Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// This pass exposes codegen information to IR-level passes. Every |
||
10 | /// transformation that uses codegen information is broken into three parts: |
||
11 | /// 1. The IR-level analysis pass. |
||
12 | /// 2. The IR-level transformation interface which provides the needed |
||
13 | /// information. |
||
14 | /// 3. Codegen-level implementation which uses target-specific hooks. |
||
15 | /// |
||
16 | /// This file defines #2, which is the interface that IR-level transformations |
||
17 | /// use for querying the codegen. |
||
18 | /// |
||
19 | //===----------------------------------------------------------------------===// |
||
20 | |||
21 | #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
||
22 | #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
||
23 | |||
24 | #include "llvm/ADT/SmallBitVector.h" |
||
25 | #include "llvm/IR/FMF.h" |
||
26 | #include "llvm/IR/InstrTypes.h" |
||
27 | #include "llvm/IR/PassManager.h" |
||
28 | #include "llvm/Pass.h" |
||
29 | #include "llvm/Support/AtomicOrdering.h" |
||
30 | #include "llvm/Support/BranchProbability.h" |
||
31 | #include "llvm/Support/InstructionCost.h" |
||
32 | #include <functional> |
||
33 | #include <optional> |
||
34 | #include <utility> |
||
35 | |||
36 | namespace llvm { |
||
37 | |||
38 | namespace Intrinsic { |
||
39 | typedef unsigned ID; |
||
40 | } |
||
41 | |||
42 | class AssumptionCache; |
||
43 | class BlockFrequencyInfo; |
||
44 | class DominatorTree; |
||
45 | class BranchInst; |
||
46 | class CallBase; |
||
47 | class Function; |
||
48 | class GlobalValue; |
||
49 | class InstCombiner; |
||
50 | class OptimizationRemarkEmitter; |
||
51 | class InterleavedAccessInfo; |
||
52 | class IntrinsicInst; |
||
53 | class LoadInst; |
||
54 | class Loop; |
||
55 | class LoopInfo; |
||
56 | class LoopVectorizationLegality; |
||
57 | class ProfileSummaryInfo; |
||
58 | class RecurrenceDescriptor; |
||
59 | class SCEV; |
||
60 | class ScalarEvolution; |
||
61 | class StoreInst; |
||
62 | class SwitchInst; |
||
63 | class TargetLibraryInfo; |
||
64 | class Type; |
||
65 | class User; |
||
66 | class Value; |
||
67 | class VPIntrinsic; |
||
68 | struct KnownBits; |
||
69 | |||
70 | /// Information about a load/store intrinsic defined by the target. |
||
71 | struct MemIntrinsicInfo { |
||
72 | /// This is the pointer that the intrinsic is loading from or storing to. |
||
73 | /// If this is non-null, then analysis/optimization passes can assume that |
||
74 | /// this intrinsic is functionally equivalent to a load/store from this |
||
75 | /// pointer. |
||
76 | Value *PtrVal = nullptr; |
||
77 | |||
78 | // Ordering for atomic operations. |
||
79 | AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
||
80 | |||
81 | // Same Id is set by the target for corresponding load/store intrinsics. |
||
82 | unsigned short MatchingId = 0; |
||
83 | |||
84 | bool ReadMem = false; |
||
85 | bool WriteMem = false; |
||
86 | bool IsVolatile = false; |
||
87 | |||
88 | bool isUnordered() const { |
||
89 | return (Ordering == AtomicOrdering::NotAtomic || |
||
90 | Ordering == AtomicOrdering::Unordered) && |
||
91 | !IsVolatile; |
||
92 | } |
||
93 | }; |
||
94 | |||
95 | /// Attributes of a target dependent hardware loop. |
||
96 | struct HardwareLoopInfo { |
||
97 | HardwareLoopInfo() = delete; |
||
98 | HardwareLoopInfo(Loop *L) : L(L) {} |
||
99 | Loop *L = nullptr; |
||
100 | BasicBlock *ExitBlock = nullptr; |
||
101 | BranchInst *ExitBranch = nullptr; |
||
102 | const SCEV *ExitCount = nullptr; |
||
103 | IntegerType *CountType = nullptr; |
||
104 | Value *LoopDecrement = nullptr; // Decrement the loop counter by this |
||
105 | // value in every iteration. |
||
106 | bool IsNestingLegal = false; // Can a hardware loop be a parent to |
||
107 | // another hardware loop? |
||
108 | bool CounterInReg = false; // Should loop counter be updated in |
||
109 | // the loop via a phi? |
||
110 | bool PerformEntryTest = false; // Generate the intrinsic which also performs |
||
111 | // icmp ne zero on the loop counter value and |
||
112 | // produces an i1 to guard the loop entry. |
||
113 | bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, |
||
114 | DominatorTree &DT, bool ForceNestedLoop = false, |
||
115 | bool ForceHardwareLoopPHI = false); |
||
116 | bool canAnalyze(LoopInfo &LI); |
||
117 | }; |
||
118 | |||
119 | class IntrinsicCostAttributes { |
||
120 | const IntrinsicInst *II = nullptr; |
||
121 | Type *RetTy = nullptr; |
||
122 | Intrinsic::ID IID; |
||
123 | SmallVector<Type *, 4> ParamTys; |
||
124 | SmallVector<const Value *, 4> Arguments; |
||
125 | FastMathFlags FMF; |
||
126 | // If ScalarizationCost is UINT_MAX, the cost of scalarizing the |
||
127 | // arguments and the return value will be computed based on types. |
||
128 | InstructionCost ScalarizationCost = InstructionCost::getInvalid(); |
||
129 | |||
130 | public: |
||
131 | IntrinsicCostAttributes( |
||
132 | Intrinsic::ID Id, const CallBase &CI, |
||
133 | InstructionCost ScalarCost = InstructionCost::getInvalid(), |
||
134 | bool TypeBasedOnly = false); |
||
135 | |||
136 | IntrinsicCostAttributes( |
||
137 | Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys, |
||
138 | FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr, |
||
139 | InstructionCost ScalarCost = InstructionCost::getInvalid()); |
||
140 | |||
141 | IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, |
||
142 | ArrayRef<const Value *> Args); |
||
143 | |||
144 | IntrinsicCostAttributes( |
||
145 | Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args, |
||
146 | ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(), |
||
147 | const IntrinsicInst *I = nullptr, |
||
148 | InstructionCost ScalarCost = InstructionCost::getInvalid()); |
||
149 | |||
150 | Intrinsic::ID getID() const { return IID; } |
||
151 | const IntrinsicInst *getInst() const { return II; } |
||
152 | Type *getReturnType() const { return RetTy; } |
||
153 | FastMathFlags getFlags() const { return FMF; } |
||
154 | InstructionCost getScalarizationCost() const { return ScalarizationCost; } |
||
155 | const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; } |
||
156 | const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; } |
||
157 | |||
158 | bool isTypeBasedOnly() const { |
||
159 | return Arguments.empty(); |
||
160 | } |
||
161 | |||
162 | bool skipScalarizationCost() const { return ScalarizationCost.isValid(); } |
||
163 | }; |
||
164 | |||
165 | enum class PredicationStyle { None, Data, DataAndControlFlow }; |
||
166 | |||
167 | class TargetTransformInfo; |
||
168 | typedef TargetTransformInfo TTI; |
||
169 | |||
170 | /// This pass provides access to the codegen interfaces that are needed |
||
171 | /// for IR-level transformations. |
||
172 | class TargetTransformInfo { |
||
173 | public: |
||
174 | /// Construct a TTI object using a type implementing the \c Concept |
||
175 | /// API below. |
||
176 | /// |
||
177 | /// This is used by targets to construct a TTI wrapping their target-specific |
||
178 | /// implementation that encodes appropriate costs for their target. |
||
179 | template <typename T> TargetTransformInfo(T Impl); |
||
180 | |||
181 | /// Construct a baseline TTI object using a minimal implementation of |
||
182 | /// the \c Concept API below. |
||
183 | /// |
||
184 | /// The TTI implementation will reflect the information in the DataLayout |
||
185 | /// provided if non-null. |
||
186 | explicit TargetTransformInfo(const DataLayout &DL); |
||
187 | |||
188 | // Provide move semantics. |
||
189 | TargetTransformInfo(TargetTransformInfo &&Arg); |
||
190 | TargetTransformInfo &operator=(TargetTransformInfo &&RHS); |
||
191 | |||
192 | // We need to define the destructor out-of-line to define our sub-classes |
||
193 | // out-of-line. |
||
194 | ~TargetTransformInfo(); |
||
195 | |||
196 | /// Handle the invalidation of this information. |
||
197 | /// |
||
198 | /// When used as a result of \c TargetIRAnalysis this method will be called |
||
199 | /// when the function this was computed for changes. When it returns false, |
||
200 | /// the information is preserved across those changes. |
||
201 | bool invalidate(Function &, const PreservedAnalyses &, |
||
202 | FunctionAnalysisManager::Invalidator &) { |
||
203 | // FIXME: We should probably in some way ensure that the subtarget |
||
204 | // information for a function hasn't changed. |
||
205 | return false; |
||
206 | } |
||
207 | |||
208 | /// \name Generic Target Information |
||
209 | /// @{ |
||
210 | |||
211 | /// The kind of cost model. |
||
212 | /// |
||
213 | /// There are several different cost models that can be customized by the |
||
214 | /// target. The normalization of each cost model may be target specific. |
||
215 | /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as |
||
216 | /// those derived from MCSchedModel::LoopMicroOpBufferSize etc. |
||
217 | enum TargetCostKind { |
||
218 | TCK_RecipThroughput, ///< Reciprocal throughput. |
||
219 | TCK_Latency, ///< The latency of instruction. |
||
220 | TCK_CodeSize, ///< Instruction code size. |
||
221 | TCK_SizeAndLatency ///< The weighted sum of size and latency. |
||
222 | }; |
||
223 | |||
224 | /// Underlying constants for 'cost' values in this interface. |
||
225 | /// |
||
226 | /// Many APIs in this interface return a cost. This enum defines the |
||
227 | /// fundamental values that should be used to interpret (and produce) those |
||
228 | /// costs. The costs are returned as an int rather than a member of this |
||
229 | /// enumeration because it is expected that the cost of one IR instruction |
||
230 | /// may have a multiplicative factor to it or otherwise won't fit directly |
||
231 | /// into the enum. Moreover, it is common to sum or average costs which works |
||
232 | /// better as simple integral values. Thus this enum only provides constants. |
||
233 | /// Also note that the returned costs are signed integers to make it natural |
||
234 | /// to add, subtract, and test with zero (a common boundary condition). It is |
||
235 | /// not expected that 2^32 is a realistic cost to be modeling at any point. |
||
236 | /// |
||
237 | /// Note that these costs should usually reflect the intersection of code-size |
||
238 | /// cost and execution cost. A free instruction is typically one that folds |
||
239 | /// into another instruction. For example, reg-to-reg moves can often be |
||
240 | /// skipped by renaming the registers in the CPU, but they still are encoded |
||
241 | /// and thus wouldn't be considered 'free' here. |
||
242 | enum TargetCostConstants { |
||
243 | TCC_Free = 0, ///< Expected to fold away in lowering. |
||
244 | TCC_Basic = 1, ///< The cost of a typical 'add' instruction. |
||
245 | TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. |
||
246 | }; |
||
247 | |||
248 | /// Estimate the cost of a GEP operation when lowered. |
||
249 | InstructionCost |
||
250 | getGEPCost(Type *PointeeType, const Value *Ptr, |
||
251 | ArrayRef<const Value *> Operands, |
||
252 | TargetCostKind CostKind = TCK_SizeAndLatency) const; |
||
253 | |||
254 | /// \returns A value by which our inlining threshold should be multiplied. |
||
255 | /// This is primarily used to bump up the inlining threshold wholesale on |
||
256 | /// targets where calls are unusually expensive. |
||
257 | /// |
||
258 | /// TODO: This is a rather blunt instrument. Perhaps altering the costs of |
||
259 | /// individual classes of instructions would be better. |
||
260 | unsigned getInliningThresholdMultiplier() const; |
||
261 | |||
262 | /// \returns A value to be added to the inlining threshold. |
||
263 | unsigned adjustInliningThreshold(const CallBase *CB) const; |
||
264 | |||
265 | /// \returns Vector bonus in percent. |
||
266 | /// |
||
267 | /// Vector bonuses: We want to more aggressively inline vector-dense kernels |
||
268 | /// and apply this bonus based on the percentage of vector instructions. A |
||
269 | /// bonus is applied if the vector instructions exceed 50% and half that |
||
270 | /// amount is applied if it exceeds 10%. Note that these bonuses are some what |
||
271 | /// arbitrary and evolved over time by accident as much as because they are |
||
272 | /// principled bonuses. |
||
273 | /// FIXME: It would be nice to base the bonus values on something more |
||
274 | /// scientific. A target may has no bonus on vector instructions. |
||
275 | int getInlinerVectorBonusPercent() const; |
||
276 | |||
277 | /// \return the expected cost of a memcpy, which could e.g. depend on the |
||
278 | /// source/destination type and alignment and the number of bytes copied. |
||
279 | InstructionCost getMemcpyCost(const Instruction *I) const; |
||
280 | |||
281 | /// \return The estimated number of case clusters when lowering \p 'SI'. |
||
282 | /// \p JTSize Set a jump table size only when \p SI is suitable for a jump |
||
283 | /// table. |
||
284 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
||
285 | unsigned &JTSize, |
||
286 | ProfileSummaryInfo *PSI, |
||
287 | BlockFrequencyInfo *BFI) const; |
||
288 | |||
289 | /// Estimate the cost of a given IR user when lowered. |
||
290 | /// |
||
291 | /// This can estimate the cost of either a ConstantExpr or Instruction when |
||
292 | /// lowered. |
||
293 | /// |
||
294 | /// \p Operands is a list of operands which can be a result of transformations |
||
295 | /// of the current operands. The number of the operands on the list must equal |
||
296 | /// to the number of the current operands the IR user has. Their order on the |
||
297 | /// list must be the same as the order of the current operands the IR user |
||
298 | /// has. |
||
299 | /// |
||
300 | /// The returned cost is defined in terms of \c TargetCostConstants, see its |
||
301 | /// comments for a detailed explanation of the cost values. |
||
302 | InstructionCost getInstructionCost(const User *U, |
||
303 | ArrayRef<const Value *> Operands, |
||
304 | TargetCostKind CostKind) const; |
||
305 | |||
306 | /// This is a helper function which calls the three-argument |
||
307 | /// getInstructionCost with \p Operands which are the current operands U has. |
||
308 | InstructionCost getInstructionCost(const User *U, |
||
309 | TargetCostKind CostKind) const { |
||
310 | SmallVector<const Value *, 4> Operands(U->operand_values()); |
||
311 | return getInstructionCost(U, Operands, CostKind); |
||
312 | } |
||
313 | |||
314 | /// If a branch or a select condition is skewed in one direction by more than |
||
315 | /// this factor, it is very likely to be predicted correctly. |
||
316 | BranchProbability getPredictableBranchThreshold() const; |
||
317 | |||
318 | /// Return true if branch divergence exists. |
||
319 | /// |
||
320 | /// Branch divergence has a significantly negative impact on GPU performance |
||
321 | /// when threads in the same wavefront take different paths due to conditional |
||
322 | /// branches. |
||
323 | bool hasBranchDivergence() const; |
||
324 | |||
325 | /// Return true if the target prefers to use GPU divergence analysis to |
||
326 | /// replace the legacy version. |
||
327 | bool useGPUDivergenceAnalysis() const; |
||
328 | |||
329 | /// Returns whether V is a source of divergence. |
||
330 | /// |
||
331 | /// This function provides the target-dependent information for |
||
332 | /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis |
||
333 | /// first builds the dependency graph, and then runs the reachability |
||
334 | /// algorithm starting with the sources of divergence. |
||
335 | bool isSourceOfDivergence(const Value *V) const; |
||
336 | |||
337 | // Returns true for the target specific |
||
338 | // set of operations which produce uniform result |
||
339 | // even taking non-uniform arguments |
||
340 | bool isAlwaysUniform(const Value *V) const; |
||
341 | |||
342 | /// Returns the address space ID for a target's 'flat' address space. Note |
||
343 | /// this is not necessarily the same as addrspace(0), which LLVM sometimes |
||
344 | /// refers to as the generic address space. The flat address space is a |
||
345 | /// generic address space that can be used access multiple segments of memory |
||
346 | /// with different address spaces. Access of a memory location through a |
||
347 | /// pointer with this address space is expected to be legal but slower |
||
348 | /// compared to the same memory location accessed through a pointer with a |
||
349 | /// different address space. |
||
350 | // |
||
351 | /// This is for targets with different pointer representations which can |
||
352 | /// be converted with the addrspacecast instruction. If a pointer is converted |
||
353 | /// to this address space, optimizations should attempt to replace the access |
||
354 | /// with the source address space. |
||
355 | /// |
||
356 | /// \returns ~0u if the target does not have such a flat address space to |
||
357 | /// optimize away. |
||
358 | unsigned getFlatAddressSpace() const; |
||
359 | |||
360 | /// Return any intrinsic address operand indexes which may be rewritten if |
||
361 | /// they use a flat address space pointer. |
||
362 | /// |
||
363 | /// \returns true if the intrinsic was handled. |
||
364 | bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
365 | Intrinsic::ID IID) const; |
||
366 | |||
367 | bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; |
||
368 | |||
369 | /// Return true if globals in this address space can have initializers other |
||
370 | /// than `undef`. |
||
371 | bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const; |
||
372 | |||
373 | unsigned getAssumedAddrSpace(const Value *V) const; |
||
374 | |||
375 | bool isSingleThreaded() const; |
||
376 | |||
377 | std::pair<const Value *, unsigned> |
||
378 | getPredicatedAddrSpace(const Value *V) const; |
||
379 | |||
380 | /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p |
||
381 | /// NewV, which has a different address space. This should happen for every |
||
382 | /// operand index that collectFlatAddressOperands returned for the intrinsic. |
||
383 | /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the |
||
384 | /// new value (which may be the original \p II with modified operands). |
||
385 | Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, |
||
386 | Value *NewV) const; |
||
387 | |||
388 | /// Test whether calls to a function lower to actual program function |
||
389 | /// calls. |
||
390 | /// |
||
391 | /// The idea is to test whether the program is likely to require a 'call' |
||
392 | /// instruction or equivalent in order to call the given function. |
||
393 | /// |
||
394 | /// FIXME: It's not clear that this is a good or useful query API. Client's |
||
395 | /// should probably move to simpler cost metrics using the above. |
||
396 | /// Alternatively, we could split the cost interface into distinct code-size |
||
397 | /// and execution-speed costs. This would allow modelling the core of this |
||
398 | /// query more accurately as a call is a single small instruction, but |
||
399 | /// incurs significant execution cost. |
||
400 | bool isLoweredToCall(const Function *F) const; |
||
401 | |||
402 | struct LSRCost { |
||
403 | /// TODO: Some of these could be merged. Also, a lexical ordering |
||
404 | /// isn't always optimal. |
||
405 | unsigned Insns; |
||
406 | unsigned NumRegs; |
||
407 | unsigned AddRecCost; |
||
408 | unsigned NumIVMuls; |
||
409 | unsigned NumBaseAdds; |
||
410 | unsigned ImmCost; |
||
411 | unsigned SetupCost; |
||
412 | unsigned ScaleCost; |
||
413 | }; |
||
414 | |||
415 | /// Parameters that control the generic loop unrolling transformation. |
||
416 | struct UnrollingPreferences { |
||
417 | /// The cost threshold for the unrolled loop. Should be relative to the |
||
418 | /// getInstructionCost values returned by this API, and the expectation is |
||
419 | /// that the unrolled loop's instructions when run through that interface |
||
420 | /// should not exceed this cost. However, this is only an estimate. Also, |
||
421 | /// specific loops may be unrolled even with a cost above this threshold if |
||
422 | /// deemed profitable. Set this to UINT_MAX to disable the loop body cost |
||
423 | /// restriction. |
||
424 | unsigned Threshold; |
||
425 | /// If complete unrolling will reduce the cost of the loop, we will boost |
||
426 | /// the Threshold by a certain percent to allow more aggressive complete |
||
427 | /// unrolling. This value provides the maximum boost percentage that we |
||
428 | /// can apply to Threshold (The value should be no less than 100). |
||
429 | /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, |
||
430 | /// MaxPercentThresholdBoost / 100) |
||
431 | /// E.g. if complete unrolling reduces the loop execution time by 50% |
||
432 | /// then we boost the threshold by the factor of 2x. If unrolling is not |
||
433 | /// expected to reduce the running time, then we do not increase the |
||
434 | /// threshold. |
||
435 | unsigned MaxPercentThresholdBoost; |
||
436 | /// The cost threshold for the unrolled loop when optimizing for size (set |
||
437 | /// to UINT_MAX to disable). |
||
438 | unsigned OptSizeThreshold; |
||
439 | /// The cost threshold for the unrolled loop, like Threshold, but used |
||
440 | /// for partial/runtime unrolling (set to UINT_MAX to disable). |
||
441 | unsigned PartialThreshold; |
||
442 | /// The cost threshold for the unrolled loop when optimizing for size, like |
||
443 | /// OptSizeThreshold, but used for partial/runtime unrolling (set to |
||
444 | /// UINT_MAX to disable). |
||
445 | unsigned PartialOptSizeThreshold; |
||
446 | /// A forced unrolling factor (the number of concatenated bodies of the |
||
447 | /// original loop in the unrolled loop body). When set to 0, the unrolling |
||
448 | /// transformation will select an unrolling factor based on the current cost |
||
449 | /// threshold and other factors. |
||
450 | unsigned Count; |
||
451 | /// Default unroll count for loops with run-time trip count. |
||
452 | unsigned DefaultUnrollRuntimeCount; |
||
453 | // Set the maximum unrolling factor. The unrolling factor may be selected |
||
454 | // using the appropriate cost threshold, but may not exceed this number |
||
455 | // (set to UINT_MAX to disable). This does not apply in cases where the |
||
456 | // loop is being fully unrolled. |
||
457 | unsigned MaxCount; |
||
458 | /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but |
||
459 | /// applies even if full unrolling is selected. This allows a target to fall |
||
460 | /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. |
||
461 | unsigned FullUnrollMaxCount; |
||
462 | // Represents number of instructions optimized when "back edge" |
||
463 | // becomes "fall through" in unrolled loop. |
||
464 | // For now we count a conditional branch on a backedge and a comparison |
||
465 | // feeding it. |
||
466 | unsigned BEInsns; |
||
467 | /// Allow partial unrolling (unrolling of loops to expand the size of the |
||
468 | /// loop body, not only to eliminate small constant-trip-count loops). |
||
469 | bool Partial; |
||
470 | /// Allow runtime unrolling (unrolling of loops to expand the size of the |
||
471 | /// loop body even when the number of loop iterations is not known at |
||
472 | /// compile time). |
||
473 | bool Runtime; |
||
474 | /// Allow generation of a loop remainder (extra iterations after unroll). |
||
475 | bool AllowRemainder; |
||
476 | /// Allow emitting expensive instructions (such as divisions) when computing |
||
477 | /// the trip count of a loop for runtime unrolling. |
||
478 | bool AllowExpensiveTripCount; |
||
479 | /// Apply loop unroll on any kind of loop |
||
480 | /// (mainly to loops that fail runtime unrolling). |
||
481 | bool Force; |
||
482 | /// Allow using trip count upper bound to unroll loops. |
||
483 | bool UpperBound; |
||
484 | /// Allow unrolling of all the iterations of the runtime loop remainder. |
||
485 | bool UnrollRemainder; |
||
486 | /// Allow unroll and jam. Used to enable unroll and jam for the target. |
||
487 | bool UnrollAndJam; |
||
488 | /// Threshold for unroll and jam, for inner loop size. The 'Threshold' |
||
489 | /// value above is used during unroll and jam for the outer loop size. |
||
490 | /// This value is used in the same manner to limit the size of the inner |
||
491 | /// loop. |
||
492 | unsigned UnrollAndJamInnerLoopThreshold; |
||
493 | /// Don't allow loop unrolling to simulate more than this number of |
||
494 | /// iterations when checking full unroll profitability |
||
495 | unsigned MaxIterationsCountToAnalyze; |
||
496 | }; |
||
497 | |||
498 | /// Get target-customized preferences for the generic loop unrolling |
||
499 | /// transformation. The caller will initialize UP with the current |
||
500 | /// target-independent defaults. |
||
501 | void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
||
502 | UnrollingPreferences &UP, |
||
503 | OptimizationRemarkEmitter *ORE) const; |
||
504 | |||
505 | /// Query the target whether it would be profitable to convert the given loop |
||
506 | /// into a hardware loop. |
||
507 | bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
508 | AssumptionCache &AC, TargetLibraryInfo *LibInfo, |
||
509 | HardwareLoopInfo &HWLoopInfo) const; |
||
510 | |||
511 | /// Query the target whether it would be prefered to create a predicated |
||
512 | /// vector loop, which can avoid the need to emit a scalar epilogue loop. |
||
513 | bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
514 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
515 | DominatorTree *DT, |
||
516 | LoopVectorizationLegality *LVL, |
||
517 | InterleavedAccessInfo *IAI) const; |
||
518 | |||
519 | /// Query the target whether lowering of the llvm.get.active.lane.mask |
||
520 | /// intrinsic is supported and how the mask should be used. A return value |
||
521 | /// of PredicationStyle::Data indicates the mask is used as data only, |
||
522 | /// whereas PredicationStyle::DataAndControlFlow indicates we should also use |
||
523 | /// the mask for control flow in the loop. If unsupported the return value is |
||
524 | /// PredicationStyle::None. |
||
525 | PredicationStyle emitGetActiveLaneMask() const; |
||
526 | |||
527 | // Parameters that control the loop peeling transformation |
||
528 | struct PeelingPreferences { |
||
529 | /// A forced peeling factor (the number of bodied of the original loop |
||
530 | /// that should be peeled off before the loop body). When set to 0, the |
||
531 | /// a peeling factor based on profile information and other factors. |
||
532 | unsigned PeelCount; |
||
533 | /// Allow peeling off loop iterations. |
||
534 | bool AllowPeeling; |
||
535 | /// Allow peeling off loop iterations for loop nests. |
||
536 | bool AllowLoopNestsPeeling; |
||
537 | /// Allow peeling basing on profile. Uses to enable peeling off all |
||
538 | /// iterations basing on provided profile. |
||
539 | /// If the value is true the peeling cost model can decide to peel only |
||
540 | /// some iterations and in this case it will set this to false. |
||
541 | bool PeelProfiledIterations; |
||
542 | }; |
||
543 | |||
544 | /// Get target-customized preferences for the generic loop peeling |
||
545 | /// transformation. The caller will initialize \p PP with the current |
||
546 | /// target-independent defaults with information from \p L and \p SE. |
||
547 | void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
548 | PeelingPreferences &PP) const; |
||
549 | |||
550 | /// Targets can implement their own combinations for target-specific |
||
551 | /// intrinsics. This function will be called from the InstCombine pass every |
||
552 | /// time a target-specific intrinsic is encountered. |
||
553 | /// |
||
554 | /// \returns std::nullopt to not do anything target specific or a value that |
||
555 | /// will be returned from the InstCombiner. It is possible to return null and |
||
556 | /// stop further processing of the intrinsic by returning nullptr. |
||
557 | std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC, |
||
558 | IntrinsicInst & II) const; |
||
559 | /// Can be used to implement target-specific instruction combining. |
||
560 | /// \see instCombineIntrinsic |
||
561 | std::optional<Value *> simplifyDemandedUseBitsIntrinsic( |
||
562 | InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask, |
||
563 | KnownBits & Known, bool &KnownBitsComputed) const; |
||
564 | /// Can be used to implement target-specific instruction combining. |
||
565 | /// \see instCombineIntrinsic |
||
566 | std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
567 | InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts, |
||
568 | APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3, |
||
569 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
570 | SimplifyAndSetOp) const; |
||
571 | /// @} |
||
572 | |||
573 | /// \name Scalar Target Information |
||
574 | /// @{ |
||
575 | |||
576 | /// Flags indicating the kind of support for population count. |
||
577 | /// |
||
578 | /// Compared to the SW implementation, HW support is supposed to |
||
579 | /// significantly boost the performance when the population is dense, and it |
||
580 | /// may or may not degrade performance if the population is sparse. A HW |
||
581 | /// support is considered as "Fast" if it can outperform, or is on a par |
||
582 | /// with, SW implementation when the population is sparse; otherwise, it is |
||
583 | /// considered as "Slow". |
||
584 | enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; |
||
585 | |||
586 | /// Return true if the specified immediate is legal add immediate, that |
||
587 | /// is the target has add instructions which can add a register with the |
||
588 | /// immediate without having to materialize the immediate into a register. |
||
589 | bool isLegalAddImmediate(int64_t Imm) const; |
||
590 | |||
591 | /// Return true if the specified immediate is legal icmp immediate, |
||
592 | /// that is the target has icmp instructions which can compare a register |
||
593 | /// against the immediate without having to materialize the immediate into a |
||
594 | /// register. |
||
595 | bool isLegalICmpImmediate(int64_t Imm) const; |
||
596 | |||
597 | /// Return true if the addressing mode represented by AM is legal for |
||
598 | /// this target, for a load/store of the specified type. |
||
599 | /// The type may be VoidTy, in which case only return true if the addressing |
||
600 | /// mode is legal for a load/store of any legal type. |
||
601 | /// If target returns true in LSRWithInstrQueries(), I may be valid. |
||
602 | /// TODO: Handle pre/postinc as well. |
||
603 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
||
604 | bool HasBaseReg, int64_t Scale, |
||
605 | unsigned AddrSpace = 0, |
||
606 | Instruction *I = nullptr) const; |
||
607 | |||
608 | /// Return true if LSR cost of C1 is lower than C2. |
||
609 | bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
||
610 | const TargetTransformInfo::LSRCost &C2) const; |
||
611 | |||
612 | /// Return true if LSR major cost is number of registers. Targets which |
||
613 | /// implement their own isLSRCostLess and unset number of registers as major |
||
614 | /// cost should return false, otherwise return true. |
||
615 | bool isNumRegsMajorCostOfLSR() const; |
||
616 | |||
617 | /// \returns true if LSR should not optimize a chain that includes \p I. |
||
618 | bool isProfitableLSRChainElement(Instruction *I) const; |
||
619 | |||
620 | /// Return true if the target can fuse a compare and branch. |
||
621 | /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost |
||
622 | /// calculation for the instructions in a loop. |
||
623 | bool canMacroFuseCmp() const; |
||
624 | |||
625 | /// Return true if the target can save a compare for loop count, for example |
||
626 | /// hardware loop saves a compare. |
||
627 | bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, |
||
628 | DominatorTree *DT, AssumptionCache *AC, |
||
629 | TargetLibraryInfo *LibInfo) const; |
||
630 | |||
631 | enum AddressingModeKind { |
||
632 | AMK_PreIndexed, |
||
633 | AMK_PostIndexed, |
||
634 | AMK_None |
||
635 | }; |
||
636 | |||
637 | /// Return the preferred addressing mode LSR should make efforts to generate. |
||
638 | AddressingModeKind getPreferredAddressingMode(const Loop *L, |
||
639 | ScalarEvolution *SE) const; |
||
640 | |||
641 | /// Return true if the target supports masked store. |
||
642 | bool isLegalMaskedStore(Type *DataType, Align Alignment) const; |
||
643 | /// Return true if the target supports masked load. |
||
644 | bool isLegalMaskedLoad(Type *DataType, Align Alignment) const; |
||
645 | |||
646 | /// Return true if the target supports nontemporal store. |
||
647 | bool isLegalNTStore(Type *DataType, Align Alignment) const; |
||
648 | /// Return true if the target supports nontemporal load. |
||
649 | bool isLegalNTLoad(Type *DataType, Align Alignment) const; |
||
650 | |||
651 | /// \Returns true if the target supports broadcasting a load to a vector of |
||
652 | /// type <NumElements x ElementTy>. |
||
653 | bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const; |
||
654 | |||
655 | /// Return true if the target supports masked scatter. |
||
656 | bool isLegalMaskedScatter(Type *DataType, Align Alignment) const; |
||
657 | /// Return true if the target supports masked gather. |
||
658 | bool isLegalMaskedGather(Type *DataType, Align Alignment) const; |
||
659 | /// Return true if the target forces scalarizing of llvm.masked.gather |
||
660 | /// intrinsics. |
||
661 | bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const; |
||
662 | /// Return true if the target forces scalarizing of llvm.masked.scatter |
||
663 | /// intrinsics. |
||
664 | bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const; |
||
665 | |||
666 | /// Return true if the target supports masked compress store. |
||
667 | bool isLegalMaskedCompressStore(Type *DataType) const; |
||
668 | /// Return true if the target supports masked expand load. |
||
669 | bool isLegalMaskedExpandLoad(Type *DataType) const; |
||
670 | |||
671 | /// Return true if this is an alternating opcode pattern that can be lowered |
||
672 | /// to a single instruction on the target. In X86 this is for the addsub |
||
673 | /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR. |
||
674 | /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being |
||
675 | /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0` |
||
676 | /// when \p Opcode0 is selected and `1` when Opcode1 is selected. |
||
677 | /// \p VecTy is the vector type of the instruction to be generated. |
||
678 | bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, |
||
679 | const SmallBitVector &OpcodeMask) const; |
||
680 | |||
681 | /// Return true if we should be enabling ordered reductions for the target. |
||
682 | bool enableOrderedReductions() const; |
||
683 | |||
684 | /// Return true if the target has a unified operation to calculate division |
||
685 | /// and remainder. If so, the additional implicit multiplication and |
||
686 | /// subtraction required to calculate a remainder from division are free. This |
||
687 | /// can enable more aggressive transformations for division and remainder than |
||
688 | /// would typically be allowed using throughput or size cost models. |
||
689 | bool hasDivRemOp(Type *DataType, bool IsSigned) const; |
||
690 | |||
691 | /// Return true if the given instruction (assumed to be a memory access |
||
692 | /// instruction) has a volatile variant. If that's the case then we can avoid |
||
693 | /// addrspacecast to generic AS for volatile loads/stores. Default |
||
694 | /// implementation returns false, which prevents address space inference for |
||
695 | /// volatile loads/stores. |
||
696 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; |
||
697 | |||
698 | /// Return true if target doesn't mind addresses in vectors. |
||
699 | bool prefersVectorizedAddressing() const; |
||
700 | |||
701 | /// Return the cost of the scaling factor used in the addressing |
||
702 | /// mode represented by AM for this target, for a load/store |
||
703 | /// of the specified type. |
||
704 | /// If the AM is supported, the return value must be >= 0. |
||
705 | /// If the AM is not supported, it returns a negative value. |
||
706 | /// TODO: Handle pre/postinc as well. |
||
707 | InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
708 | int64_t BaseOffset, bool HasBaseReg, |
||
709 | int64_t Scale, |
||
710 | unsigned AddrSpace = 0) const; |
||
711 | |||
712 | /// Return true if the loop strength reduce pass should make |
||
713 | /// Instruction* based TTI queries to isLegalAddressingMode(). This is |
||
714 | /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned |
||
715 | /// immediate offset and no index register. |
||
716 | bool LSRWithInstrQueries() const; |
||
717 | |||
718 | /// Return true if it's free to truncate a value of type Ty1 to type |
||
719 | /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 |
||
720 | /// by referencing its sub-register AX. |
||
721 | bool isTruncateFree(Type *Ty1, Type *Ty2) const; |
||
722 | |||
723 | /// Return true if it is profitable to hoist instruction in the |
||
724 | /// then/else to before if. |
||
725 | bool isProfitableToHoist(Instruction *I) const; |
||
726 | |||
727 | bool useAA() const; |
||
728 | |||
729 | /// Return true if this type is legal. |
||
730 | bool isTypeLegal(Type *Ty) const; |
||
731 | |||
732 | /// Returns the estimated number of registers required to represent \p Ty. |
||
733 | unsigned getRegUsageForType(Type *Ty) const; |
||
734 | |||
735 | /// Return true if switches should be turned into lookup tables for the |
||
736 | /// target. |
||
737 | bool shouldBuildLookupTables() const; |
||
738 | |||
739 | /// Return true if switches should be turned into lookup tables |
||
740 | /// containing this constant value for the target. |
||
741 | bool shouldBuildLookupTablesForConstant(Constant *C) const; |
||
742 | |||
743 | /// Return true if lookup tables should be turned into relative lookup tables. |
||
744 | bool shouldBuildRelLookupTables() const; |
||
745 | |||
746 | /// Return true if the input function which is cold at all call sites, |
||
747 | /// should use coldcc calling convention. |
||
748 | bool useColdCCForColdCall(Function &F) const; |
||
749 | |||
750 | /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
||
751 | /// are set if the demanded result elements need to be inserted and/or |
||
752 | /// extracted from vectors. |
||
753 | InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
754 | const APInt &DemandedElts, |
||
755 | bool Insert, bool Extract, |
||
756 | TTI::TargetCostKind CostKind) const; |
||
757 | |||
758 | /// Estimate the overhead of scalarizing an instructions unique |
||
759 | /// non-constant operands. The (potentially vector) types to use for each of |
||
760 | /// argument are passes via Tys. |
||
761 | InstructionCost |
||
762 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
763 | ArrayRef<Type *> Tys, |
||
764 | TTI::TargetCostKind CostKind) const; |
||
765 | |||
766 | /// If target has efficient vector element load/store instructions, it can |
||
767 | /// return true here so that insertion/extraction costs are not added to |
||
768 | /// the scalarization cost of a load/store. |
||
769 | bool supportsEfficientVectorElementLoadStore() const; |
||
770 | |||
771 | /// If the target supports tail calls. |
||
772 | bool supportsTailCalls() const; |
||
773 | |||
774 | /// If target supports tail call on \p CB |
||
775 | bool supportsTailCallFor(const CallBase *CB) const; |
||
776 | |||
777 | /// Don't restrict interleaved unrolling to small loops. |
||
778 | bool enableAggressiveInterleaving(bool LoopHasReductions) const; |
||
779 | |||
780 | /// Returns options for expansion of memcmp. IsZeroCmp is |
||
781 | // true if this is the expansion of memcmp(p1, p2, s) == 0. |
||
782 | struct MemCmpExpansionOptions { |
||
783 | // Return true if memcmp expansion is enabled. |
||
784 | operator bool() const { return MaxNumLoads > 0; } |
||
785 | |||
786 | // Maximum number of load operations. |
||
787 | unsigned MaxNumLoads = 0; |
||
788 | |||
789 | // The list of available load sizes (in bytes), sorted in decreasing order. |
||
790 | SmallVector<unsigned, 8> LoadSizes; |
||
791 | |||
792 | // For memcmp expansion when the memcmp result is only compared equal or |
||
793 | // not-equal to 0, allow up to this number of load pairs per block. As an |
||
794 | // example, this may allow 'memcmp(a, b, 3) == 0' in a single block: |
||
795 | // a0 = load2bytes &a[0] |
||
796 | // b0 = load2bytes &b[0] |
||
797 | // a2 = load1byte &a[2] |
||
798 | // b2 = load1byte &b[2] |
||
799 | // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0 |
||
800 | unsigned NumLoadsPerBlock = 1; |
||
801 | |||
802 | // Set to true to allow overlapping loads. For example, 7-byte compares can |
||
803 | // be done with two 4-byte compares instead of 4+2+1-byte compares. This |
||
804 | // requires all loads in LoadSizes to be doable in an unaligned way. |
||
805 | bool AllowOverlappingLoads = false; |
||
806 | }; |
||
807 | MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, |
||
808 | bool IsZeroCmp) const; |
||
809 | |||
810 | /// Should the Select Optimization pass be enabled and ran. |
||
811 | bool enableSelectOptimize() const; |
||
812 | |||
813 | /// Enable matching of interleaved access groups. |
||
814 | bool enableInterleavedAccessVectorization() const; |
||
815 | |||
816 | /// Enable matching of interleaved access groups that contain predicated |
||
817 | /// accesses or gaps and therefore vectorized using masked |
||
818 | /// vector loads/stores. |
||
819 | bool enableMaskedInterleavedAccessVectorization() const; |
||
820 | |||
821 | /// Indicate that it is potentially unsafe to automatically vectorize |
||
822 | /// floating-point operations because the semantics of vector and scalar |
||
823 | /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math |
||
824 | /// does not support IEEE-754 denormal numbers, while depending on the |
||
825 | /// platform, scalar floating-point math does. |
||
826 | /// This applies to floating-point math operations and calls, not memory |
||
827 | /// operations, shuffles, or casts. |
||
828 | bool isFPVectorizationPotentiallyUnsafe() const; |
||
829 | |||
830 | /// Determine if the target supports unaligned memory accesses. |
||
831 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, |
||
832 | unsigned AddressSpace = 0, |
||
833 | Align Alignment = Align(1), |
||
834 | unsigned *Fast = nullptr) const; |
||
835 | |||
836 | /// Return hardware support for population count. |
||
837 | PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; |
||
838 | |||
839 | /// Return true if the hardware has a fast square-root instruction. |
||
840 | bool haveFastSqrt(Type *Ty) const; |
||
841 | |||
842 | /// Return true if the cost of the instruction is too high to speculatively |
||
843 | /// execute and should be kept behind a branch. |
||
844 | /// This normally just wraps around a getInstructionCost() call, but some |
||
845 | /// targets might report a low TCK_SizeAndLatency value that is incompatible |
||
846 | /// with the fixed TCC_Expensive value. |
||
847 | /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute(). |
||
848 | bool isExpensiveToSpeculativelyExecute(const Instruction *I) const; |
||
849 | |||
850 | /// Return true if it is faster to check if a floating-point value is NaN |
||
851 | /// (or not-NaN) versus a comparison against a constant FP zero value. |
||
852 | /// Targets should override this if materializing a 0.0 for comparison is |
||
853 | /// generally as cheap as checking for ordered/unordered. |
||
854 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; |
||
855 | |||
856 | /// Return the expected cost of supporting the floating point operation |
||
857 | /// of the specified type. |
||
858 | InstructionCost getFPOpCost(Type *Ty) const; |
||
859 | |||
860 | /// Return the expected cost of materializing for the given integer |
||
861 | /// immediate of the specified type. |
||
862 | InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
863 | TargetCostKind CostKind) const; |
||
864 | |||
865 | /// Return the expected cost of materialization for the given integer |
||
866 | /// immediate of the specified type for a given instruction. The cost can be |
||
867 | /// zero if the immediate can be folded into the specified instruction. |
||
868 | InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, |
||
869 | const APInt &Imm, Type *Ty, |
||
870 | TargetCostKind CostKind, |
||
871 | Instruction *Inst = nullptr) const; |
||
872 | InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
873 | const APInt &Imm, Type *Ty, |
||
874 | TargetCostKind CostKind) const; |
||
875 | |||
876 | /// Return the expected cost for the given integer when optimising |
||
877 | /// for size. This is different than the other integer immediate cost |
||
878 | /// functions in that it is subtarget agnostic. This is useful when you e.g. |
||
879 | /// target one ISA such as Aarch32 but smaller encodings could be possible |
||
880 | /// with another such as Thumb. This return value is used as a penalty when |
||
881 | /// the total costs for a constant is calculated (the bigger the cost, the |
||
882 | /// more beneficial constant hoisting is). |
||
883 | InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, |
||
884 | const APInt &Imm, Type *Ty) const; |
||
885 | /// @} |
||
886 | |||
887 | /// \name Vector Target Information |
||
888 | /// @{ |
||
889 | |||
890 | /// The various kinds of shuffle patterns for vector queries. |
||
891 | enum ShuffleKind { |
||
892 | SK_Broadcast, ///< Broadcast element 0 to all other elements. |
||
893 | SK_Reverse, ///< Reverse the order of the vector. |
||
894 | SK_Select, ///< Selects elements from the corresponding lane of |
||
895 | ///< either source operand. This is equivalent to a |
||
896 | ///< vector select with a constant condition operand. |
||
897 | SK_Transpose, ///< Transpose two vectors. |
||
898 | SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. |
||
899 | SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset. |
||
900 | SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one |
||
901 | ///< with any shuffle mask. |
||
902 | SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any |
||
903 | ///< shuffle mask. |
||
904 | SK_Splice ///< Concatenates elements from the first input vector |
||
905 | ///< with elements of the second input vector. Returning |
||
906 | ///< a vector of the same type as the input vectors. |
||
907 | ///< Index indicates start offset in first input vector. |
||
908 | }; |
||
909 | |||
910 | /// Additional information about an operand's possible values. |
||
911 | enum OperandValueKind { |
||
912 | OK_AnyValue, // Operand can have any value. |
||
913 | OK_UniformValue, // Operand is uniform (splat of a value). |
||
914 | OK_UniformConstantValue, // Operand is uniform constant. |
||
915 | OK_NonUniformConstantValue // Operand is a non uniform constant value. |
||
916 | }; |
||
917 | |||
918 | /// Additional properties of an operand's values. |
||
919 | enum OperandValueProperties { |
||
920 | OP_None = 0, |
||
921 | OP_PowerOf2 = 1, |
||
922 | OP_NegatedPowerOf2 = 2, |
||
923 | }; |
||
924 | |||
925 | // Describe the values an operand can take. We're in the process |
||
926 | // of migrating uses of OperandValueKind and OperandValueProperties |
||
927 | // to use this class, and then will change the internal representation. |
||
928 | struct OperandValueInfo { |
||
929 | OperandValueKind Kind = OK_AnyValue; |
||
930 | OperandValueProperties Properties = OP_None; |
||
931 | |||
932 | bool isConstant() const { |
||
933 | return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue; |
||
934 | } |
||
935 | bool isUniform() const { |
||
936 | return Kind == OK_UniformConstantValue || Kind == OK_UniformValue; |
||
937 | } |
||
938 | bool isPowerOf2() const { |
||
939 | return Properties == OP_PowerOf2; |
||
940 | } |
||
941 | bool isNegatedPowerOf2() const { |
||
942 | return Properties == OP_NegatedPowerOf2; |
||
943 | } |
||
944 | |||
945 | OperandValueInfo getNoProps() const { |
||
946 | return {Kind, OP_None}; |
||
947 | } |
||
948 | }; |
||
949 | |||
950 | /// \return the number of registers in the target-provided register class. |
||
951 | unsigned getNumberOfRegisters(unsigned ClassID) const; |
||
952 | |||
953 | /// \return the target-provided register class ID for the provided type, |
||
954 | /// accounting for type promotion and other type-legalization techniques that |
||
955 | /// the target might apply. However, it specifically does not account for the |
||
956 | /// scalarization or splitting of vector types. Should a vector type require |
||
957 | /// scalarization or splitting into multiple underlying vector registers, that |
||
958 | /// type should be mapped to a register class containing no registers. |
||
959 | /// Specifically, this is designed to provide a simple, high-level view of the |
||
960 | /// register allocation later performed by the backend. These register classes |
||
961 | /// don't necessarily map onto the register classes used by the backend. |
||
962 | /// FIXME: It's not currently possible to determine how many registers |
||
963 | /// are used by the provided type. |
||
964 | unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const; |
||
965 | |||
966 | /// \return the target-provided register class name |
||
967 | const char *getRegisterClassName(unsigned ClassID) const; |
||
968 | |||
969 | enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector }; |
||
970 | |||
971 | /// \return The width of the largest scalar or vector register type. |
||
972 | TypeSize getRegisterBitWidth(RegisterKind K) const; |
||
973 | |||
974 | /// \return The width of the smallest vector register type. |
||
975 | unsigned getMinVectorRegisterBitWidth() const; |
||
976 | |||
977 | /// \return The maximum value of vscale if the target specifies an |
||
978 | /// architectural maximum vector length, and std::nullopt otherwise. |
||
979 | std::optional<unsigned> getMaxVScale() const; |
||
980 | |||
981 | /// \return the value of vscale to tune the cost model for. |
||
982 | std::optional<unsigned> getVScaleForTuning() const; |
||
983 | |||
984 | /// \return True if the vectorization factor should be chosen to |
||
985 | /// make the vector of the smallest element type match the size of a |
||
986 | /// vector register. For wider element types, this could result in |
||
987 | /// creating vectors that span multiple vector registers. |
||
988 | /// If false, the vectorization factor will be chosen based on the |
||
989 | /// size of the widest element type. |
||
990 | /// \p K Register Kind for vectorization. |
||
991 | bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const; |
||
992 | |||
993 | /// \return The minimum vectorization factor for types of given element |
||
994 | /// bit width, or 0 if there is no minimum VF. The returned value only |
||
995 | /// applies when shouldMaximizeVectorBandwidth returns true. |
||
996 | /// If IsScalable is true, the returned ElementCount must be a scalable VF. |
||
997 | ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const; |
||
998 | |||
999 | /// \return The maximum vectorization factor for types of given element |
||
1000 | /// bit width and opcode, or 0 if there is no maximum VF. |
||
1001 | /// Currently only used by the SLP vectorizer. |
||
1002 | unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const; |
||
1003 | |||
1004 | /// \return The minimum vectorization factor for the store instruction. Given |
||
1005 | /// the initial estimation of the minimum vector factor and store value type, |
||
1006 | /// it tries to find possible lowest VF, which still might be profitable for |
||
1007 | /// the vectorization. |
||
1008 | /// \param VF Initial estimation of the minimum vector factor. |
||
1009 | /// \param ScalarMemTy Scalar memory type of the store operation. |
||
1010 | /// \param ScalarValTy Scalar type of the stored value. |
||
1011 | /// Currently only used by the SLP vectorizer. |
||
1012 | unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
1013 | Type *ScalarValTy) const; |
||
1014 | |||
1015 | /// \return True if it should be considered for address type promotion. |
||
1016 | /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is |
||
1017 | /// profitable without finding other extensions fed by the same input. |
||
1018 | bool shouldConsiderAddressTypePromotion( |
||
1019 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; |
||
1020 | |||
1021 | /// \return The size of a cache line in bytes. |
||
1022 | unsigned getCacheLineSize() const; |
||
1023 | |||
1024 | /// The possible cache levels |
||
1025 | enum class CacheLevel { |
||
1026 | L1D, // The L1 data cache |
||
1027 | L2D, // The L2 data cache |
||
1028 | |||
1029 | // We currently do not model L3 caches, as their sizes differ widely between |
||
1030 | // microarchitectures. Also, we currently do not have a use for L3 cache |
||
1031 | // size modeling yet. |
||
1032 | }; |
||
1033 | |||
1034 | /// \return The size of the cache level in bytes, if available. |
||
1035 | std::optional<unsigned> getCacheSize(CacheLevel Level) const; |
||
1036 | |||
1037 | /// \return The associativity of the cache level, if available. |
||
1038 | std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const; |
||
1039 | |||
1040 | /// \return How much before a load we should place the prefetch |
||
1041 | /// instruction. This is currently measured in number of |
||
1042 | /// instructions. |
||
1043 | unsigned getPrefetchDistance() const; |
||
1044 | |||
1045 | /// Some HW prefetchers can handle accesses up to a certain constant stride. |
||
1046 | /// Sometimes prefetching is beneficial even below the HW prefetcher limit, |
||
1047 | /// and the arguments provided are meant to serve as a basis for deciding this |
||
1048 | /// for a particular loop. |
||
1049 | /// |
||
1050 | /// \param NumMemAccesses Number of memory accesses in the loop. |
||
1051 | /// \param NumStridedMemAccesses Number of the memory accesses that |
||
1052 | /// ScalarEvolution could find a known stride |
||
1053 | /// for. |
||
1054 | /// \param NumPrefetches Number of software prefetches that will be |
||
1055 | /// emitted as determined by the addresses |
||
1056 | /// involved and the cache line size. |
||
1057 | /// \param HasCall True if the loop contains a call. |
||
1058 | /// |
||
1059 | /// \return This is the minimum stride in bytes where it makes sense to start |
||
1060 | /// adding SW prefetches. The default is 1, i.e. prefetch with any |
||
1061 | /// stride. |
||
1062 | unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
1063 | unsigned NumStridedMemAccesses, |
||
1064 | unsigned NumPrefetches, bool HasCall) const; |
||
1065 | |||
1066 | /// \return The maximum number of iterations to prefetch ahead. If |
||
1067 | /// the required number of iterations is more than this number, no |
||
1068 | /// prefetching is performed. |
||
1069 | unsigned getMaxPrefetchIterationsAhead() const; |
||
1070 | |||
1071 | /// \return True if prefetching should also be done for writes. |
||
1072 | bool enableWritePrefetching() const; |
||
1073 | |||
1074 | /// \return if target want to issue a prefetch in address space \p AS. |
||
1075 | bool shouldPrefetchAddressSpace(unsigned AS) const; |
||
1076 | |||
1077 | /// \return The maximum interleave factor that any transform should try to |
||
1078 | /// perform for this target. This number depends on the level of parallelism |
||
1079 | /// and the number of execution units in the CPU. |
||
1080 | unsigned getMaxInterleaveFactor(unsigned VF) const; |
||
1081 | |||
1082 | /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2. |
||
1083 | static OperandValueInfo getOperandInfo(const Value *V); |
||
1084 | |||
1085 | /// This is an approximation of reciprocal throughput of a math/logic op. |
||
1086 | /// A higher cost indicates less expected throughput. |
||
1087 | /// From Agner Fog's guides, reciprocal throughput is "the average number of |
||
1088 | /// clock cycles per instruction when the instructions are not part of a |
||
1089 | /// limiting dependency chain." |
||
1090 | /// Therefore, costs should be scaled to account for multiple execution units |
||
1091 | /// on the target that can process this type of instruction. For example, if |
||
1092 | /// there are 5 scalar integer units and 2 vector integer units that can |
||
1093 | /// calculate an 'add' in a single cycle, this model should indicate that the |
||
1094 | /// cost of the vector add instruction is 2.5 times the cost of the scalar |
||
1095 | /// add instruction. |
||
1096 | /// \p Args is an optional argument which holds the instruction operands |
||
1097 | /// values so the TTI can analyze those values searching for special |
||
1098 | /// cases or optimizations based on those values. |
||
1099 | /// \p CxtI is the optional original context instruction, if one exists, to |
||
1100 | /// provide even more information. |
||
1101 | InstructionCost getArithmeticInstrCost( |
||
1102 | unsigned Opcode, Type *Ty, |
||
1103 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1104 | TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None}, |
||
1105 | TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None}, |
||
1106 | ArrayRef<const Value *> Args = ArrayRef<const Value *>(), |
||
1107 | const Instruction *CxtI = nullptr) const; |
||
1108 | |||
1109 | /// \return The cost of a shuffle instruction of kind Kind and of type Tp. |
||
1110 | /// The exact mask may be passed as Mask, or else the array will be empty. |
||
1111 | /// The index and subtype parameters are used by the subvector insertion and |
||
1112 | /// extraction shuffle kinds to show the insert/extract point and the type of |
||
1113 | /// the subvector being inserted/extracted. The operands of the shuffle can be |
||
1114 | /// passed through \p Args, which helps improve the cost estimation in some |
||
1115 | /// cases, like in broadcast loads. |
||
1116 | /// NOTE: For subvector extractions Tp represents the source type. |
||
1117 | InstructionCost |
||
1118 | getShuffleCost(ShuffleKind Kind, VectorType *Tp, |
||
1119 | ArrayRef<int> Mask = std::nullopt, |
||
1120 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1121 | int Index = 0, VectorType *SubTp = nullptr, |
||
1122 | ArrayRef<const Value *> Args = std::nullopt) const; |
||
1123 | |||
1124 | /// Represents a hint about the context in which a cast is used. |
||
1125 | /// |
||
1126 | /// For zext/sext, the context of the cast is the operand, which must be a |
||
1127 | /// load of some kind. For trunc, the context is of the cast is the single |
||
1128 | /// user of the instruction, which must be a store of some kind. |
||
1129 | /// |
||
1130 | /// This enum allows the vectorizer to give getCastInstrCost an idea of the |
||
1131 | /// type of cast it's dealing with, as not every cast is equal. For instance, |
||
1132 | /// the zext of a load may be free, but the zext of an interleaving load can |
||
1133 | //// be (very) expensive! |
||
1134 | /// |
||
1135 | /// See \c getCastContextHint to compute a CastContextHint from a cast |
||
1136 | /// Instruction*. Callers can use it if they don't need to override the |
||
1137 | /// context and just want it to be calculated from the instruction. |
||
1138 | /// |
||
1139 | /// FIXME: This handles the types of load/store that the vectorizer can |
||
1140 | /// produce, which are the cases where the context instruction is most |
||
1141 | /// likely to be incorrect. There are other situations where that can happen |
||
1142 | /// too, which might be handled here but in the long run a more general |
||
1143 | /// solution of costing multiple instructions at the same times may be better. |
||
1144 | enum class CastContextHint : uint8_t { |
||
1145 | None, ///< The cast is not used with a load/store of any kind. |
||
1146 | Normal, ///< The cast is used with a normal load/store. |
||
1147 | Masked, ///< The cast is used with a masked load/store. |
||
1148 | GatherScatter, ///< The cast is used with a gather/scatter. |
||
1149 | Interleave, ///< The cast is used with an interleaved load/store. |
||
1150 | Reversed, ///< The cast is used with a reversed load/store. |
||
1151 | }; |
||
1152 | |||
1153 | /// Calculates a CastContextHint from \p I. |
||
1154 | /// This should be used by callers of getCastInstrCost if they wish to |
||
1155 | /// determine the context from some instruction. |
||
1156 | /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr, |
||
1157 | /// or if it's another type of cast. |
||
1158 | static CastContextHint getCastContextHint(const Instruction *I); |
||
1159 | |||
1160 | /// \return The expected cost of cast instructions, such as bitcast, trunc, |
||
1161 | /// zext, etc. If there is an existing instruction that holds Opcode, it |
||
1162 | /// may be passed in the 'I' parameter. |
||
1163 | InstructionCost |
||
1164 | getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
||
1165 | TTI::CastContextHint CCH, |
||
1166 | TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, |
||
1167 | const Instruction *I = nullptr) const; |
||
1168 | |||
1169 | /// \return The expected cost of a sign- or zero-extended vector extract. Use |
||
1170 | /// Index = -1 to indicate that there is no information about the index value. |
||
1171 | InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
1172 | VectorType *VecTy, |
||
1173 | unsigned Index) const; |
||
1174 | |||
1175 | /// \return The expected cost of control-flow related instructions such as |
||
1176 | /// Phi, Ret, Br, Switch. |
||
1177 | InstructionCost |
||
1178 | getCFInstrCost(unsigned Opcode, |
||
1179 | TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, |
||
1180 | const Instruction *I = nullptr) const; |
||
1181 | |||
1182 | /// \returns The expected cost of compare and select instructions. If there |
||
1183 | /// is an existing instruction that holds Opcode, it may be passed in the |
||
1184 | /// 'I' parameter. The \p VecPred parameter can be used to indicate the select |
||
1185 | /// is using a compare with the specified predicate as condition. When vector |
||
1186 | /// types are passed, \p VecPred must be used for all lanes. |
||
1187 | InstructionCost |
||
1188 | getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
||
1189 | CmpInst::Predicate VecPred, |
||
1190 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1191 | const Instruction *I = nullptr) const; |
||
1192 | |||
1193 | /// \return The expected cost of vector Insert and Extract. |
||
1194 | /// Use -1 to indicate that there is no information on the index value. |
||
1195 | /// This is used when the instruction is not available; a typical use |
||
1196 | /// case is to provision the cost of vectorization/scalarization in |
||
1197 | /// vectorizer passes. |
||
1198 | InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
1199 | TTI::TargetCostKind CostKind, |
||
1200 | unsigned Index = -1, Value *Op0 = nullptr, |
||
1201 | Value *Op1 = nullptr) const; |
||
1202 | |||
1203 | /// \return The expected cost of vector Insert and Extract. |
||
1204 | /// This is used when instruction is available, and implementation |
||
1205 | /// asserts 'I' is not nullptr. |
||
1206 | /// |
||
1207 | /// A typical suitable use case is cost estimation when vector instruction |
||
1208 | /// exists (e.g., from basic blocks during transformation). |
||
1209 | InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
1210 | TTI::TargetCostKind CostKind, |
||
1211 | unsigned Index = -1) const; |
||
1212 | |||
1213 | /// \return The cost of replication shuffle of \p VF elements typed \p EltTy |
||
1214 | /// \p ReplicationFactor times. |
||
1215 | /// |
||
1216 | /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: |
||
1217 | /// <0,0,0,1,1,1,2,2,2,3,3,3> |
||
1218 | InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, |
||
1219 | int VF, |
||
1220 | const APInt &DemandedDstElts, |
||
1221 | TTI::TargetCostKind CostKind); |
||
1222 | |||
1223 | /// \return The cost of Load and Store instructions. |
||
1224 | InstructionCost |
||
1225 | getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
1226 | unsigned AddressSpace, |
||
1227 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1228 | OperandValueInfo OpdInfo = {OK_AnyValue, OP_None}, |
||
1229 | const Instruction *I = nullptr) const; |
||
1230 | |||
1231 | /// \return The cost of VP Load and Store instructions. |
||
1232 | InstructionCost |
||
1233 | getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
1234 | unsigned AddressSpace, |
||
1235 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1236 | const Instruction *I = nullptr) const; |
||
1237 | |||
1238 | /// \return The cost of masked Load and Store instructions. |
||
1239 | InstructionCost getMaskedMemoryOpCost( |
||
1240 | unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, |
||
1241 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
1242 | |||
1243 | /// \return The cost of Gather or Scatter operation |
||
1244 | /// \p Opcode - is a type of memory access Load or Store |
||
1245 | /// \p DataTy - a vector type of the data to be loaded or stored |
||
1246 | /// \p Ptr - pointer [or vector of pointers] - address[es] in memory |
||
1247 | /// \p VariableMask - true when the memory access is predicated with a mask |
||
1248 | /// that is not a compile-time constant |
||
1249 | /// \p Alignment - alignment of single element |
||
1250 | /// \p I - the optional original context instruction, if one exists, e.g. the |
||
1251 | /// load/store to transform or the call to the gather/scatter intrinsic |
||
1252 | InstructionCost getGatherScatterOpCost( |
||
1253 | unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
||
1254 | Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1255 | const Instruction *I = nullptr) const; |
||
1256 | |||
1257 | /// \return The cost of the interleaved memory operation. |
||
1258 | /// \p Opcode is the memory operation code |
||
1259 | /// \p VecTy is the vector type of the interleaved access. |
||
1260 | /// \p Factor is the interleave factor |
||
1261 | /// \p Indices is the indices for interleaved load members (as interleaved |
||
1262 | /// load allows gaps) |
||
1263 | /// \p Alignment is the alignment of the memory operation |
||
1264 | /// \p AddressSpace is address space of the pointer. |
||
1265 | /// \p UseMaskForCond indicates if the memory access is predicated. |
||
1266 | /// \p UseMaskForGaps indicates if gaps should be masked. |
||
1267 | InstructionCost getInterleavedMemoryOpCost( |
||
1268 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
1269 | Align Alignment, unsigned AddressSpace, |
||
1270 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
||
1271 | bool UseMaskForCond = false, bool UseMaskForGaps = false) const; |
||
1272 | |||
1273 | /// A helper function to determine the type of reduction algorithm used |
||
1274 | /// for a given \p Opcode and set of FastMathFlags \p FMF. |
||
1275 | static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) { |
||
1276 | return FMF && !(*FMF).allowReassoc(); |
||
1277 | } |
||
1278 | |||
1279 | /// Calculate the cost of vector reduction intrinsics. |
||
1280 | /// |
||
1281 | /// This is the cost of reducing the vector value of type \p Ty to a scalar |
||
1282 | /// value using the operation denoted by \p Opcode. The FastMathFlags |
||
1283 | /// parameter \p FMF indicates what type of reduction we are performing: |
||
1284 | /// 1. Tree-wise. This is the typical 'fast' reduction performed that |
||
1285 | /// involves successively splitting a vector into half and doing the |
||
1286 | /// operation on the pair of halves until you have a scalar value. For |
||
1287 | /// example: |
||
1288 | /// (v0, v1, v2, v3) |
||
1289 | /// ((v0+v2), (v1+v3), undef, undef) |
||
1290 | /// ((v0+v2+v1+v3), undef, undef, undef) |
||
1291 | /// This is the default behaviour for integer operations, whereas for |
||
1292 | /// floating point we only do this if \p FMF indicates that |
||
1293 | /// reassociation is allowed. |
||
1294 | /// 2. Ordered. For a vector with N elements this involves performing N |
||
1295 | /// operations in lane order, starting with an initial scalar value, i.e. |
||
1296 | /// result = InitVal + v0 |
||
1297 | /// result = result + v1 |
||
1298 | /// result = result + v2 |
||
1299 | /// result = result + v3 |
||
1300 | /// This is only the case for FP operations and when reassociation is not |
||
1301 | /// allowed. |
||
1302 | /// |
||
1303 | InstructionCost getArithmeticReductionCost( |
||
1304 | unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF, |
||
1305 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
1306 | |||
1307 | InstructionCost getMinMaxReductionCost( |
||
1308 | VectorType *Ty, VectorType *CondTy, bool IsUnsigned, |
||
1309 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
1310 | |||
1311 | /// Calculate the cost of an extended reduction pattern, similar to |
||
1312 | /// getArithmeticReductionCost of an Add reduction with multiply and optional |
||
1313 | /// extensions. This is the cost of as: |
||
1314 | /// ResTy vecreduce.add(mul (A, B)). |
||
1315 | /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). |
||
1316 | InstructionCost getMulAccReductionCost( |
||
1317 | bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
1318 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
1319 | |||
1320 | /// Calculate the cost of an extended reduction pattern, similar to |
||
1321 | /// getArithmeticReductionCost of a reduction with an extension. |
||
1322 | /// This is the cost of as: |
||
1323 | /// ResTy vecreduce.opcode(ext(Ty A)). |
||
1324 | InstructionCost getExtendedReductionCost( |
||
1325 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
1326 | std::optional<FastMathFlags> FMF, |
||
1327 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; |
||
1328 | |||
1329 | /// \returns The cost of Intrinsic instructions. Analyses the real arguments. |
||
1330 | /// Three cases are handled: 1. scalar instruction 2. vector instruction |
||
1331 | /// 3. scalar instruction which is to be vectorized. |
||
1332 | InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
1333 | TTI::TargetCostKind CostKind) const; |
||
1334 | |||
1335 | /// \returns The cost of Call instructions. |
||
1336 | InstructionCost getCallInstrCost( |
||
1337 | Function *F, Type *RetTy, ArrayRef<Type *> Tys, |
||
1338 | TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const; |
||
1339 | |||
1340 | /// \returns The number of pieces into which the provided type must be |
||
1341 | /// split during legalization. Zero is returned when the answer is unknown. |
||
1342 | unsigned getNumberOfParts(Type *Tp) const; |
||
1343 | |||
1344 | /// \returns The cost of the address computation. For most targets this can be |
||
1345 | /// merged into the instruction indexing mode. Some targets might want to |
||
1346 | /// distinguish between address computation for memory operations on vector |
||
1347 | /// types and scalar types. Such targets should override this function. |
||
1348 | /// The 'SE' parameter holds pointer for the scalar evolution object which |
||
1349 | /// is used in order to get the Ptr step value in case of constant stride. |
||
1350 | /// The 'Ptr' parameter holds SCEV of the access pointer. |
||
1351 | InstructionCost getAddressComputationCost(Type *Ty, |
||
1352 | ScalarEvolution *SE = nullptr, |
||
1353 | const SCEV *Ptr = nullptr) const; |
||
1354 | |||
1355 | /// \returns The cost, if any, of keeping values of the given types alive |
||
1356 | /// over a callsite. |
||
1357 | /// |
||
1358 | /// Some types may require the use of register classes that do not have |
||
1359 | /// any callee-saved registers, so would require a spill and fill. |
||
1360 | InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const; |
||
1361 | |||
1362 | /// \returns True if the intrinsic is a supported memory intrinsic. Info |
||
1363 | /// will contain additional information - whether the intrinsic may write |
||
1364 | /// or read to memory, volatility and the pointer. Info is undefined |
||
1365 | /// if false is returned. |
||
1366 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; |
||
1367 | |||
1368 | /// \returns The maximum element size, in bytes, for an element |
||
1369 | /// unordered-atomic memory intrinsic. |
||
1370 | unsigned getAtomicMemIntrinsicMaxElementSize() const; |
||
1371 | |||
1372 | /// \returns A value which is the result of the given memory intrinsic. New |
||
1373 | /// instructions may be created to extract the result from the given intrinsic |
||
1374 | /// memory operation. Returns nullptr if the target cannot create a result |
||
1375 | /// from the given intrinsic. |
||
1376 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
1377 | Type *ExpectedType) const; |
||
1378 | |||
1379 | /// \returns The type to use in a loop expansion of a memcpy call. |
||
1380 | Type *getMemcpyLoopLoweringType( |
||
1381 | LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, |
||
1382 | unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, |
||
1383 | std::optional<uint32_t> AtomicElementSize = std::nullopt) const; |
||
1384 | |||
1385 | /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. |
||
1386 | /// \param RemainingBytes The number of bytes to copy. |
||
1387 | /// |
||
1388 | /// Calculates the operand types to use when copying \p RemainingBytes of |
||
1389 | /// memory, where source and destination alignments are \p SrcAlign and |
||
1390 | /// \p DestAlign respectively. |
||
1391 | void getMemcpyLoopResidualLoweringType( |
||
1392 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
1393 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
1394 | unsigned SrcAlign, unsigned DestAlign, |
||
1395 | std::optional<uint32_t> AtomicCpySize = std::nullopt) const; |
||
1396 | |||
1397 | /// \returns True if the two functions have compatible attributes for inlining |
||
1398 | /// purposes. |
||
1399 | bool areInlineCompatible(const Function *Caller, |
||
1400 | const Function *Callee) const; |
||
1401 | |||
1402 | /// \returns True if the caller and callee agree on how \p Types will be |
||
1403 | /// passed to or returned from the callee. |
||
1404 | /// to the callee. |
||
1405 | /// \param Types List of types to check. |
||
1406 | bool areTypesABICompatible(const Function *Caller, const Function *Callee, |
||
1407 | const ArrayRef<Type *> &Types) const; |
||
1408 | |||
1409 | /// The type of load/store indexing. |
||
1410 | enum MemIndexedMode { |
||
1411 | MIM_Unindexed, ///< No indexing. |
||
1412 | MIM_PreInc, ///< Pre-incrementing. |
||
1413 | MIM_PreDec, ///< Pre-decrementing. |
||
1414 | MIM_PostInc, ///< Post-incrementing. |
||
1415 | MIM_PostDec ///< Post-decrementing. |
||
1416 | }; |
||
1417 | |||
1418 | /// \returns True if the specified indexed load for the given type is legal. |
||
1419 | bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; |
||
1420 | |||
1421 | /// \returns True if the specified indexed store for the given type is legal. |
||
1422 | bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; |
||
1423 | |||
1424 | /// \returns The bitwidth of the largest vector type that should be used to |
||
1425 | /// load/store in the given address space. |
||
1426 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; |
||
1427 | |||
1428 | /// \returns True if the load instruction is legal to vectorize. |
||
1429 | bool isLegalToVectorizeLoad(LoadInst *LI) const; |
||
1430 | |||
1431 | /// \returns True if the store instruction is legal to vectorize. |
||
1432 | bool isLegalToVectorizeStore(StoreInst *SI) const; |
||
1433 | |||
1434 | /// \returns True if it is legal to vectorize the given load chain. |
||
1435 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, |
||
1436 | unsigned AddrSpace) const; |
||
1437 | |||
1438 | /// \returns True if it is legal to vectorize the given store chain. |
||
1439 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, |
||
1440 | unsigned AddrSpace) const; |
||
1441 | |||
1442 | /// \returns True if it is legal to vectorize the given reduction kind. |
||
1443 | bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
1444 | ElementCount VF) const; |
||
1445 | |||
1446 | /// \returns True if the given type is supported for scalable vectors |
||
1447 | bool isElementTypeLegalForScalableVector(Type *Ty) const; |
||
1448 | |||
1449 | /// \returns The new vector factor value if the target doesn't support \p |
||
1450 | /// SizeInBytes loads or has a better vector factor. |
||
1451 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
1452 | unsigned ChainSizeInBytes, |
||
1453 | VectorType *VecTy) const; |
||
1454 | |||
1455 | /// \returns The new vector factor value if the target doesn't support \p |
||
1456 | /// SizeInBytes stores or has a better vector factor. |
||
1457 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
1458 | unsigned ChainSizeInBytes, |
||
1459 | VectorType *VecTy) const; |
||
1460 | |||
1461 | /// Flags describing the kind of vector reduction. |
||
1462 | struct ReductionFlags { |
||
1463 | ReductionFlags() = default; |
||
1464 | bool IsMaxOp = |
||
1465 | false; ///< If the op a min/max kind, true if it's a max operation. |
||
1466 | bool IsSigned = false; ///< Whether the operation is a signed int reduction. |
||
1467 | bool NoNaN = |
||
1468 | false; ///< If op is an fp min/max, whether NaNs may be present. |
||
1469 | }; |
||
1470 | |||
1471 | /// \returns True if the target prefers reductions in loop. |
||
1472 | bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
1473 | ReductionFlags Flags) const; |
||
1474 | |||
1475 | /// \returns True if the target prefers reductions select kept in the loop |
||
1476 | /// when tail folding. i.e. |
||
1477 | /// loop: |
||
1478 | /// p = phi (0, s) |
||
1479 | /// a = add (p, x) |
||
1480 | /// s = select (mask, a, p) |
||
1481 | /// vecreduce.add(s) |
||
1482 | /// |
||
1483 | /// As opposed to the normal scheme of p = phi (0, a) which allows the select |
||
1484 | /// to be pulled out of the loop. If the select(.., add, ..) can be predicated |
||
1485 | /// by the target, this can lead to cleaner code generation. |
||
1486 | bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
1487 | ReductionFlags Flags) const; |
||
1488 | |||
1489 | /// Return true if the loop vectorizer should consider vectorizing an |
||
1490 | /// otherwise scalar epilogue loop. |
||
1491 | bool preferEpilogueVectorization() const; |
||
1492 | |||
1493 | /// \returns True if the target wants to expand the given reduction intrinsic |
||
1494 | /// into a shuffle sequence. |
||
1495 | bool shouldExpandReduction(const IntrinsicInst *II) const; |
||
1496 | |||
1497 | /// \returns the size cost of rematerializing a GlobalValue address relative |
||
1498 | /// to a stack reload. |
||
1499 | unsigned getGISelRematGlobalCost() const; |
||
1500 | |||
1501 | /// \returns the lower bound of a trip count to decide on vectorization |
||
1502 | /// while tail-folding. |
||
1503 | unsigned getMinTripCountTailFoldingThreshold() const; |
||
1504 | |||
1505 | /// \returns True if the target supports scalable vectors. |
||
1506 | bool supportsScalableVectors() const; |
||
1507 | |||
1508 | /// \return true when scalable vectorization is preferred. |
||
1509 | bool enableScalableVectorization() const; |
||
1510 | |||
1511 | /// \name Vector Predication Information |
||
1512 | /// @{ |
||
1513 | /// Whether the target supports the %evl parameter of VP intrinsic efficiently |
||
1514 | /// in hardware, for the given opcode and type/alignment. (see LLVM Language |
||
1515 | /// Reference - "Vector Predication Intrinsics"). |
||
1516 | /// Use of %evl is discouraged when that is not the case. |
||
1517 | bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
1518 | Align Alignment) const; |
||
1519 | |||
1520 | struct VPLegalization { |
||
1521 | enum VPTransform { |
||
1522 | // keep the predicating parameter |
||
1523 | Legal = 0, |
||
1524 | // where legal, discard the predicate parameter |
||
1525 | Discard = 1, |
||
1526 | // transform into something else that is also predicating |
||
1527 | Convert = 2 |
||
1528 | }; |
||
1529 | |||
1530 | // How to transform the EVL parameter. |
||
1531 | // Legal: keep the EVL parameter as it is. |
||
1532 | // Discard: Ignore the EVL parameter where it is safe to do so. |
||
1533 | // Convert: Fold the EVL into the mask parameter. |
||
1534 | VPTransform EVLParamStrategy; |
||
1535 | |||
1536 | // How to transform the operator. |
||
1537 | // Legal: The target supports this operator. |
||
1538 | // Convert: Convert this to a non-VP operation. |
||
1539 | // The 'Discard' strategy is invalid. |
||
1540 | VPTransform OpStrategy; |
||
1541 | |||
1542 | bool shouldDoNothing() const { |
||
1543 | return (EVLParamStrategy == Legal) && (OpStrategy == Legal); |
||
1544 | } |
||
1545 | VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy) |
||
1546 | : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {} |
||
1547 | }; |
||
1548 | |||
1549 | /// \returns How the target needs this vector-predicated operation to be |
||
1550 | /// transformed. |
||
1551 | VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const; |
||
1552 | /// @} |
||
1553 | |||
1554 | /// @} |
||
1555 | |||
1556 | private: |
||
1557 | /// The abstract base class used to type erase specific TTI |
||
1558 | /// implementations. |
||
1559 | class Concept; |
||
1560 | |||
1561 | /// The template model for the base class which wraps a concrete |
||
1562 | /// implementation in a type erased interface. |
||
1563 | template <typename T> class Model; |
||
1564 | |||
1565 | std::unique_ptr<Concept> TTIImpl; |
||
1566 | }; |
||
1567 | |||
1568 | class TargetTransformInfo::Concept { |
||
1569 | public: |
||
1570 | virtual ~Concept() = 0; |
||
1571 | virtual const DataLayout &getDataLayout() const = 0; |
||
1572 | virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, |
||
1573 | ArrayRef<const Value *> Operands, |
||
1574 | TTI::TargetCostKind CostKind) = 0; |
||
1575 | virtual unsigned getInliningThresholdMultiplier() = 0; |
||
1576 | virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0; |
||
1577 | virtual int getInlinerVectorBonusPercent() = 0; |
||
1578 | virtual InstructionCost getMemcpyCost(const Instruction *I) = 0; |
||
1579 | virtual unsigned |
||
1580 | getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, |
||
1581 | ProfileSummaryInfo *PSI, |
||
1582 | BlockFrequencyInfo *BFI) = 0; |
||
1583 | virtual InstructionCost getInstructionCost(const User *U, |
||
1584 | ArrayRef<const Value *> Operands, |
||
1585 | TargetCostKind CostKind) = 0; |
||
1586 | virtual BranchProbability getPredictableBranchThreshold() = 0; |
||
1587 | virtual bool hasBranchDivergence() = 0; |
||
1588 | virtual bool useGPUDivergenceAnalysis() = 0; |
||
1589 | virtual bool isSourceOfDivergence(const Value *V) = 0; |
||
1590 | virtual bool isAlwaysUniform(const Value *V) = 0; |
||
1591 | virtual unsigned getFlatAddressSpace() = 0; |
||
1592 | virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
1593 | Intrinsic::ID IID) const = 0; |
||
1594 | virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; |
||
1595 | virtual bool |
||
1596 | canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0; |
||
1597 | virtual unsigned getAssumedAddrSpace(const Value *V) const = 0; |
||
1598 | virtual bool isSingleThreaded() const = 0; |
||
1599 | virtual std::pair<const Value *, unsigned> |
||
1600 | getPredicatedAddrSpace(const Value *V) const = 0; |
||
1601 | virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, |
||
1602 | Value *OldV, |
||
1603 | Value *NewV) const = 0; |
||
1604 | virtual bool isLoweredToCall(const Function *F) = 0; |
||
1605 | virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
||
1606 | UnrollingPreferences &UP, |
||
1607 | OptimizationRemarkEmitter *ORE) = 0; |
||
1608 | virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
1609 | PeelingPreferences &PP) = 0; |
||
1610 | virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
1611 | AssumptionCache &AC, |
||
1612 | TargetLibraryInfo *LibInfo, |
||
1613 | HardwareLoopInfo &HWLoopInfo) = 0; |
||
1614 | virtual bool |
||
1615 | preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
1616 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
1617 | DominatorTree *DT, LoopVectorizationLegality *LVL, |
||
1618 | InterleavedAccessInfo *IAI) = 0; |
||
1619 | virtual PredicationStyle emitGetActiveLaneMask() = 0; |
||
1620 | virtual std::optional<Instruction *> instCombineIntrinsic( |
||
1621 | InstCombiner &IC, IntrinsicInst &II) = 0; |
||
1622 | virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic( |
||
1623 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, |
||
1624 | KnownBits & Known, bool &KnownBitsComputed) = 0; |
||
1625 | virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
1626 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, |
||
1627 | APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, |
||
1628 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
1629 | SimplifyAndSetOp) = 0; |
||
1630 | virtual bool isLegalAddImmediate(int64_t Imm) = 0; |
||
1631 | virtual bool isLegalICmpImmediate(int64_t Imm) = 0; |
||
1632 | virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, |
||
1633 | int64_t BaseOffset, bool HasBaseReg, |
||
1634 | int64_t Scale, unsigned AddrSpace, |
||
1635 | Instruction *I) = 0; |
||
1636 | virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
||
1637 | const TargetTransformInfo::LSRCost &C2) = 0; |
||
1638 | virtual bool isNumRegsMajorCostOfLSR() = 0; |
||
1639 | virtual bool isProfitableLSRChainElement(Instruction *I) = 0; |
||
1640 | virtual bool canMacroFuseCmp() = 0; |
||
1641 | virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, |
||
1642 | LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, |
||
1643 | TargetLibraryInfo *LibInfo) = 0; |
||
1644 | virtual AddressingModeKind |
||
1645 | getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0; |
||
1646 | virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0; |
||
1647 | virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0; |
||
1648 | virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0; |
||
1649 | virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0; |
||
1650 | virtual bool isLegalBroadcastLoad(Type *ElementTy, |
||
1651 | ElementCount NumElements) const = 0; |
||
1652 | virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0; |
||
1653 | virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0; |
||
1654 | virtual bool forceScalarizeMaskedGather(VectorType *DataType, |
||
1655 | Align Alignment) = 0; |
||
1656 | virtual bool forceScalarizeMaskedScatter(VectorType *DataType, |
||
1657 | Align Alignment) = 0; |
||
1658 | virtual bool isLegalMaskedCompressStore(Type *DataType) = 0; |
||
1659 | virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0; |
||
1660 | virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, |
||
1661 | unsigned Opcode1, |
||
1662 | const SmallBitVector &OpcodeMask) const = 0; |
||
1663 | virtual bool enableOrderedReductions() = 0; |
||
1664 | virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; |
||
1665 | virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; |
||
1666 | virtual bool prefersVectorizedAddressing() = 0; |
||
1667 | virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
1668 | int64_t BaseOffset, |
||
1669 | bool HasBaseReg, int64_t Scale, |
||
1670 | unsigned AddrSpace) = 0; |
||
1671 | virtual bool LSRWithInstrQueries() = 0; |
||
1672 | virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; |
||
1673 | virtual bool isProfitableToHoist(Instruction *I) = 0; |
||
1674 | virtual bool useAA() = 0; |
||
1675 | virtual bool isTypeLegal(Type *Ty) = 0; |
||
1676 | virtual unsigned getRegUsageForType(Type *Ty) = 0; |
||
1677 | virtual bool shouldBuildLookupTables() = 0; |
||
1678 | virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; |
||
1679 | virtual bool shouldBuildRelLookupTables() = 0; |
||
1680 | virtual bool useColdCCForColdCall(Function &F) = 0; |
||
1681 | virtual InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
1682 | const APInt &DemandedElts, |
||
1683 | bool Insert, bool Extract, |
||
1684 | TargetCostKind CostKind) = 0; |
||
1685 | virtual InstructionCost |
||
1686 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
1687 | ArrayRef<Type *> Tys, |
||
1688 | TargetCostKind CostKind) = 0; |
||
1689 | virtual bool supportsEfficientVectorElementLoadStore() = 0; |
||
1690 | virtual bool supportsTailCalls() = 0; |
||
1691 | virtual bool supportsTailCallFor(const CallBase *CB) = 0; |
||
1692 | virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; |
||
1693 | virtual MemCmpExpansionOptions |
||
1694 | enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0; |
||
1695 | virtual bool enableSelectOptimize() = 0; |
||
1696 | virtual bool enableInterleavedAccessVectorization() = 0; |
||
1697 | virtual bool enableMaskedInterleavedAccessVectorization() = 0; |
||
1698 | virtual bool isFPVectorizationPotentiallyUnsafe() = 0; |
||
1699 | virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
||
1700 | unsigned BitWidth, |
||
1701 | unsigned AddressSpace, |
||
1702 | Align Alignment, |
||
1703 | unsigned *Fast) = 0; |
||
1704 | virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; |
||
1705 | virtual bool haveFastSqrt(Type *Ty) = 0; |
||
1706 | virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0; |
||
1707 | virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; |
||
1708 | virtual InstructionCost getFPOpCost(Type *Ty) = 0; |
||
1709 | virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, |
||
1710 | const APInt &Imm, Type *Ty) = 0; |
||
1711 | virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
1712 | TargetCostKind CostKind) = 0; |
||
1713 | virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, |
||
1714 | const APInt &Imm, Type *Ty, |
||
1715 | TargetCostKind CostKind, |
||
1716 | Instruction *Inst = nullptr) = 0; |
||
1717 | virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
1718 | const APInt &Imm, Type *Ty, |
||
1719 | TargetCostKind CostKind) = 0; |
||
1720 | virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0; |
||
1721 | virtual unsigned getRegisterClassForType(bool Vector, |
||
1722 | Type *Ty = nullptr) const = 0; |
||
1723 | virtual const char *getRegisterClassName(unsigned ClassID) const = 0; |
||
1724 | virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0; |
||
1725 | virtual unsigned getMinVectorRegisterBitWidth() const = 0; |
||
1726 | virtual std::optional<unsigned> getMaxVScale() const = 0; |
||
1727 | virtual std::optional<unsigned> getVScaleForTuning() const = 0; |
||
1728 | virtual bool |
||
1729 | shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0; |
||
1730 | virtual ElementCount getMinimumVF(unsigned ElemWidth, |
||
1731 | bool IsScalable) const = 0; |
||
1732 | virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0; |
||
1733 | virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
1734 | Type *ScalarValTy) const = 0; |
||
1735 | virtual bool shouldConsiderAddressTypePromotion( |
||
1736 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; |
||
1737 | virtual unsigned getCacheLineSize() const = 0; |
||
1738 | virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0; |
||
1739 | virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level) |
||
1740 | const = 0; |
||
1741 | |||
1742 | /// \return How much before a load we should place the prefetch |
||
1743 | /// instruction. This is currently measured in number of |
||
1744 | /// instructions. |
||
1745 | virtual unsigned getPrefetchDistance() const = 0; |
||
1746 | |||
1747 | /// \return Some HW prefetchers can handle accesses up to a certain |
||
1748 | /// constant stride. This is the minimum stride in bytes where it |
||
1749 | /// makes sense to start adding SW prefetches. The default is 1, |
||
1750 | /// i.e. prefetch with any stride. Sometimes prefetching is beneficial |
||
1751 | /// even below the HW prefetcher limit, and the arguments provided are |
||
1752 | /// meant to serve as a basis for deciding this for a particular loop. |
||
1753 | virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
1754 | unsigned NumStridedMemAccesses, |
||
1755 | unsigned NumPrefetches, |
||
1756 | bool HasCall) const = 0; |
||
1757 | |||
1758 | /// \return The maximum number of iterations to prefetch ahead. If |
||
1759 | /// the required number of iterations is more than this number, no |
||
1760 | /// prefetching is performed. |
||
1761 | virtual unsigned getMaxPrefetchIterationsAhead() const = 0; |
||
1762 | |||
1763 | /// \return True if prefetching should also be done for writes. |
||
1764 | virtual bool enableWritePrefetching() const = 0; |
||
1765 | |||
1766 | /// \return if target want to issue a prefetch in address space \p AS. |
||
1767 | virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0; |
||
1768 | |||
1769 | virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0; |
||
1770 | virtual InstructionCost getArithmeticInstrCost( |
||
1771 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
||
1772 | OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, |
||
1773 | ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0; |
||
1774 | |||
1775 | virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, |
||
1776 | ArrayRef<int> Mask, |
||
1777 | TTI::TargetCostKind CostKind, |
||
1778 | int Index, VectorType *SubTp, |
||
1779 | ArrayRef<const Value *> Args) = 0; |
||
1780 | virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, |
||
1781 | Type *Src, CastContextHint CCH, |
||
1782 | TTI::TargetCostKind CostKind, |
||
1783 | const Instruction *I) = 0; |
||
1784 | virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
1785 | VectorType *VecTy, |
||
1786 | unsigned Index) = 0; |
||
1787 | virtual InstructionCost getCFInstrCost(unsigned Opcode, |
||
1788 | TTI::TargetCostKind CostKind, |
||
1789 | const Instruction *I = nullptr) = 0; |
||
1790 | virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
||
1791 | Type *CondTy, |
||
1792 | CmpInst::Predicate VecPred, |
||
1793 | TTI::TargetCostKind CostKind, |
||
1794 | const Instruction *I) = 0; |
||
1795 | virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
1796 | TTI::TargetCostKind CostKind, |
||
1797 | unsigned Index, Value *Op0, |
||
1798 | Value *Op1) = 0; |
||
1799 | virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
1800 | TTI::TargetCostKind CostKind, |
||
1801 | unsigned Index) = 0; |
||
1802 | |||
1803 | virtual InstructionCost |
||
1804 | getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, |
||
1805 | const APInt &DemandedDstElts, |
||
1806 | TTI::TargetCostKind CostKind) = 0; |
||
1807 | |||
1808 | virtual InstructionCost |
||
1809 | getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
1810 | unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
1811 | OperandValueInfo OpInfo, const Instruction *I) = 0; |
||
1812 | virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, |
||
1813 | Align Alignment, |
||
1814 | unsigned AddressSpace, |
||
1815 | TTI::TargetCostKind CostKind, |
||
1816 | const Instruction *I) = 0; |
||
1817 | virtual InstructionCost |
||
1818 | getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
1819 | unsigned AddressSpace, |
||
1820 | TTI::TargetCostKind CostKind) = 0; |
||
1821 | virtual InstructionCost |
||
1822 | getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, |
||
1823 | bool VariableMask, Align Alignment, |
||
1824 | TTI::TargetCostKind CostKind, |
||
1825 | const Instruction *I = nullptr) = 0; |
||
1826 | |||
1827 | virtual InstructionCost getInterleavedMemoryOpCost( |
||
1828 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
1829 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
1830 | bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0; |
||
1831 | virtual InstructionCost |
||
1832 | getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
||
1833 | std::optional<FastMathFlags> FMF, |
||
1834 | TTI::TargetCostKind CostKind) = 0; |
||
1835 | virtual InstructionCost |
||
1836 | getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned, |
||
1837 | TTI::TargetCostKind CostKind) = 0; |
||
1838 | virtual InstructionCost getExtendedReductionCost( |
||
1839 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
1840 | std::optional<FastMathFlags> FMF, |
||
1841 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; |
||
1842 | virtual InstructionCost getMulAccReductionCost( |
||
1843 | bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
1844 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; |
||
1845 | virtual InstructionCost |
||
1846 | getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
1847 | TTI::TargetCostKind CostKind) = 0; |
||
1848 | virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, |
||
1849 | ArrayRef<Type *> Tys, |
||
1850 | TTI::TargetCostKind CostKind) = 0; |
||
1851 | virtual unsigned getNumberOfParts(Type *Tp) = 0; |
||
1852 | virtual InstructionCost |
||
1853 | getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0; |
||
1854 | virtual InstructionCost |
||
1855 | getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0; |
||
1856 | virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
||
1857 | MemIntrinsicInfo &Info) = 0; |
||
1858 | virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; |
||
1859 | virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
1860 | Type *ExpectedType) = 0; |
||
1861 | virtual Type *getMemcpyLoopLoweringType( |
||
1862 | LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, |
||
1863 | unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, |
||
1864 | std::optional<uint32_t> AtomicElementSize) const = 0; |
||
1865 | |||
1866 | virtual void getMemcpyLoopResidualLoweringType( |
||
1867 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
1868 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
1869 | unsigned SrcAlign, unsigned DestAlign, |
||
1870 | std::optional<uint32_t> AtomicCpySize) const = 0; |
||
1871 | virtual bool areInlineCompatible(const Function *Caller, |
||
1872 | const Function *Callee) const = 0; |
||
1873 | virtual bool areTypesABICompatible(const Function *Caller, |
||
1874 | const Function *Callee, |
||
1875 | const ArrayRef<Type *> &Types) const = 0; |
||
1876 | virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; |
||
1877 | virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0; |
||
1878 | virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; |
||
1879 | virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; |
||
1880 | virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; |
||
1881 | virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
||
1882 | Align Alignment, |
||
1883 | unsigned AddrSpace) const = 0; |
||
1884 | virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
||
1885 | Align Alignment, |
||
1886 | unsigned AddrSpace) const = 0; |
||
1887 | virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
1888 | ElementCount VF) const = 0; |
||
1889 | virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0; |
||
1890 | virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
1891 | unsigned ChainSizeInBytes, |
||
1892 | VectorType *VecTy) const = 0; |
||
1893 | virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
1894 | unsigned ChainSizeInBytes, |
||
1895 | VectorType *VecTy) const = 0; |
||
1896 | virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
1897 | ReductionFlags) const = 0; |
||
1898 | virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
1899 | ReductionFlags) const = 0; |
||
1900 | virtual bool preferEpilogueVectorization() const = 0; |
||
1901 | |||
1902 | virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; |
||
1903 | virtual unsigned getGISelRematGlobalCost() const = 0; |
||
1904 | virtual unsigned getMinTripCountTailFoldingThreshold() const = 0; |
||
1905 | virtual bool enableScalableVectorization() const = 0; |
||
1906 | virtual bool supportsScalableVectors() const = 0; |
||
1907 | virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
1908 | Align Alignment) const = 0; |
||
1909 | virtual VPLegalization |
||
1910 | getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0; |
||
1911 | }; |
||
1912 | |||
1913 | template <typename T> |
||
1914 | class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { |
||
1915 | T Impl; |
||
1916 | |||
1917 | public: |
||
1918 | Model(T Impl) : Impl(std::move(Impl)) {} |
||
1919 | ~Model() override = default; |
||
1920 | |||
1921 | const DataLayout &getDataLayout() const override { |
||
1922 | return Impl.getDataLayout(); |
||
1923 | } |
||
1924 | |||
1925 | InstructionCost |
||
1926 | getGEPCost(Type *PointeeType, const Value *Ptr, |
||
1927 | ArrayRef<const Value *> Operands, |
||
1928 | TargetTransformInfo::TargetCostKind CostKind) override { |
||
1929 | return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind); |
||
1930 | } |
||
1931 | unsigned getInliningThresholdMultiplier() override { |
||
1932 | return Impl.getInliningThresholdMultiplier(); |
||
1933 | } |
||
1934 | unsigned adjustInliningThreshold(const CallBase *CB) override { |
||
1935 | return Impl.adjustInliningThreshold(CB); |
||
1936 | } |
||
1937 | int getInlinerVectorBonusPercent() override { |
||
1938 | return Impl.getInlinerVectorBonusPercent(); |
||
1939 | } |
||
1940 | InstructionCost getMemcpyCost(const Instruction *I) override { |
||
1941 | return Impl.getMemcpyCost(I); |
||
1942 | } |
||
1943 | InstructionCost getInstructionCost(const User *U, |
||
1944 | ArrayRef<const Value *> Operands, |
||
1945 | TargetCostKind CostKind) override { |
||
1946 | return Impl.getInstructionCost(U, Operands, CostKind); |
||
1947 | } |
||
1948 | BranchProbability getPredictableBranchThreshold() override { |
||
1949 | return Impl.getPredictableBranchThreshold(); |
||
1950 | } |
||
1951 | bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); } |
||
1952 | bool useGPUDivergenceAnalysis() override { |
||
1953 | return Impl.useGPUDivergenceAnalysis(); |
||
1954 | } |
||
1955 | bool isSourceOfDivergence(const Value *V) override { |
||
1956 | return Impl.isSourceOfDivergence(V); |
||
1957 | } |
||
1958 | |||
1959 | bool isAlwaysUniform(const Value *V) override { |
||
1960 | return Impl.isAlwaysUniform(V); |
||
1961 | } |
||
1962 | |||
1963 | unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); } |
||
1964 | |||
1965 | bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
1966 | Intrinsic::ID IID) const override { |
||
1967 | return Impl.collectFlatAddressOperands(OpIndexes, IID); |
||
1968 | } |
||
1969 | |||
1970 | bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { |
||
1971 | return Impl.isNoopAddrSpaceCast(FromAS, ToAS); |
||
1972 | } |
||
1973 | |||
1974 | bool |
||
1975 | canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override { |
||
1976 | return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS); |
||
1977 | } |
||
1978 | |||
1979 | unsigned getAssumedAddrSpace(const Value *V) const override { |
||
1980 | return Impl.getAssumedAddrSpace(V); |
||
1981 | } |
||
1982 | |||
1983 | bool isSingleThreaded() const override { return Impl.isSingleThreaded(); } |
||
1984 | |||
1985 | std::pair<const Value *, unsigned> |
||
1986 | getPredicatedAddrSpace(const Value *V) const override { |
||
1987 | return Impl.getPredicatedAddrSpace(V); |
||
1988 | } |
||
1989 | |||
1990 | Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, |
||
1991 | Value *NewV) const override { |
||
1992 | return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV); |
||
1993 | } |
||
1994 | |||
1995 | bool isLoweredToCall(const Function *F) override { |
||
1996 | return Impl.isLoweredToCall(F); |
||
1997 | } |
||
1998 | void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
||
1999 | UnrollingPreferences &UP, |
||
2000 | OptimizationRemarkEmitter *ORE) override { |
||
2001 | return Impl.getUnrollingPreferences(L, SE, UP, ORE); |
||
2002 | } |
||
2003 | void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
2004 | PeelingPreferences &PP) override { |
||
2005 | return Impl.getPeelingPreferences(L, SE, PP); |
||
2006 | } |
||
2007 | bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
2008 | AssumptionCache &AC, TargetLibraryInfo *LibInfo, |
||
2009 | HardwareLoopInfo &HWLoopInfo) override { |
||
2010 | return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); |
||
2011 | } |
||
2012 | bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
2013 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
2014 | DominatorTree *DT, |
||
2015 | LoopVectorizationLegality *LVL, |
||
2016 | InterleavedAccessInfo *IAI) override { |
||
2017 | return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI); |
||
2018 | } |
||
2019 | PredicationStyle emitGetActiveLaneMask() override { |
||
2020 | return Impl.emitGetActiveLaneMask(); |
||
2021 | } |
||
2022 | std::optional<Instruction *> |
||
2023 | instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override { |
||
2024 | return Impl.instCombineIntrinsic(IC, II); |
||
2025 | } |
||
2026 | std::optional<Value *> |
||
2027 | simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, |
||
2028 | APInt DemandedMask, KnownBits &Known, |
||
2029 | bool &KnownBitsComputed) override { |
||
2030 | return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, |
||
2031 | KnownBitsComputed); |
||
2032 | } |
||
2033 | std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
2034 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
||
2035 | APInt &UndefElts2, APInt &UndefElts3, |
||
2036 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
2037 | SimplifyAndSetOp) override { |
||
2038 | return Impl.simplifyDemandedVectorEltsIntrinsic( |
||
2039 | IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, |
||
2040 | SimplifyAndSetOp); |
||
2041 | } |
||
2042 | bool isLegalAddImmediate(int64_t Imm) override { |
||
2043 | return Impl.isLegalAddImmediate(Imm); |
||
2044 | } |
||
2045 | bool isLegalICmpImmediate(int64_t Imm) override { |
||
2046 | return Impl.isLegalICmpImmediate(Imm); |
||
2047 | } |
||
2048 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
||
2049 | bool HasBaseReg, int64_t Scale, unsigned AddrSpace, |
||
2050 | Instruction *I) override { |
||
2051 | return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, |
||
2052 | AddrSpace, I); |
||
2053 | } |
||
2054 | bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
||
2055 | const TargetTransformInfo::LSRCost &C2) override { |
||
2056 | return Impl.isLSRCostLess(C1, C2); |
||
2057 | } |
||
2058 | bool isNumRegsMajorCostOfLSR() override { |
||
2059 | return Impl.isNumRegsMajorCostOfLSR(); |
||
2060 | } |
||
2061 | bool isProfitableLSRChainElement(Instruction *I) override { |
||
2062 | return Impl.isProfitableLSRChainElement(I); |
||
2063 | } |
||
2064 | bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); } |
||
2065 | bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, |
||
2066 | DominatorTree *DT, AssumptionCache *AC, |
||
2067 | TargetLibraryInfo *LibInfo) override { |
||
2068 | return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); |
||
2069 | } |
||
2070 | AddressingModeKind |
||
2071 | getPreferredAddressingMode(const Loop *L, |
||
2072 | ScalarEvolution *SE) const override { |
||
2073 | return Impl.getPreferredAddressingMode(L, SE); |
||
2074 | } |
||
2075 | bool isLegalMaskedStore(Type *DataType, Align Alignment) override { |
||
2076 | return Impl.isLegalMaskedStore(DataType, Alignment); |
||
2077 | } |
||
2078 | bool isLegalMaskedLoad(Type *DataType, Align Alignment) override { |
||
2079 | return Impl.isLegalMaskedLoad(DataType, Alignment); |
||
2080 | } |
||
2081 | bool isLegalNTStore(Type *DataType, Align Alignment) override { |
||
2082 | return Impl.isLegalNTStore(DataType, Alignment); |
||
2083 | } |
||
2084 | bool isLegalNTLoad(Type *DataType, Align Alignment) override { |
||
2085 | return Impl.isLegalNTLoad(DataType, Alignment); |
||
2086 | } |
||
2087 | bool isLegalBroadcastLoad(Type *ElementTy, |
||
2088 | ElementCount NumElements) const override { |
||
2089 | return Impl.isLegalBroadcastLoad(ElementTy, NumElements); |
||
2090 | } |
||
2091 | bool isLegalMaskedScatter(Type *DataType, Align Alignment) override { |
||
2092 | return Impl.isLegalMaskedScatter(DataType, Alignment); |
||
2093 | } |
||
2094 | bool isLegalMaskedGather(Type *DataType, Align Alignment) override { |
||
2095 | return Impl.isLegalMaskedGather(DataType, Alignment); |
||
2096 | } |
||
2097 | bool forceScalarizeMaskedGather(VectorType *DataType, |
||
2098 | Align Alignment) override { |
||
2099 | return Impl.forceScalarizeMaskedGather(DataType, Alignment); |
||
2100 | } |
||
2101 | bool forceScalarizeMaskedScatter(VectorType *DataType, |
||
2102 | Align Alignment) override { |
||
2103 | return Impl.forceScalarizeMaskedScatter(DataType, Alignment); |
||
2104 | } |
||
2105 | bool isLegalMaskedCompressStore(Type *DataType) override { |
||
2106 | return Impl.isLegalMaskedCompressStore(DataType); |
||
2107 | } |
||
2108 | bool isLegalMaskedExpandLoad(Type *DataType) override { |
||
2109 | return Impl.isLegalMaskedExpandLoad(DataType); |
||
2110 | } |
||
2111 | bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, |
||
2112 | const SmallBitVector &OpcodeMask) const override { |
||
2113 | return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask); |
||
2114 | } |
||
2115 | bool enableOrderedReductions() override { |
||
2116 | return Impl.enableOrderedReductions(); |
||
2117 | } |
||
2118 | bool hasDivRemOp(Type *DataType, bool IsSigned) override { |
||
2119 | return Impl.hasDivRemOp(DataType, IsSigned); |
||
2120 | } |
||
2121 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { |
||
2122 | return Impl.hasVolatileVariant(I, AddrSpace); |
||
2123 | } |
||
2124 | bool prefersVectorizedAddressing() override { |
||
2125 | return Impl.prefersVectorizedAddressing(); |
||
2126 | } |
||
2127 | InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
2128 | int64_t BaseOffset, bool HasBaseReg, |
||
2129 | int64_t Scale, |
||
2130 | unsigned AddrSpace) override { |
||
2131 | return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, |
||
2132 | AddrSpace); |
||
2133 | } |
||
2134 | bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); } |
||
2135 | bool isTruncateFree(Type *Ty1, Type *Ty2) override { |
||
2136 | return Impl.isTruncateFree(Ty1, Ty2); |
||
2137 | } |
||
2138 | bool isProfitableToHoist(Instruction *I) override { |
||
2139 | return Impl.isProfitableToHoist(I); |
||
2140 | } |
||
2141 | bool useAA() override { return Impl.useAA(); } |
||
2142 | bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } |
||
2143 | unsigned getRegUsageForType(Type *Ty) override { |
||
2144 | return Impl.getRegUsageForType(Ty); |
||
2145 | } |
||
2146 | bool shouldBuildLookupTables() override { |
||
2147 | return Impl.shouldBuildLookupTables(); |
||
2148 | } |
||
2149 | bool shouldBuildLookupTablesForConstant(Constant *C) override { |
||
2150 | return Impl.shouldBuildLookupTablesForConstant(C); |
||
2151 | } |
||
2152 | bool shouldBuildRelLookupTables() override { |
||
2153 | return Impl.shouldBuildRelLookupTables(); |
||
2154 | } |
||
2155 | bool useColdCCForColdCall(Function &F) override { |
||
2156 | return Impl.useColdCCForColdCall(F); |
||
2157 | } |
||
2158 | |||
2159 | InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
2160 | const APInt &DemandedElts, |
||
2161 | bool Insert, bool Extract, |
||
2162 | TargetCostKind CostKind) override { |
||
2163 | return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract, |
||
2164 | CostKind); |
||
2165 | } |
||
2166 | InstructionCost |
||
2167 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
2168 | ArrayRef<Type *> Tys, |
||
2169 | TargetCostKind CostKind) override { |
||
2170 | return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind); |
||
2171 | } |
||
2172 | |||
2173 | bool supportsEfficientVectorElementLoadStore() override { |
||
2174 | return Impl.supportsEfficientVectorElementLoadStore(); |
||
2175 | } |
||
2176 | |||
2177 | bool supportsTailCalls() override { return Impl.supportsTailCalls(); } |
||
2178 | bool supportsTailCallFor(const CallBase *CB) override { |
||
2179 | return Impl.supportsTailCallFor(CB); |
||
2180 | } |
||
2181 | |||
2182 | bool enableAggressiveInterleaving(bool LoopHasReductions) override { |
||
2183 | return Impl.enableAggressiveInterleaving(LoopHasReductions); |
||
2184 | } |
||
2185 | MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, |
||
2186 | bool IsZeroCmp) const override { |
||
2187 | return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp); |
||
2188 | } |
||
2189 | bool enableInterleavedAccessVectorization() override { |
||
2190 | return Impl.enableInterleavedAccessVectorization(); |
||
2191 | } |
||
2192 | bool enableSelectOptimize() override { |
||
2193 | return Impl.enableSelectOptimize(); |
||
2194 | } |
||
2195 | bool enableMaskedInterleavedAccessVectorization() override { |
||
2196 | return Impl.enableMaskedInterleavedAccessVectorization(); |
||
2197 | } |
||
2198 | bool isFPVectorizationPotentiallyUnsafe() override { |
||
2199 | return Impl.isFPVectorizationPotentiallyUnsafe(); |
||
2200 | } |
||
2201 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, |
||
2202 | unsigned AddressSpace, Align Alignment, |
||
2203 | unsigned *Fast) override { |
||
2204 | return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, |
||
2205 | Alignment, Fast); |
||
2206 | } |
||
2207 | PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { |
||
2208 | return Impl.getPopcntSupport(IntTyWidthInBit); |
||
2209 | } |
||
2210 | bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } |
||
2211 | |||
2212 | bool isExpensiveToSpeculativelyExecute(const Instruction* I) override { |
||
2213 | return Impl.isExpensiveToSpeculativelyExecute(I); |
||
2214 | } |
||
2215 | |||
2216 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { |
||
2217 | return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); |
||
2218 | } |
||
2219 | |||
2220 | InstructionCost getFPOpCost(Type *Ty) override { |
||
2221 | return Impl.getFPOpCost(Ty); |
||
2222 | } |
||
2223 | |||
2224 | InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, |
||
2225 | const APInt &Imm, Type *Ty) override { |
||
2226 | return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); |
||
2227 | } |
||
2228 | InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
2229 | TargetCostKind CostKind) override { |
||
2230 | return Impl.getIntImmCost(Imm, Ty, CostKind); |
||
2231 | } |
||
2232 | InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, |
||
2233 | const APInt &Imm, Type *Ty, |
||
2234 | TargetCostKind CostKind, |
||
2235 | Instruction *Inst = nullptr) override { |
||
2236 | return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst); |
||
2237 | } |
||
2238 | InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
2239 | const APInt &Imm, Type *Ty, |
||
2240 | TargetCostKind CostKind) override { |
||
2241 | return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); |
||
2242 | } |
||
2243 | unsigned getNumberOfRegisters(unsigned ClassID) const override { |
||
2244 | return Impl.getNumberOfRegisters(ClassID); |
||
2245 | } |
||
2246 | unsigned getRegisterClassForType(bool Vector, |
||
2247 | Type *Ty = nullptr) const override { |
||
2248 | return Impl.getRegisterClassForType(Vector, Ty); |
||
2249 | } |
||
2250 | const char *getRegisterClassName(unsigned ClassID) const override { |
||
2251 | return Impl.getRegisterClassName(ClassID); |
||
2252 | } |
||
2253 | TypeSize getRegisterBitWidth(RegisterKind K) const override { |
||
2254 | return Impl.getRegisterBitWidth(K); |
||
2255 | } |
||
2256 | unsigned getMinVectorRegisterBitWidth() const override { |
||
2257 | return Impl.getMinVectorRegisterBitWidth(); |
||
2258 | } |
||
2259 | std::optional<unsigned> getMaxVScale() const override { |
||
2260 | return Impl.getMaxVScale(); |
||
2261 | } |
||
2262 | std::optional<unsigned> getVScaleForTuning() const override { |
||
2263 | return Impl.getVScaleForTuning(); |
||
2264 | } |
||
2265 | bool shouldMaximizeVectorBandwidth( |
||
2266 | TargetTransformInfo::RegisterKind K) const override { |
||
2267 | return Impl.shouldMaximizeVectorBandwidth(K); |
||
2268 | } |
||
2269 | ElementCount getMinimumVF(unsigned ElemWidth, |
||
2270 | bool IsScalable) const override { |
||
2271 | return Impl.getMinimumVF(ElemWidth, IsScalable); |
||
2272 | } |
||
2273 | unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override { |
||
2274 | return Impl.getMaximumVF(ElemWidth, Opcode); |
||
2275 | } |
||
2276 | unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
2277 | Type *ScalarValTy) const override { |
||
2278 | return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy); |
||
2279 | } |
||
2280 | bool shouldConsiderAddressTypePromotion( |
||
2281 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { |
||
2282 | return Impl.shouldConsiderAddressTypePromotion( |
||
2283 | I, AllowPromotionWithoutCommonHeader); |
||
2284 | } |
||
2285 | unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); } |
||
2286 | std::optional<unsigned> getCacheSize(CacheLevel Level) const override { |
||
2287 | return Impl.getCacheSize(Level); |
||
2288 | } |
||
2289 | std::optional<unsigned> |
||
2290 | getCacheAssociativity(CacheLevel Level) const override { |
||
2291 | return Impl.getCacheAssociativity(Level); |
||
2292 | } |
||
2293 | |||
2294 | /// Return the preferred prefetch distance in terms of instructions. |
||
2295 | /// |
||
2296 | unsigned getPrefetchDistance() const override { |
||
2297 | return Impl.getPrefetchDistance(); |
||
2298 | } |
||
2299 | |||
2300 | /// Return the minimum stride necessary to trigger software |
||
2301 | /// prefetching. |
||
2302 | /// |
||
2303 | unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
2304 | unsigned NumStridedMemAccesses, |
||
2305 | unsigned NumPrefetches, |
||
2306 | bool HasCall) const override { |
||
2307 | return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, |
||
2308 | NumPrefetches, HasCall); |
||
2309 | } |
||
2310 | |||
2311 | /// Return the maximum prefetch distance in terms of loop |
||
2312 | /// iterations. |
||
2313 | /// |
||
2314 | unsigned getMaxPrefetchIterationsAhead() const override { |
||
2315 | return Impl.getMaxPrefetchIterationsAhead(); |
||
2316 | } |
||
2317 | |||
2318 | /// \return True if prefetching should also be done for writes. |
||
2319 | bool enableWritePrefetching() const override { |
||
2320 | return Impl.enableWritePrefetching(); |
||
2321 | } |
||
2322 | |||
2323 | /// \return if target want to issue a prefetch in address space \p AS. |
||
2324 | bool shouldPrefetchAddressSpace(unsigned AS) const override { |
||
2325 | return Impl.shouldPrefetchAddressSpace(AS); |
||
2326 | } |
||
2327 | |||
2328 | unsigned getMaxInterleaveFactor(unsigned VF) override { |
||
2329 | return Impl.getMaxInterleaveFactor(VF); |
||
2330 | } |
||
2331 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
||
2332 | unsigned &JTSize, |
||
2333 | ProfileSummaryInfo *PSI, |
||
2334 | BlockFrequencyInfo *BFI) override { |
||
2335 | return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); |
||
2336 | } |
||
2337 | InstructionCost getArithmeticInstrCost( |
||
2338 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
||
2339 | OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, |
||
2340 | ArrayRef<const Value *> Args, |
||
2341 | const Instruction *CxtI = nullptr) override { |
||
2342 | return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, |
||
2343 | Args, CxtI); |
||
2344 | } |
||
2345 | |||
2346 | InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, |
||
2347 | ArrayRef<int> Mask, |
||
2348 | TTI::TargetCostKind CostKind, int Index, |
||
2349 | VectorType *SubTp, |
||
2350 | ArrayRef<const Value *> Args) override { |
||
2351 | return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args); |
||
2352 | } |
||
2353 | InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
||
2354 | CastContextHint CCH, |
||
2355 | TTI::TargetCostKind CostKind, |
||
2356 | const Instruction *I) override { |
||
2357 | return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
||
2358 | } |
||
2359 | InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
2360 | VectorType *VecTy, |
||
2361 | unsigned Index) override { |
||
2362 | return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); |
||
2363 | } |
||
2364 | InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, |
||
2365 | const Instruction *I = nullptr) override { |
||
2366 | return Impl.getCFInstrCost(Opcode, CostKind, I); |
||
2367 | } |
||
2368 | InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
||
2369 | CmpInst::Predicate VecPred, |
||
2370 | TTI::TargetCostKind CostKind, |
||
2371 | const Instruction *I) override { |
||
2372 | return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); |
||
2373 | } |
||
2374 | InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
2375 | TTI::TargetCostKind CostKind, |
||
2376 | unsigned Index, Value *Op0, |
||
2377 | Value *Op1) override { |
||
2378 | return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); |
||
2379 | } |
||
2380 | InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
2381 | TTI::TargetCostKind CostKind, |
||
2382 | unsigned Index) override { |
||
2383 | return Impl.getVectorInstrCost(I, Val, CostKind, Index); |
||
2384 | } |
||
2385 | InstructionCost |
||
2386 | getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, |
||
2387 | const APInt &DemandedDstElts, |
||
2388 | TTI::TargetCostKind CostKind) override { |
||
2389 | return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF, |
||
2390 | DemandedDstElts, CostKind); |
||
2391 | } |
||
2392 | InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
2393 | unsigned AddressSpace, |
||
2394 | TTI::TargetCostKind CostKind, |
||
2395 | OperandValueInfo OpInfo, |
||
2396 | const Instruction *I) override { |
||
2397 | return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind, |
||
2398 | OpInfo, I); |
||
2399 | } |
||
2400 | InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
2401 | unsigned AddressSpace, |
||
2402 | TTI::TargetCostKind CostKind, |
||
2403 | const Instruction *I) override { |
||
2404 | return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
||
2405 | CostKind, I); |
||
2406 | } |
||
2407 | InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, |
||
2408 | Align Alignment, unsigned AddressSpace, |
||
2409 | TTI::TargetCostKind CostKind) override { |
||
2410 | return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
||
2411 | CostKind); |
||
2412 | } |
||
2413 | InstructionCost |
||
2414 | getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, |
||
2415 | bool VariableMask, Align Alignment, |
||
2416 | TTI::TargetCostKind CostKind, |
||
2417 | const Instruction *I = nullptr) override { |
||
2418 | return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
||
2419 | Alignment, CostKind, I); |
||
2420 | } |
||
2421 | InstructionCost getInterleavedMemoryOpCost( |
||
2422 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
2423 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
2424 | bool UseMaskForCond, bool UseMaskForGaps) override { |
||
2425 | return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
||
2426 | Alignment, AddressSpace, CostKind, |
||
2427 | UseMaskForCond, UseMaskForGaps); |
||
2428 | } |
||
2429 | InstructionCost |
||
2430 | getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
||
2431 | std::optional<FastMathFlags> FMF, |
||
2432 | TTI::TargetCostKind CostKind) override { |
||
2433 | return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
||
2434 | } |
||
2435 | InstructionCost |
||
2436 | getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned, |
||
2437 | TTI::TargetCostKind CostKind) override { |
||
2438 | return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); |
||
2439 | } |
||
2440 | InstructionCost getExtendedReductionCost( |
||
2441 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
2442 | std::optional<FastMathFlags> FMF, |
||
2443 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override { |
||
2444 | return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF, |
||
2445 | CostKind); |
||
2446 | } |
||
2447 | InstructionCost getMulAccReductionCost( |
||
2448 | bool IsUnsigned, Type *ResTy, VectorType *Ty, |
||
2449 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override { |
||
2450 | return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind); |
||
2451 | } |
||
2452 | InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
2453 | TTI::TargetCostKind CostKind) override { |
||
2454 | return Impl.getIntrinsicInstrCost(ICA, CostKind); |
||
2455 | } |
||
2456 | InstructionCost getCallInstrCost(Function *F, Type *RetTy, |
||
2457 | ArrayRef<Type *> Tys, |
||
2458 | TTI::TargetCostKind CostKind) override { |
||
2459 | return Impl.getCallInstrCost(F, RetTy, Tys, CostKind); |
||
2460 | } |
||
2461 | unsigned getNumberOfParts(Type *Tp) override { |
||
2462 | return Impl.getNumberOfParts(Tp); |
||
2463 | } |
||
2464 | InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
||
2465 | const SCEV *Ptr) override { |
||
2466 | return Impl.getAddressComputationCost(Ty, SE, Ptr); |
||
2467 | } |
||
2468 | InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override { |
||
2469 | return Impl.getCostOfKeepingLiveOverCall(Tys); |
||
2470 | } |
||
2471 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
||
2472 | MemIntrinsicInfo &Info) override { |
||
2473 | return Impl.getTgtMemIntrinsic(Inst, Info); |
||
2474 | } |
||
2475 | unsigned getAtomicMemIntrinsicMaxElementSize() const override { |
||
2476 | return Impl.getAtomicMemIntrinsicMaxElementSize(); |
||
2477 | } |
||
2478 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
2479 | Type *ExpectedType) override { |
||
2480 | return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); |
||
2481 | } |
||
2482 | Type *getMemcpyLoopLoweringType( |
||
2483 | LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, |
||
2484 | unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, |
||
2485 | std::optional<uint32_t> AtomicElementSize) const override { |
||
2486 | return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, |
||
2487 | DestAddrSpace, SrcAlign, DestAlign, |
||
2488 | AtomicElementSize); |
||
2489 | } |
||
2490 | void getMemcpyLoopResidualLoweringType( |
||
2491 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
2492 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
2493 | unsigned SrcAlign, unsigned DestAlign, |
||
2494 | std::optional<uint32_t> AtomicCpySize) const override { |
||
2495 | Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, |
||
2496 | SrcAddrSpace, DestAddrSpace, |
||
2497 | SrcAlign, DestAlign, AtomicCpySize); |
||
2498 | } |
||
2499 | bool areInlineCompatible(const Function *Caller, |
||
2500 | const Function *Callee) const override { |
||
2501 | return Impl.areInlineCompatible(Caller, Callee); |
||
2502 | } |
||
2503 | bool areTypesABICompatible(const Function *Caller, const Function *Callee, |
||
2504 | const ArrayRef<Type *> &Types) const override { |
||
2505 | return Impl.areTypesABICompatible(Caller, Callee, Types); |
||
2506 | } |
||
2507 | bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { |
||
2508 | return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); |
||
2509 | } |
||
2510 | bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { |
||
2511 | return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); |
||
2512 | } |
||
2513 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { |
||
2514 | return Impl.getLoadStoreVecRegBitWidth(AddrSpace); |
||
2515 | } |
||
2516 | bool isLegalToVectorizeLoad(LoadInst *LI) const override { |
||
2517 | return Impl.isLegalToVectorizeLoad(LI); |
||
2518 | } |
||
2519 | bool isLegalToVectorizeStore(StoreInst *SI) const override { |
||
2520 | return Impl.isLegalToVectorizeStore(SI); |
||
2521 | } |
||
2522 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, |
||
2523 | unsigned AddrSpace) const override { |
||
2524 | return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, |
||
2525 | AddrSpace); |
||
2526 | } |
||
2527 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, |
||
2528 | unsigned AddrSpace) const override { |
||
2529 | return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, |
||
2530 | AddrSpace); |
||
2531 | } |
||
2532 | bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
2533 | ElementCount VF) const override { |
||
2534 | return Impl.isLegalToVectorizeReduction(RdxDesc, VF); |
||
2535 | } |
||
2536 | bool isElementTypeLegalForScalableVector(Type *Ty) const override { |
||
2537 | return Impl.isElementTypeLegalForScalableVector(Ty); |
||
2538 | } |
||
2539 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
2540 | unsigned ChainSizeInBytes, |
||
2541 | VectorType *VecTy) const override { |
||
2542 | return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); |
||
2543 | } |
||
2544 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
2545 | unsigned ChainSizeInBytes, |
||
2546 | VectorType *VecTy) const override { |
||
2547 | return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); |
||
2548 | } |
||
2549 | bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
2550 | ReductionFlags Flags) const override { |
||
2551 | return Impl.preferInLoopReduction(Opcode, Ty, Flags); |
||
2552 | } |
||
2553 | bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
2554 | ReductionFlags Flags) const override { |
||
2555 | return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags); |
||
2556 | } |
||
2557 | bool preferEpilogueVectorization() const override { |
||
2558 | return Impl.preferEpilogueVectorization(); |
||
2559 | } |
||
2560 | |||
2561 | bool shouldExpandReduction(const IntrinsicInst *II) const override { |
||
2562 | return Impl.shouldExpandReduction(II); |
||
2563 | } |
||
2564 | |||
2565 | unsigned getGISelRematGlobalCost() const override { |
||
2566 | return Impl.getGISelRematGlobalCost(); |
||
2567 | } |
||
2568 | |||
2569 | unsigned getMinTripCountTailFoldingThreshold() const override { |
||
2570 | return Impl.getMinTripCountTailFoldingThreshold(); |
||
2571 | } |
||
2572 | |||
2573 | bool supportsScalableVectors() const override { |
||
2574 | return Impl.supportsScalableVectors(); |
||
2575 | } |
||
2576 | |||
2577 | bool enableScalableVectorization() const override { |
||
2578 | return Impl.enableScalableVectorization(); |
||
2579 | } |
||
2580 | |||
2581 | bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
2582 | Align Alignment) const override { |
||
2583 | return Impl.hasActiveVectorLength(Opcode, DataType, Alignment); |
||
2584 | } |
||
2585 | |||
2586 | VPLegalization |
||
2587 | getVPLegalizationStrategy(const VPIntrinsic &PI) const override { |
||
2588 | return Impl.getVPLegalizationStrategy(PI); |
||
2589 | } |
||
2590 | }; |
||
2591 | |||
2592 | template <typename T> |
||
2593 | TargetTransformInfo::TargetTransformInfo(T Impl) |
||
2594 | : TTIImpl(new Model<T>(Impl)) {} |
||
2595 | |||
2596 | /// Analysis pass providing the \c TargetTransformInfo. |
||
2597 | /// |
||
2598 | /// The core idea of the TargetIRAnalysis is to expose an interface through |
||
2599 | /// which LLVM targets can analyze and provide information about the middle |
||
2600 | /// end's target-independent IR. This supports use cases such as target-aware |
||
2601 | /// cost modeling of IR constructs. |
||
2602 | /// |
||
2603 | /// This is a function analysis because much of the cost modeling for targets |
||
2604 | /// is done in a subtarget specific way and LLVM supports compiling different |
||
2605 | /// functions targeting different subtargets in order to support runtime |
||
2606 | /// dispatch according to the observed subtarget. |
||
2607 | class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> { |
||
2608 | public: |
||
2609 | typedef TargetTransformInfo Result; |
||
2610 | |||
2611 | /// Default construct a target IR analysis. |
||
2612 | /// |
||
2613 | /// This will use the module's datalayout to construct a baseline |
||
2614 | /// conservative TTI result. |
||
2615 | TargetIRAnalysis(); |
||
2616 | |||
2617 | /// Construct an IR analysis pass around a target-provide callback. |
||
2618 | /// |
||
2619 | /// The callback will be called with a particular function for which the TTI |
||
2620 | /// is needed and must return a TTI object for that function. |
||
2621 | TargetIRAnalysis(std::function<Result(const Function &)> TTICallback); |
||
2622 | |||
2623 | // Value semantics. We spell out the constructors for MSVC. |
||
2624 | TargetIRAnalysis(const TargetIRAnalysis &Arg) |
||
2625 | : TTICallback(Arg.TTICallback) {} |
||
2626 | TargetIRAnalysis(TargetIRAnalysis &&Arg) |
||
2627 | : TTICallback(std::move(Arg.TTICallback)) {} |
||
2628 | TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { |
||
2629 | TTICallback = RHS.TTICallback; |
||
2630 | return *this; |
||
2631 | } |
||
2632 | TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { |
||
2633 | TTICallback = std::move(RHS.TTICallback); |
||
2634 | return *this; |
||
2635 | } |
||
2636 | |||
2637 | Result run(const Function &F, FunctionAnalysisManager &); |
||
2638 | |||
2639 | private: |
||
2640 | friend AnalysisInfoMixin<TargetIRAnalysis>; |
||
2641 | static AnalysisKey Key; |
||
2642 | |||
2643 | /// The callback used to produce a result. |
||
2644 | /// |
||
2645 | /// We use a completely opaque callback so that targets can provide whatever |
||
2646 | /// mechanism they desire for constructing the TTI for a given function. |
||
2647 | /// |
||
2648 | /// FIXME: Should we really use std::function? It's relatively inefficient. |
||
2649 | /// It might be possible to arrange for even stateful callbacks to outlive |
||
2650 | /// the analysis and thus use a function_ref which would be lighter weight. |
||
2651 | /// This may also be less error prone as the callback is likely to reference |
||
2652 | /// the external TargetMachine, and that reference needs to never dangle. |
||
2653 | std::function<Result(const Function &)> TTICallback; |
||
2654 | |||
2655 | /// Helper function used as the callback in the default constructor. |
||
2656 | static Result getDefaultTTI(const Function &F); |
||
2657 | }; |
||
2658 | |||
2659 | /// Wrapper pass for TargetTransformInfo. |
||
2660 | /// |
||
2661 | /// This pass can be constructed from a TTI object which it stores internally |
||
2662 | /// and is queried by passes. |
||
2663 | class TargetTransformInfoWrapperPass : public ImmutablePass { |
||
2664 | TargetIRAnalysis TIRA; |
||
2665 | std::optional<TargetTransformInfo> TTI; |
||
2666 | |||
2667 | virtual void anchor(); |
||
2668 | |||
2669 | public: |
||
2670 | static char ID; |
||
2671 | |||
2672 | /// We must provide a default constructor for the pass but it should |
||
2673 | /// never be used. |
||
2674 | /// |
||
2675 | /// Use the constructor below or call one of the creation routines. |
||
2676 | TargetTransformInfoWrapperPass(); |
||
2677 | |||
2678 | explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
||
2679 | |||
2680 | TargetTransformInfo &getTTI(const Function &F); |
||
2681 | }; |
||
2682 | |||
2683 | /// Create an analysis pass wrapper around a TTI object. |
||
2684 | /// |
||
2685 | /// This analysis pass just holds the TTI instance and makes it available to |
||
2686 | /// clients. |
||
2687 | ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
||
2688 | |||
2689 | } // namespace llvm |
||
2690 | |||
2691 | #endif |