // loop is being fully unrolled. |
||
| 457 | unsigned MaxCount; |
||
| 458 | /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but |
||
| 459 | /// applies even if full unrolling is selected. This allows a target to fall |
||
| 460 | /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. |
||
| 461 | unsigned FullUnrollMaxCount; |
||
| 462 | // Represents number of instructions optimized when "back edge" |
||
| 463 | // becomes "fall through" in unrolled loop. |
||
| 464 | // For now we count a conditional branch on a backedge and a comparison |
||
| 465 | // feeding it. |
||
| 466 | unsigned BEInsns; |
||
| 467 | /// Allow partial unrolling (unrolling of loops to expand the size of the |
||
| 468 | /// loop body, not only to eliminate small constant-trip-count loops). |
||
| 469 | bool Partial; |
||
| 470 | /// Allow runtime unrolling (unrolling of loops to expand the size of the |
||
| 471 | /// loop body even when the number of loop iterations is not known at |
||
| 472 | /// compile time). |
||
| 473 | bool Runtime; |
||
| 474 | /// Allow generation of a loop remainder (extra iterations after unroll). |
||
| 475 | bool AllowRemainder; |
||
| 476 | /// Allow emitting expensive instructions (such as divisions) when computing |
||
| 477 | /// the trip count of a loop for runtime unrolling. |
||
| 478 | bool AllowExpensiveTripCount; |
||
| 479 | /// Apply loop unroll on any kind of loop |
||
| 480 | /// (mainly to loops that fail runtime unrolling). |
||
| 481 | bool Force; |
||
| 482 | /// Allow using trip count upper bound to unroll loops. |
||
| 483 | bool UpperBound; |
||
| 484 | /// Allow unrolling of all the iterations of the runtime loop remainder. |
||
| 485 | bool UnrollRemainder; |
||
| 486 | /// Allow unroll and jam. Used to enable unroll and jam for the target. |
||
| 487 | bool UnrollAndJam; |
||
| 488 | /// Threshold for unroll and jam, for inner loop size. The 'Threshold' |
||
| 489 | /// value above is used during unroll and jam for the outer loop size. |
||
| 490 | /// This value is used in the same manner to limit the size of the inner |
||
| 491 | /// loop. |
||
| 492 | unsigned UnrollAndJamInnerLoopThreshold; |
||
| 493 | /// Don't allow loop unrolling to simulate more than this number of |
||
| 494 | /// iterations when checking full unroll profitability |
||
| 495 | unsigned MaxIterationsCountToAnalyze; |
||
| 496 | }; |
||
| 497 | |||
| 498 | /// Get target-customized preferences for the generic loop unrolling |
||
| 499 | /// transformation. The caller will initialize UP with the current |
||
| 500 | /// target-independent defaults. |
||
| 501 | void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
||
| 502 | UnrollingPreferences &UP, |
||
| 503 | OptimizationRemarkEmitter *ORE) const; |
||
| 504 | |||
| 505 | /// Query the target whether it would be profitable to convert the given loop |
||
| 506 | /// into a hardware loop. |
||
| 507 | bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
| 508 | AssumptionCache &AC, TargetLibraryInfo *LibInfo, |
||
| 509 | HardwareLoopInfo &HWLoopInfo) const; |
||
| 510 | |||
| 511 | /// Query the target whether it would be prefered to create a predicated |
||
| 512 | /// vector loop, which can avoid the need to emit a scalar epilogue loop. |
||
| 513 | bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
| 514 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
| 515 | DominatorTree *DT, |
||
| 516 | LoopVectorizationLegality *LVL, |
||
| 517 | InterleavedAccessInfo *IAI) const; |
||
| 518 | |||
| 519 | /// Query the target whether lowering of the llvm.get.active.lane.mask |
||
| 520 | /// intrinsic is supported and how the mask should be used. A return value |
||
| 521 | /// of PredicationStyle::Data indicates the mask is used as data only, |
||
| 522 | /// whereas PredicationStyle::DataAndControlFlow indicates we should also use |
||
| 523 | /// the mask for control flow in the loop. If unsupported the return value is |
||
| 524 | /// PredicationStyle::None. |
||
| 525 | PredicationStyle emitGetActiveLaneMask() const; |
||
| 526 | |||
| 527 | // Parameters that control the loop peeling transformation |
||
| 528 | struct PeelingPreferences { |
||
| 529 | /// A forced peeling factor (the number of bodied of the original loop |
||
| 530 | /// that should be peeled off before the loop body). When set to 0, the |
||
| 531 | /// a peeling factor based on profile information and other factors. |
||
| 532 | unsigned PeelCount; |
||
| 533 | /// Allow peeling off loop iterations. |
||
| 534 | bool AllowPeeling; |
||
| 535 | /// Allow peeling off loop iterations for loop nests. |
||
| 536 | bool AllowLoopNestsPeeling; |
||
| 537 | /// Allow peeling basing on profile. Uses to enable peeling off all |
||
| 538 | /// iterations basing on provided profile. |
||
| 539 | /// If the value is true the peeling cost model can decide to peel only |
||
| 540 | /// some iterations and in this case it will set this to false. |
||
| 541 | bool PeelProfiledIterations; |
||
| 542 | }; |
||
| 543 | |||
| 544 | /// Get target-customized preferences for the generic loop peeling |
||
| 545 | /// transformation. The caller will initialize \p PP with the current |
||
| 546 | /// target-independent defaults with information from \p L and \p SE. |
||
| 547 | void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
| 548 | PeelingPreferences &PP) const; |
||
| 549 | |||
| 550 | /// Targets can implement their own combinations for target-specific |
||
| 551 | /// intrinsics. This function will be called from the InstCombine pass every |
||
| 552 | /// time a target-specific intrinsic is encountered. |
||
| 553 | /// |
||
| 554 | /// \returns std::nullopt to not do anything target specific or a value that |
||
| 555 | /// will be returned from the InstCombiner. It is possible to return null and |
||
| 556 | /// stop further processing of the intrinsic by returning nullptr. |
||
| 557 | std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC, |
||
| 558 | IntrinsicInst & II) const; |
||
| 559 | /// Can be used to implement target-specific instruction combining. |
||
| 560 | /// \see instCombineIntrinsic |
||
| 561 | std::optional<Value *> simplifyDemandedUseBitsIntrinsic( |
||
| 562 | InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask, |
||
| 563 | KnownBits & Known, bool &KnownBitsComputed) const; |
||
| 564 | /// Can be used to implement target-specific instruction combining. |
||
| 565 | /// \see instCombineIntrinsic |
||
| 566 | std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
| 567 | InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts, |
||
| 568 | APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3, |
||
| 569 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
| 570 | SimplifyAndSetOp) const; |
||
| 571 | /// @} |
||
| 572 | |||
| 573 | /// \name Scalar Target Information |
||
| 574 | /// @{ |
||
| 575 | |||
| 576 | /// Flags indicating the kind of support for population count. |
||
| 577 | /// |
||
| 578 | /// Compared to the SW implementation, HW support is supposed to |
||
| 579 | /// significantly boost the performance when the population is dense, and it |
||
| 580 | /// may or may not degrade performance if the population is sparse. A HW |
||
| 581 | /// support is considered as "Fast" if it can outperform, or is on a par |
||
| 582 | /// with, SW implementation when the population is sparse; otherwise, it is |
||
| 583 | /// considered as "Slow". |
||
| 584 | enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; |
||
| 585 | |||
| 586 | /// Return true if the specified immediate is legal add immediate, that |
||
| 587 | /// is the target has add instructions which can add a register with the |
||
| 588 | /// immediate without having to materialize the immediate into a register. |
||
| 589 | bool isLegalAddImmediate(int64_t Imm) const; |
||
| 590 | |||
| 591 | /// Return true if the specified immediate is legal icmp immediate, |
||
| 592 | /// that is the target has icmp instructions which can compare a register |
||
| 593 | /// against the immediate without having to materialize the immediate into a |
||
| 594 | /// register. |
||
| 595 | bool isLegalICmpImmediate(int64_t Imm) const; |
||
| 596 | |||
| 597 | /// Return true if the addressing mode represented by AM is legal for |
||
| 598 | /// this target, for a load/store of the specified type. |
||
| 599 | /// The type may be VoidTy, in which case only return true if the addressing |
||
| 600 | /// mode is legal for a load/store of any legal type. |
||
| 601 | /// If target returns true in LSRWithInstrQueries(), I may be valid. |
||
| 602 | /// TODO: Handle pre/postinc as well. |
||
| 603 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
||
| 604 | bool HasBaseReg, int64_t Scale, |
||
| 605 | unsigned AddrSpace = 0, |
||
| 606 | Instruction *I = nullptr) const; |
||
| 607 | |||
| 608 | /// Return true if LSR cost of C1 is lower than C2. |
||
| 609 | bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
||
| 610 | const TargetTransformInfo::LSRCost &C2) const; |
||
| 611 | |||
| 612 | /// Return true if LSR major cost is number of registers. Targets which |
||
| 613 | /// implement their own isLSRCostLess and unset number of registers as major |
||
| 614 | /// cost should return false, otherwise return true. |
||
| 615 | bool isNumRegsMajorCostOfLSR() const; |
||
| 616 | |||
| 617 | /// \returns true if LSR should not optimize a chain that includes \p I. |
||
| 618 | bool isProfitableLSRChainElement(Instruction *I) const; |
||
| 619 | |||
| 620 | /// Return true if the target can fuse a compare and branch. |
||
| 621 | /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost |
||
| 622 | /// calculation for the instructions in a loop. |
||
| 623 | bool canMacroFuseCmp() const; |
||
| 624 | |||
| 625 | /// Return true if the target can save a compare for loop count, for example |
||
| 626 | /// hardware loop saves a compare. |
||
| 627 | bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, |
||
| 628 | DominatorTree *DT, AssumptionCache *AC, |
||
| 629 | TargetLibraryInfo *LibInfo) const; |
||
| 630 | |||
| 631 | enum AddressingModeKind { |
||
| 632 | AMK_PreIndexed, |
||
| 633 | AMK_PostIndexed, |
||
| 634 | AMK_None |
||
| 635 | }; |
||
| 636 | |||
| 637 | /// Return the preferred addressing mode LSR should make efforts to generate. |
||
| 638 | AddressingModeKind getPreferredAddressingMode(const Loop *L, |
||
| 639 | ScalarEvolution *SE) const; |
||
| 640 | |||
| 641 | /// Return true if the target supports masked store. |
||
| 642 | bool isLegalMaskedStore(Type *DataType, Align Alignment) const; |
||
| 643 | /// Return true if the target supports masked load. |
||
| 644 | bool isLegalMaskedLoad(Type *DataType, Align Alignment) const; |
||
| 645 | |||
| 646 | /// Return true if the target supports nontemporal store. |
||
| 647 | bool isLegalNTStore(Type *DataType, Align Alignment) const; |
||
| 648 | /// Return true if the target supports nontemporal load. |
||
| 649 | bool isLegalNTLoad(Type *DataType, Align Alignment) const; |
||
| 650 | |||
| 651 | /// \Returns true if the target supports broadcasting a load to a vector of |
||
| 652 | /// type <NumElements x ElementTy>. |
||
| 653 | bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const; |
||
| 654 | |||
| 655 | /// Return true if the target supports masked scatter. |
||
| 656 | bool isLegalMaskedScatter(Type *DataType, Align Alignment) const; |
||
| 657 | /// Return true if the target supports masked gather. |
||
| 658 | bool isLegalMaskedGather(Type *DataType, Align Alignment) const; |
||
| 659 | /// Return true if the target forces scalarizing of llvm.masked.gather |
||
| 660 | /// intrinsics. |
||
| 661 | bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const; |
||
| 662 | /// Return true if the target forces scalarizing of llvm.masked.scatter |
||
| 663 | /// intrinsics. |
||
| 664 | bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const; |
||
| 665 | |||
| 666 | /// Return true if the target supports masked compress store. |
||
| 667 | bool isLegalMaskedCompressStore(Type *DataType) const; |
||
| 668 | /// Return true if the target supports masked expand load. |
||
| 669 | bool isLegalMaskedExpandLoad(Type *DataType) const; |
||
| 670 | |||
| 671 | /// Return true if this is an alternating opcode pattern that can be lowered |
||
| 672 | /// to a single instruction on the target. In X86 this is for the addsub |
||
| 673 | /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR. |
||
| 674 | /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being |
||
| 675 | /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0` |
||
| 676 | /// when \p Opcode0 is selected and `1` when Opcode1 is selected. |
||
| 677 | /// \p VecTy is the vector type of the instruction to be generated. |
||
| 678 | bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, |
||
| 679 | const SmallBitVector &OpcodeMask) const; |
||
| 680 | |||
| 681 | /// Return true if we should be enabling ordered reductions for the target. |
||
| 682 | bool enableOrderedReductions() const; |
||
| 683 | |||
| 684 | /// Return true if the target has a unified operation to calculate division |
||
| 685 | /// and remainder. If so, the additional implicit multiplication and |
||
| 686 | /// subtraction required to calculate a remainder from division are free. This |
||
| 687 | /// can enable more aggressive transformations for division and remainder than |
||
| 688 | /// would typically be allowed using throughput or size cost models. |
||
| 689 | bool hasDivRemOp(Type *DataType, bool IsSigned) const; |
||
| 690 | |||
| 691 | /// Return true if the given instruction (assumed to be a memory access |
||
| 692 | /// instruction) has a volatile variant. If that's the case then we can avoid |
||
| 693 | /// addrspacecast to generic AS for volatile loads/stores. Default |
||
| 694 | /// implementation returns false, which prevents address space inference for |
||
| 695 | /// volatile loads/stores. |
||
| 696 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; |
||
| 697 | |||
| 698 | /// Return true if target doesn't mind addresses in vectors. |
||
| 699 | bool prefersVectorizedAddressing() const; |
||
| 700 | |||
| 701 | /// Return the cost of the scaling factor used in the addressing |
||
| 702 | /// mode represented by AM for this target, for a load/store |
||
| 703 | /// of the specified type. |
||
| 704 | /// If the AM is supported, the return value must be >= 0. |
||
| 705 | /// If the AM is not supported, it returns a negative value. |
||
| 706 | /// TODO: Handle pre/postinc as well. |
||
| 707 | InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
| 708 | int64_t BaseOffset, bool HasBaseReg, |
||
| 709 | int64_t Scale, |
||
| 710 | unsigned AddrSpace = 0) const; |
||
| 711 | |||
| 712 | /// Return true if the loop strength reduce pass should make |
||
| 713 | /// Instruction* based TTI queries to isLegalAddressingMode(). This is |
||
| 714 | /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned |
||
| 715 | /// immediate offset and no index register. |
||
| 716 | bool LSRWithInstrQueries() const; |
||
| 717 | |||
| 718 | /// Return true if it's free to truncate a value of type Ty1 to type |
||
| 719 | /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 |
||
| 720 | /// by referencing its sub-register AX. |
||
| 721 | bool isTruncateFree(Type *Ty1, Type *Ty2) const; |
||
| 722 | |||
| 723 | /// Return true if it is profitable to hoist instruction in the |
||
| 724 | /// then/else to before if. |
||
| 725 | bool isProfitableToHoist(Instruction *I) const; |
||
| 726 | |||
| 727 | bool useAA() const; |
||
| 728 | |||
| 729 | /// Return true if this type is legal. |
||
| 730 | bool isTypeLegal(Type *Ty) const; |
||
| 731 | |||
| 732 | /// Returns the estimated number of registers required to represent \p Ty. |
||
| 733 | unsigned getRegUsageForType(Type *Ty) const; |
||
| 734 | |||
| 735 | /// Return true if switches should be turned into lookup tables for the |
||
| 736 | /// target. |
||
| 737 | bool shouldBuildLookupTables() const; |
||
| 738 | |||
| 739 | /// Return true if switches should be turned into lookup tables |
||
| 740 | /// containing this constant value for the target. |
||
| 741 | bool shouldBuildLookupTablesForConstant(Constant *C) const; |
||
| 742 | |||
| 743 | /// Return true if lookup tables should be turned into relative lookup tables. |
||
| 744 | bool shouldBuildRelLookupTables() const; |
||
| 745 | |||
| 746 | /// Return true if the input function which is cold at all call sites, |
||
| 747 | /// should use coldcc calling convention. |
||
| 748 | bool useColdCCForColdCall(Function &F) const; |
||
| 749 | |||
| 750 | /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
||
| 751 | /// are set if the demanded result elements need to be inserted and/or |
||
| 752 | /// extracted from vectors. |
||
| 753 | InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
| 754 | const APInt &DemandedElts, |
||
| 755 | bool Insert, bool Extract, |
||
| 756 | TTI::TargetCostKind CostKind) const; |
||
| 757 | |||
| 758 | /// Estimate the overhead of scalarizing an instructions unique |
||
| 759 | /// non-constant operands. The (potentially vector) types to use for each of |
||
| 760 | /// argument are passes via Tys. |
||
| 761 | InstructionCost |
||
| 762 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
| 763 | ArrayRef<Type *> Tys, |
||
| 764 | TTI::TargetCostKind CostKind) const; |
||
| 765 | |||
| 766 | /// If target has efficient vector element load/store instructions, it can |
||
| 767 | /// return true here so that insertion/extraction costs are not added to |
||
| 768 | /// the scalarization cost of a load/store. |
||
| 769 | bool supportsEfficientVectorElementLoadStore() const; |
||
| 770 | |||
| 771 | /// If the target supports tail calls. |
||
| 772 | bool supportsTailCalls() const; |
||
| 773 | |||
| 774 | /// If target supports tail call on \p CB |
||
| 775 | bool supportsTailCallFor(const CallBase *CB) const; |
||
| 776 | |||
| 777 | /// Don't restrict interleaved unrolling to small loops. |
||
| 778 | bool enableAggressiveInterleaving(bool LoopHasReductions) const; |
||
| 779 | |||
| 780 | /// Returns options for expansion of memcmp. IsZeroCmp is |
||
| 781 | // true if this is the expansion of memcmp(p1, p2, s) == 0. |
||
| 782 | struct MemCmpExpansionOptions { |
||
| 783 | // Return true if memcmp expansion is enabled. |
||
| 784 | operator bool() const { return MaxNumLoads > 0; } |
||
| 785 | |||
| 786 | // Maximum number of load operations. |
||
| 787 | unsigned MaxNumLoads = 0; |
||
| 788 | |||
| 789 | // The list of available load sizes (in bytes), sorted in decreasing order. |
||
| 790 | SmallVector<unsigned, 8> LoadSizes; |
||
| 791 | |||
| 792 | // For memcmp expansion when the memcmp result is only compared equal or |
||
| 793 | // not-equal to 0, allow up to this number of load pairs per block. As an |
||
| 794 | // example, this may allow 'memcmp(a, b, 3) == 0' in a single block: |
||
| 795 | // a0 = load2bytes &a[0] |
||
| 796 | // b0 = load2bytes &b[0] |
||
| 797 | // a2 = load1byte &a[2] |
||
| 798 | // b2 = load1byte &b[2] |
||
| 799 | // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0 |
||
| 800 | unsigned NumLoadsPerBlock = 1; |
||
| 801 | |||
| 802 | // Set to true to allow overlapping loads. For example, 7-byte compares can |
||
| 803 | // be done with two 4-byte compares instead of 4+2+1-byte compares. This |
||
| 804 | // requires all loads in LoadSizes to be doable in an unaligned way. |
||
| 805 | bool AllowOverlappingLoads = false; |
||
| 806 | }; |
||
| 807 | MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, |
||
| 808 | bool IsZeroCmp) const; |
||
| 809 | |||
| 810 | /// Should the Select Optimization pass be enabled and ran. |
||
| 811 | bool enableSelectOptimize() const; |
||
| 812 | |||
| 813 | /// Enable matching of interleaved access groups. |
||
| 814 | bool enableInterleavedAccessVectorization() const; |
||
| 815 | |||
| 816 | /// Enable matching of interleaved access groups that contain predicated |
||
| 817 | /// accesses or gaps and therefore vectorized using masked |
||
| 818 | /// vector loads/stores. |
||
| 819 | bool enableMaskedInterleavedAccessVectorization() const; |
||
| 820 | |||
| 821 | /// Indicate that it is potentially unsafe to automatically vectorize |
||
| 822 | /// floating-point operations because the semantics of vector and scalar |
||
| 823 | /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math |
||
| 824 | /// does not support IEEE-754 denormal numbers, while depending on the |
||
| 825 | /// platform, scalar floating-point math does. |
||
| 826 | /// This applies to floating-point math operations and calls, not memory |
||
| 827 | /// operations, shuffles, or casts. |
||
| 828 | bool isFPVectorizationPotentiallyUnsafe() const; |
||
| 829 | |||
| 830 | /// Determine if the target supports unaligned memory accesses. |
||
| 831 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, |
||
| 832 | unsigned AddressSpace = 0, |
||
| 833 | Align Alignment = Align(1), |
||
| 834 | unsigned *Fast = nullptr) const; |
||
| 835 | |||
| 836 | /// Return hardware support for population count. |
||
| 837 | PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; |
||
| 838 | |||
| 839 | /// Return true if the hardware has a fast square-root instruction. |
||
| 840 | bool haveFastSqrt(Type *Ty) const; |
||
| 841 | |||
| 842 | /// Return true if the cost of the instruction is too high to speculatively |
||
| 843 | /// execute and should be kept behind a branch. |
||
| 844 | /// This normally just wraps around a getInstructionCost() call, but some |
||
| 845 | /// targets might report a low TCK_SizeAndLatency value that is incompatible |
||
| 846 | /// with the fixed TCC_Expensive value. |
||
| 847 | /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute(). |
||
| 848 | bool isExpensiveToSpeculativelyExecute(const Instruction *I) const; |
||
| 849 | |||
| 850 | /// Return true if it is faster to check if a floating-point value is NaN |
||
| 851 | /// (or not-NaN) versus a comparison against a constant FP zero value. |
||
| 852 | /// Targets should override this if materializing a 0.0 for comparison is |
||
| 853 | /// generally as cheap as checking for ordered/unordered. |
||
| 854 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; |
||
| 855 | |||
| 856 | /// Return the expected cost of supporting the floating point operation |
||
| 857 | /// of the specified type. |
||
| 858 | InstructionCost getFPOpCost(Type *Ty) const; |
||
| 859 | |||
| 860 | /// Return the expected cost of materializing for the given integer |
||
| 861 | /// immediate of the specified type. |
||
| 862 | InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
| 863 | TargetCostKind CostKind) const; |
||
| 864 | |||
| 865 | /// Return the expected cost of materialization for the given integer |
||
| 866 | /// immediate of the specified type for a given instruction. The cost can be |
||
| 867 | /// zero if the immediate can be folded into the specified instruction. |
||
| 868 | InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, |
||
| 869 | const APInt &Imm, Type *Ty, |
||
| 870 | TargetCostKind CostKind, |
||
| 871 | Instruction *Inst = nullptr) const; |
||
| 872 | InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
| 873 | const APInt &Imm, Type *Ty, |
||
| 874 | TargetCostKind CostKind) const; |
||
| 875 | |||
| 876 | /// Return the expected cost for the given integer when optimising |
||
| 877 | /// for size. This is different than the other integer immediate cost |
||
| 878 | /// functions in that it is subtarget agnostic. This is useful when you e.g. |
||
| 879 | /// target one ISA such as Aarch32 but smaller encodings could be possible |
||
| 880 | /// with another such as Thumb. This return value is used as a penalty when |
||
| 881 | /// the total costs for a constant is calculated (the bigger the cost, the |
||
| 882 | /// more beneficial constant hoisting is). |
||
| 883 | InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, |
||
| 884 | const APInt &Imm, Type *Ty) const; |
||
| 885 | /// @} |
||
| 886 | |||
| 887 | /// \name Vector Target Information |
||
| 888 | /// @{ |
||
| 889 | |||
| 890 | /// The various kinds of shuffle patterns for vector queries. |
||
| 891 | enum ShuffleKind { |
||
| 892 | SK_Broadcast, ///< Broadcast element 0 to all other elements. |
||
| 893 | SK_Reverse, ///< Reverse the order of the vector. |
||
| 894 | SK_Select, ///< Selects elements from the corresponding lane of |
||
| 895 | ///< either source operand. This is equivalent to a |
||
| 896 | ///< vector select with a constant condition operand. |
||
| 897 | SK_Transpose, ///< Transpose two vectors. |
||
| 898 | SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. |
||
| 899 | SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset. |
||
| 900 | SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one |
||
| 901 | ///< with any shuffle mask. |
||
| 902 | SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any |
||
| 903 | ///< shuffle mask. |
||
| 904 | SK_Splice ///< Concatenates elements from the first input vector |
||
| 905 | ///< with elements of the second input vector. Returning |
||
| 906 | ///< a vector of the same type as the input vectors. |
||
| 907 | ///< Index indicates start offset in first input vector. |
||
| 908 | }; |
||
| 909 | |||
| 910 | /// Additional information about an operand's possible values. |
||
| 911 | enum OperandValueKind { |
||
| 912 | OK_AnyValue, // Operand can have any value. |
||
| 913 | OK_UniformValue, // Operand is uniform (splat of a value). |
||
| 914 | OK_UniformConstantValue, // Operand is uniform constant. |
||
| 915 | OK_NonUniformConstantValue // Operand is a non uniform constant value. |
||
| 916 | }; |
||
| 917 | |||
| 918 | /// Additional properties of an operand's values. |
||
| 919 | enum OperandValueProperties { |
||
| 920 | OP_None = 0, |
||
| 921 | OP_PowerOf2 = 1, |
||
| 922 | OP_NegatedPowerOf2 = 2, |
||
| 923 | }; |
||
| 924 | |||
| 925 | // Describe the values an operand can take. We're in the process |
||
| 926 | // of migrating uses of OperandValueKind and OperandValueProperties |
||
| 927 | // to use this class, and then will change the internal representation. |
||
| 928 | struct OperandValueInfo { |
||
| 929 | OperandValueKind Kind = OK_AnyValue; |
||
| 930 | OperandValueProperties Properties = OP_None; |
||
| 931 | |||
| 932 | bool isConstant() const { |
||
| 933 | return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue; |
||
| 934 | } |
||
| 935 | bool isUniform() const { |
||
| 936 | return Kind == OK_UniformConstantValue || Kind == OK_UniformValue; |
||
| 937 | } |
||
| 938 | bool isPowerOf2() const { |
||
| 939 | return Properties == OP_PowerOf2; |
||
| 940 | } |
||
| 941 | bool isNegatedPowerOf2() const { |
||
| 942 | return Properties == OP_NegatedPowerOf2; |
||
| 943 | } |
||
| 944 | |||
| 945 | OperandValueInfo getNoProps() const { |
||
| 946 | return {Kind, OP_None}; |
||
| 947 | } |
||
| 948 | }; |
||
| 949 | |||
| 950 | /// \return the number of registers in the target-provided register class. |
||
| 951 | unsigned getNumberOfRegisters(unsigned ClassID) const; |
||
| 952 | |||
| 953 | /// \return the target-provided register class ID for the provided type, |
||
| 954 | /// accounting for type promotion and other type-legalization techniques that |
||
| 955 | /// the target might apply. However, it specifically does not account for the |
||
| 956 | /// scalarization or splitting of vector types. Should a vector type require |
||
| 957 | /// scalarization or splitting into multiple underlying vector registers, that |
||
| 958 | /// type should be mapped to a register class containing no registers. |
||
| 959 | /// Specifically, this is designed to provide a simple, high-level view of the |
||
| 960 | /// register allocation later performed by the backend. These register classes |
||
| 961 | /// don't necessarily map onto the register classes used by the backend. |
||
| 962 | /// FIXME: It's not currently possible to determine how many registers |
||
| 963 | /// are used by the provided type. |
||
| 964 | unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const; |
||
| 965 | |||
| 966 | /// \return the target-provided register class name |
||
| 967 | const char *getRegisterClassName(unsigned ClassID) const; |
||
| 968 | |||
| 969 | enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector }; |
||
| 970 | |||
| 971 | /// \return The width of the largest scalar or vector register type. |
||
| 972 | TypeSize getRegisterBitWidth(RegisterKind K) const; |
||
| 973 | |||
| 974 | /// \return The width of the smallest vector register type. |
||
| 975 | unsigned getMinVectorRegisterBitWidth() const; |
||
| 976 | |||
| 977 | /// \return The maximum value of vscale if the target specifies an |
||
| 978 | /// architectural maximum vector length, and std::nullopt otherwise. |
||
| 979 | std::optional<unsigned> getMaxVScale() const; |
||
| 980 | |||
| 981 | /// \return the value of vscale to tune the cost model for. |
||
| 982 | std::optional<unsigned> getVScaleForTuning() const; |
||
| 983 | |||
| 984 | /// \return True if the vectorization factor should be chosen to |
||
| 985 | /// make the vector of the smallest element type match the size of a |
||
| 986 | /// vector register. For wider element types, this could result in |
||
| 987 | /// creating vectors that span multiple vector registers. |
||
| 988 | /// If false, the vectorization factor will be chosen based on the |
||
| 989 | /// size of the widest element type. |
||
| 990 | /// \p K Register Kind for vectorization. |
||
| 991 | bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const; |
||
| 992 | |||
| 993 | /// \return The minimum vectorization factor for types of given element |
||
| 994 | /// bit width, or 0 if there is no minimum VF. The returned value only |
||
| 995 | /// applies when shouldMaximizeVectorBandwidth returns true. |
||
| 996 | /// If IsScalable is true, the returned ElementCount must be a scalable VF. |
||
| 997 | ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const; |
||
| 998 | |||
| 999 | /// \return The maximum vectorization factor for types of given element |
||
| 1000 | /// bit width and opcode, or 0 if there is no maximum VF. |
||
| 1001 | /// Currently only used by the SLP vectorizer. |
||
| 1002 | unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const; |
||
| 1003 | |||
| 1004 | /// \return The minimum vectorization factor for the store instruction. Given |
||
| 1005 | /// the initial estimation of the minimum vector factor and store value type, |
||
| 1006 | /// it tries to find possible lowest VF, which still might be profitable for |
||
| 1007 | /// the vectorization. |
||
| 1008 | /// \param VF Initial estimation of the minimum vector factor. |
||
| 1009 | /// \param ScalarMemTy Scalar memory type of the store operation. |
||
| 1010 | /// \param ScalarValTy Scalar type of the stored value. |
||
| 1011 | /// Currently only used by the SLP vectorizer. |
||
| 1012 | unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
| 1013 | Type *ScalarValTy) const; |
||
| 1014 | |||
| 1015 | /// \return True if it should be considered for address type promotion. |
||
| 1016 | /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is |
||
| 1017 | /// profitable without finding other extensions fed by the same input. |
||
| 1018 | bool shouldConsiderAddressTypePromotion( |
||
| 1019 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; |
||
| 1020 | |||
| 1021 | /// \return The size of a cache line in bytes. |
||
| 1022 | unsigned getCacheLineSize() const; |
||
| 1023 | |||
| 1024 | /// The possible cache levels |
||
| 1025 | enum class CacheLevel { |
||
| 1026 | L1D, // The L1 data cache |
||
| 1027 | L2D, // The L2 data cache |
||
| 1028 | |||
| 1029 | // We currently do not model L3 caches, as their sizes differ widely between |
||
| 1030 | // microarchitectures. Also, we currently do not have a use for L3 cache |
||
| 1031 | // size modeling yet. |
||
| 1032 | }; |
||
| 1033 | |||
| 1034 | /// \return The size of the cache level in bytes, if available. |
||
| 1035 | std::optional<unsigned> getCacheSize(CacheLevel Level) const; |
||
| 1036 | |||
| 1037 | /// \return The associativity of the cache level, if available. |
||
| 1038 | std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const; |
||
| 1039 | |||
| 1040 | /// \return How much before a load we should place the prefetch |
||
| 1041 | /// instruction. This is currently measured in number of |
||
| 1042 | /// instructions. |
||
| 1043 | unsigned getPrefetchDistance() const; |
||
| 1044 | |||
| 1045 | /// Some HW prefetchers can handle accesses up to a certain constant stride. |
||
| 1046 | /// Sometimes prefetching is beneficial even below the HW prefetcher limit, |
||
| 1047 | /// and the arguments provided are meant to serve as a basis for deciding this |
||
| 1048 | /// for a particular loop. |
||
| 1049 | /// |
||
| 1050 | /// \param NumMemAccesses Number of memory accesses in the loop. |
||
| 1051 | /// \param NumStridedMemAccesses Number of the memory accesses that |
||
| 1052 | /// ScalarEvolution could find a known stride |
||
| 1053 | /// for. |
||
| 1054 | /// \param NumPrefetches Number of software prefetches that will be |
||
| 1055 | /// emitted as determined by the addresses |
||
| 1056 | /// involved and the cache line size. |
||
| 1057 | /// \param HasCall True if the loop contains a call. |
||
| 1058 | /// |
||
| 1059 | /// \return This is the minimum stride in bytes where it makes sense to start |
||
| 1060 | /// adding SW prefetches. The default is 1, i.e. prefetch with any |
||
| 1061 | /// stride. |
||
| 1062 | unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
| 1063 | unsigned NumStridedMemAccesses, |
||
| 1064 | unsigned NumPrefetches, bool HasCall) const; |
||
| 1065 | |||
| 1066 | /// \return The maximum number of iterations to prefetch ahead. If |
||
| 1067 | /// the required number of iterations is more than this number, no |
||
| 1068 | /// prefetching is performed. |
||
| 1069 | unsigned getMaxPrefetchIterationsAhead() const; |
||
| 1070 | |||
| 1071 | /// \return True if prefetching should also be done for writes. |
||
| 1072 | bool enableWritePrefetching() const; |
||
| 1073 | |||
| 1074 | /// \return if target want to issue a prefetch in address space \p AS. |
||
| 1075 | bool shouldPrefetchAddressSpace(unsigned AS) const; |
||
| 1076 | |||
| 1077 | /// \return The maximum interleave factor that any transform should try to |
||
| 1078 | /// perform for this target. This number depends on the level of parallelism |
||
| 1079 | /// and the number of execution units in the CPU. |
||
| 1080 | unsigned getMaxInterleaveFactor(unsigned VF) const; |
||
| 1081 | |||
| 1082 | /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2. |
||
| 1083 | static OperandValueInfo getOperandInfo(const Value *V); |
||
| 1084 | |||
| 1085 | /// This is an approximation of reciprocal throughput of a math/logic op. |
||
| 1086 | /// A higher cost indicates less expected throughput. |
||
| 1087 | /// From Agner Fog's guides, reciprocal throughput is "the average number of |
||
| 1088 | /// clock cycles per instruction when the instructions are not part of a |
||
| 1089 | /// limiting dependency chain." |
||
| 1090 | /// Therefore, costs should be scaled to account for multiple execution units |
||
| 1091 | /// on the target that can process this type of instruction. For example, if |
||
| 1092 | /// there are 5 scalar integer units and 2 vector integer units that can |
||
| 1093 | /// calculate an 'add' in a single cycle, this model should indicate that the |
||
| 1094 | /// cost of the vector add instruction is 2.5 times the cost of the scalar |
||
| 1095 | /// add instruction. |
||
| 1096 | /// \p Args is an optional argument which holds the instruction operands |
||
| 1097 | /// values so the TTI can analyze those values searching for special |
||
| 1098 | /// cases or optimizations based on those values. |
||
| 1099 | /// \p CxtI is the optional original context instruction, if one exists, to |
||
| 1100 | /// provide even more information. |
||
| 1101 | InstructionCost getArithmeticInstrCost( |
||
| 1102 | unsigned Opcode, Type *Ty, |
||
| 1103 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1104 | TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 1105 | TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 1106 | ArrayRef<const Value *> Args = ArrayRef<const Value *>(), |
||
| 1107 | const Instruction *CxtI = nullptr) const; |
||
| 1108 | |||
| 1109 | /// \return The cost of a shuffle instruction of kind Kind and of type Tp. |
||
| 1110 | /// The exact mask may be passed as Mask, or else the array will be empty. |
||
| 1111 | /// The index and subtype parameters are used by the subvector insertion and |
||
| 1112 | /// extraction shuffle kinds to show the insert/extract point and the type of |
||
| 1113 | /// the subvector being inserted/extracted. The operands of the shuffle can be |
||
| 1114 | /// passed through \p Args, which helps improve the cost estimation in some |
||
| 1115 | /// cases, like in broadcast loads. |
||
| 1116 | /// NOTE: For subvector extractions Tp represents the source type. |
||
| 1117 | InstructionCost |
||
| 1118 | getShuffleCost(ShuffleKind Kind, VectorType *Tp, |
||
| 1119 | ArrayRef<int> Mask = std::nullopt, |
||
| 1120 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1121 | int Index = 0, VectorType *SubTp = nullptr, |
||
| 1122 | ArrayRef<const Value *> Args = std::nullopt) const; |
||
| 1123 | |||
| 1124 | /// Represents a hint about the context in which a cast is used. |
||
| 1125 | /// |
||
| 1126 | /// For zext/sext, the context of the cast is the operand, which must be a |
||
| 1127 | /// load of some kind. For trunc, the context is of the cast is the single |
||
| 1128 | /// user of the instruction, which must be a store of some kind. |
||
| 1129 | /// |
||
| 1130 | /// This enum allows the vectorizer to give getCastInstrCost an idea of the |
||
| 1131 | /// type of cast it's dealing with, as not every cast is equal. For instance, |
||
| 1132 | /// the zext of a load may be free, but the zext of an interleaving load can |
||
| 1133 | //// be (very) expensive! |
||
| 1134 | /// |
||
| 1135 | /// See \c getCastContextHint to compute a CastContextHint from a cast |
||
| 1136 | /// Instruction*. Callers can use it if they don't need to override the |
||
| 1137 | /// context and just want it to be calculated from the instruction. |
||
| 1138 | /// |
||
| 1139 | /// FIXME: This handles the types of load/store that the vectorizer can |
||
| 1140 | /// produce, which are the cases where the context instruction is most |
||
| 1141 | /// likely to be incorrect. There are other situations where that can happen |
||
| 1142 | /// too, which might be handled here but in the long run a more general |
||
| 1143 | /// solution of costing multiple instructions at the same times may be better. |
||
| 1144 | enum class CastContextHint : uint8_t { |
||
| 1145 | None, ///< The cast is not used with a load/store of any kind. |
||
| 1146 | Normal, ///< The cast is used with a normal load/store. |
||
| 1147 | Masked, ///< The cast is used with a masked load/store. |
||
| 1148 | GatherScatter, ///< The cast is used with a gather/scatter. |
||
| 1149 | Interleave, ///< The cast is used with an interleaved load/store. |
||
| 1150 | Reversed, ///< The cast is used with a reversed load/store. |
||
| 1151 | }; |
||
| 1152 | |||
| 1153 | /// Calculates a CastContextHint from \p I. |
||
| 1154 | /// This should be used by callers of getCastInstrCost if they wish to |
||
| 1155 | /// determine the context from some instruction. |
||
| 1156 | /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr, |
||
| 1157 | /// or if it's another type of cast. |
||
| 1158 | static CastContextHint getCastContextHint(const Instruction *I); |
||
| 1159 | |||
| 1160 | /// \return The expected cost of cast instructions, such as bitcast, trunc, |
||
| 1161 | /// zext, etc. If there is an existing instruction that holds Opcode, it |
||
| 1162 | /// may be passed in the 'I' parameter. |
||
| 1163 | InstructionCost |
||
| 1164 | getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
||
| 1165 | TTI::CastContextHint CCH, |
||
| 1166 | TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, |
||
| 1167 | const Instruction *I = nullptr) const; |
||
| 1168 | |||
| 1169 | /// \return The expected cost of a sign- or zero-extended vector extract. Use |
||
| 1170 | /// Index = -1 to indicate that there is no information about the index value. |
||
| 1171 | InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
| 1172 | VectorType *VecTy, |
||
| 1173 | unsigned Index) const; |
||
| 1174 | |||
| 1175 | /// \return The expected cost of control-flow related instructions such as |
||
| 1176 | /// Phi, Ret, Br, Switch. |
||
| 1177 | InstructionCost |
||
| 1178 | getCFInstrCost(unsigned Opcode, |
||
| 1179 | TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, |
||
| 1180 | const Instruction *I = nullptr) const; |
||
| 1181 | |||
| 1182 | /// \returns The expected cost of compare and select instructions. If there |
||
| 1183 | /// is an existing instruction that holds Opcode, it may be passed in the |
||
| 1184 | /// 'I' parameter. The \p VecPred parameter can be used to indicate the select |
||
| 1185 | /// is using a compare with the specified predicate as condition. When vector |
||
| 1186 | /// types are passed, \p VecPred must be used for all lanes. |
||
| 1187 | InstructionCost |
||
| 1188 | getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
||
| 1189 | CmpInst::Predicate VecPred, |
||
| 1190 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1191 | const Instruction *I = nullptr) const; |
||
| 1192 | |||
| 1193 | /// \return The expected cost of vector Insert and Extract. |
||
| 1194 | /// Use -1 to indicate that there is no information on the index value. |
||
| 1195 | /// This is used when the instruction is not available; a typical use |
||
| 1196 | /// case is to provision the cost of vectorization/scalarization in |
||
| 1197 | /// vectorizer passes. |
||
| 1198 | InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
| 1199 | TTI::TargetCostKind CostKind, |
||
| 1200 | unsigned Index = -1, Value *Op0 = nullptr, |
||
| 1201 | Value *Op1 = nullptr) const; |
||
| 1202 | |||
| 1203 | /// \return The expected cost of vector Insert and Extract. |
||
| 1204 | /// This is used when instruction is available, and implementation |
||
| 1205 | /// asserts 'I' is not nullptr. |
||
| 1206 | /// |
||
| 1207 | /// A typical suitable use case is cost estimation when vector instruction |
||
| 1208 | /// exists (e.g., from basic blocks during transformation). |
||
| 1209 | InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
| 1210 | TTI::TargetCostKind CostKind, |
||
| 1211 | unsigned Index = -1) const; |
||
| 1212 | |||
| 1213 | /// \return The cost of replication shuffle of \p VF elements typed \p EltTy |
||
| 1214 | /// \p ReplicationFactor times. |
||
| 1215 | /// |
||
| 1216 | /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: |
||
| 1217 | /// <0,0,0,1,1,1,2,2,2,3,3,3> |
||
| 1218 | InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, |
||
| 1219 | int VF, |
||
| 1220 | const APInt &DemandedDstElts, |
||
| 1221 | TTI::TargetCostKind CostKind); |
||
| 1222 | |||
| 1223 | /// \return The cost of Load and Store instructions. |
||
| 1224 | InstructionCost |
||
| 1225 | getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
| 1226 | unsigned AddressSpace, |
||
| 1227 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1228 | OperandValueInfo OpdInfo = {OK_AnyValue, OP_None}, |
||
| 1229 | const Instruction *I = nullptr) const; |
||
| 1230 | |||
| 1231 | /// \return The cost of VP Load and Store instructions. |
||
| 1232 | InstructionCost |
||
| 1233 | getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
| 1234 | unsigned AddressSpace, |
||
| 1235 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1236 | const Instruction *I = nullptr) const; |
||
| 1237 | |||
| 1238 | /// \return The cost of masked Load and Store instructions. |
||
| 1239 | InstructionCost getMaskedMemoryOpCost( |
||
| 1240 | unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, |
||
| 1241 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
| 1242 | |||
| 1243 | /// \return The cost of Gather or Scatter operation |
||
| 1244 | /// \p Opcode - is a type of memory access Load or Store |
||
| 1245 | /// \p DataTy - a vector type of the data to be loaded or stored |
||
| 1246 | /// \p Ptr - pointer [or vector of pointers] - address[es] in memory |
||
| 1247 | /// \p VariableMask - true when the memory access is predicated with a mask |
||
| 1248 | /// that is not a compile-time constant |
||
| 1249 | /// \p Alignment - alignment of single element |
||
| 1250 | /// \p I - the optional original context instruction, if one exists, e.g. the |
||
| 1251 | /// load/store to transform or the call to the gather/scatter intrinsic |
||
| 1252 | InstructionCost getGatherScatterOpCost( |
||
| 1253 | unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
||
| 1254 | Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1255 | const Instruction *I = nullptr) const; |
||
| 1256 | |||
| 1257 | /// \return The cost of the interleaved memory operation. |
||
| 1258 | /// \p Opcode is the memory operation code |
||
| 1259 | /// \p VecTy is the vector type of the interleaved access. |
||
| 1260 | /// \p Factor is the interleave factor |
||
| 1261 | /// \p Indices is the indices for interleaved load members (as interleaved |
||
| 1262 | /// load allows gaps) |
||
| 1263 | /// \p Alignment is the alignment of the memory operation |
||
| 1264 | /// \p AddressSpace is address space of the pointer. |
||
| 1265 | /// \p UseMaskForCond indicates if the memory access is predicated. |
||
| 1266 | /// \p UseMaskForGaps indicates if gaps should be masked. |
||
| 1267 | InstructionCost getInterleavedMemoryOpCost( |
||
| 1268 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
| 1269 | Align Alignment, unsigned AddressSpace, |
||
| 1270 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
| 1271 | bool UseMaskForCond = false, bool UseMaskForGaps = false) const; |
||
| 1272 | |||
| 1273 | /// A helper function to determine the type of reduction algorithm used |
||
| 1274 | /// for a given \p Opcode and set of FastMathFlags \p FMF. |
||
| 1275 | static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) { |
||
| 1276 | return FMF && !(*FMF).allowReassoc(); |
||
| 1277 | } |
||
| 1278 | |||
| 1279 | /// Calculate the cost of vector reduction intrinsics. |
||
| 1280 | /// |
||
| 1281 | /// This is the cost of reducing the vector value of type \p Ty to a scalar |
||
| 1282 | /// value using the operation denoted by \p Opcode. The FastMathFlags |
||
| 1283 | /// parameter \p FMF indicates what type of reduction we are performing: |
||
| 1284 | /// 1. Tree-wise. This is the typical 'fast' reduction performed that |
||
| 1285 | /// involves successively splitting a vector into half and doing the |
||
| 1286 | /// operation on the pair of halves until you have a scalar value. For |
||
| 1287 | /// example: |
||
| 1288 | /// (v0, v1, v2, v3) |
||
| 1289 | /// ((v0+v2), (v1+v3), undef, undef) |
||
| 1290 | /// ((v0+v2+v1+v3), undef, undef, undef) |
||
| 1291 | /// This is the default behaviour for integer operations, whereas for |
||
| 1292 | /// floating point we only do this if \p FMF indicates that |
||
| 1293 | /// reassociation is allowed. |
||
| 1294 | /// 2. Ordered. For a vector with N elements this involves performing N |
||
| 1295 | /// operations in lane order, starting with an initial scalar value, i.e. |
||
| 1296 | /// result = InitVal + v0 |
||
| 1297 | /// result = result + v1 |
||
| 1298 | /// result = result + v2 |
||
| 1299 | /// result = result + v3 |
||
| 1300 | /// This is only the case for FP operations and when reassociation is not |
||
| 1301 | /// allowed. |
||
| 1302 | /// |
||
| 1303 | InstructionCost getArithmeticReductionCost( |
||
| 1304 | unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF, |
||
| 1305 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
| 1306 | |||
| 1307 | InstructionCost getMinMaxReductionCost( |
||
| 1308 | VectorType *Ty, VectorType *CondTy, bool IsUnsigned, |
||
| 1309 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
| 1310 | |||
| 1311 | /// Calculate the cost of an extended reduction pattern, similar to |
||
| 1312 | /// getArithmeticReductionCost of an Add reduction with multiply and optional |
||
| 1313 | /// extensions. This is the cost of as: |
||
| 1314 | /// ResTy vecreduce.add(mul (A, B)). |
||
| 1315 | /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). |
||
| 1316 | InstructionCost getMulAccReductionCost( |
||
| 1317 | bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
| 1318 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
| 1319 | |||
| 1320 | /// Calculate the cost of an extended reduction pattern, similar to |
||
| 1321 | /// getArithmeticReductionCost of a reduction with an extension. |
||
| 1322 | /// This is the cost of as: |
||
| 1323 | /// ResTy vecreduce.opcode(ext(Ty A)). |
||
| 1324 | InstructionCost getExtendedReductionCost( |
||
| 1325 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
| 1326 | std::optional<FastMathFlags> FMF, |
||
| 1327 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
| 1328 | |||
| 1329 | /// \returns The cost of Intrinsic instructions. Analyses the real arguments. |
||
| 1330 | /// Three cases are handled: 1. scalar instruction 2. vector instruction |
||
| 1331 | /// 3. scalar instruction which is to be vectorized. |
||
| 1332 | InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
| 1333 | TTI::TargetCostKind CostKind) const; |
||
| 1334 | |||
| 1335 | /// \returns The cost of Call instructions. |
||
| 1336 | InstructionCost getCallInstrCost( |
||
| 1337 | Function *F, Type *RetTy, ArrayRef<Type *> Tys, |
||
| 1338 | TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const; |
||
| 1339 | |||
| 1340 | /// \returns The number of pieces into which the provided type must be |
||
| 1341 | /// split during legalization. Zero is returned when the answer is unknown. |
||
| 1342 | unsigned getNumberOfParts(Type *Tp) const; |
||
| 1343 | |||
| 1344 | /// \returns The cost of the address computation. For most targets this can be |
||
| 1345 | /// merged into the instruction indexing mode. Some targets might want to |
||
| 1346 | /// distinguish between address computation for memory operations on vector |
||
| 1347 | /// types and scalar types. Such targets should override this function. |
||
| 1348 | /// The 'SE' parameter holds pointer for the scalar evolution object which |
||
| 1349 | /// is used in order to get the Ptr step value in case of constant stride. |
||
| 1350 | /// The 'Ptr' parameter holds SCEV of the access pointer. |
||
| 1351 | InstructionCost getAddressComputationCost(Type *Ty, |
||
| 1352 | ScalarEvolution *SE = nullptr, |
||
| 1353 | const SCEV *Ptr = nullptr) const; |
||
| 1354 | |||
| 1355 | /// \returns The cost, if any, of keeping values of the given types alive |
||
| 1356 | /// over a callsite. |
||
| 1357 | /// |
||
| 1358 | /// Some types may require the use of register classes that do not have |
||
| 1359 | /// any callee-saved registers, so would require a spill and fill. |
||
| 1360 | InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const; |
||
| 1361 | |||
| 1362 | /// \returns True if the intrinsic is a supported memory intrinsic. Info |
||
| 1363 | /// will contain additional information - whether the intrinsic may write |
||
| 1364 | /// or read to memory, volatility and the pointer. Info is undefined |
||
| 1365 | /// if false is returned. |
||
| 1366 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; |
||
| 1367 | |||
| 1368 | /// \returns The maximum element size, in bytes, for an element |
||
| 1369 | /// unordered-atomic memory intrinsic. |
||
| 1370 | unsigned getAtomicMemIntrinsicMaxElementSize() const; |
||
| 1371 | |||
| 1372 | /// \returns A value which is the result of the given memory intrinsic. New |
||
| 1373 | /// instructions may be created to extract the result from the given intrinsic |
||
| 1374 | /// memory operation. Returns nullptr if the target cannot create a result |
||
| 1375 | /// from the given intrinsic. |
||
| 1376 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
| 1377 | Type *ExpectedType) const; |
||
| 1378 | |||
| 1379 | /// \returns The type to use in a loop expansion of a memcpy call. |
||
| 1380 | Type *getMemcpyLoopLoweringType( |
||
| 1381 | LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, |
||
| 1382 | unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, |
||
| 1383 | std::optional<uint32_t> AtomicElementSize = std::nullopt) const; |
||
| 1384 | |||
| 1385 | /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. |
||
| 1386 | /// \param RemainingBytes The number of bytes to copy. |
||
| 1387 | /// |
||
| 1388 | /// Calculates the operand types to use when copying \p RemainingBytes of |
||
| 1389 | /// memory, where source and destination alignments are \p SrcAlign and |
||
| 1390 | /// \p DestAlign respectively. |
||
| 1391 | void getMemcpyLoopResidualLoweringType( |
||
| 1392 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
| 1393 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
| 1394 | unsigned SrcAlign, unsigned DestAlign, |
||
| 1395 | std::optional<uint32_t> AtomicCpySize = std::nullopt) const; |
||
| 1396 | |||
| 1397 | /// \returns True if the two functions have compatible attributes for inlining |
||
| 1398 | /// purposes. |
||
| 1399 | bool areInlineCompatible(const Function *Caller, |
||
| 1400 | const Function *Callee) const; |
||
| 1401 | |||
| 1402 | /// \returns True if the caller and callee agree on how \p Types will be |
||
| 1403 | /// passed to or returned from the callee. |
||
| 1404 | /// to the callee. |
||
| 1405 | /// \param Types List of types to check. |
||
| 1406 | bool areTypesABICompatible(const Function *Caller, const Function *Callee, |
||
| 1407 | const ArrayRef<Type *> &Types) const; |
||
| 1408 | |||
| 1409 | /// The type of load/store indexing. |
||
| 1410 | enum MemIndexedMode { |
||
| 1411 | MIM_Unindexed, ///< No indexing. |
||
| 1412 | MIM_PreInc, ///< Pre-incrementing. |
||
| 1413 | MIM_PreDec, ///< Pre-decrementing. |
||
| 1414 | MIM_PostInc, ///< Post-incrementing. |
||
| 1415 | MIM_PostDec ///< Post-decrementing. |
||
| 1416 | }; |
||
| 1417 | |||
| 1418 | /// \returns True if the specified indexed load for the given type is legal. |
||
| 1419 | bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; |
||
| 1420 | |||
| 1421 | /// \returns True if the specified indexed store for the given type is legal. |
||
| 1422 | bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; |
||
| 1423 | |||
| 1424 | /// \returns The bitwidth of the largest vector type that should be used to |
||
| 1425 | /// load/store in the given address space. |
||
| 1426 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; |
||
| 1427 | |||
| 1428 | /// \returns True if the load instruction is legal to vectorize. |
||
| 1429 | bool isLegalToVectorizeLoad(LoadInst *LI) const; |
||
| 1430 | |||
| 1431 | /// \returns True if the store instruction is legal to vectorize. |
||
| 1432 | bool isLegalToVectorizeStore(StoreInst *SI) const; |
||
| 1433 | |||
| 1434 | /// \returns True if it is legal to vectorize the given load chain. |
||
| 1435 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, |
||
| 1436 | unsigned AddrSpace) const; |
||
| 1437 | |||
| 1438 | /// \returns True if it is legal to vectorize the given store chain. |
||
| 1439 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, |
||
| 1440 | unsigned AddrSpace) const; |
||
| 1441 | |||
| 1442 | /// \returns True if it is legal to vectorize the given reduction kind. |
||
| 1443 | bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
| 1444 | ElementCount VF) const; |
||
| 1445 | |||
| 1446 | /// \returns True if the given type is supported for scalable vectors |
||
| 1447 | bool isElementTypeLegalForScalableVector(Type *Ty) const; |
||
| 1448 | |||
| 1449 | /// \returns The new vector factor value if the target doesn't support \p |
||
| 1450 | /// SizeInBytes loads or has a better vector factor. |
||
| 1451 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
| 1452 | unsigned ChainSizeInBytes, |
||
| 1453 | VectorType *VecTy) const; |
||
| 1454 | |||
| 1455 | /// \returns The new vector factor value if the target doesn't support \p |
||
| 1456 | /// SizeInBytes stores or has a better vector factor. |
||
| 1457 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
| 1458 | unsigned ChainSizeInBytes, |
||
| 1459 | VectorType *VecTy) const; |
||
| 1460 | |||
| 1461 | /// Flags describing the kind of vector reduction. |
||
| 1462 | struct ReductionFlags { |
||
| 1463 | ReductionFlags() = default; |
||
| 1464 | bool IsMaxOp = |
||
| 1465 | false; ///< If the op a min/max kind, true if it's a max operation. |
||
| 1466 | bool IsSigned = false; ///< Whether the operation is a signed int reduction. |
||
| 1467 | bool NoNaN = |
||
| 1468 | false; ///< If op is an fp min/max, whether NaNs may be present. |
||
| 1469 | }; |
||
| 1470 | |||
| 1471 | /// \returns True if the target prefers reductions in loop. |
||
| 1472 | bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
| 1473 | ReductionFlags Flags) const; |
||
| 1474 | |||
| 1475 | /// \returns True if the target prefers reductions select kept in the loop |
||
| 1476 | /// when tail folding. i.e. |
||
| 1477 | /// loop: |
||
| 1478 | /// p = phi (0, s) |
||
| 1479 | /// a = add (p, x) |
||
| 1480 | /// s = select (mask, a, p) |
||
| 1481 | /// vecreduce.add(s) |
||
| 1482 | /// |
||
| 1483 | /// As opposed to the normal scheme of p = phi (0, a) which allows the select |
||
| 1484 | /// to be pulled out of the loop. If the select(.., add, ..) can be predicated |
||
| 1485 | /// by the target, this can lead to cleaner code generation. |
||
| 1486 | bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
| 1487 | ReductionFlags Flags) const; |
||
| 1488 | |||
| 1489 | /// Return true if the loop vectorizer should consider vectorizing an |
||
| 1490 | /// otherwise scalar epilogue loop. |
||
| 1491 | bool preferEpilogueVectorization() const; |
||
| 1492 | |||
| 1493 | /// \returns True if the target wants to expand the given reduction intrinsic |
||
| 1494 | /// into a shuffle sequence. |
||
| 1495 | bool shouldExpandReduction(const IntrinsicInst *II) const; |
||
| 1496 | |||
| 1497 | /// \returns the size cost of rematerializing a GlobalValue address relative |
||
| 1498 | /// to a stack reload. |
||
| 1499 | unsigned getGISelRematGlobalCost() const; |
||
| 1500 | |||
| 1501 | /// \returns the lower bound of a trip count to decide on vectorization |
||
| 1502 | /// while tail-folding. |
||
| 1503 | unsigned getMinTripCountTailFoldingThreshold() const; |
||
| 1504 | |||
| 1505 | /// \returns True if the target supports scalable vectors. |
||
| 1506 | bool supportsScalableVectors() const; |
||
| 1507 | |||
| 1508 | /// \return true when scalable vectorization is preferred. |
||
| 1509 | bool enableScalableVectorization() const; |
||
| 1510 | |||
| 1511 | /// \name Vector Predication Information |
||
| 1512 | /// @{ |
||
| 1513 | /// Whether the target supports the %evl parameter of VP intrinsic efficiently |
||
| 1514 | /// in hardware, for the given opcode and type/alignment. (see LLVM Language |
||
| 1515 | /// Reference - "Vector Predication Intrinsics"). |
||
| 1516 | /// Use of %evl is discouraged when that is not the case. |
||
| 1517 | bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
| 1518 | Align Alignment) const; |
||
| 1519 | |||
| 1520 | struct VPLegalization { |
||
| 1521 | enum VPTransform { |
||
| 1522 | // keep the predicating parameter |
||
| 1523 | Legal = 0, |
||
| 1524 | // where legal, discard the predicate parameter |
||
| 1525 | Discard = 1, |
||
| 1526 | // transform into something else that is also predicating |
||
| 1527 | Convert = 2 |
||
| 1528 | }; |
||
| 1529 | |||
| 1530 | // How to transform the EVL parameter. |
||
| 1531 | // Legal: keep the EVL parameter as it is. |
||
| 1532 | // Discard: Ignore the EVL parameter where it is safe to do so. |
||
| 1533 | // Convert: Fold the EVL into the mask parameter. |
||
| 1534 | VPTransform EVLParamStrategy; |
||
| 1535 | |||
| 1536 | // How to transform the operator. |
||
| 1537 | // Legal: The target supports this operator. |
||
| 1538 | // Convert: Convert this to a non-VP operation. |
||
| 1539 | // The 'Discard' strategy is invalid. |
||
| 1540 | VPTransform OpStrategy; |
||
| 1541 | |||
| 1542 | bool shouldDoNothing() const { |
||
| 1543 | return (EVLParamStrategy == Legal) && (OpStrategy == Legal); |
||
| 1544 | } |
||
| 1545 | VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy) |
||
| 1546 | : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {} |
||
| 1547 | }; |
||
| 1548 | |||
| 1549 | /// \returns How the target needs this vector-predicated operation to be |
||
| 1550 | /// transformed. |
||
| 1551 | VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const; |
||
| 1552 | /// @} |
||
| 1553 | |||
| 1554 | /// @} |
||
| 1555 | |||
| 1556 | private: |
||
| 1557 | /// The abstract base class used to type erase specific TTI |
||
| 1558 | /// implementations. |
||
| 1559 | class Concept; |
||
| 1560 | |||
| 1561 | /// The template model for the base class which wraps a concrete |
||
| 1562 | /// implementation in a type erased interface. |
||
| 1563 | template <typename T> class Model; |
||
| 1564 | |||
| 1565 | std::unique_ptr<Concept> TTIImpl; |
||
| 1566 | }; |
||
| 1567 | |||
| 1568 | class TargetTransformInfo::Concept { |
||
| 1569 | public: |
||
| 1570 | virtual ~Concept() = 0; |
||
| 1571 | virtual const DataLayout &getDataLayout() const = 0; |
||
| 1572 | virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, |
||
| 1573 | ArrayRef<const Value *> Operands, |
||
| 1574 | TTI::TargetCostKind CostKind) = 0; |
||
| 1575 | virtual unsigned getInliningThresholdMultiplier() = 0; |
||
| 1576 | virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0; |
||
| 1577 | virtual int getInlinerVectorBonusPercent() = 0; |
||
| 1578 | virtual InstructionCost getMemcpyCost(const Instruction *I) = 0; |
||
| 1579 | virtual unsigned |
||
| 1580 | getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, |
||
| 1581 | ProfileSummaryInfo *PSI, |
||
| 1582 | BlockFrequencyInfo *BFI) = 0; |
||
| 1583 | virtual InstructionCost getInstructionCost(const User *U, |
||
| 1584 | ArrayRef<const Value *> Operands, |
||
| 1585 | TargetCostKind CostKind) = 0; |
||
| 1586 | virtual BranchProbability getPredictableBranchThreshold() = 0; |
||
| 1587 | virtual bool hasBranchDivergence() = 0; |
||
| 1588 | virtual bool useGPUDivergenceAnalysis() = 0; |
||
| 1589 | virtual bool isSourceOfDivergence(const Value *V) = 0; |
||
| 1590 | virtual bool isAlwaysUniform(const Value *V) = 0; |
||
| 1591 | virtual unsigned getFlatAddressSpace() = 0; |
||
| 1592 | virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
| 1593 | Intrinsic::ID IID) const = 0; |
||
| 1594 | virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; |
||
| 1595 | virtual bool |
||
| 1596 | canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0; |
||
| 1597 | virtual unsigned getAssumedAddrSpace(const Value *V) const = 0; |
||
| 1598 | virtual bool isSingleThreaded() const = 0; |
||
| 1599 | virtual std::pair<const Value *, unsigned> |
||
| 1600 | getPredicatedAddrSpace(const Value *V) const = 0; |
||
| 1601 | virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, |
||
| 1602 | Value *OldV, |
||
| 1603 | Value *NewV) const = 0; |
||
| 1604 | virtual bool isLoweredToCall(const Function *F) = 0; |
||
| 1605 | virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
||
| 1606 | UnrollingPreferences &UP, |
||
| 1607 | OptimizationRemarkEmitter *ORE) = 0; |
||
| 1608 | virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
| 1609 | PeelingPreferences &PP) = 0; |
||
| 1610 | virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
| 1611 | AssumptionCache &AC, |
||
| 1612 | TargetLibraryInfo *LibInfo, |
||
| 1613 | HardwareLoopInfo &HWLoopInfo) = 0; |
||
| 1614 | virtual bool |
||
| 1615 | preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
| 1616 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
| 1617 | DominatorTree *DT, LoopVectorizationLegality *LVL, |
||
| 1618 | InterleavedAccessInfo *IAI) = 0; |
||
| 1619 | virtual PredicationStyle emitGetActiveLaneMask() = 0; |
||
| 1620 | virtual std::optional<Instruction *> instCombineIntrinsic( |
||
| 1621 | InstCombiner &IC, IntrinsicInst &II) = 0; |
||
| 1622 | virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic( |
||
| 1623 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, |
||
| 1624 | KnownBits & Known, bool &KnownBitsComputed) = 0; |
||
| 1625 | virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
| 1626 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, |
||
| 1627 | APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, |
||
| 1628 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
| 1629 | SimplifyAndSetOp) = 0; |
||
| 1630 | virtual bool isLegalAddImmediate(int64_t Imm) = 0; |
||
| 1631 | virtual bool isLegalICmpImmediate(int64_t Imm) = 0; |
||
| 1632 | virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, |
||
| 1633 | int64_t BaseOffset, bool HasBaseReg, |
||
| 1634 | int64_t Scale, unsigned AddrSpace, |
||
| 1635 | Instruction *I) = 0; |
||
| 1636 | virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
||
| 1637 | const TargetTransformInfo::LSRCost &C2) = 0; |
||
| 1638 | virtual bool isNumRegsMajorCostOfLSR() = 0; |
||
| 1639 | virtual bool isProfitableLSRChainElement(Instruction *I) = 0; |
||
| 1640 | virtual bool canMacroFuseCmp() = 0; |
||
| 1641 | virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, |
||
| 1642 | LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, |
||
| 1643 | TargetLibraryInfo *LibInfo) = 0; |
||
| 1644 | virtual AddressingModeKind |
||
| 1645 | getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0; |
||
| 1646 | virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0; |
||
| 1647 | virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0; |
||
| 1648 | virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0; |
||
| 1649 | virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0; |
||
| 1650 | virtual bool isLegalBroadcastLoad(Type *ElementTy, |
||
| 1651 | ElementCount NumElements) const = 0; |
||
| 1652 | virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0; |
||
| 1653 | virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0; |
||
| 1654 | virtual bool forceScalarizeMaskedGather(VectorType *DataType, |
||
| 1655 | Align Alignment) = 0; |
||
| 1656 | virtual bool forceScalarizeMaskedScatter(VectorType *DataType, |
||
| 1657 | Align Alignment) = 0; |
||
| 1658 | virtual bool isLegalMaskedCompressStore(Type *DataType) = 0; |
||
| 1659 | virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0; |
||
| 1660 | virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, |
||
| 1661 | unsigned Opcode1, |
||
| 1662 | const SmallBitVector &OpcodeMask) const = 0; |
||
| 1663 | virtual bool enableOrderedReductions() = 0; |
||
| 1664 | virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; |
||
| 1665 | virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; |
||
| 1666 | virtual bool prefersVectorizedAddressing() = 0; |
||
| 1667 | virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
| 1668 | int64_t BaseOffset, |
||
| 1669 | bool HasBaseReg, int64_t Scale, |
||
| 1670 | unsigned AddrSpace) = 0; |
||
| 1671 | virtual bool LSRWithInstrQueries() = 0; |
||
| 1672 | virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; |
||
| 1673 | virtual bool isProfitableToHoist(Instruction *I) = 0; |
||
| 1674 | virtual bool useAA() = 0; |
||
| 1675 | virtual bool isTypeLegal(Type *Ty) = 0; |
||
| 1676 | virtual unsigned getRegUsageForType(Type *Ty) = 0; |
||
| 1677 | virtual bool shouldBuildLookupTables() = 0; |
||
| 1678 | virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; |
||
| 1679 | virtual bool shouldBuildRelLookupTables() = 0; |
||
| 1680 | virtual bool useColdCCForColdCall(Function &F) = 0; |
||
| 1681 | virtual InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
| 1682 | const APInt &DemandedElts, |
||
| 1683 | bool Insert, bool Extract, |
||
| 1684 | TargetCostKind CostKind) = 0; |
||
| 1685 | virtual InstructionCost |
||
| 1686 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
| 1687 | ArrayRef<Type *> Tys, |
||
| 1688 | TargetCostKind CostKind) = 0; |
||
| 1689 | virtual bool supportsEfficientVectorElementLoadStore() = 0; |
||
| 1690 | virtual bool supportsTailCalls() = 0; |
||
| 1691 | virtual bool supportsTailCallFor(const CallBase *CB) = 0; |
||
| 1692 | virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; |
||
| 1693 | virtual MemCmpExpansionOptions |
||
| 1694 | enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0; |
||
| 1695 | virtual bool enableSelectOptimize() = 0; |
||
| 1696 | virtual bool enableInterleavedAccessVectorization() = 0; |
||
| 1697 | virtual bool enableMaskedInterleavedAccessVectorization() = 0; |
||
| 1698 | virtual bool isFPVectorizationPotentiallyUnsafe() = 0; |
||
| 1699 | virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
||
| 1700 | unsigned BitWidth, |
||
| 1701 | unsigned AddressSpace, |
||
| 1702 | Align Alignment, |
||
| 1703 | unsigned *Fast) = 0; |
||
| 1704 | virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; |
||
| 1705 | virtual bool haveFastSqrt(Type *Ty) = 0; |
||
| 1706 | virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0; |
||
| 1707 | virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; |
||
| 1708 | virtual InstructionCost getFPOpCost(Type *Ty) = 0; |
||
| 1709 | virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, |
||
| 1710 | const APInt &Imm, Type *Ty) = 0; |
||
| 1711 | virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
| 1712 | TargetCostKind CostKind) = 0; |
||
| 1713 | virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, |
||
| 1714 | const APInt &Imm, Type *Ty, |
||
| 1715 | TargetCostKind CostKind, |
||
| 1716 | Instruction *Inst = nullptr) = 0; |
||
| 1717 | virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
| 1718 | const APInt &Imm, Type *Ty, |
||
| 1719 | TargetCostKind CostKind) = 0; |
||
| 1720 | virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0; |
||
| 1721 | virtual unsigned getRegisterClassForType(bool Vector, |
||
| 1722 | Type *Ty = nullptr) const = 0; |
||
| 1723 | virtual const char *getRegisterClassName(unsigned ClassID) const = 0; |
||
| 1724 | virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0; |
||
| 1725 | virtual unsigned getMinVectorRegisterBitWidth() const = 0; |
||
| 1726 | virtual std::optional<unsigned> getMaxVScale() const = 0; |
||
| 1727 | virtual std::optional<unsigned> getVScaleForTuning() const = 0; |
||
| 1728 | virtual bool |
||
| 1729 | shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0; |
||
| 1730 | virtual ElementCount getMinimumVF(unsigned ElemWidth, |
||
| 1731 | bool IsScalable) const = 0; |
||
| 1732 | virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0; |
||
| 1733 | virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
| 1734 | Type *ScalarValTy) const = 0; |
||
| 1735 | virtual bool shouldConsiderAddressTypePromotion( |
||
| 1736 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; |
||
| 1737 | virtual unsigned getCacheLineSize() const = 0; |
||
| 1738 | virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0; |
||
| 1739 | virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level) |
||
| 1740 | const = 0; |
||
| 1741 | |||
| 1742 | /// \return How much before a load we should place the prefetch |
||
| 1743 | /// instruction. This is currently measured in number of |
||
| 1744 | /// instructions. |
||
| 1745 | virtual unsigned getPrefetchDistance() const = 0; |
||
| 1746 | |||
| 1747 | /// \return Some HW prefetchers can handle accesses up to a certain |
||
| 1748 | /// constant stride. This is the minimum stride in bytes where it |
||
| 1749 | /// makes sense to start adding SW prefetches. The default is 1, |
||
| 1750 | /// i.e. prefetch with any stride. Sometimes prefetching is beneficial |
||
| 1751 | /// even below the HW prefetcher limit, and the arguments provided are |
||
| 1752 | /// meant to serve as a basis for deciding this for a particular loop. |
||
| 1753 | virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
| 1754 | unsigned NumStridedMemAccesses, |
||
| 1755 | unsigned NumPrefetches, |
||
| 1756 | bool HasCall) const = 0; |
||
| 1757 | |||
| 1758 | /// \return The maximum number of iterations to prefetch ahead. If |
||
| 1759 | /// the required number of iterations is more than this number, no |
||
| 1760 | /// prefetching is performed. |
||
| 1761 | virtual unsigned getMaxPrefetchIterationsAhead() const = 0; |
||
| 1762 | |||
| 1763 | /// \return True if prefetching should also be done for writes. |
||
| 1764 | virtual bool enableWritePrefetching() const = 0; |
||
| 1765 | |||
| 1766 | /// \return if target want to issue a prefetch in address space \p AS. |
||
| 1767 | virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0; |
||
| 1768 | |||
| 1769 | virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0; |
||
| 1770 | virtual InstructionCost getArithmeticInstrCost( |
||
| 1771 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
||
| 1772 | OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, |
||
| 1773 | ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0; |
||
| 1774 | |||
| 1775 | virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, |
||
| 1776 | ArrayRef<int> Mask, |
||
| 1777 | TTI::TargetCostKind CostKind, |
||
| 1778 | int Index, VectorType *SubTp, |
||
| 1779 | ArrayRef<const Value *> Args) = 0; |
||
| 1780 | virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, |
||
| 1781 | Type *Src, CastContextHint CCH, |
||
| 1782 | TTI::TargetCostKind CostKind, |
||
| 1783 | const Instruction *I) = 0; |
||
| 1784 | virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
| 1785 | VectorType *VecTy, |
||
| 1786 | unsigned Index) = 0; |
||
| 1787 | virtual InstructionCost getCFInstrCost(unsigned Opcode, |
||
| 1788 | TTI::TargetCostKind CostKind, |
||
| 1789 | const Instruction *I = nullptr) = 0; |
||
| 1790 | virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
||
| 1791 | Type *CondTy, |
||
| 1792 | CmpInst::Predicate VecPred, |
||
| 1793 | TTI::TargetCostKind CostKind, |
||
| 1794 | const Instruction *I) = 0; |
||
| 1795 | virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
| 1796 | TTI::TargetCostKind CostKind, |
||
| 1797 | unsigned Index, Value *Op0, |
||
| 1798 | Value *Op1) = 0; |
||
| 1799 | virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
| 1800 | TTI::TargetCostKind CostKind, |
||
| 1801 | unsigned Index) = 0; |
||
| 1802 | |||
| 1803 | virtual InstructionCost |
||
| 1804 | getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, |
||
| 1805 | const APInt &DemandedDstElts, |
||
| 1806 | TTI::TargetCostKind CostKind) = 0; |
||
| 1807 | |||
| 1808 | virtual InstructionCost |
||
| 1809 | getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
| 1810 | unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
| 1811 | OperandValueInfo OpInfo, const Instruction *I) = 0; |
||
| 1812 | virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, |
||
| 1813 | Align Alignment, |
||
| 1814 | unsigned AddressSpace, |
||
| 1815 | TTI::TargetCostKind CostKind, |
||
| 1816 | const Instruction *I) = 0; |
||
| 1817 | virtual InstructionCost |
||
| 1818 | getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
| 1819 | unsigned AddressSpace, |
||
| 1820 | TTI::TargetCostKind CostKind) = 0; |
||
| 1821 | virtual InstructionCost |
||
| 1822 | getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, |
||
| 1823 | bool VariableMask, Align Alignment, |
||
| 1824 | TTI::TargetCostKind CostKind, |
||
| 1825 | const Instruction *I = nullptr) = 0; |
||
| 1826 | |||
| 1827 | virtual InstructionCost getInterleavedMemoryOpCost( |
||
| 1828 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
| 1829 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
| 1830 | bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0; |
||
| 1831 | virtual InstructionCost |
||
| 1832 | getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
||
| 1833 | std::optional<FastMathFlags> FMF, |
||
| 1834 | TTI::TargetCostKind CostKind) = 0; |
||
| 1835 | virtual InstructionCost |
||
| 1836 | getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned, |
||
| 1837 | TTI::TargetCostKind CostKind) = 0; |
||
| 1838 | virtual InstructionCost getExtendedReductionCost( |
||
| 1839 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
| 1840 | std::optional<FastMathFlags> FMF, |
||
| 1841 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; |
||
| 1842 | virtual InstructionCost getMulAccReductionCost( |
||
| 1843 | bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
| 1844 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; |
||
| 1845 | virtual InstructionCost |
||
| 1846 | getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
| 1847 | TTI::TargetCostKind CostKind) = 0; |
||
| 1848 | virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, |
||
| 1849 | ArrayRef<Type *> Tys, |
||
| 1850 | TTI::TargetCostKind CostKind) = 0; |
||
| 1851 | virtual unsigned getNumberOfParts(Type *Tp) = 0; |
||
| 1852 | virtual InstructionCost |
||
| 1853 | getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0; |
||
| 1854 | virtual InstructionCost |
||
| 1855 | getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0; |
||
| 1856 | virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
||
| 1857 | MemIntrinsicInfo &Info) = 0; |
||
| 1858 | virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; |
||
| 1859 | virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
| 1860 | Type *ExpectedType) = 0; |
||
| 1861 | virtual Type *getMemcpyLoopLoweringType( |
||
| 1862 | LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, |
||
| 1863 | unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, |
||
| 1864 | std::optional<uint32_t> AtomicElementSize) const = 0; |
||
| 1865 | |||
| 1866 | virtual void getMemcpyLoopResidualLoweringType( |
||
| 1867 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
| 1868 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
| 1869 | unsigned SrcAlign, unsigned DestAlign, |
||
| 1870 | std::optional<uint32_t> AtomicCpySize) const = 0; |
||
| 1871 | virtual bool areInlineCompatible(const Function *Caller, |
||
| 1872 | const Function *Callee) const = 0; |
||
| 1873 | virtual bool areTypesABICompatible(const Function *Caller, |
||
| 1874 | const Function *Callee, |
||
| 1875 | const ArrayRef<Type *> &Types) const = 0; |
||
| 1876 | virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; |
||
| 1877 | virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0; |
||
| 1878 | virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; |
||
| 1879 | virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; |
||
| 1880 | virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; |
||
| 1881 | virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
||
| 1882 | Align Alignment, |
||
| 1883 | unsigned AddrSpace) const = 0; |
||
| 1884 | virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
||
| 1885 | Align Alignment, |
||
| 1886 | unsigned AddrSpace) const = 0; |
||
| 1887 | virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
| 1888 | ElementCount VF) const = 0; |
||
| 1889 | virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0; |
||
| 1890 | virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
| 1891 | unsigned ChainSizeInBytes, |
||
| 1892 | VectorType *VecTy) const = 0; |
||
| 1893 | virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
| 1894 | unsigned ChainSizeInBytes, |
||
| 1895 | VectorType *VecTy) const = 0; |
||
| 1896 | virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
| 1897 | ReductionFlags) const = 0; |
||
| 1898 | virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
| 1899 | ReductionFlags) const = 0; |
||
| 1900 | virtual bool preferEpilogueVectorization() const = 0; |
||
| 1901 | |||
| 1902 | virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; |
||
| 1903 | virtual unsigned getGISelRematGlobalCost() const = 0; |
||
| 1904 | virtual unsigned getMinTripCountTailFoldingThreshold() const = 0; |
||
| 1905 | virtual bool enableScalableVectorization() const = 0; |
||
| 1906 | virtual bool supportsScalableVectors() const = 0; |
||
| 1907 | virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
| 1908 | Align Alignment) const = 0; |
||
| 1909 | virtual VPLegalization |
||
| 1910 | getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0; |
||
| 1911 | }; |
||
| 1912 | |||
| 1913 | template <typename T> |
||
| 1914 | class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { |
||
| 1915 | T Impl; |
||
| 1916 | |||
| 1917 | public: |
||
| 1918 | Model(T Impl) : Impl(std::move(Impl)) {} |
||
| 1919 | ~Model() override = default; |
||
| 1920 | |||
| 1921 | const DataLayout &getDataLayout() const override { |
||
| 1922 | return Impl.getDataLayout(); |
||
| 1923 | } |
||
| 1924 | |||
| 1925 | InstructionCost |
||
| 1926 | getGEPCost(Type *PointeeType, const Value *Ptr, |
||
| 1927 | ArrayRef<const Value *> Operands, |
||
| 1928 | TargetTransformInfo::TargetCostKind CostKind) override { |
||
| 1929 | return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind); |
||
| 1930 | } |
||
| 1931 | unsigned getInliningThresholdMultiplier() override { |
||
| 1932 | return Impl.getInliningThresholdMultiplier(); |
||
| 1933 | } |
||
| 1934 | unsigned adjustInliningThreshold(const CallBase *CB) override { |
||
| 1935 | return Impl.adjustInliningThreshold(CB); |
||
| 1936 | } |
||
| 1937 | int getInlinerVectorBonusPercent() override { |
||
| 1938 | return Impl.getInlinerVectorBonusPercent(); |
||
| 1939 | } |
||
| 1940 | InstructionCost getMemcpyCost(const Instruction *I) override { |
||
| 1941 | return Impl.getMemcpyCost(I); |
||
| 1942 | } |
||
| 1943 | InstructionCost getInstructionCost(const User *U, |
||
| 1944 | ArrayRef<const Value *> Operands, |
||
| 1945 | TargetCostKind CostKind) override { |
||
| 1946 | return Impl.getInstructionCost(U, Operands, CostKind); |
||
| 1947 | } |
||
| 1948 | BranchProbability getPredictableBranchThreshold() override { |
||
| 1949 | return Impl.getPredictableBranchThreshold(); |
||
| 1950 | } |
||
| 1951 | bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); } |
||
| 1952 | bool useGPUDivergenceAnalysis() override { |
||
| 1953 | return Impl.useGPUDivergenceAnalysis(); |
||
| 1954 | } |
||
| 1955 | bool isSourceOfDivergence(const Value *V) override { |
||
| 1956 | return Impl.isSourceOfDivergence(V); |
||
| 1957 | } |
||
| 1958 | |||
| 1959 | bool isAlwaysUniform(const Value *V) override { |
||
| 1960 | return Impl.isAlwaysUniform(V); |
||
| 1961 | } |
||
| 1962 | |||
| 1963 | unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); } |
||
| 1964 | |||
| 1965 | bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
| 1966 | Intrinsic::ID IID) const override { |
||
| 1967 | return Impl.collectFlatAddressOperands(OpIndexes, IID); |
||
| 1968 | } |
||
| 1969 | |||
| 1970 | bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { |
||
| 1971 | return Impl.isNoopAddrSpaceCast(FromAS, ToAS); |
||
| 1972 | } |
||
| 1973 | |||
| 1974 | bool |
||
| 1975 | canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override { |
||
| 1976 | return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS); |
||
| 1977 | } |
||
| 1978 | |||
| 1979 | unsigned getAssumedAddrSpace(const Value *V) const override { |
||
| 1980 | return Impl.getAssumedAddrSpace(V); |
||
| 1981 | } |
||
| 1982 | |||
| 1983 | bool isSingleThreaded() const override { return Impl.isSingleThreaded(); } |
||
| 1984 | |||
| 1985 | std::pair<const Value *, unsigned> |
||
| 1986 | getPredicatedAddrSpace(const Value *V) const override { |
||
| 1987 | return Impl.getPredicatedAddrSpace(V); |
||
| 1988 | } |
||
| 1989 | |||
| 1990 | Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, |
||
| 1991 | Value *NewV) const override { |
||
| 1992 | return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV); |
||
| 1993 | } |
||
| 1994 | |||
| 1995 | bool isLoweredToCall(const Function *F) override { |
||
| 1996 | return Impl.isLoweredToCall(F); |
||
| 1997 | } |
||
| 1998 | void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
||
| 1999 | UnrollingPreferences &UP, |
||
| 2000 | OptimizationRemarkEmitter *ORE) override { |
||
| 2001 | return Impl.getUnrollingPreferences(L, SE, UP, ORE); |
||
| 2002 | } |
||
| 2003 | void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
| 2004 | PeelingPreferences &PP) override { |
||
| 2005 | return Impl.getPeelingPreferences(L, SE, PP); |
||
| 2006 | } |
||
| 2007 | bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
| 2008 | AssumptionCache &AC, TargetLibraryInfo *LibInfo, |
||
| 2009 | HardwareLoopInfo &HWLoopInfo) override { |
||
| 2010 | return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); |
||
| 2011 | } |
||
| 2012 | bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
| 2013 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
| 2014 | DominatorTree *DT, |
||
| 2015 | LoopVectorizationLegality *LVL, |
||
| 2016 | InterleavedAccessInfo *IAI) override { |
||
| 2017 | return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI); |
||
| 2018 | } |
||
| 2019 | PredicationStyle emitGetActiveLaneMask() override { |
||
| 2020 | return Impl.emitGetActiveLaneMask(); |
||
| 2021 | } |
||
| 2022 | std::optional<Instruction *> |
||
| 2023 | instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override { |
||
| 2024 | return Impl.instCombineIntrinsic(IC, II); |
||
| 2025 | } |
||
| 2026 | std::optional<Value *> |
||
| 2027 | simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, |
||
| 2028 | APInt DemandedMask, KnownBits &Known, |
||
| 2029 | bool &KnownBitsComputed) override { |
||
| 2030 | return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, |
||
| 2031 | KnownBitsComputed); |
||
| 2032 | } |
||
| 2033 | std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
| 2034 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
||
| 2035 | APInt &UndefElts2, APInt &UndefElts3, |
||
| 2036 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
| 2037 | SimplifyAndSetOp) override { |
||
| 2038 | return Impl.simplifyDemandedVectorEltsIntrinsic( |
||
| 2039 | IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, |
||
| 2040 | SimplifyAndSetOp); |
||
| 2041 | } |
||
| 2042 | bool isLegalAddImmediate(int64_t Imm) override { |
||
| 2043 | return Impl.isLegalAddImmediate(Imm); |
||
| 2044 | } |
||
| 2045 | bool isLegalICmpImmediate(int64_t Imm) override { |
||
| 2046 | return Impl.isLegalICmpImmediate(Imm); |
||
| 2047 | } |
||
| 2048 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
||
| 2049 | bool HasBaseReg, int64_t Scale, unsigned AddrSpace, |
||
| 2050 | Instruction *I) override { |
||
| 2051 | return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, |
||
| 2052 | AddrSpace, I); |
||
| 2053 | } |
||
| 2054 | bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
||
| 2055 | const TargetTransformInfo::LSRCost &C2) override { |
||
| 2056 | return Impl.isLSRCostLess(C1, C2); |
||
| 2057 | } |
||
| 2058 | bool isNumRegsMajorCostOfLSR() override { |
||
| 2059 | return Impl.isNumRegsMajorCostOfLSR(); |
||
| 2060 | } |
||
| 2061 | bool isProfitableLSRChainElement(Instruction *I) override { |
||
| 2062 | return Impl.isProfitableLSRChainElement(I); |
||
| 2063 | } |
||
| 2064 | bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); } |
||
| 2065 | bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, |
||
| 2066 | DominatorTree *DT, AssumptionCache *AC, |
||
| 2067 | TargetLibraryInfo *LibInfo) override { |
||
| 2068 | return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); |
||
| 2069 | } |
||
| 2070 | AddressingModeKind |
||
| 2071 | getPreferredAddressingMode(const Loop *L, |
||
| 2072 | ScalarEvolution *SE) const override { |
||
| 2073 | return Impl.getPreferredAddressingMode(L, SE); |
||
| 2074 | } |
||
| 2075 | bool isLegalMaskedStore(Type *DataType, Align Alignment) override { |
||
| 2076 | return Impl.isLegalMaskedStore(DataType, Alignment); |
||
| 2077 | } |
||
| 2078 | bool isLegalMaskedLoad(Type *DataType, Align Alignment) override { |
||
| 2079 | return Impl.isLegalMaskedLoad(DataType, Alignment); |
||
| 2080 | } |
||
| 2081 | bool isLegalNTStore(Type *DataType, Align Alignment) override { |
||
| 2082 | return Impl.isLegalNTStore(DataType, Alignment); |
||
| 2083 | } |
||
| 2084 | bool isLegalNTLoad(Type *DataType, Align Alignment) override { |
||
| 2085 | return Impl.isLegalNTLoad(DataType, Alignment); |
||
| 2086 | } |
||
| 2087 | bool isLegalBroadcastLoad(Type *ElementTy, |
||
| 2088 | ElementCount NumElements) const override { |
||
| 2089 | return Impl.isLegalBroadcastLoad(ElementTy, NumElements); |
||
| 2090 | } |
||
| 2091 | bool isLegalMaskedScatter(Type *DataType, Align Alignment) override { |
||
| 2092 | return Impl.isLegalMaskedScatter(DataType, Alignment); |
||
| 2093 | } |
||
| 2094 | bool isLegalMaskedGather(Type *DataType, Align Alignment) override { |
||
| 2095 | return Impl.isLegalMaskedGather(DataType, Alignment); |
||
| 2096 | } |
||
| 2097 | bool forceScalarizeMaskedGather(VectorType *DataType, |
||
| 2098 | Align Alignment) override { |
||
| 2099 | return Impl.forceScalarizeMaskedGather(DataType, Alignment); |
||
| 2100 | } |
||
| 2101 | bool forceScalarizeMaskedScatter(VectorType *DataType, |
||
| 2102 | Align Alignment) override { |
||
| 2103 | return Impl.forceScalarizeMaskedScatter(DataType, Alignment); |
||
| 2104 | } |
||
| 2105 | bool isLegalMaskedCompressStore(Type *DataType) override { |
||
| 2106 | return Impl.isLegalMaskedCompressStore(DataType); |
||
| 2107 | } |
||
| 2108 | bool isLegalMaskedExpandLoad(Type *DataType) override { |
||
| 2109 | return Impl.isLegalMaskedExpandLoad(DataType); |
||
| 2110 | } |
||
| 2111 | bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, |
||
| 2112 | const SmallBitVector &OpcodeMask) const override { |
||
| 2113 | return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask); |
||
| 2114 | } |
||
| 2115 | bool enableOrderedReductions() override { |
||
| 2116 | return Impl.enableOrderedReductions(); |
||
| 2117 | } |
||
| 2118 | bool hasDivRemOp(Type *DataType, bool IsSigned) override { |
||
| 2119 | return Impl.hasDivRemOp(DataType, IsSigned); |
||
| 2120 | } |
||
| 2121 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { |
||
| 2122 | return Impl.hasVolatileVariant(I, AddrSpace); |
||
| 2123 | } |
||
| 2124 | bool prefersVectorizedAddressing() override { |
||
| 2125 | return Impl.prefersVectorizedAddressing(); |
||
| 2126 | } |
||
| 2127 | InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
| 2128 | int64_t BaseOffset, bool HasBaseReg, |
||
| 2129 | int64_t Scale, |
||
| 2130 | unsigned AddrSpace) override { |
||
| 2131 | return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, |
||
| 2132 | AddrSpace); |
||
| 2133 | } |
||
| 2134 | bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); } |
||
| 2135 | bool isTruncateFree(Type *Ty1, Type *Ty2) override { |
||
| 2136 | return Impl.isTruncateFree(Ty1, Ty2); |
||
| 2137 | } |
||
| 2138 | bool isProfitableToHoist(Instruction *I) override { |
||
| 2139 | return Impl.isProfitableToHoist(I); |
||
| 2140 | } |
||
| 2141 | bool useAA() override { return Impl.useAA(); } |
||
| 2142 | bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } |
||
| 2143 | unsigned getRegUsageForType(Type *Ty) override { |
||
| 2144 | return Impl.getRegUsageForType(Ty); |
||
| 2145 | } |
||
| 2146 | bool shouldBuildLookupTables() override { |
||
| 2147 | return Impl.shouldBuildLookupTables(); |
||
| 2148 | } |
||
| 2149 | bool shouldBuildLookupTablesForConstant(Constant *C) override { |
||
| 2150 | return Impl.shouldBuildLookupTablesForConstant(C); |
||
| 2151 | } |
||
| 2152 | bool shouldBuildRelLookupTables() override { |
||
| 2153 | return Impl.shouldBuildRelLookupTables(); |
||
| 2154 | } |
||
| 2155 | bool useColdCCForColdCall(Function &F) override { |
||
| 2156 | return Impl.useColdCCForColdCall(F); |
||
| 2157 | } |
||
| 2158 | |||
| 2159 | InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
| 2160 | const APInt &DemandedElts, |
||
| 2161 | bool Insert, bool Extract, |
||
| 2162 | TargetCostKind CostKind) override { |
||
| 2163 | return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract, |
||
| 2164 | CostKind); |
||
| 2165 | } |
||
| 2166 | InstructionCost |
||
| 2167 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
| 2168 | ArrayRef<Type *> Tys, |
||
| 2169 | TargetCostKind CostKind) override { |
||
| 2170 | return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind); |
||
| 2171 | } |
||
| 2172 | |||
| 2173 | bool supportsEfficientVectorElementLoadStore() override { |
||
| 2174 | return Impl.supportsEfficientVectorElementLoadStore(); |
||
| 2175 | } |
||
| 2176 | |||
| 2177 | bool supportsTailCalls() override { return Impl.supportsTailCalls(); } |
||
| 2178 | bool supportsTailCallFor(const CallBase *CB) override { |
||
| 2179 | return Impl.supportsTailCallFor(CB); |
||
| 2180 | } |
||
| 2181 | |||
| 2182 | bool enableAggressiveInterleaving(bool LoopHasReductions) override { |
||
| 2183 | return Impl.enableAggressiveInterleaving(LoopHasReductions); |
||
| 2184 | } |
||
| 2185 | MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, |
||
| 2186 | bool IsZeroCmp) const override { |
||
| 2187 | return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp); |
||
| 2188 | } |
||
| 2189 | bool enableInterleavedAccessVectorization() override { |
||
| 2190 | return Impl.enableInterleavedAccessVectorization(); |
||
| 2191 | } |
||
| 2192 | bool enableSelectOptimize() override { |
||
| 2193 | return Impl.enableSelectOptimize(); |
||
| 2194 | } |
||
| 2195 | bool enableMaskedInterleavedAccessVectorization() override { |
||
| 2196 | return Impl.enableMaskedInterleavedAccessVectorization(); |
||
| 2197 | } |
||
| 2198 | bool isFPVectorizationPotentiallyUnsafe() override { |
||
| 2199 | return Impl.isFPVectorizationPotentiallyUnsafe(); |
||
| 2200 | } |
||
| 2201 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, |
||
| 2202 | unsigned AddressSpace, Align Alignment, |
||
| 2203 | unsigned *Fast) override { |
||
| 2204 | return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, |
||
| 2205 | Alignment, Fast); |
||
| 2206 | } |
||
| 2207 | PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { |
||
| 2208 | return Impl.getPopcntSupport(IntTyWidthInBit); |
||
| 2209 | } |
||
| 2210 | bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } |
||
| 2211 | |||
| 2212 | bool isExpensiveToSpeculativelyExecute(const Instruction* I) override { |
||
| 2213 | return Impl.isExpensiveToSpeculativelyExecute(I); |
||
| 2214 | } |
||
| 2215 | |||
| 2216 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { |
||
| 2217 | return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); |
||
| 2218 | } |
||
| 2219 | |||
| 2220 | InstructionCost getFPOpCost(Type *Ty) override { |
||
| 2221 | return Impl.getFPOpCost(Ty); |
||
| 2222 | } |
||
| 2223 | |||
| 2224 | InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, |
||
| 2225 | const APInt &Imm, Type *Ty) override { |
||
| 2226 | return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); |
||
| 2227 | } |
||
| 2228 | InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
| 2229 | TargetCostKind CostKind) override { |
||
| 2230 | return Impl.getIntImmCost(Imm, Ty, CostKind); |
||
| 2231 | } |
||
| 2232 | InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, |
||
| 2233 | const APInt &Imm, Type *Ty, |
||
| 2234 | TargetCostKind CostKind, |
||
| 2235 | Instruction *Inst = nullptr) override { |
||
| 2236 | return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst); |
||
| 2237 | } |
||
| 2238 | InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
| 2239 | const APInt &Imm, Type *Ty, |
||
| 2240 | TargetCostKind CostKind) override { |
||
| 2241 | return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); |
||
| 2242 | } |
||
| 2243 | unsigned getNumberOfRegisters(unsigned ClassID) const override { |
||
| 2244 | return Impl.getNumberOfRegisters(ClassID); |
||
| 2245 | } |
||
| 2246 | unsigned getRegisterClassForType(bool Vector, |
||
| 2247 | Type *Ty = nullptr) const override { |
||
| 2248 | return Impl.getRegisterClassForType(Vector, Ty); |
||
| 2249 | } |
||
| 2250 | const char *getRegisterClassName(unsigned ClassID) const override { |
||
| 2251 | return Impl.getRegisterClassName(ClassID); |
||
| 2252 | } |
||
| 2253 | TypeSize getRegisterBitWidth(RegisterKind K) const override { |
||
| 2254 | return Impl.getRegisterBitWidth(K); |
||
| 2255 | } |
||
| 2256 | unsigned getMinVectorRegisterBitWidth() const override { |
||
| 2257 | return Impl.getMinVectorRegisterBitWidth(); |
||
| 2258 | } |
||
| 2259 | std::optional<unsigned> getMaxVScale() const override { |
||
| 2260 | return Impl.getMaxVScale(); |
||
| 2261 | } |
||
| 2262 | std::optional<unsigned> getVScaleForTuning() const override { |
||
| 2263 | return Impl.getVScaleForTuning(); |
||
| 2264 | } |
||
| 2265 | bool shouldMaximizeVectorBandwidth( |
||
| 2266 | TargetTransformInfo::RegisterKind K) const override { |
||
| 2267 | return Impl.shouldMaximizeVectorBandwidth(K); |
||
| 2268 | } |
||
| 2269 | ElementCount getMinimumVF(unsigned ElemWidth, |
||
| 2270 | bool IsScalable) const override { |
||
| 2271 | return Impl.getMinimumVF(ElemWidth, IsScalable); |
||
| 2272 | } |
||
| 2273 | unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override { |
||
| 2274 | return Impl.getMaximumVF(ElemWidth, Opcode); |
||
| 2275 | } |
||
| 2276 | unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
| 2277 | Type *ScalarValTy) const override { |
||
| 2278 | return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy); |
||
| 2279 | } |
||
| 2280 | bool shouldConsiderAddressTypePromotion( |
||
| 2281 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { |
||
| 2282 | return Impl.shouldConsiderAddressTypePromotion( |
||
| 2283 | I, AllowPromotionWithoutCommonHeader); |
||
| 2284 | } |
||
| 2285 | unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); } |
||
| 2286 | std::optional<unsigned> getCacheSize(CacheLevel Level) const override { |
||
| 2287 | return Impl.getCacheSize(Level); |
||
| 2288 | } |
||
| 2289 | std::optional<unsigned> |
||
| 2290 | getCacheAssociativity(CacheLevel Level) const override { |
||
| 2291 | return Impl.getCacheAssociativity(Level); |
||
| 2292 | } |
||
| 2293 | |||
| 2294 | /// Return the preferred prefetch distance in terms of instructions. |
||
| 2295 | /// |
||
| 2296 | unsigned getPrefetchDistance() const override { |
||
| 2297 | return Impl.getPrefetchDistance(); |
||
| 2298 | } |
||
| 2299 | |||
| 2300 | /// Return the minimum stride necessary to trigger software |
||
| 2301 | /// prefetching. |
||
| 2302 | /// |
||
| 2303 | unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
| 2304 | unsigned NumStridedMemAccesses, |
||
| 2305 | unsigned NumPrefetches, |
||
| 2306 | bool HasCall) const override { |
||
| 2307 | return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, |
||
| 2308 | NumPrefetches, HasCall); |
||
| 2309 | } |
||
| 2310 | |||
| 2311 | /// Return the maximum prefetch distance in terms of loop |
||
| 2312 | /// iterations. |
||
| 2313 | /// |
||
| 2314 | unsigned getMaxPrefetchIterationsAhead() const override { |
||
| 2315 | return Impl.getMaxPrefetchIterationsAhead(); |
||
| 2316 | } |
||
| 2317 | |||
| 2318 | /// \return True if prefetching should also be done for writes. |
||
| 2319 | bool enableWritePrefetching() const override { |
||
| 2320 | return Impl.enableWritePrefetching(); |
||
| 2321 | } |
||
| 2322 | |||
| 2323 | /// \return if target want to issue a prefetch in address space \p AS. |
||
| 2324 | bool shouldPrefetchAddressSpace(unsigned AS) const override { |
||
| 2325 | return Impl.shouldPrefetchAddressSpace(AS); |
||
| 2326 | } |
||
| 2327 | |||
| 2328 | unsigned getMaxInterleaveFactor(unsigned VF) override { |
||
| 2329 | return Impl.getMaxInterleaveFactor(VF); |
||
| 2330 | } |
||
| 2331 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
||
| 2332 | unsigned &JTSize, |
||
| 2333 | ProfileSummaryInfo *PSI, |
||
| 2334 | BlockFrequencyInfo *BFI) override { |
||
| 2335 | return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); |
||
| 2336 | } |
||
| 2337 | InstructionCost getArithmeticInstrCost( |
||
| 2338 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
||
| 2339 | OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, |
||
| 2340 | ArrayRef<const Value *> Args, |
||
| 2341 | const Instruction *CxtI = nullptr) override { |
||
| 2342 | return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, |
||
| 2343 | Args, CxtI); |
||
| 2344 | } |
||
| 2345 | |||
| 2346 | InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, |
||
| 2347 | ArrayRef<int> Mask, |
||
| 2348 | TTI::TargetCostKind CostKind, int Index, |
||
| 2349 | VectorType *SubTp, |
||
| 2350 | ArrayRef<const Value *> Args) override { |
||
| 2351 | return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args); |
||
| 2352 | } |
||
| 2353 | InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
||
| 2354 | CastContextHint CCH, |
||
| 2355 | TTI::TargetCostKind CostKind, |
||
| 2356 | const Instruction *I) override { |
||
| 2357 | return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
||
| 2358 | } |
||
| 2359 | InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
| 2360 | VectorType *VecTy, |
||
| 2361 | unsigned Index) override { |
||
| 2362 | return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); |
||
| 2363 | } |
||
| 2364 | InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, |
||
| 2365 | const Instruction *I = nullptr) override { |
||
| 2366 | return Impl.getCFInstrCost(Opcode, CostKind, I); |
||
| 2367 | } |
||
| 2368 | InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
||
| 2369 | CmpInst::Predicate VecPred, |
||
| 2370 | TTI::TargetCostKind CostKind, |
||
| 2371 | const Instruction *I) override { |
||
| 2372 | return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); |
||
| 2373 | } |
||
| 2374 | InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
| 2375 | TTI::TargetCostKind CostKind, |
||
| 2376 | unsigned Index, Value *Op0, |
||
| 2377 | Value *Op1) override { |
||
| 2378 | return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); |
||
| 2379 | } |
||
| 2380 | InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
| 2381 | TTI::TargetCostKind CostKind, |
||
| 2382 | unsigned Index) override { |
||
| 2383 | return Impl.getVectorInstrCost(I, Val, CostKind, Index); |
||
| 2384 | } |
||
| 2385 | InstructionCost |
||
| 2386 | getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, |
||
| 2387 | const APInt &DemandedDstElts, |
||
| 2388 | TTI::TargetCostKind CostKind) override { |
||
| 2389 | return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF, |
||
| 2390 | DemandedDstElts, CostKind); |
||
| 2391 | } |
||
| 2392 | InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
| 2393 | unsigned AddressSpace, |
||
| 2394 | TTI::TargetCostKind CostKind, |
||
| 2395 | OperandValueInfo OpInfo, |
||
| 2396 | const Instruction *I) override { |
||
| 2397 | return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind, |
||
| 2398 | OpInfo, I); |
||
| 2399 | } |
||
| 2400 | InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
| 2401 | unsigned AddressSpace, |
||
| 2402 | TTI::TargetCostKind CostKind, |
||
| 2403 | const Instruction *I) override { |
||
| 2404 | return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
||
| 2405 | CostKind, I); |
||
| 2406 | } |
||
| 2407 | InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, |
||
| 2408 | Align Alignment, unsigned AddressSpace, |
||
| 2409 | TTI::TargetCostKind CostKind) override { |
||
| 2410 | return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
||
| 2411 | CostKind); |
||
| 2412 | } |
||
| 2413 | InstructionCost |
||
| 2414 | getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, |
||
| 2415 | bool VariableMask, Align Alignment, |
||
| 2416 | TTI::TargetCostKind CostKind, |
||
| 2417 | const Instruction *I = nullptr) override { |
||
| 2418 | return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
||
| 2419 | Alignment, CostKind, I); |
||
| 2420 | } |
||
| 2421 | InstructionCost getInterleavedMemoryOpCost( |
||
| 2422 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
| 2423 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
| 2424 | bool UseMaskForCond, bool UseMaskForGaps) override { |
||
| 2425 | return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
||
| 2426 | Alignment, AddressSpace, CostKind, |
||
| 2427 | UseMaskForCond, UseMaskForGaps); |
||
| 2428 | } |
||
| 2429 | InstructionCost |
||
| 2430 | getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
||
| 2431 | std::optional<FastMathFlags> FMF, |
||
| 2432 | TTI::TargetCostKind CostKind) override { |
||
| 2433 | return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
||
| 2434 | } |
||
| 2435 | InstructionCost |
||
| 2436 | getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned, |
||
| 2437 | TTI::TargetCostKind CostKind) override { |
||
| 2438 | return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); |
||
| 2439 | } |
||
| 2440 | InstructionCost getExtendedReductionCost( |
||
| 2441 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
| 2442 | std::optional<FastMathFlags> FMF, |
||
| 2443 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override { |
||
| 2444 | return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF, |
||
| 2445 | CostKind); |
||
| 2446 | } |
||
| 2447 | InstructionCost getMulAccReductionCost( |
||
| 2448 | bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
| 2449 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override { |
||
| 2450 | return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind); |
||
| 2451 | } |
||
| 2452 | InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
| 2453 | TTI::TargetCostKind CostKind) override { |
||
| 2454 | return Impl.getIntrinsicInstrCost(ICA, CostKind); |
||
| 2455 | } |
||
| 2456 | InstructionCost getCallInstrCost(Function *F, Type *RetTy, |
||
| 2457 | ArrayRef<Type *> Tys, |
||
| 2458 | TTI::TargetCostKind CostKind) override { |
||
| 2459 | return Impl.getCallInstrCost(F, RetTy, Tys, CostKind); |
||
| 2460 | } |
||
| 2461 | unsigned getNumberOfParts(Type *Tp) override { |
||
| 2462 | return Impl.getNumberOfParts(Tp); |
||
| 2463 | } |
||
| 2464 | InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
||
| 2465 | const SCEV *Ptr) override { |
||
| 2466 | return Impl.getAddressComputationCost(Ty, SE, Ptr); |
||
| 2467 | } |
||
| 2468 | InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override { |
||
| 2469 | return Impl.getCostOfKeepingLiveOverCall(Tys); |
||
| 2470 | } |
||
| 2471 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
||
| 2472 | MemIntrinsicInfo &Info) override { |
||
| 2473 | return Impl.getTgtMemIntrinsic(Inst, Info); |
||
| 2474 | } |
||
| 2475 | unsigned getAtomicMemIntrinsicMaxElementSize() const override { |
||
| 2476 | return Impl.getAtomicMemIntrinsicMaxElementSize(); |
||
| 2477 | } |
||
| 2478 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
| 2479 | Type *ExpectedType) override { |
||
| 2480 | return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); |
||
| 2481 | } |
||
| 2482 | Type *getMemcpyLoopLoweringType( |
||
| 2483 | LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, |
||
| 2484 | unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, |
||
| 2485 | std::optional<uint32_t> AtomicElementSize) const override { |
||
| 2486 | return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, |
||
| 2487 | DestAddrSpace, SrcAlign, DestAlign, |
||
| 2488 | AtomicElementSize); |
||
| 2489 | } |
||
| 2490 | void getMemcpyLoopResidualLoweringType( |
||
| 2491 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
| 2492 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
| 2493 | unsigned SrcAlign, unsigned DestAlign, |
||
| 2494 | std::optional<uint32_t> AtomicCpySize) const override { |
||
| 2495 | Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, |
||
| 2496 | SrcAddrSpace, DestAddrSpace, |
||
| 2497 | SrcAlign, DestAlign, AtomicCpySize); |
||
| 2498 | } |
||
| 2499 | bool areInlineCompatible(const Function *Caller, |
||
| 2500 | const Function *Callee) const override { |
||
| 2501 | return Impl.areInlineCompatible(Caller, Callee); |
||
| 2502 | } |
||
| 2503 | bool areTypesABICompatible(const Function *Caller, const Function *Callee, |
||
| 2504 | const ArrayRef<Type *> &Types) const override { |
||
| 2505 | return Impl.areTypesABICompatible(Caller, Callee, Types); |
||
| 2506 | } |
||
| 2507 | bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { |
||
| 2508 | return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); |
||
| 2509 | } |
||
| 2510 | bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { |
||
| 2511 | return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); |
||
| 2512 | } |
||
| 2513 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { |
||
| 2514 | return Impl.getLoadStoreVecRegBitWidth(AddrSpace); |
||
| 2515 | } |
||
| 2516 | bool isLegalToVectorizeLoad(LoadInst *LI) const override { |
||
| 2517 | return Impl.isLegalToVectorizeLoad(LI); |
||
| 2518 | } |
||
| 2519 | bool isLegalToVectorizeStore(StoreInst *SI) const override { |
||
| 2520 | return Impl.isLegalToVectorizeStore(SI); |
||
| 2521 | } |
||
| 2522 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, |
||
| 2523 | unsigned AddrSpace) const override { |
||
| 2524 | return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, |
||
| 2525 | AddrSpace); |
||
| 2526 | } |
||
| 2527 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, |
||
| 2528 | unsigned AddrSpace) const override { |
||
| 2529 | return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, |
||
| 2530 | AddrSpace); |
||
| 2531 | } |
||
| 2532 | bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
| 2533 | ElementCount VF) const override { |
||
| 2534 | return Impl.isLegalToVectorizeReduction(RdxDesc, VF); |
||
| 2535 | } |
||
| 2536 | bool isElementTypeLegalForScalableVector(Type *Ty) const override { |
||
| 2537 | return Impl.isElementTypeLegalForScalableVector(Ty); |
||
| 2538 | } |
||
| 2539 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
| 2540 | unsigned ChainSizeInBytes, |
||
| 2541 | VectorType *VecTy) const override { |
||
| 2542 | return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); |
||
| 2543 | } |
||
| 2544 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
| 2545 | unsigned ChainSizeInBytes, |
||
| 2546 | VectorType *VecTy) const override { |
||
| 2547 | return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); |
||
| 2548 | } |
||
| 2549 | bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
| 2550 | ReductionFlags Flags) const override { |
||
| 2551 | return Impl.preferInLoopReduction(Opcode, Ty, Flags); |
||
| 2552 | } |
||
| 2553 | bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
| 2554 | ReductionFlags Flags) const override { |
||
| 2555 | return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags); |
||
| 2556 | } |
||
| 2557 | bool preferEpilogueVectorization() const override { |
||
| 2558 | return Impl.preferEpilogueVectorization(); |
||
| 2559 | } |
||
| 2560 | |||
| 2561 | bool shouldExpandReduction(const IntrinsicInst *II) const override { |
||
| 2562 | return Impl.shouldExpandReduction(II); |
||
| 2563 | } |
||
| 2564 | |||
| 2565 | unsigned getGISelRematGlobalCost() const override { |
||
| 2566 | return Impl.getGISelRematGlobalCost(); |
||
| 2567 | } |
||
| 2568 | |||
| 2569 | unsigned getMinTripCountTailFoldingThreshold() const override { |
||
| 2570 | return Impl.getMinTripCountTailFoldingThreshold(); |
||
| 2571 | } |
||
| 2572 | |||
| 2573 | bool supportsScalableVectors() const override { |
||
| 2574 | return Impl.supportsScalableVectors(); |
||
| 2575 | } |
||
| 2576 | |||
| 2577 | bool enableScalableVectorization() const override { |
||
| 2578 | return Impl.enableScalableVectorization(); |
||
| 2579 | } |
||
| 2580 | |||
| 2581 | bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
| 2582 | Align Alignment) const override { |
||
| 2583 | return Impl.hasActiveVectorLength(Opcode, DataType, Alignment); |
||
| 2584 | } |
||
| 2585 | |||
| 2586 | VPLegalization |
||
| 2587 | getVPLegalizationStrategy(const VPIntrinsic &PI) const override { |
||
| 2588 | return Impl.getVPLegalizationStrategy(PI); |
||
| 2589 | } |
||
| 2590 | }; |
||
| 2591 | |||
| 2592 | template <typename T> |
||
| 2593 | TargetTransformInfo::TargetTransformInfo(T Impl) |
||
| 2594 | : TTIImpl(new Model<T>(Impl)) {} |
||
| 2595 | |||
| 2596 | /// Analysis pass providing the \c TargetTransformInfo. |
||
| 2597 | /// |
||
| 2598 | /// The core idea of the TargetIRAnalysis is to expose an interface through |
||
| 2599 | /// which LLVM targets can analyze and provide information about the middle |
||
| 2600 | /// end's target-independent IR. This supports use cases such as target-aware |
||
| 2601 | /// cost modeling of IR constructs. |
||
| 2602 | /// |
||
| 2603 | /// This is a function analysis because much of the cost modeling for targets |
||
| 2604 | /// is done in a subtarget specific way and LLVM supports compiling different |
||
| 2605 | /// functions targeting different subtargets in order to support runtime |
||
| 2606 | /// dispatch according to the observed subtarget. |
||
| 2607 | class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> { |
||
| 2608 | public: |
||
| 2609 | typedef TargetTransformInfo Result; |
||
| 2610 | |||
| 2611 | /// Default construct a target IR analysis. |
||
| 2612 | /// |
||
| 2613 | /// This will use the module's datalayout to construct a baseline |
||
| 2614 | /// conservative TTI result. |
||
| 2615 | TargetIRAnalysis(); |
||
| 2616 | |||
| 2617 | /// Construct an IR analysis pass around a target-provide callback. |
||
| 2618 | /// |
||
| 2619 | /// The callback will be called with a particular function for which the TTI |
||
| 2620 | /// is needed and must return a TTI object for that function. |
||
| 2621 | TargetIRAnalysis(std::function<Result(const Function &)> TTICallback); |
||
| 2622 | |||
| 2623 | // Value semantics. We spell out the constructors for MSVC. |
||
| 2624 | TargetIRAnalysis(const TargetIRAnalysis &Arg) |
||
| 2625 | : TTICallback(Arg.TTICallback) {} |
||
| 2626 | TargetIRAnalysis(TargetIRAnalysis &&Arg) |
||
| 2627 | : TTICallback(std::move(Arg.TTICallback)) {} |
||
| 2628 | TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { |
||
| 2629 | TTICallback = RHS.TTICallback; |
||
| 2630 | return *this; |
||
| 2631 | } |
||
| 2632 | TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { |
||
| 2633 | TTICallback = std::move(RHS.TTICallback); |
||
| 2634 | return *this; |
||
| 2635 | } |
||
| 2636 | |||
| 2637 | Result run(const Function &F, FunctionAnalysisManager &); |
||
| 2638 | |||
| 2639 | private: |
||
| 2640 | friend AnalysisInfoMixin<TargetIRAnalysis>; |
||
| 2641 | static AnalysisKey Key; |
||
| 2642 | |||
| 2643 | /// The callback used to produce a result. |
||
| 2644 | /// |
||
| 2645 | /// We use a completely opaque callback so that targets can provide whatever |
||
| 2646 | /// mechanism they desire for constructing the TTI for a given function. |
||
| 2647 | /// |
||
| 2648 | /// FIXME: Should we really use std::function? It's relatively inefficient. |
||
| 2649 | /// It might be possible to arrange for even stateful callbacks to outlive |
||
| 2650 | /// the analysis and thus use a function_ref which would be lighter weight. |
||
| 2651 | /// This may also be less error prone as the callback is likely to reference |
||
| 2652 | /// the external TargetMachine, and that reference needs to never dangle. |
||
| 2653 | std::function<Result(const Function &)> TTICallback; |
||
| 2654 | |||
| 2655 | /// Helper function used as the callback in the default constructor. |
||
| 2656 | static Result getDefaultTTI(const Function &F); |
||
| 2657 | }; |
||
| 2658 | |||
| 2659 | /// Wrapper pass for TargetTransformInfo. |
||
| 2660 | /// |
||
| 2661 | /// This pass can be constructed from a TTI object which it stores internally |
||
| 2662 | /// and is queried by passes. |
||
| 2663 | class TargetTransformInfoWrapperPass : public ImmutablePass { |
||
| 2664 | TargetIRAnalysis TIRA; |
||
| 2665 | std::optional<TargetTransformInfo> TTI; |
||
| 2666 | |||
| 2667 | virtual void anchor(); |
||
| 2668 | |||
| 2669 | public: |
||
| 2670 | static char ID; |
||
| 2671 | |||
| 2672 | /// We must provide a default constructor for the pass but it should |
||
| 2673 | /// never be used. |
||
| 2674 | /// |
||
| 2675 | /// Use the constructor below or call one of the creation routines. |
||
| 2676 | TargetTransformInfoWrapperPass(); |
||
| 2677 | |||
| 2678 | explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
||
| 2679 | |||
| 2680 | TargetTransformInfo &getTTI(const Function &F); |
||
| 2681 | }; |
||
| 2682 | |||
| 2683 | /// Create an analysis pass wrapper around a TTI object. |
||
| 2684 | /// |
||
| 2685 | /// This analysis pass just holds the TTI instance and makes it available to |
||
| 2686 | /// clients. |
||
| 2687 | ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
||
| 2688 | |||
| 2689 | } // namespace llvm |
||
| 2690 | |||
| 2691 | #endif |