Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the classes used to represent and build scalar expressions. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
||
14 | #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
||
15 | |||
16 | #include "llvm/ADT/DenseMap.h" |
||
17 | #include "llvm/ADT/SmallPtrSet.h" |
||
18 | #include "llvm/ADT/SmallVector.h" |
||
19 | #include "llvm/ADT/iterator_range.h" |
||
20 | #include "llvm/Analysis/ScalarEvolution.h" |
||
21 | #include "llvm/IR/Constants.h" |
||
22 | #include "llvm/IR/ValueHandle.h" |
||
23 | #include "llvm/Support/Casting.h" |
||
24 | #include "llvm/Support/ErrorHandling.h" |
||
25 | #include <cassert> |
||
26 | #include <cstddef> |
||
27 | |||
28 | namespace llvm { |
||
29 | |||
30 | class APInt; |
||
31 | class Constant; |
||
32 | class ConstantInt; |
||
33 | class ConstantRange; |
||
34 | class Loop; |
||
35 | class Type; |
||
36 | class Value; |
||
37 | |||
38 | enum SCEVTypes : unsigned short { |
||
39 | // These should be ordered in terms of increasing complexity to make the |
||
40 | // folders simpler. |
||
41 | scConstant, |
||
42 | scTruncate, |
||
43 | scZeroExtend, |
||
44 | scSignExtend, |
||
45 | scAddExpr, |
||
46 | scMulExpr, |
||
47 | scUDivExpr, |
||
48 | scAddRecExpr, |
||
49 | scUMaxExpr, |
||
50 | scSMaxExpr, |
||
51 | scUMinExpr, |
||
52 | scSMinExpr, |
||
53 | scSequentialUMinExpr, |
||
54 | scPtrToInt, |
||
55 | scUnknown, |
||
56 | scCouldNotCompute |
||
57 | }; |
||
58 | |||
59 | /// This class represents a constant integer value. |
||
60 | class SCEVConstant : public SCEV { |
||
61 | friend class ScalarEvolution; |
||
62 | |||
63 | ConstantInt *V; |
||
64 | |||
65 | SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) |
||
66 | : SCEV(ID, scConstant, 1), V(v) {} |
||
67 | |||
68 | public: |
||
69 | ConstantInt *getValue() const { return V; } |
||
70 | const APInt &getAPInt() const { return getValue()->getValue(); } |
||
71 | |||
72 | Type *getType() const { return V->getType(); } |
||
73 | |||
74 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
75 | static bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } |
||
76 | }; |
||
77 | |||
78 | inline unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) { |
||
79 | APInt Size(16, 1); |
||
80 | for (const auto *Arg : Args) |
||
81 | Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize())); |
||
82 | return (unsigned short)Size.getZExtValue(); |
||
83 | } |
||
84 | |||
85 | /// This is the base class for unary cast operator classes. |
||
86 | class SCEVCastExpr : public SCEV { |
||
87 | protected: |
||
88 | const SCEV *Op; |
||
89 | Type *Ty; |
||
90 | |||
91 | SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op, |
||
92 | Type *ty); |
||
93 | |||
94 | public: |
||
95 | const SCEV *getOperand() const { return Op; } |
||
96 | const SCEV *getOperand(unsigned i) const { |
||
97 | assert(i == 0 && "Operand index out of range!"); |
||
98 | return Op; |
||
99 | } |
||
100 | ArrayRef<const SCEV *> operands() const { return Op; } |
||
101 | size_t getNumOperands() const { return 1; } |
||
102 | Type *getType() const { return Ty; } |
||
103 | |||
104 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
105 | static bool classof(const SCEV *S) { |
||
106 | return S->getSCEVType() == scPtrToInt || S->getSCEVType() == scTruncate || |
||
107 | S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; |
||
108 | } |
||
109 | }; |
||
110 | |||
111 | /// This class represents a cast from a pointer to a pointer-sized integer |
||
112 | /// value. |
||
113 | class SCEVPtrToIntExpr : public SCEVCastExpr { |
||
114 | friend class ScalarEvolution; |
||
115 | |||
116 | SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, Type *ITy); |
||
117 | |||
118 | public: |
||
119 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
120 | static bool classof(const SCEV *S) { return S->getSCEVType() == scPtrToInt; } |
||
121 | }; |
||
122 | |||
123 | /// This is the base class for unary integral cast operator classes. |
||
124 | class SCEVIntegralCastExpr : public SCEVCastExpr { |
||
125 | protected: |
||
126 | SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, |
||
127 | const SCEV *op, Type *ty); |
||
128 | |||
129 | public: |
||
130 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
131 | static bool classof(const SCEV *S) { |
||
132 | return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || |
||
133 | S->getSCEVType() == scSignExtend; |
||
134 | } |
||
135 | }; |
||
136 | |||
137 | /// This class represents a truncation of an integer value to a |
||
138 | /// smaller integer value. |
||
139 | class SCEVTruncateExpr : public SCEVIntegralCastExpr { |
||
140 | friend class ScalarEvolution; |
||
141 | |||
142 | SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); |
||
143 | |||
144 | public: |
||
145 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
146 | static bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } |
||
147 | }; |
||
148 | |||
149 | /// This class represents a zero extension of a small integer value |
||
150 | /// to a larger integer value. |
||
151 | class SCEVZeroExtendExpr : public SCEVIntegralCastExpr { |
||
152 | friend class ScalarEvolution; |
||
153 | |||
154 | SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); |
||
155 | |||
156 | public: |
||
157 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
158 | static bool classof(const SCEV *S) { |
||
159 | return S->getSCEVType() == scZeroExtend; |
||
160 | } |
||
161 | }; |
||
162 | |||
163 | /// This class represents a sign extension of a small integer value |
||
164 | /// to a larger integer value. |
||
165 | class SCEVSignExtendExpr : public SCEVIntegralCastExpr { |
||
166 | friend class ScalarEvolution; |
||
167 | |||
168 | SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); |
||
169 | |||
170 | public: |
||
171 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
172 | static bool classof(const SCEV *S) { |
||
173 | return S->getSCEVType() == scSignExtend; |
||
174 | } |
||
175 | }; |
||
176 | |||
177 | /// This node is a base class providing common functionality for |
||
178 | /// n'ary operators. |
||
179 | class SCEVNAryExpr : public SCEV { |
||
180 | protected: |
||
181 | // Since SCEVs are immutable, ScalarEvolution allocates operand |
||
182 | // arrays with its SCEVAllocator, so this class just needs a simple |
||
183 | // pointer rather than a more elaborate vector-like data structure. |
||
184 | // This also avoids the need for a non-trivial destructor. |
||
185 | const SCEV *const *Operands; |
||
186 | size_t NumOperands; |
||
187 | |||
188 | SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
189 | const SCEV *const *O, size_t N) |
||
190 | : SCEV(ID, T, computeExpressionSize(ArrayRef(O, N))), Operands(O), |
||
191 | NumOperands(N) {} |
||
192 | |||
193 | public: |
||
194 | size_t getNumOperands() const { return NumOperands; } |
||
195 | |||
196 | const SCEV *getOperand(unsigned i) const { |
||
197 | assert(i < NumOperands && "Operand index out of range!"); |
||
198 | return Operands[i]; |
||
199 | } |
||
200 | |||
201 | ArrayRef<const SCEV *> operands() const { |
||
202 | return ArrayRef(Operands, NumOperands); |
||
203 | } |
||
204 | |||
205 | NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { |
||
206 | return (NoWrapFlags)(SubclassData & Mask); |
||
207 | } |
||
208 | |||
209 | bool hasNoUnsignedWrap() const { |
||
210 | return getNoWrapFlags(FlagNUW) != FlagAnyWrap; |
||
211 | } |
||
212 | |||
213 | bool hasNoSignedWrap() const { |
||
214 | return getNoWrapFlags(FlagNSW) != FlagAnyWrap; |
||
215 | } |
||
216 | |||
217 | bool hasNoSelfWrap() const { return getNoWrapFlags(FlagNW) != FlagAnyWrap; } |
||
218 | |||
219 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
220 | static bool classof(const SCEV *S) { |
||
221 | return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || |
||
222 | S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || |
||
223 | S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr || |
||
224 | S->getSCEVType() == scSequentialUMinExpr || |
||
225 | S->getSCEVType() == scAddRecExpr; |
||
226 | } |
||
227 | }; |
||
228 | |||
229 | /// This node is the base class for n'ary commutative operators. |
||
230 | class SCEVCommutativeExpr : public SCEVNAryExpr { |
||
231 | protected: |
||
232 | SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
233 | const SCEV *const *O, size_t N) |
||
234 | : SCEVNAryExpr(ID, T, O, N) {} |
||
235 | |||
236 | public: |
||
237 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
238 | static bool classof(const SCEV *S) { |
||
239 | return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || |
||
240 | S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || |
||
241 | S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr; |
||
242 | } |
||
243 | |||
244 | /// Set flags for a non-recurrence without clearing previously set flags. |
||
245 | void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } |
||
246 | }; |
||
247 | |||
248 | /// This node represents an addition of some number of SCEVs. |
||
249 | class SCEVAddExpr : public SCEVCommutativeExpr { |
||
250 | friend class ScalarEvolution; |
||
251 | |||
252 | Type *Ty; |
||
253 | |||
254 | SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
255 | : SCEVCommutativeExpr(ID, scAddExpr, O, N) { |
||
256 | auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) { |
||
257 | return Op->getType()->isPointerTy(); |
||
258 | }); |
||
259 | if (FirstPointerTypedOp != operands().end()) |
||
260 | Ty = (*FirstPointerTypedOp)->getType(); |
||
261 | else |
||
262 | Ty = getOperand(0)->getType(); |
||
263 | } |
||
264 | |||
265 | public: |
||
266 | Type *getType() const { return Ty; } |
||
267 | |||
268 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
269 | static bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } |
||
270 | }; |
||
271 | |||
272 | /// This node represents multiplication of some number of SCEVs. |
||
273 | class SCEVMulExpr : public SCEVCommutativeExpr { |
||
274 | friend class ScalarEvolution; |
||
275 | |||
276 | SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
277 | : SCEVCommutativeExpr(ID, scMulExpr, O, N) {} |
||
278 | |||
279 | public: |
||
280 | Type *getType() const { return getOperand(0)->getType(); } |
||
281 | |||
282 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
283 | static bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } |
||
284 | }; |
||
285 | |||
286 | /// This class represents a binary unsigned division operation. |
||
287 | class SCEVUDivExpr : public SCEV { |
||
288 | friend class ScalarEvolution; |
||
289 | |||
290 | std::array<const SCEV *, 2> Operands; |
||
291 | |||
292 | SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) |
||
293 | : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})) { |
||
294 | Operands[0] = lhs; |
||
295 | Operands[1] = rhs; |
||
296 | } |
||
297 | |||
298 | public: |
||
299 | const SCEV *getLHS() const { return Operands[0]; } |
||
300 | const SCEV *getRHS() const { return Operands[1]; } |
||
301 | size_t getNumOperands() const { return 2; } |
||
302 | const SCEV *getOperand(unsigned i) const { |
||
303 | assert((i == 0 || i == 1) && "Operand index out of range!"); |
||
304 | return i == 0 ? getLHS() : getRHS(); |
||
305 | } |
||
306 | |||
307 | ArrayRef<const SCEV *> operands() const { return Operands; } |
||
308 | |||
309 | Type *getType() const { |
||
310 | // In most cases the types of LHS and RHS will be the same, but in some |
||
311 | // crazy cases one or the other may be a pointer. ScalarEvolution doesn't |
||
312 | // depend on the type for correctness, but handling types carefully can |
||
313 | // avoid extra casts in the SCEVExpander. The LHS is more likely to be |
||
314 | // a pointer type than the RHS, so use the RHS' type here. |
||
315 | return getRHS()->getType(); |
||
316 | } |
||
317 | |||
318 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
319 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } |
||
320 | }; |
||
321 | |||
322 | /// This node represents a polynomial recurrence on the trip count |
||
323 | /// of the specified loop. This is the primary focus of the |
||
324 | /// ScalarEvolution framework; all the other SCEV subclasses are |
||
325 | /// mostly just supporting infrastructure to allow SCEVAddRecExpr |
||
326 | /// expressions to be created and analyzed. |
||
327 | /// |
||
328 | /// All operands of an AddRec are required to be loop invariant. |
||
329 | /// |
||
330 | class SCEVAddRecExpr : public SCEVNAryExpr { |
||
331 | friend class ScalarEvolution; |
||
332 | |||
333 | const Loop *L; |
||
334 | |||
335 | SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N, |
||
336 | const Loop *l) |
||
337 | : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} |
||
338 | |||
339 | public: |
||
340 | Type *getType() const { return getStart()->getType(); } |
||
341 | const SCEV *getStart() const { return Operands[0]; } |
||
342 | const Loop *getLoop() const { return L; } |
||
343 | |||
344 | /// Constructs and returns the recurrence indicating how much this |
||
345 | /// expression steps by. If this is a polynomial of degree N, it |
||
346 | /// returns a chrec of degree N-1. We cannot determine whether |
||
347 | /// the step recurrence has self-wraparound. |
||
348 | const SCEV *getStepRecurrence(ScalarEvolution &SE) const { |
||
349 | if (isAffine()) |
||
350 | return getOperand(1); |
||
351 | return SE.getAddRecExpr( |
||
352 | SmallVector<const SCEV *, 3>(operands().drop_front()), getLoop(), |
||
353 | FlagAnyWrap); |
||
354 | } |
||
355 | |||
356 | /// Return true if this represents an expression A + B*x where A |
||
357 | /// and B are loop invariant values. |
||
358 | bool isAffine() const { |
||
359 | // We know that the start value is invariant. This expression is thus |
||
360 | // affine iff the step is also invariant. |
||
361 | return getNumOperands() == 2; |
||
362 | } |
||
363 | |||
364 | /// Return true if this represents an expression A + B*x + C*x^2 |
||
365 | /// where A, B and C are loop invariant values. This corresponds |
||
366 | /// to an addrec of the form {L,+,M,+,N} |
||
367 | bool isQuadratic() const { return getNumOperands() == 3; } |
||
368 | |||
369 | /// Set flags for a recurrence without clearing any previously set flags. |
||
370 | /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here |
||
371 | /// to make it easier to propagate flags. |
||
372 | void setNoWrapFlags(NoWrapFlags Flags) { |
||
373 | if (Flags & (FlagNUW | FlagNSW)) |
||
374 | Flags = ScalarEvolution::setFlags(Flags, FlagNW); |
||
375 | SubclassData |= Flags; |
||
376 | } |
||
377 | |||
378 | /// Return the value of this chain of recurrences at the specified |
||
379 | /// iteration number. |
||
380 | const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; |
||
381 | |||
382 | /// Return the value of this chain of recurrences at the specified iteration |
||
383 | /// number. Takes an explicit list of operands to represent an AddRec. |
||
384 | static const SCEV *evaluateAtIteration(ArrayRef<const SCEV *> Operands, |
||
385 | const SCEV *It, ScalarEvolution &SE); |
||
386 | |||
387 | /// Return the number of iterations of this loop that produce |
||
388 | /// values in the specified constant range. Another way of |
||
389 | /// looking at this is that it returns the first iteration number |
||
390 | /// where the value is not in the condition, thus computing the |
||
391 | /// exit count. If the iteration count can't be computed, an |
||
392 | /// instance of SCEVCouldNotCompute is returned. |
||
393 | const SCEV *getNumIterationsInRange(const ConstantRange &Range, |
||
394 | ScalarEvolution &SE) const; |
||
395 | |||
396 | /// Return an expression representing the value of this expression |
||
397 | /// one iteration of the loop ahead. |
||
398 | const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const; |
||
399 | |||
400 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
401 | static bool classof(const SCEV *S) { |
||
402 | return S->getSCEVType() == scAddRecExpr; |
||
403 | } |
||
404 | }; |
||
405 | |||
406 | /// This node is the base class min/max selections. |
||
407 | class SCEVMinMaxExpr : public SCEVCommutativeExpr { |
||
408 | friend class ScalarEvolution; |
||
409 | |||
410 | static bool isMinMaxType(enum SCEVTypes T) { |
||
411 | return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr || |
||
412 | T == scUMinExpr; |
||
413 | } |
||
414 | |||
415 | protected: |
||
416 | /// Note: Constructing subclasses via this constructor is allowed |
||
417 | SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
418 | const SCEV *const *O, size_t N) |
||
419 | : SCEVCommutativeExpr(ID, T, O, N) { |
||
420 | assert(isMinMaxType(T)); |
||
421 | // Min and max never overflow |
||
422 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); |
||
423 | } |
||
424 | |||
425 | public: |
||
426 | Type *getType() const { return getOperand(0)->getType(); } |
||
427 | |||
428 | static bool classof(const SCEV *S) { return isMinMaxType(S->getSCEVType()); } |
||
429 | |||
430 | static enum SCEVTypes negate(enum SCEVTypes T) { |
||
431 | switch (T) { |
||
432 | case scSMaxExpr: |
||
433 | return scSMinExpr; |
||
434 | case scSMinExpr: |
||
435 | return scSMaxExpr; |
||
436 | case scUMaxExpr: |
||
437 | return scUMinExpr; |
||
438 | case scUMinExpr: |
||
439 | return scUMaxExpr; |
||
440 | default: |
||
441 | llvm_unreachable("Not a min or max SCEV type!"); |
||
442 | } |
||
443 | } |
||
444 | }; |
||
445 | |||
446 | /// This class represents a signed maximum selection. |
||
447 | class SCEVSMaxExpr : public SCEVMinMaxExpr { |
||
448 | friend class ScalarEvolution; |
||
449 | |||
450 | SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
451 | : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {} |
||
452 | |||
453 | public: |
||
454 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
455 | static bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } |
||
456 | }; |
||
457 | |||
458 | /// This class represents an unsigned maximum selection. |
||
459 | class SCEVUMaxExpr : public SCEVMinMaxExpr { |
||
460 | friend class ScalarEvolution; |
||
461 | |||
462 | SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
463 | : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {} |
||
464 | |||
465 | public: |
||
466 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
467 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } |
||
468 | }; |
||
469 | |||
470 | /// This class represents a signed minimum selection. |
||
471 | class SCEVSMinExpr : public SCEVMinMaxExpr { |
||
472 | friend class ScalarEvolution; |
||
473 | |||
474 | SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
475 | : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {} |
||
476 | |||
477 | public: |
||
478 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
479 | static bool classof(const SCEV *S) { return S->getSCEVType() == scSMinExpr; } |
||
480 | }; |
||
481 | |||
482 | /// This class represents an unsigned minimum selection. |
||
483 | class SCEVUMinExpr : public SCEVMinMaxExpr { |
||
484 | friend class ScalarEvolution; |
||
485 | |||
486 | SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
487 | : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {} |
||
488 | |||
489 | public: |
||
490 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
491 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUMinExpr; } |
||
492 | }; |
||
493 | |||
494 | /// This node is the base class for sequential/in-order min/max selections. |
||
495 | /// Note that their fundamental difference from SCEVMinMaxExpr's is that they |
||
496 | /// are early-returning upon reaching saturation point. |
||
497 | /// I.e. given `0 umin_seq poison`, the result will be `0`, |
||
498 | /// while the result of `0 umin poison` is `poison`. |
||
499 | class SCEVSequentialMinMaxExpr : public SCEVNAryExpr { |
||
500 | friend class ScalarEvolution; |
||
501 | |||
502 | static bool isSequentialMinMaxType(enum SCEVTypes T) { |
||
503 | return T == scSequentialUMinExpr; |
||
504 | } |
||
505 | |||
506 | /// Set flags for a non-recurrence without clearing previously set flags. |
||
507 | void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } |
||
508 | |||
509 | protected: |
||
510 | /// Note: Constructing subclasses via this constructor is allowed |
||
511 | SCEVSequentialMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
512 | const SCEV *const *O, size_t N) |
||
513 | : SCEVNAryExpr(ID, T, O, N) { |
||
514 | assert(isSequentialMinMaxType(T)); |
||
515 | // Min and max never overflow |
||
516 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); |
||
517 | } |
||
518 | |||
519 | public: |
||
520 | Type *getType() const { return getOperand(0)->getType(); } |
||
521 | |||
522 | static SCEVTypes getEquivalentNonSequentialSCEVType(SCEVTypes Ty) { |
||
523 | assert(isSequentialMinMaxType(Ty)); |
||
524 | switch (Ty) { |
||
525 | case scSequentialUMinExpr: |
||
526 | return scUMinExpr; |
||
527 | default: |
||
528 | llvm_unreachable("Not a sequential min/max type."); |
||
529 | } |
||
530 | } |
||
531 | |||
532 | SCEVTypes getEquivalentNonSequentialSCEVType() const { |
||
533 | return getEquivalentNonSequentialSCEVType(getSCEVType()); |
||
534 | } |
||
535 | |||
536 | static bool classof(const SCEV *S) { |
||
537 | return isSequentialMinMaxType(S->getSCEVType()); |
||
538 | } |
||
539 | }; |
||
540 | |||
541 | /// This class represents a sequential/in-order unsigned minimum selection. |
||
542 | class SCEVSequentialUMinExpr : public SCEVSequentialMinMaxExpr { |
||
543 | friend class ScalarEvolution; |
||
544 | |||
545 | SCEVSequentialUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, |
||
546 | size_t N) |
||
547 | : SCEVSequentialMinMaxExpr(ID, scSequentialUMinExpr, O, N) {} |
||
548 | |||
549 | public: |
||
550 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
551 | static bool classof(const SCEV *S) { |
||
552 | return S->getSCEVType() == scSequentialUMinExpr; |
||
553 | } |
||
554 | }; |
||
555 | |||
556 | /// This means that we are dealing with an entirely unknown SCEV |
||
557 | /// value, and only represent it as its LLVM Value. This is the |
||
558 | /// "bottom" value for the analysis. |
||
559 | class SCEVUnknown final : public SCEV, private CallbackVH { |
||
560 | friend class ScalarEvolution; |
||
561 | |||
562 | /// The parent ScalarEvolution value. This is used to update the |
||
563 | /// parent's maps when the value associated with a SCEVUnknown is |
||
564 | /// deleted or RAUW'd. |
||
565 | ScalarEvolution *SE; |
||
566 | |||
567 | /// The next pointer in the linked list of all SCEVUnknown |
||
568 | /// instances owned by a ScalarEvolution. |
||
569 | SCEVUnknown *Next; |
||
570 | |||
571 | SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se, |
||
572 | SCEVUnknown *next) |
||
573 | : SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {} |
||
574 | |||
575 | // Implement CallbackVH. |
||
576 | void deleted() override; |
||
577 | void allUsesReplacedWith(Value *New) override; |
||
578 | |||
579 | public: |
||
580 | Value *getValue() const { return getValPtr(); } |
||
581 | |||
582 | /// @{ |
||
583 | /// Test whether this is a special constant representing a type |
||
584 | /// size, alignment, or field offset in a target-independent |
||
585 | /// manner, and hasn't happened to have been folded with other |
||
586 | /// operations into something unrecognizable. This is mainly only |
||
587 | /// useful for pretty-printing and other situations where it isn't |
||
588 | /// absolutely required for these to succeed. |
||
589 | bool isSizeOf(Type *&AllocTy) const; |
||
590 | bool isAlignOf(Type *&AllocTy) const; |
||
591 | bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; |
||
592 | /// @} |
||
593 | |||
594 | Type *getType() const { return getValPtr()->getType(); } |
||
595 | |||
596 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
597 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } |
||
598 | }; |
||
599 | |||
600 | /// This class defines a simple visitor class that may be used for |
||
601 | /// various SCEV analysis purposes. |
||
602 | template <typename SC, typename RetVal = void> struct SCEVVisitor { |
||
603 | RetVal visit(const SCEV *S) { |
||
604 | switch (S->getSCEVType()) { |
||
605 | case scConstant: |
||
606 | return ((SC *)this)->visitConstant((const SCEVConstant *)S); |
||
607 | case scPtrToInt: |
||
608 | return ((SC *)this)->visitPtrToIntExpr((const SCEVPtrToIntExpr *)S); |
||
609 | case scTruncate: |
||
610 | return ((SC *)this)->visitTruncateExpr((const SCEVTruncateExpr *)S); |
||
611 | case scZeroExtend: |
||
612 | return ((SC *)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr *)S); |
||
613 | case scSignExtend: |
||
614 | return ((SC *)this)->visitSignExtendExpr((const SCEVSignExtendExpr *)S); |
||
615 | case scAddExpr: |
||
616 | return ((SC *)this)->visitAddExpr((const SCEVAddExpr *)S); |
||
617 | case scMulExpr: |
||
618 | return ((SC *)this)->visitMulExpr((const SCEVMulExpr *)S); |
||
619 | case scUDivExpr: |
||
620 | return ((SC *)this)->visitUDivExpr((const SCEVUDivExpr *)S); |
||
621 | case scAddRecExpr: |
||
622 | return ((SC *)this)->visitAddRecExpr((const SCEVAddRecExpr *)S); |
||
623 | case scSMaxExpr: |
||
624 | return ((SC *)this)->visitSMaxExpr((const SCEVSMaxExpr *)S); |
||
625 | case scUMaxExpr: |
||
626 | return ((SC *)this)->visitUMaxExpr((const SCEVUMaxExpr *)S); |
||
627 | case scSMinExpr: |
||
628 | return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S); |
||
629 | case scUMinExpr: |
||
630 | return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S); |
||
631 | case scSequentialUMinExpr: |
||
632 | return ((SC *)this) |
||
633 | ->visitSequentialUMinExpr((const SCEVSequentialUMinExpr *)S); |
||
634 | case scUnknown: |
||
635 | return ((SC *)this)->visitUnknown((const SCEVUnknown *)S); |
||
636 | case scCouldNotCompute: |
||
637 | return ((SC *)this)->visitCouldNotCompute((const SCEVCouldNotCompute *)S); |
||
638 | } |
||
639 | llvm_unreachable("Unknown SCEV kind!"); |
||
640 | } |
||
641 | |||
642 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { |
||
643 | llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); |
||
644 | } |
||
645 | }; |
||
646 | |||
647 | /// Visit all nodes in the expression tree using worklist traversal. |
||
648 | /// |
||
649 | /// Visitor implements: |
||
650 | /// // return true to follow this node. |
||
651 | /// bool follow(const SCEV *S); |
||
652 | /// // return true to terminate the search. |
||
653 | /// bool isDone(); |
||
654 | template <typename SV> class SCEVTraversal { |
||
655 | SV &Visitor; |
||
656 | SmallVector<const SCEV *, 8> Worklist; |
||
657 | SmallPtrSet<const SCEV *, 8> Visited; |
||
658 | |||
659 | void push(const SCEV *S) { |
||
660 | if (Visited.insert(S).second && Visitor.follow(S)) |
||
661 | Worklist.push_back(S); |
||
662 | } |
||
663 | |||
664 | public: |
||
665 | SCEVTraversal(SV &V) : Visitor(V) {} |
||
666 | |||
667 | void visitAll(const SCEV *Root) { |
||
668 | push(Root); |
||
669 | while (!Worklist.empty() && !Visitor.isDone()) { |
||
670 | const SCEV *S = Worklist.pop_back_val(); |
||
671 | |||
672 | switch (S->getSCEVType()) { |
||
673 | case scConstant: |
||
674 | case scUnknown: |
||
675 | continue; |
||
676 | case scPtrToInt: |
||
677 | case scTruncate: |
||
678 | case scZeroExtend: |
||
679 | case scSignExtend: |
||
680 | case scAddExpr: |
||
681 | case scMulExpr: |
||
682 | case scUDivExpr: |
||
683 | case scSMaxExpr: |
||
684 | case scUMaxExpr: |
||
685 | case scSMinExpr: |
||
686 | case scUMinExpr: |
||
687 | case scSequentialUMinExpr: |
||
688 | case scAddRecExpr: |
||
689 | for (const auto *Op : S->operands()) { |
||
690 | push(Op); |
||
691 | if (Visitor.isDone()) |
||
692 | break; |
||
693 | } |
||
694 | continue; |
||
695 | case scCouldNotCompute: |
||
696 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
||
697 | } |
||
698 | llvm_unreachable("Unknown SCEV kind!"); |
||
699 | } |
||
700 | } |
||
701 | }; |
||
702 | |||
703 | /// Use SCEVTraversal to visit all nodes in the given expression tree. |
||
704 | template <typename SV> void visitAll(const SCEV *Root, SV &Visitor) { |
||
705 | SCEVTraversal<SV> T(Visitor); |
||
706 | T.visitAll(Root); |
||
707 | } |
||
708 | |||
709 | /// Return true if any node in \p Root satisfies the predicate \p Pred. |
||
710 | template <typename PredTy> |
||
711 | bool SCEVExprContains(const SCEV *Root, PredTy Pred) { |
||
712 | struct FindClosure { |
||
713 | bool Found = false; |
||
714 | PredTy Pred; |
||
715 | |||
716 | FindClosure(PredTy Pred) : Pred(Pred) {} |
||
717 | |||
718 | bool follow(const SCEV *S) { |
||
719 | if (!Pred(S)) |
||
720 | return true; |
||
721 | |||
722 | Found = true; |
||
723 | return false; |
||
724 | } |
||
725 | |||
726 | bool isDone() const { return Found; } |
||
727 | }; |
||
728 | |||
729 | FindClosure FC(Pred); |
||
730 | visitAll(Root, FC); |
||
731 | return FC.Found; |
||
732 | } |
||
733 | |||
734 | /// This visitor recursively visits a SCEV expression and re-writes it. |
||
735 | /// The result from each visit is cached, so it will return the same |
||
736 | /// SCEV for the same input. |
||
737 | template <typename SC> |
||
738 | class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { |
||
739 | protected: |
||
740 | ScalarEvolution &SE; |
||
741 | // Memoize the result of each visit so that we only compute once for |
||
742 | // the same input SCEV. This is to avoid redundant computations when |
||
743 | // a SCEV is referenced by multiple SCEVs. Without memoization, this |
||
744 | // visit algorithm would have exponential time complexity in the worst |
||
745 | // case, causing the compiler to hang on certain tests. |
||
746 | DenseMap<const SCEV *, const SCEV *> RewriteResults; |
||
747 | |||
748 | public: |
||
749 | SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} |
||
750 | |||
751 | const SCEV *visit(const SCEV *S) { |
||
752 | auto It = RewriteResults.find(S); |
||
753 | if (It != RewriteResults.end()) |
||
754 | return It->second; |
||
755 | auto *Visited = SCEVVisitor<SC, const SCEV *>::visit(S); |
||
756 | auto Result = RewriteResults.try_emplace(S, Visited); |
||
757 | assert(Result.second && "Should insert a new entry"); |
||
758 | return Result.first->second; |
||
759 | } |
||
760 | |||
761 | const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; } |
||
762 | |||
763 | const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { |
||
764 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
765 | return Operand == Expr->getOperand() |
||
766 | ? Expr |
||
767 | : SE.getPtrToIntExpr(Operand, Expr->getType()); |
||
768 | } |
||
769 | |||
770 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { |
||
771 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
772 | return Operand == Expr->getOperand() |
||
773 | ? Expr |
||
774 | : SE.getTruncateExpr(Operand, Expr->getType()); |
||
775 | } |
||
776 | |||
777 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
||
778 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
779 | return Operand == Expr->getOperand() |
||
780 | ? Expr |
||
781 | : SE.getZeroExtendExpr(Operand, Expr->getType()); |
||
782 | } |
||
783 | |||
784 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
||
785 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
786 | return Operand == Expr->getOperand() |
||
787 | ? Expr |
||
788 | : SE.getSignExtendExpr(Operand, Expr->getType()); |
||
789 | } |
||
790 | |||
791 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
||
792 | SmallVector<const SCEV *, 2> Operands; |
||
793 | bool Changed = false; |
||
794 | for (const auto *Op : Expr->operands()) { |
||
795 | Operands.push_back(((SC *)this)->visit(Op)); |
||
796 | Changed |= Op != Operands.back(); |
||
797 | } |
||
798 | return !Changed ? Expr : SE.getAddExpr(Operands); |
||
799 | } |
||
800 | |||
801 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
||
802 | SmallVector<const SCEV *, 2> Operands; |
||
803 | bool Changed = false; |
||
804 | for (const auto *Op : Expr->operands()) { |
||
805 | Operands.push_back(((SC *)this)->visit(Op)); |
||
806 | Changed |= Op != Operands.back(); |
||
807 | } |
||
808 | return !Changed ? Expr : SE.getMulExpr(Operands); |
||
809 | } |
||
810 | |||
811 | const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { |
||
812 | auto *LHS = ((SC *)this)->visit(Expr->getLHS()); |
||
813 | auto *RHS = ((SC *)this)->visit(Expr->getRHS()); |
||
814 | bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); |
||
815 | return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); |
||
816 | } |
||
817 | |||
818 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
||
819 | SmallVector<const SCEV *, 2> Operands; |
||
820 | bool Changed = false; |
||
821 | for (const auto *Op : Expr->operands()) { |
||
822 | Operands.push_back(((SC *)this)->visit(Op)); |
||
823 | Changed |= Op != Operands.back(); |
||
824 | } |
||
825 | return !Changed ? Expr |
||
826 | : SE.getAddRecExpr(Operands, Expr->getLoop(), |
||
827 | Expr->getNoWrapFlags()); |
||
828 | } |
||
829 | |||
830 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
||
831 | SmallVector<const SCEV *, 2> Operands; |
||
832 | bool Changed = false; |
||
833 | for (const auto *Op : Expr->operands()) { |
||
834 | Operands.push_back(((SC *)this)->visit(Op)); |
||
835 | Changed |= Op != Operands.back(); |
||
836 | } |
||
837 | return !Changed ? Expr : SE.getSMaxExpr(Operands); |
||
838 | } |
||
839 | |||
840 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
||
841 | SmallVector<const SCEV *, 2> Operands; |
||
842 | bool Changed = false; |
||
843 | for (const auto *Op : Expr->operands()) { |
||
844 | Operands.push_back(((SC *)this)->visit(Op)); |
||
845 | Changed |= Op != Operands.back(); |
||
846 | } |
||
847 | return !Changed ? Expr : SE.getUMaxExpr(Operands); |
||
848 | } |
||
849 | |||
850 | const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { |
||
851 | SmallVector<const SCEV *, 2> Operands; |
||
852 | bool Changed = false; |
||
853 | for (const auto *Op : Expr->operands()) { |
||
854 | Operands.push_back(((SC *)this)->visit(Op)); |
||
855 | Changed |= Op != Operands.back(); |
||
856 | } |
||
857 | return !Changed ? Expr : SE.getSMinExpr(Operands); |
||
858 | } |
||
859 | |||
860 | const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { |
||
861 | SmallVector<const SCEV *, 2> Operands; |
||
862 | bool Changed = false; |
||
863 | for (const auto *Op : Expr->operands()) { |
||
864 | Operands.push_back(((SC *)this)->visit(Op)); |
||
865 | Changed |= Op != Operands.back(); |
||
866 | } |
||
867 | return !Changed ? Expr : SE.getUMinExpr(Operands); |
||
868 | } |
||
869 | |||
870 | const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { |
||
871 | SmallVector<const SCEV *, 2> Operands; |
||
872 | bool Changed = false; |
||
873 | for (const auto *Op : Expr->operands()) { |
||
874 | Operands.push_back(((SC *)this)->visit(Op)); |
||
875 | Changed |= Op != Operands.back(); |
||
876 | } |
||
877 | return !Changed ? Expr : SE.getUMinExpr(Operands, /*Sequential=*/true); |
||
878 | } |
||
879 | |||
880 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; } |
||
881 | |||
882 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
||
883 | return Expr; |
||
884 | } |
||
885 | }; |
||
886 | |||
887 | using ValueToValueMap = DenseMap<const Value *, Value *>; |
||
888 | using ValueToSCEVMapTy = DenseMap<const Value *, const SCEV *>; |
||
889 | |||
890 | /// The SCEVParameterRewriter takes a scalar evolution expression and updates |
||
891 | /// the SCEVUnknown components following the Map (Value -> SCEV). |
||
892 | class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { |
||
893 | public: |
||
894 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, |
||
895 | ValueToSCEVMapTy &Map) { |
||
896 | SCEVParameterRewriter Rewriter(SE, Map); |
||
897 | return Rewriter.visit(Scev); |
||
898 | } |
||
899 | |||
900 | SCEVParameterRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) |
||
901 | : SCEVRewriteVisitor(SE), Map(M) {} |
||
902 | |||
903 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
||
904 | auto I = Map.find(Expr->getValue()); |
||
905 | if (I == Map.end()) |
||
906 | return Expr; |
||
907 | return I->second; |
||
908 | } |
||
909 | |||
910 | private: |
||
911 | ValueToSCEVMapTy ⤅ |
||
912 | }; |
||
913 | |||
914 | using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>; |
||
915 | |||
916 | /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies |
||
917 | /// the Map (Loop -> SCEV) to all AddRecExprs. |
||
918 | class SCEVLoopAddRecRewriter |
||
919 | : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { |
||
920 | public: |
||
921 | SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) |
||
922 | : SCEVRewriteVisitor(SE), Map(M) {} |
||
923 | |||
924 | static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, |
||
925 | ScalarEvolution &SE) { |
||
926 | SCEVLoopAddRecRewriter Rewriter(SE, Map); |
||
927 | return Rewriter.visit(Scev); |
||
928 | } |
||
929 | |||
930 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
||
931 | SmallVector<const SCEV *, 2> Operands; |
||
932 | for (const SCEV *Op : Expr->operands()) |
||
933 | Operands.push_back(visit(Op)); |
||
934 | |||
935 | const Loop *L = Expr->getLoop(); |
||
936 | if (0 == Map.count(L)) |
||
937 | return SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); |
||
938 | |||
939 | return SCEVAddRecExpr::evaluateAtIteration(Operands, Map[L], SE); |
||
940 | } |
||
941 | |||
942 | private: |
||
943 | LoopToScevMapT ⤅ |
||
944 | }; |
||
945 | |||
946 | } // end namespace llvm |
||
947 | |||
948 | #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |