Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file defines the classes used to represent and build scalar expressions. |
||
| 10 | // |
||
| 11 | //===----------------------------------------------------------------------===// |
||
| 12 | |||
| 13 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
||
| 14 | #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
||
| 15 | |||
| 16 | #include "llvm/ADT/DenseMap.h" |
||
| 17 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 18 | #include "llvm/ADT/SmallVector.h" |
||
| 19 | #include "llvm/ADT/iterator_range.h" |
||
| 20 | #include "llvm/Analysis/ScalarEvolution.h" |
||
| 21 | #include "llvm/IR/Constants.h" |
||
| 22 | #include "llvm/IR/ValueHandle.h" |
||
| 23 | #include "llvm/Support/Casting.h" |
||
| 24 | #include "llvm/Support/ErrorHandling.h" |
||
| 25 | #include <cassert> |
||
| 26 | #include <cstddef> |
||
| 27 | |||
| 28 | namespace llvm { |
||
| 29 | |||
| 30 | class APInt; |
||
| 31 | class Constant; |
||
| 32 | class ConstantInt; |
||
| 33 | class ConstantRange; |
||
| 34 | class Loop; |
||
| 35 | class Type; |
||
| 36 | class Value; |
||
| 37 | |||
| 38 | enum SCEVTypes : unsigned short { |
||
| 39 | // These should be ordered in terms of increasing complexity to make the |
||
| 40 | // folders simpler. |
||
| 41 | scConstant, |
||
| 42 | scTruncate, |
||
| 43 | scZeroExtend, |
||
| 44 | scSignExtend, |
||
| 45 | scAddExpr, |
||
| 46 | scMulExpr, |
||
| 47 | scUDivExpr, |
||
| 48 | scAddRecExpr, |
||
| 49 | scUMaxExpr, |
||
| 50 | scSMaxExpr, |
||
| 51 | scUMinExpr, |
||
| 52 | scSMinExpr, |
||
| 53 | scSequentialUMinExpr, |
||
| 54 | scPtrToInt, |
||
| 55 | scUnknown, |
||
| 56 | scCouldNotCompute |
||
| 57 | }; |
||
| 58 | |||
| 59 | /// This class represents a constant integer value. |
||
| 60 | class SCEVConstant : public SCEV { |
||
| 61 | friend class ScalarEvolution; |
||
| 62 | |||
| 63 | ConstantInt *V; |
||
| 64 | |||
| 65 | SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) |
||
| 66 | : SCEV(ID, scConstant, 1), V(v) {} |
||
| 67 | |||
| 68 | public: |
||
| 69 | ConstantInt *getValue() const { return V; } |
||
| 70 | const APInt &getAPInt() const { return getValue()->getValue(); } |
||
| 71 | |||
| 72 | Type *getType() const { return V->getType(); } |
||
| 73 | |||
| 74 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 75 | static bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } |
||
| 76 | }; |
||
| 77 | |||
| 78 | inline unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) { |
||
| 79 | APInt Size(16, 1); |
||
| 80 | for (const auto *Arg : Args) |
||
| 81 | Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize())); |
||
| 82 | return (unsigned short)Size.getZExtValue(); |
||
| 83 | } |
||
| 84 | |||
| 85 | /// This is the base class for unary cast operator classes. |
||
| 86 | class SCEVCastExpr : public SCEV { |
||
| 87 | protected: |
||
| 88 | const SCEV *Op; |
||
| 89 | Type *Ty; |
||
| 90 | |||
| 91 | SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op, |
||
| 92 | Type *ty); |
||
| 93 | |||
| 94 | public: |
||
| 95 | const SCEV *getOperand() const { return Op; } |
||
| 96 | const SCEV *getOperand(unsigned i) const { |
||
| 97 | assert(i == 0 && "Operand index out of range!"); |
||
| 98 | return Op; |
||
| 99 | } |
||
| 100 | ArrayRef<const SCEV *> operands() const { return Op; } |
||
| 101 | size_t getNumOperands() const { return 1; } |
||
| 102 | Type *getType() const { return Ty; } |
||
| 103 | |||
| 104 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 105 | static bool classof(const SCEV *S) { |
||
| 106 | return S->getSCEVType() == scPtrToInt || S->getSCEVType() == scTruncate || |
||
| 107 | S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; |
||
| 108 | } |
||
| 109 | }; |
||
| 110 | |||
| 111 | /// This class represents a cast from a pointer to a pointer-sized integer |
||
| 112 | /// value. |
||
| 113 | class SCEVPtrToIntExpr : public SCEVCastExpr { |
||
| 114 | friend class ScalarEvolution; |
||
| 115 | |||
| 116 | SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, Type *ITy); |
||
| 117 | |||
| 118 | public: |
||
| 119 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 120 | static bool classof(const SCEV *S) { return S->getSCEVType() == scPtrToInt; } |
||
| 121 | }; |
||
| 122 | |||
| 123 | /// This is the base class for unary integral cast operator classes. |
||
| 124 | class SCEVIntegralCastExpr : public SCEVCastExpr { |
||
| 125 | protected: |
||
| 126 | SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, |
||
| 127 | const SCEV *op, Type *ty); |
||
| 128 | |||
| 129 | public: |
||
| 130 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 131 | static bool classof(const SCEV *S) { |
||
| 132 | return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || |
||
| 133 | S->getSCEVType() == scSignExtend; |
||
| 134 | } |
||
| 135 | }; |
||
| 136 | |||
| 137 | /// This class represents a truncation of an integer value to a |
||
| 138 | /// smaller integer value. |
||
| 139 | class SCEVTruncateExpr : public SCEVIntegralCastExpr { |
||
| 140 | friend class ScalarEvolution; |
||
| 141 | |||
| 142 | SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); |
||
| 143 | |||
| 144 | public: |
||
| 145 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 146 | static bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } |
||
| 147 | }; |
||
| 148 | |||
| 149 | /// This class represents a zero extension of a small integer value |
||
| 150 | /// to a larger integer value. |
||
| 151 | class SCEVZeroExtendExpr : public SCEVIntegralCastExpr { |
||
| 152 | friend class ScalarEvolution; |
||
| 153 | |||
| 154 | SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); |
||
| 155 | |||
| 156 | public: |
||
| 157 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 158 | static bool classof(const SCEV *S) { |
||
| 159 | return S->getSCEVType() == scZeroExtend; |
||
| 160 | } |
||
| 161 | }; |
||
| 162 | |||
| 163 | /// This class represents a sign extension of a small integer value |
||
| 164 | /// to a larger integer value. |
||
| 165 | class SCEVSignExtendExpr : public SCEVIntegralCastExpr { |
||
| 166 | friend class ScalarEvolution; |
||
| 167 | |||
| 168 | SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); |
||
| 169 | |||
| 170 | public: |
||
| 171 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 172 | static bool classof(const SCEV *S) { |
||
| 173 | return S->getSCEVType() == scSignExtend; |
||
| 174 | } |
||
| 175 | }; |
||
| 176 | |||
| 177 | /// This node is a base class providing common functionality for |
||
| 178 | /// n'ary operators. |
||
| 179 | class SCEVNAryExpr : public SCEV { |
||
| 180 | protected: |
||
| 181 | // Since SCEVs are immutable, ScalarEvolution allocates operand |
||
| 182 | // arrays with its SCEVAllocator, so this class just needs a simple |
||
| 183 | // pointer rather than a more elaborate vector-like data structure. |
||
| 184 | // This also avoids the need for a non-trivial destructor. |
||
| 185 | const SCEV *const *Operands; |
||
| 186 | size_t NumOperands; |
||
| 187 | |||
| 188 | SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
| 189 | const SCEV *const *O, size_t N) |
||
| 190 | : SCEV(ID, T, computeExpressionSize(ArrayRef(O, N))), Operands(O), |
||
| 191 | NumOperands(N) {} |
||
| 192 | |||
| 193 | public: |
||
| 194 | size_t getNumOperands() const { return NumOperands; } |
||
| 195 | |||
| 196 | const SCEV *getOperand(unsigned i) const { |
||
| 197 | assert(i < NumOperands && "Operand index out of range!"); |
||
| 198 | return Operands[i]; |
||
| 199 | } |
||
| 200 | |||
| 201 | ArrayRef<const SCEV *> operands() const { |
||
| 202 | return ArrayRef(Operands, NumOperands); |
||
| 203 | } |
||
| 204 | |||
| 205 | NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { |
||
| 206 | return (NoWrapFlags)(SubclassData & Mask); |
||
| 207 | } |
||
| 208 | |||
| 209 | bool hasNoUnsignedWrap() const { |
||
| 210 | return getNoWrapFlags(FlagNUW) != FlagAnyWrap; |
||
| 211 | } |
||
| 212 | |||
| 213 | bool hasNoSignedWrap() const { |
||
| 214 | return getNoWrapFlags(FlagNSW) != FlagAnyWrap; |
||
| 215 | } |
||
| 216 | |||
| 217 | bool hasNoSelfWrap() const { return getNoWrapFlags(FlagNW) != FlagAnyWrap; } |
||
| 218 | |||
| 219 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 220 | static bool classof(const SCEV *S) { |
||
| 221 | return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || |
||
| 222 | S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || |
||
| 223 | S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr || |
||
| 224 | S->getSCEVType() == scSequentialUMinExpr || |
||
| 225 | S->getSCEVType() == scAddRecExpr; |
||
| 226 | } |
||
| 227 | }; |
||
| 228 | |||
| 229 | /// This node is the base class for n'ary commutative operators. |
||
| 230 | class SCEVCommutativeExpr : public SCEVNAryExpr { |
||
| 231 | protected: |
||
| 232 | SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
| 233 | const SCEV *const *O, size_t N) |
||
| 234 | : SCEVNAryExpr(ID, T, O, N) {} |
||
| 235 | |||
| 236 | public: |
||
| 237 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 238 | static bool classof(const SCEV *S) { |
||
| 239 | return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || |
||
| 240 | S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || |
||
| 241 | S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr; |
||
| 242 | } |
||
| 243 | |||
| 244 | /// Set flags for a non-recurrence without clearing previously set flags. |
||
| 245 | void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } |
||
| 246 | }; |
||
| 247 | |||
| 248 | /// This node represents an addition of some number of SCEVs. |
||
| 249 | class SCEVAddExpr : public SCEVCommutativeExpr { |
||
| 250 | friend class ScalarEvolution; |
||
| 251 | |||
| 252 | Type *Ty; |
||
| 253 | |||
| 254 | SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
| 255 | : SCEVCommutativeExpr(ID, scAddExpr, O, N) { |
||
| 256 | auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) { |
||
| 257 | return Op->getType()->isPointerTy(); |
||
| 258 | }); |
||
| 259 | if (FirstPointerTypedOp != operands().end()) |
||
| 260 | Ty = (*FirstPointerTypedOp)->getType(); |
||
| 261 | else |
||
| 262 | Ty = getOperand(0)->getType(); |
||
| 263 | } |
||
| 264 | |||
| 265 | public: |
||
| 266 | Type *getType() const { return Ty; } |
||
| 267 | |||
| 268 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 269 | static bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } |
||
| 270 | }; |
||
| 271 | |||
| 272 | /// This node represents multiplication of some number of SCEVs. |
||
| 273 | class SCEVMulExpr : public SCEVCommutativeExpr { |
||
| 274 | friend class ScalarEvolution; |
||
| 275 | |||
| 276 | SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
| 277 | : SCEVCommutativeExpr(ID, scMulExpr, O, N) {} |
||
| 278 | |||
| 279 | public: |
||
| 280 | Type *getType() const { return getOperand(0)->getType(); } |
||
| 281 | |||
| 282 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 283 | static bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } |
||
| 284 | }; |
||
| 285 | |||
| 286 | /// This class represents a binary unsigned division operation. |
||
| 287 | class SCEVUDivExpr : public SCEV { |
||
| 288 | friend class ScalarEvolution; |
||
| 289 | |||
| 290 | std::array<const SCEV *, 2> Operands; |
||
| 291 | |||
| 292 | SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) |
||
| 293 | : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})) { |
||
| 294 | Operands[0] = lhs; |
||
| 295 | Operands[1] = rhs; |
||
| 296 | } |
||
| 297 | |||
| 298 | public: |
||
| 299 | const SCEV *getLHS() const { return Operands[0]; } |
||
| 300 | const SCEV *getRHS() const { return Operands[1]; } |
||
| 301 | size_t getNumOperands() const { return 2; } |
||
| 302 | const SCEV *getOperand(unsigned i) const { |
||
| 303 | assert((i == 0 || i == 1) && "Operand index out of range!"); |
||
| 304 | return i == 0 ? getLHS() : getRHS(); |
||
| 305 | } |
||
| 306 | |||
| 307 | ArrayRef<const SCEV *> operands() const { return Operands; } |
||
| 308 | |||
| 309 | Type *getType() const { |
||
| 310 | // In most cases the types of LHS and RHS will be the same, but in some |
||
| 311 | // crazy cases one or the other may be a pointer. ScalarEvolution doesn't |
||
| 312 | // depend on the type for correctness, but handling types carefully can |
||
| 313 | // avoid extra casts in the SCEVExpander. The LHS is more likely to be |
||
| 314 | // a pointer type than the RHS, so use the RHS' type here. |
||
| 315 | return getRHS()->getType(); |
||
| 316 | } |
||
| 317 | |||
| 318 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 319 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } |
||
| 320 | }; |
||
| 321 | |||
| 322 | /// This node represents a polynomial recurrence on the trip count |
||
| 323 | /// of the specified loop. This is the primary focus of the |
||
| 324 | /// ScalarEvolution framework; all the other SCEV subclasses are |
||
| 325 | /// mostly just supporting infrastructure to allow SCEVAddRecExpr |
||
| 326 | /// expressions to be created and analyzed. |
||
| 327 | /// |
||
| 328 | /// All operands of an AddRec are required to be loop invariant. |
||
| 329 | /// |
||
| 330 | class SCEVAddRecExpr : public SCEVNAryExpr { |
||
| 331 | friend class ScalarEvolution; |
||
| 332 | |||
| 333 | const Loop *L; |
||
| 334 | |||
| 335 | SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N, |
||
| 336 | const Loop *l) |
||
| 337 | : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} |
||
| 338 | |||
| 339 | public: |
||
| 340 | Type *getType() const { return getStart()->getType(); } |
||
| 341 | const SCEV *getStart() const { return Operands[0]; } |
||
| 342 | const Loop *getLoop() const { return L; } |
||
| 343 | |||
| 344 | /// Constructs and returns the recurrence indicating how much this |
||
| 345 | /// expression steps by. If this is a polynomial of degree N, it |
||
| 346 | /// returns a chrec of degree N-1. We cannot determine whether |
||
| 347 | /// the step recurrence has self-wraparound. |
||
| 348 | const SCEV *getStepRecurrence(ScalarEvolution &SE) const { |
||
| 349 | if (isAffine()) |
||
| 350 | return getOperand(1); |
||
| 351 | return SE.getAddRecExpr( |
||
| 352 | SmallVector<const SCEV *, 3>(operands().drop_front()), getLoop(), |
||
| 353 | FlagAnyWrap); |
||
| 354 | } |
||
| 355 | |||
| 356 | /// Return true if this represents an expression A + B*x where A |
||
| 357 | /// and B are loop invariant values. |
||
| 358 | bool isAffine() const { |
||
| 359 | // We know that the start value is invariant. This expression is thus |
||
| 360 | // affine iff the step is also invariant. |
||
| 361 | return getNumOperands() == 2; |
||
| 362 | } |
||
| 363 | |||
| 364 | /// Return true if this represents an expression A + B*x + C*x^2 |
||
| 365 | /// where A, B and C are loop invariant values. This corresponds |
||
| 366 | /// to an addrec of the form {L,+,M,+,N} |
||
| 367 | bool isQuadratic() const { return getNumOperands() == 3; } |
||
| 368 | |||
| 369 | /// Set flags for a recurrence without clearing any previously set flags. |
||
| 370 | /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here |
||
| 371 | /// to make it easier to propagate flags. |
||
| 372 | void setNoWrapFlags(NoWrapFlags Flags) { |
||
| 373 | if (Flags & (FlagNUW | FlagNSW)) |
||
| 374 | Flags = ScalarEvolution::setFlags(Flags, FlagNW); |
||
| 375 | SubclassData |= Flags; |
||
| 376 | } |
||
| 377 | |||
| 378 | /// Return the value of this chain of recurrences at the specified |
||
| 379 | /// iteration number. |
||
| 380 | const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; |
||
| 381 | |||
| 382 | /// Return the value of this chain of recurrences at the specified iteration |
||
| 383 | /// number. Takes an explicit list of operands to represent an AddRec. |
||
| 384 | static const SCEV *evaluateAtIteration(ArrayRef<const SCEV *> Operands, |
||
| 385 | const SCEV *It, ScalarEvolution &SE); |
||
| 386 | |||
| 387 | /// Return the number of iterations of this loop that produce |
||
| 388 | /// values in the specified constant range. Another way of |
||
| 389 | /// looking at this is that it returns the first iteration number |
||
| 390 | /// where the value is not in the condition, thus computing the |
||
| 391 | /// exit count. If the iteration count can't be computed, an |
||
| 392 | /// instance of SCEVCouldNotCompute is returned. |
||
| 393 | const SCEV *getNumIterationsInRange(const ConstantRange &Range, |
||
| 394 | ScalarEvolution &SE) const; |
||
| 395 | |||
| 396 | /// Return an expression representing the value of this expression |
||
| 397 | /// one iteration of the loop ahead. |
||
| 398 | const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const; |
||
| 399 | |||
| 400 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 401 | static bool classof(const SCEV *S) { |
||
| 402 | return S->getSCEVType() == scAddRecExpr; |
||
| 403 | } |
||
| 404 | }; |
||
| 405 | |||
| 406 | /// This node is the base class min/max selections. |
||
| 407 | class SCEVMinMaxExpr : public SCEVCommutativeExpr { |
||
| 408 | friend class ScalarEvolution; |
||
| 409 | |||
| 410 | static bool isMinMaxType(enum SCEVTypes T) { |
||
| 411 | return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr || |
||
| 412 | T == scUMinExpr; |
||
| 413 | } |
||
| 414 | |||
| 415 | protected: |
||
| 416 | /// Note: Constructing subclasses via this constructor is allowed |
||
| 417 | SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
| 418 | const SCEV *const *O, size_t N) |
||
| 419 | : SCEVCommutativeExpr(ID, T, O, N) { |
||
| 420 | assert(isMinMaxType(T)); |
||
| 421 | // Min and max never overflow |
||
| 422 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); |
||
| 423 | } |
||
| 424 | |||
| 425 | public: |
||
| 426 | Type *getType() const { return getOperand(0)->getType(); } |
||
| 427 | |||
| 428 | static bool classof(const SCEV *S) { return isMinMaxType(S->getSCEVType()); } |
||
| 429 | |||
| 430 | static enum SCEVTypes negate(enum SCEVTypes T) { |
||
| 431 | switch (T) { |
||
| 432 | case scSMaxExpr: |
||
| 433 | return scSMinExpr; |
||
| 434 | case scSMinExpr: |
||
| 435 | return scSMaxExpr; |
||
| 436 | case scUMaxExpr: |
||
| 437 | return scUMinExpr; |
||
| 438 | case scUMinExpr: |
||
| 439 | return scUMaxExpr; |
||
| 440 | default: |
||
| 441 | llvm_unreachable("Not a min or max SCEV type!"); |
||
| 442 | } |
||
| 443 | } |
||
| 444 | }; |
||
| 445 | |||
| 446 | /// This class represents a signed maximum selection. |
||
| 447 | class SCEVSMaxExpr : public SCEVMinMaxExpr { |
||
| 448 | friend class ScalarEvolution; |
||
| 449 | |||
| 450 | SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
| 451 | : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {} |
||
| 452 | |||
| 453 | public: |
||
| 454 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 455 | static bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } |
||
| 456 | }; |
||
| 457 | |||
| 458 | /// This class represents an unsigned maximum selection. |
||
| 459 | class SCEVUMaxExpr : public SCEVMinMaxExpr { |
||
| 460 | friend class ScalarEvolution; |
||
| 461 | |||
| 462 | SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
| 463 | : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {} |
||
| 464 | |||
| 465 | public: |
||
| 466 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 467 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } |
||
| 468 | }; |
||
| 469 | |||
| 470 | /// This class represents a signed minimum selection. |
||
| 471 | class SCEVSMinExpr : public SCEVMinMaxExpr { |
||
| 472 | friend class ScalarEvolution; |
||
| 473 | |||
| 474 | SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
| 475 | : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {} |
||
| 476 | |||
| 477 | public: |
||
| 478 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 479 | static bool classof(const SCEV *S) { return S->getSCEVType() == scSMinExpr; } |
||
| 480 | }; |
||
| 481 | |||
| 482 | /// This class represents an unsigned minimum selection. |
||
| 483 | class SCEVUMinExpr : public SCEVMinMaxExpr { |
||
| 484 | friend class ScalarEvolution; |
||
| 485 | |||
| 486 | SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) |
||
| 487 | : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {} |
||
| 488 | |||
| 489 | public: |
||
| 490 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 491 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUMinExpr; } |
||
| 492 | }; |
||
| 493 | |||
| 494 | /// This node is the base class for sequential/in-order min/max selections. |
||
| 495 | /// Note that their fundamental difference from SCEVMinMaxExpr's is that they |
||
| 496 | /// are early-returning upon reaching saturation point. |
||
| 497 | /// I.e. given `0 umin_seq poison`, the result will be `0`, |
||
| 498 | /// while the result of `0 umin poison` is `poison`. |
||
| 499 | class SCEVSequentialMinMaxExpr : public SCEVNAryExpr { |
||
| 500 | friend class ScalarEvolution; |
||
| 501 | |||
| 502 | static bool isSequentialMinMaxType(enum SCEVTypes T) { |
||
| 503 | return T == scSequentialUMinExpr; |
||
| 504 | } |
||
| 505 | |||
| 506 | /// Set flags for a non-recurrence without clearing previously set flags. |
||
| 507 | void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } |
||
| 508 | |||
| 509 | protected: |
||
| 510 | /// Note: Constructing subclasses via this constructor is allowed |
||
| 511 | SCEVSequentialMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
||
| 512 | const SCEV *const *O, size_t N) |
||
| 513 | : SCEVNAryExpr(ID, T, O, N) { |
||
| 514 | assert(isSequentialMinMaxType(T)); |
||
| 515 | // Min and max never overflow |
||
| 516 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); |
||
| 517 | } |
||
| 518 | |||
| 519 | public: |
||
| 520 | Type *getType() const { return getOperand(0)->getType(); } |
||
| 521 | |||
| 522 | static SCEVTypes getEquivalentNonSequentialSCEVType(SCEVTypes Ty) { |
||
| 523 | assert(isSequentialMinMaxType(Ty)); |
||
| 524 | switch (Ty) { |
||
| 525 | case scSequentialUMinExpr: |
||
| 526 | return scUMinExpr; |
||
| 527 | default: |
||
| 528 | llvm_unreachable("Not a sequential min/max type."); |
||
| 529 | } |
||
| 530 | } |
||
| 531 | |||
| 532 | SCEVTypes getEquivalentNonSequentialSCEVType() const { |
||
| 533 | return getEquivalentNonSequentialSCEVType(getSCEVType()); |
||
| 534 | } |
||
| 535 | |||
| 536 | static bool classof(const SCEV *S) { |
||
| 537 | return isSequentialMinMaxType(S->getSCEVType()); |
||
| 538 | } |
||
| 539 | }; |
||
| 540 | |||
| 541 | /// This class represents a sequential/in-order unsigned minimum selection. |
||
| 542 | class SCEVSequentialUMinExpr : public SCEVSequentialMinMaxExpr { |
||
| 543 | friend class ScalarEvolution; |
||
| 544 | |||
| 545 | SCEVSequentialUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, |
||
| 546 | size_t N) |
||
| 547 | : SCEVSequentialMinMaxExpr(ID, scSequentialUMinExpr, O, N) {} |
||
| 548 | |||
| 549 | public: |
||
| 550 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 551 | static bool classof(const SCEV *S) { |
||
| 552 | return S->getSCEVType() == scSequentialUMinExpr; |
||
| 553 | } |
||
| 554 | }; |
||
| 555 | |||
| 556 | /// This means that we are dealing with an entirely unknown SCEV |
||
| 557 | /// value, and only represent it as its LLVM Value. This is the |
||
| 558 | /// "bottom" value for the analysis. |
||
| 559 | class SCEVUnknown final : public SCEV, private CallbackVH { |
||
| 560 | friend class ScalarEvolution; |
||
| 561 | |||
| 562 | /// The parent ScalarEvolution value. This is used to update the |
||
| 563 | /// parent's maps when the value associated with a SCEVUnknown is |
||
| 564 | /// deleted or RAUW'd. |
||
| 565 | ScalarEvolution *SE; |
||
| 566 | |||
| 567 | /// The next pointer in the linked list of all SCEVUnknown |
||
| 568 | /// instances owned by a ScalarEvolution. |
||
| 569 | SCEVUnknown *Next; |
||
| 570 | |||
| 571 | SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se, |
||
| 572 | SCEVUnknown *next) |
||
| 573 | : SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {} |
||
| 574 | |||
| 575 | // Implement CallbackVH. |
||
| 576 | void deleted() override; |
||
| 577 | void allUsesReplacedWith(Value *New) override; |
||
| 578 | |||
| 579 | public: |
||
| 580 | Value *getValue() const { return getValPtr(); } |
||
| 581 | |||
| 582 | /// @{ |
||
| 583 | /// Test whether this is a special constant representing a type |
||
| 584 | /// size, alignment, or field offset in a target-independent |
||
| 585 | /// manner, and hasn't happened to have been folded with other |
||
| 586 | /// operations into something unrecognizable. This is mainly only |
||
| 587 | /// useful for pretty-printing and other situations where it isn't |
||
| 588 | /// absolutely required for these to succeed. |
||
| 589 | bool isSizeOf(Type *&AllocTy) const; |
||
| 590 | bool isAlignOf(Type *&AllocTy) const; |
||
| 591 | bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; |
||
| 592 | /// @} |
||
| 593 | |||
| 594 | Type *getType() const { return getValPtr()->getType(); } |
||
| 595 | |||
| 596 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 597 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } |
||
| 598 | }; |
||
| 599 | |||
| 600 | /// This class defines a simple visitor class that may be used for |
||
| 601 | /// various SCEV analysis purposes. |
||
| 602 | template <typename SC, typename RetVal = void> struct SCEVVisitor { |
||
| 603 | RetVal visit(const SCEV *S) { |
||
| 604 | switch (S->getSCEVType()) { |
||
| 605 | case scConstant: |
||
| 606 | return ((SC *)this)->visitConstant((const SCEVConstant *)S); |
||
| 607 | case scPtrToInt: |
||
| 608 | return ((SC *)this)->visitPtrToIntExpr((const SCEVPtrToIntExpr *)S); |
||
| 609 | case scTruncate: |
||
| 610 | return ((SC *)this)->visitTruncateExpr((const SCEVTruncateExpr *)S); |
||
| 611 | case scZeroExtend: |
||
| 612 | return ((SC *)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr *)S); |
||
| 613 | case scSignExtend: |
||
| 614 | return ((SC *)this)->visitSignExtendExpr((const SCEVSignExtendExpr *)S); |
||
| 615 | case scAddExpr: |
||
| 616 | return ((SC *)this)->visitAddExpr((const SCEVAddExpr *)S); |
||
| 617 | case scMulExpr: |
||
| 618 | return ((SC *)this)->visitMulExpr((const SCEVMulExpr *)S); |
||
| 619 | case scUDivExpr: |
||
| 620 | return ((SC *)this)->visitUDivExpr((const SCEVUDivExpr *)S); |
||
| 621 | case scAddRecExpr: |
||
| 622 | return ((SC *)this)->visitAddRecExpr((const SCEVAddRecExpr *)S); |
||
| 623 | case scSMaxExpr: |
||
| 624 | return ((SC *)this)->visitSMaxExpr((const SCEVSMaxExpr *)S); |
||
| 625 | case scUMaxExpr: |
||
| 626 | return ((SC *)this)->visitUMaxExpr((const SCEVUMaxExpr *)S); |
||
| 627 | case scSMinExpr: |
||
| 628 | return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S); |
||
| 629 | case scUMinExpr: |
||
| 630 | return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S); |
||
| 631 | case scSequentialUMinExpr: |
||
| 632 | return ((SC *)this) |
||
| 633 | ->visitSequentialUMinExpr((const SCEVSequentialUMinExpr *)S); |
||
| 634 | case scUnknown: |
||
| 635 | return ((SC *)this)->visitUnknown((const SCEVUnknown *)S); |
||
| 636 | case scCouldNotCompute: |
||
| 637 | return ((SC *)this)->visitCouldNotCompute((const SCEVCouldNotCompute *)S); |
||
| 638 | } |
||
| 639 | llvm_unreachable("Unknown SCEV kind!"); |
||
| 640 | } |
||
| 641 | |||
| 642 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { |
||
| 643 | llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); |
||
| 644 | } |
||
| 645 | }; |
||
| 646 | |||
| 647 | /// Visit all nodes in the expression tree using worklist traversal. |
||
| 648 | /// |
||
| 649 | /// Visitor implements: |
||
| 650 | /// // return true to follow this node. |
||
| 651 | /// bool follow(const SCEV *S); |
||
| 652 | /// // return true to terminate the search. |
||
| 653 | /// bool isDone(); |
||
| 654 | template <typename SV> class SCEVTraversal { |
||
| 655 | SV &Visitor; |
||
| 656 | SmallVector<const SCEV *, 8> Worklist; |
||
| 657 | SmallPtrSet<const SCEV *, 8> Visited; |
||
| 658 | |||
| 659 | void push(const SCEV *S) { |
||
| 660 | if (Visited.insert(S).second && Visitor.follow(S)) |
||
| 661 | Worklist.push_back(S); |
||
| 662 | } |
||
| 663 | |||
| 664 | public: |
||
| 665 | SCEVTraversal(SV &V) : Visitor(V) {} |
||
| 666 | |||
| 667 | void visitAll(const SCEV *Root) { |
||
| 668 | push(Root); |
||
| 669 | while (!Worklist.empty() && !Visitor.isDone()) { |
||
| 670 | const SCEV *S = Worklist.pop_back_val(); |
||
| 671 | |||
| 672 | switch (S->getSCEVType()) { |
||
| 673 | case scConstant: |
||
| 674 | case scUnknown: |
||
| 675 | continue; |
||
| 676 | case scPtrToInt: |
||
| 677 | case scTruncate: |
||
| 678 | case scZeroExtend: |
||
| 679 | case scSignExtend: |
||
| 680 | case scAddExpr: |
||
| 681 | case scMulExpr: |
||
| 682 | case scUDivExpr: |
||
| 683 | case scSMaxExpr: |
||
| 684 | case scUMaxExpr: |
||
| 685 | case scSMinExpr: |
||
| 686 | case scUMinExpr: |
||
| 687 | case scSequentialUMinExpr: |
||
| 688 | case scAddRecExpr: |
||
| 689 | for (const auto *Op : S->operands()) { |
||
| 690 | push(Op); |
||
| 691 | if (Visitor.isDone()) |
||
| 692 | break; |
||
| 693 | } |
||
| 694 | continue; |
||
| 695 | case scCouldNotCompute: |
||
| 696 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
||
| 697 | } |
||
| 698 | llvm_unreachable("Unknown SCEV kind!"); |
||
| 699 | } |
||
| 700 | } |
||
| 701 | }; |
||
| 702 | |||
| 703 | /// Use SCEVTraversal to visit all nodes in the given expression tree. |
||
| 704 | template <typename SV> void visitAll(const SCEV *Root, SV &Visitor) { |
||
| 705 | SCEVTraversal<SV> T(Visitor); |
||
| 706 | T.visitAll(Root); |
||
| 707 | } |
||
| 708 | |||
| 709 | /// Return true if any node in \p Root satisfies the predicate \p Pred. |
||
| 710 | template <typename PredTy> |
||
| 711 | bool SCEVExprContains(const SCEV *Root, PredTy Pred) { |
||
| 712 | struct FindClosure { |
||
| 713 | bool Found = false; |
||
| 714 | PredTy Pred; |
||
| 715 | |||
| 716 | FindClosure(PredTy Pred) : Pred(Pred) {} |
||
| 717 | |||
| 718 | bool follow(const SCEV *S) { |
||
| 719 | if (!Pred(S)) |
||
| 720 | return true; |
||
| 721 | |||
| 722 | Found = true; |
||
| 723 | return false; |
||
| 724 | } |
||
| 725 | |||
| 726 | bool isDone() const { return Found; } |
||
| 727 | }; |
||
| 728 | |||
| 729 | FindClosure FC(Pred); |
||
| 730 | visitAll(Root, FC); |
||
| 731 | return FC.Found; |
||
| 732 | } |
||
| 733 | |||
| 734 | /// This visitor recursively visits a SCEV expression and re-writes it. |
||
| 735 | /// The result from each visit is cached, so it will return the same |
||
| 736 | /// SCEV for the same input. |
||
| 737 | template <typename SC> |
||
| 738 | class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { |
||
| 739 | protected: |
||
| 740 | ScalarEvolution &SE; |
||
| 741 | // Memoize the result of each visit so that we only compute once for |
||
| 742 | // the same input SCEV. This is to avoid redundant computations when |
||
| 743 | // a SCEV is referenced by multiple SCEVs. Without memoization, this |
||
| 744 | // visit algorithm would have exponential time complexity in the worst |
||
| 745 | // case, causing the compiler to hang on certain tests. |
||
| 746 | DenseMap<const SCEV *, const SCEV *> RewriteResults; |
||
| 747 | |||
| 748 | public: |
||
| 749 | SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} |
||
| 750 | |||
| 751 | const SCEV *visit(const SCEV *S) { |
||
| 752 | auto It = RewriteResults.find(S); |
||
| 753 | if (It != RewriteResults.end()) |
||
| 754 | return It->second; |
||
| 755 | auto *Visited = SCEVVisitor<SC, const SCEV *>::visit(S); |
||
| 756 | auto Result = RewriteResults.try_emplace(S, Visited); |
||
| 757 | assert(Result.second && "Should insert a new entry"); |
||
| 758 | return Result.first->second; |
||
| 759 | } |
||
| 760 | |||
| 761 | const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; } |
||
| 762 | |||
| 763 | const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { |
||
| 764 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
| 765 | return Operand == Expr->getOperand() |
||
| 766 | ? Expr |
||
| 767 | : SE.getPtrToIntExpr(Operand, Expr->getType()); |
||
| 768 | } |
||
| 769 | |||
| 770 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { |
||
| 771 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
| 772 | return Operand == Expr->getOperand() |
||
| 773 | ? Expr |
||
| 774 | : SE.getTruncateExpr(Operand, Expr->getType()); |
||
| 775 | } |
||
| 776 | |||
| 777 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
||
| 778 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
| 779 | return Operand == Expr->getOperand() |
||
| 780 | ? Expr |
||
| 781 | : SE.getZeroExtendExpr(Operand, Expr->getType()); |
||
| 782 | } |
||
| 783 | |||
| 784 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
||
| 785 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); |
||
| 786 | return Operand == Expr->getOperand() |
||
| 787 | ? Expr |
||
| 788 | : SE.getSignExtendExpr(Operand, Expr->getType()); |
||
| 789 | } |
||
| 790 | |||
| 791 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
||
| 792 | SmallVector<const SCEV *, 2> Operands; |
||
| 793 | bool Changed = false; |
||
| 794 | for (const auto *Op : Expr->operands()) { |
||
| 795 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 796 | Changed |= Op != Operands.back(); |
||
| 797 | } |
||
| 798 | return !Changed ? Expr : SE.getAddExpr(Operands); |
||
| 799 | } |
||
| 800 | |||
| 801 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
||
| 802 | SmallVector<const SCEV *, 2> Operands; |
||
| 803 | bool Changed = false; |
||
| 804 | for (const auto *Op : Expr->operands()) { |
||
| 805 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 806 | Changed |= Op != Operands.back(); |
||
| 807 | } |
||
| 808 | return !Changed ? Expr : SE.getMulExpr(Operands); |
||
| 809 | } |
||
| 810 | |||
| 811 | const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { |
||
| 812 | auto *LHS = ((SC *)this)->visit(Expr->getLHS()); |
||
| 813 | auto *RHS = ((SC *)this)->visit(Expr->getRHS()); |
||
| 814 | bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); |
||
| 815 | return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); |
||
| 816 | } |
||
| 817 | |||
| 818 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
||
| 819 | SmallVector<const SCEV *, 2> Operands; |
||
| 820 | bool Changed = false; |
||
| 821 | for (const auto *Op : Expr->operands()) { |
||
| 822 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 823 | Changed |= Op != Operands.back(); |
||
| 824 | } |
||
| 825 | return !Changed ? Expr |
||
| 826 | : SE.getAddRecExpr(Operands, Expr->getLoop(), |
||
| 827 | Expr->getNoWrapFlags()); |
||
| 828 | } |
||
| 829 | |||
| 830 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
||
| 831 | SmallVector<const SCEV *, 2> Operands; |
||
| 832 | bool Changed = false; |
||
| 833 | for (const auto *Op : Expr->operands()) { |
||
| 834 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 835 | Changed |= Op != Operands.back(); |
||
| 836 | } |
||
| 837 | return !Changed ? Expr : SE.getSMaxExpr(Operands); |
||
| 838 | } |
||
| 839 | |||
| 840 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
||
| 841 | SmallVector<const SCEV *, 2> Operands; |
||
| 842 | bool Changed = false; |
||
| 843 | for (const auto *Op : Expr->operands()) { |
||
| 844 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 845 | Changed |= Op != Operands.back(); |
||
| 846 | } |
||
| 847 | return !Changed ? Expr : SE.getUMaxExpr(Operands); |
||
| 848 | } |
||
| 849 | |||
| 850 | const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { |
||
| 851 | SmallVector<const SCEV *, 2> Operands; |
||
| 852 | bool Changed = false; |
||
| 853 | for (const auto *Op : Expr->operands()) { |
||
| 854 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 855 | Changed |= Op != Operands.back(); |
||
| 856 | } |
||
| 857 | return !Changed ? Expr : SE.getSMinExpr(Operands); |
||
| 858 | } |
||
| 859 | |||
| 860 | const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { |
||
| 861 | SmallVector<const SCEV *, 2> Operands; |
||
| 862 | bool Changed = false; |
||
| 863 | for (const auto *Op : Expr->operands()) { |
||
| 864 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 865 | Changed |= Op != Operands.back(); |
||
| 866 | } |
||
| 867 | return !Changed ? Expr : SE.getUMinExpr(Operands); |
||
| 868 | } |
||
| 869 | |||
| 870 | const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { |
||
| 871 | SmallVector<const SCEV *, 2> Operands; |
||
| 872 | bool Changed = false; |
||
| 873 | for (const auto *Op : Expr->operands()) { |
||
| 874 | Operands.push_back(((SC *)this)->visit(Op)); |
||
| 875 | Changed |= Op != Operands.back(); |
||
| 876 | } |
||
| 877 | return !Changed ? Expr : SE.getUMinExpr(Operands, /*Sequential=*/true); |
||
| 878 | } |
||
| 879 | |||
| 880 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; } |
||
| 881 | |||
| 882 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
||
| 883 | return Expr; |
||
| 884 | } |
||
| 885 | }; |
||
| 886 | |||
| 887 | using ValueToValueMap = DenseMap<const Value *, Value *>; |
||
| 888 | using ValueToSCEVMapTy = DenseMap<const Value *, const SCEV *>; |
||
| 889 | |||
| 890 | /// The SCEVParameterRewriter takes a scalar evolution expression and updates |
||
| 891 | /// the SCEVUnknown components following the Map (Value -> SCEV). |
||
| 892 | class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { |
||
| 893 | public: |
||
| 894 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, |
||
| 895 | ValueToSCEVMapTy &Map) { |
||
| 896 | SCEVParameterRewriter Rewriter(SE, Map); |
||
| 897 | return Rewriter.visit(Scev); |
||
| 898 | } |
||
| 899 | |||
| 900 | SCEVParameterRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) |
||
| 901 | : SCEVRewriteVisitor(SE), Map(M) {} |
||
| 902 | |||
| 903 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
||
| 904 | auto I = Map.find(Expr->getValue()); |
||
| 905 | if (I == Map.end()) |
||
| 906 | return Expr; |
||
| 907 | return I->second; |
||
| 908 | } |
||
| 909 | |||
| 910 | private: |
||
| 911 | ValueToSCEVMapTy ⤅ |
||
| 912 | }; |
||
| 913 | |||
| 914 | using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>; |
||
| 915 | |||
| 916 | /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies |
||
| 917 | /// the Map (Loop -> SCEV) to all AddRecExprs. |
||
| 918 | class SCEVLoopAddRecRewriter |
||
| 919 | : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { |
||
| 920 | public: |
||
| 921 | SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) |
||
| 922 | : SCEVRewriteVisitor(SE), Map(M) {} |
||
| 923 | |||
| 924 | static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, |
||
| 925 | ScalarEvolution &SE) { |
||
| 926 | SCEVLoopAddRecRewriter Rewriter(SE, Map); |
||
| 927 | return Rewriter.visit(Scev); |
||
| 928 | } |
||
| 929 | |||
| 930 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
||
| 931 | SmallVector<const SCEV *, 2> Operands; |
||
| 932 | for (const SCEV *Op : Expr->operands()) |
||
| 933 | Operands.push_back(visit(Op)); |
||
| 934 | |||
| 935 | const Loop *L = Expr->getLoop(); |
||
| 936 | if (0 == Map.count(L)) |
||
| 937 | return SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); |
||
| 938 | |||
| 939 | return SCEVAddRecExpr::evaluateAtIteration(Operands, Map[L], SE); |
||
| 940 | } |
||
| 941 | |||
| 942 | private: |
||
| 943 | LoopToScevMapT ⤅ |
||
| 944 | }; |
||
| 945 | |||
| 946 | } // end namespace llvm |
||
| 947 | |||
| 948 | #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |