Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
10
// categorize scalar expressions in loops.  It specializes in recognizing
11
// general induction variables, representing them with the abstract and opaque
12
// SCEV class.  Given this analysis, trip counts of loops and other important
13
// properties can be obtained.
14
//
15
// This analysis is primarily useful for induction variable substitution and
16
// strength reduction.
17
//
18
//===----------------------------------------------------------------------===//
19
 
20
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
22
 
23
#include "llvm/ADT/APInt.h"
24
#include "llvm/ADT/ArrayRef.h"
25
#include "llvm/ADT/DenseMap.h"
26
#include "llvm/ADT/DenseMapInfo.h"
27
#include "llvm/ADT/FoldingSet.h"
28
#include "llvm/ADT/PointerIntPair.h"
29
#include "llvm/ADT/SetVector.h"
30
#include "llvm/ADT/SmallPtrSet.h"
31
#include "llvm/ADT/SmallVector.h"
32
#include "llvm/IR/ConstantRange.h"
33
#include "llvm/IR/InstrTypes.h"
34
#include "llvm/IR/Instructions.h"
35
#include "llvm/IR/PassManager.h"
36
#include "llvm/IR/ValueHandle.h"
37
#include "llvm/IR/ValueMap.h"
38
#include "llvm/Pass.h"
39
#include <cassert>
40
#include <cstdint>
41
#include <memory>
42
#include <optional>
43
#include <utility>
44
 
45
namespace llvm {
46
 
47
class OverflowingBinaryOperator;
48
class AssumptionCache;
49
class BasicBlock;
50
class Constant;
51
class ConstantInt;
52
class DataLayout;
53
class DominatorTree;
54
class Function;
55
class GEPOperator;
56
class Instruction;
57
class LLVMContext;
58
class Loop;
59
class LoopInfo;
60
class raw_ostream;
61
class ScalarEvolution;
62
class SCEVAddRecExpr;
63
class SCEVUnknown;
64
class StructType;
65
class TargetLibraryInfo;
66
class Type;
67
class Value;
68
enum SCEVTypes : unsigned short;
69
 
70
extern bool VerifySCEV;
71
 
72
/// This class represents an analyzed expression in the program.  These are
73
/// opaque objects that the client is not allowed to do much with directly.
74
///
75
class SCEV : public FoldingSetNode {
76
  friend struct FoldingSetTrait<SCEV>;
77
 
78
  /// A reference to an Interned FoldingSetNodeID for this node.  The
79
  /// ScalarEvolution's BumpPtrAllocator holds the data.
80
  FoldingSetNodeIDRef FastID;
81
 
82
  // The SCEV baseclass this node corresponds to
83
  const SCEVTypes SCEVType;
84
 
85
protected:
86
  // Estimated complexity of this node's expression tree size.
87
  const unsigned short ExpressionSize;
88
 
89
  /// This field is initialized to zero and may be used in subclasses to store
90
  /// miscellaneous information.
91
  unsigned short SubclassData = 0;
92
 
93
public:
94
  /// NoWrapFlags are bitfield indices into SubclassData.
95
  ///
96
  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
97
  /// no-signed-wrap <NSW> properties, which are derived from the IR
98
  /// operator. NSW is a misnomer that we use to mean no signed overflow or
99
  /// underflow.
100
  ///
101
  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
102
  /// the integer domain, abs(step) * max-iteration(loop) <=
103
  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
104
  /// its start value if the step is non-zero.  Computing the same value on
105
  /// each iteration is not considered wrapping, and recurrences with step = 0
106
  /// are trivially <NW>.  <NW> is independent of the sign of step and the
107
  /// value the add recurrence starts with.
108
  ///
109
  /// Note that NUW and NSW are also valid properties of a recurrence, and
110
  /// either implies NW. For convenience, NW will be set for a recurrence
111
  /// whenever either NUW or NSW are set.
112
  ///
113
  /// We require that the flag on a SCEV apply to the entire scope in which
114
  /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
115
  /// a defining location, which is in turn described by the following rules:
116
  /// * A SCEVUnknown is at the point of definition of the Value.
117
  /// * A SCEVConstant is defined at all points.
118
  /// * A SCEVAddRec is defined starting with the header of the associated
119
  ///   loop.
120
  /// * All other SCEVs are defined at the earlest point all operands are
121
  ///   defined.
122
  ///
123
  /// The above rules describe a maximally hoisted form (without regards to
124
  /// potential control dependence).  A SCEV is defined anywhere a
125
  /// corresponding instruction could be defined in said maximally hoisted
126
  /// form.  Note that SCEVUDivExpr (currently the only expression type which
127
  /// can trap) can be defined per these rules in regions where it would trap
128
  /// at runtime.  A SCEV being defined does not require the existence of any
129
  /// instruction within the defined scope.
130
  enum NoWrapFlags {
131
    FlagAnyWrap = 0,    // No guarantee.
132
    FlagNW = (1 << 0),  // No self-wrap.
133
    FlagNUW = (1 << 1), // No unsigned wrap.
134
    FlagNSW = (1 << 2), // No signed wrap.
135
    NoWrapMask = (1 << 3) - 1
136
  };
137
 
138
  explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
139
                unsigned short ExpressionSize)
140
      : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
141
  SCEV(const SCEV &) = delete;
142
  SCEV &operator=(const SCEV &) = delete;
143
 
144
  SCEVTypes getSCEVType() const { return SCEVType; }
145
 
146
  /// Return the LLVM type of this SCEV expression.
147
  Type *getType() const;
148
 
149
  /// Return operands of this SCEV expression.
150
  ArrayRef<const SCEV *> operands() const;
151
 
152
  /// Return true if the expression is a constant zero.
153
  bool isZero() const;
154
 
155
  /// Return true if the expression is a constant one.
156
  bool isOne() const;
157
 
158
  /// Return true if the expression is a constant all-ones value.
159
  bool isAllOnesValue() const;
160
 
161
  /// Return true if the specified scev is negated, but not a constant.
162
  bool isNonConstantNegative() const;
163
 
164
  // Returns estimated size of the mathematical expression represented by this
165
  // SCEV. The rules of its calculation are following:
166
  // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
167
  // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
168
  //    (1 + Size(Op1) + ... + Size(OpN)).
169
  // This value gives us an estimation of time we need to traverse through this
170
  // SCEV and all its operands recursively. We may use it to avoid performing
171
  // heavy transformations on SCEVs of excessive size for sake of saving the
172
  // compilation time.
173
  unsigned short getExpressionSize() const {
174
    return ExpressionSize;
175
  }
176
 
177
  /// Print out the internal representation of this scalar to the specified
178
  /// stream.  This should really only be used for debugging purposes.
179
  void print(raw_ostream &OS) const;
180
 
181
  /// This method is used for debugging.
182
  void dump() const;
183
};
184
 
185
// Specialize FoldingSetTrait for SCEV to avoid needing to compute
186
// temporary FoldingSetNodeID values.
187
template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
188
  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
189
 
190
  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
191
                     FoldingSetNodeID &TempID) {
192
    return ID == X.FastID;
193
  }
194
 
195
  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
196
    return X.FastID.ComputeHash();
197
  }
198
};
199
 
200
inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
201
  S.print(OS);
202
  return OS;
203
}
204
 
205
/// An object of this class is returned by queries that could not be answered.
206
/// For example, if you ask for the number of iterations of a linked-list
207
/// traversal loop, you will get one of these.  None of the standard SCEV
208
/// operations are valid on this class, it is just a marker.
209
struct SCEVCouldNotCompute : public SCEV {
210
  SCEVCouldNotCompute();
211
 
212
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
213
  static bool classof(const SCEV *S);
214
};
215
 
216
/// This class represents an assumption made using SCEV expressions which can
217
/// be checked at run-time.
218
class SCEVPredicate : public FoldingSetNode {
219
  friend struct FoldingSetTrait<SCEVPredicate>;
220
 
221
  /// A reference to an Interned FoldingSetNodeID for this node.  The
222
  /// ScalarEvolution's BumpPtrAllocator holds the data.
223
  FoldingSetNodeIDRef FastID;
224
 
225
public:
226
  enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
227
 
228
protected:
229
  SCEVPredicateKind Kind;
230
  ~SCEVPredicate() = default;
231
  SCEVPredicate(const SCEVPredicate &) = default;
232
  SCEVPredicate &operator=(const SCEVPredicate &) = default;
233
 
234
public:
235
  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
236
 
237
  SCEVPredicateKind getKind() const { return Kind; }
238
 
239
  /// Returns the estimated complexity of this predicate.  This is roughly
240
  /// measured in the number of run-time checks required.
241
  virtual unsigned getComplexity() const { return 1; }
242
 
243
  /// Returns true if the predicate is always true. This means that no
244
  /// assumptions were made and nothing needs to be checked at run-time.
245
  virtual bool isAlwaysTrue() const = 0;
246
 
247
  /// Returns true if this predicate implies \p N.
248
  virtual bool implies(const SCEVPredicate *N) const = 0;
249
 
250
  /// Prints a textual representation of this predicate with an indentation of
251
  /// \p Depth.
252
  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
253
};
254
 
255
inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
256
  P.print(OS);
257
  return OS;
258
}
259
 
260
// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
261
// temporary FoldingSetNodeID values.
262
template <>
263
struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
264
  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
265
    ID = X.FastID;
266
  }
267
 
268
  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
269
                     unsigned IDHash, FoldingSetNodeID &TempID) {
270
    return ID == X.FastID;
271
  }
272
 
273
  static unsigned ComputeHash(const SCEVPredicate &X,
274
                              FoldingSetNodeID &TempID) {
275
    return X.FastID.ComputeHash();
276
  }
277
};
278
 
279
/// This class represents an assumption that the expression LHS Pred RHS
280
/// evaluates to true, and this can be checked at run-time.
281
class SCEVComparePredicate final : public SCEVPredicate {
282
  /// We assume that LHS Pred RHS is true.
283
  const ICmpInst::Predicate Pred;
284
  const SCEV *LHS;
285
  const SCEV *RHS;
286
 
287
public:
288
  SCEVComparePredicate(const FoldingSetNodeIDRef ID,
289
                       const ICmpInst::Predicate Pred,
290
                       const SCEV *LHS, const SCEV *RHS);
291
 
292
  /// Implementation of the SCEVPredicate interface
293
  bool implies(const SCEVPredicate *N) const override;
294
  void print(raw_ostream &OS, unsigned Depth = 0) const override;
295
  bool isAlwaysTrue() const override;
296
 
297
  ICmpInst::Predicate getPredicate() const { return Pred; }
298
 
299
  /// Returns the left hand side of the predicate.
300
  const SCEV *getLHS() const { return LHS; }
301
 
302
  /// Returns the right hand side of the predicate.
303
  const SCEV *getRHS() const { return RHS; }
304
 
305
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
306
  static bool classof(const SCEVPredicate *P) {
307
    return P->getKind() == P_Compare;
308
  }
309
};
310
 
311
/// This class represents an assumption made on an AddRec expression. Given an
312
/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
313
/// flags (defined below) in the first X iterations of the loop, where X is a
314
/// SCEV expression returned by getPredicatedBackedgeTakenCount).
315
///
316
/// Note that this does not imply that X is equal to the backedge taken
317
/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
318
/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
319
/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
320
/// have more than X iterations.
321
class SCEVWrapPredicate final : public SCEVPredicate {
322
public:
323
  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
324
  /// for FlagNUSW. The increment is considered to be signed, and a + b
325
  /// (where b is the increment) is considered to wrap if:
326
  ///    zext(a + b) != zext(a) + sext(b)
327
  ///
328
  /// If Signed is a function that takes an n-bit tuple and maps to the
329
  /// integer domain as the tuples value interpreted as twos complement,
330
  /// and Unsigned a function that takes an n-bit tuple and maps to the
331
  /// integer domain as as the base two value of input tuple, then a + b
332
  /// has IncrementNUSW iff:
333
  ///
334
  /// 0 <= Unsigned(a) + Signed(b) < 2^n
335
  ///
336
  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
337
  ///
338
  /// Note that the IncrementNUSW flag is not commutative: if base + inc
339
  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
340
  /// property. The reason for this is that this is used for sign/zero
341
  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
342
  /// assumed. A {base,+,inc} expression is already non-commutative with
343
  /// regards to base and inc, since it is interpreted as:
344
  ///     (((base + inc) + inc) + inc) ...
345
  enum IncrementWrapFlags {
346
    IncrementAnyWrap = 0,     // No guarantee.
347
    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
348
    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
349
                              // (equivalent with SCEV::NSW)
350
    IncrementNoWrapMask = (1 << 2) - 1
351
  };
352
 
353
  /// Convenient IncrementWrapFlags manipulation methods.
354
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
355
  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356
             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
357
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358
    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
359
           "Invalid flags value!");
360
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
361
  }
362
 
363
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
364
  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
365
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
366
    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
367
 
368
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
369
  }
370
 
371
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
372
  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
373
           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
374
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
375
    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
376
           "Invalid flags value!");
377
 
378
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
379
  }
380
 
381
  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
382
  /// SCEVAddRecExpr.
383
  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
384
  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
385
 
386
private:
387
  const SCEVAddRecExpr *AR;
388
  IncrementWrapFlags Flags;
389
 
390
public:
391
  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
392
                             const SCEVAddRecExpr *AR,
393
                             IncrementWrapFlags Flags);
394
 
395
  /// Returns the set assumed no overflow flags.
396
  IncrementWrapFlags getFlags() const { return Flags; }
397
 
398
  /// Implementation of the SCEVPredicate interface
399
  const SCEVAddRecExpr *getExpr() const;
400
  bool implies(const SCEVPredicate *N) const override;
401
  void print(raw_ostream &OS, unsigned Depth = 0) const override;
402
  bool isAlwaysTrue() const override;
403
 
404
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
405
  static bool classof(const SCEVPredicate *P) {
406
    return P->getKind() == P_Wrap;
407
  }
408
};
409
 
410
/// This class represents a composition of other SCEV predicates, and is the
411
/// class that most clients will interact with.  This is equivalent to a
412
/// logical "AND" of all the predicates in the union.
413
///
414
/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
415
/// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
416
class SCEVUnionPredicate final : public SCEVPredicate {
417
private:
418
  using PredicateMap =
419
      DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
420
 
421
  /// Vector with references to all predicates in this union.
422
  SmallVector<const SCEVPredicate *, 16> Preds;
423
 
424
  /// Adds a predicate to this union.
425
  void add(const SCEVPredicate *N);
426
 
427
public:
428
  SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
429
 
430
  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
431
    return Preds;
432
  }
433
 
434
  /// Implementation of the SCEVPredicate interface
435
  bool isAlwaysTrue() const override;
436
  bool implies(const SCEVPredicate *N) const override;
437
  void print(raw_ostream &OS, unsigned Depth) const override;
438
 
439
  /// We estimate the complexity of a union predicate as the size number of
440
  /// predicates in the union.
441
  unsigned getComplexity() const override { return Preds.size(); }
442
 
443
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
444
  static bool classof(const SCEVPredicate *P) {
445
    return P->getKind() == P_Union;
446
  }
447
};
448
 
449
/// The main scalar evolution driver. Because client code (intentionally)
450
/// can't do much with the SCEV objects directly, they must ask this class
451
/// for services.
452
class ScalarEvolution {
453
  friend class ScalarEvolutionsTest;
454
 
455
public:
456
  /// An enum describing the relationship between a SCEV and a loop.
457
  enum LoopDisposition {
458
    LoopVariant,   ///< The SCEV is loop-variant (unknown).
459
    LoopInvariant, ///< The SCEV is loop-invariant.
460
    LoopComputable ///< The SCEV varies predictably with the loop.
461
  };
462
 
463
  /// An enum describing the relationship between a SCEV and a basic block.
464
  enum BlockDisposition {
465
    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
466
    DominatesBlock,        ///< The SCEV dominates the block.
467
    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
468
  };
469
 
470
  /// Convenient NoWrapFlags manipulation that hides enum casts and is
471
  /// visible in the ScalarEvolution name space.
472
  [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
473
                                                   int Mask) {
474
    return (SCEV::NoWrapFlags)(Flags & Mask);
475
  }
476
  [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
477
                                                  SCEV::NoWrapFlags OnFlags) {
478
    return (SCEV::NoWrapFlags)(Flags | OnFlags);
479
  }
480
  [[nodiscard]] static SCEV::NoWrapFlags
481
  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
482
    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
483
  }
484
  [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
485
                                     SCEV::NoWrapFlags TestFlags) {
486
    return TestFlags == maskFlags(Flags, TestFlags);
487
  };
488
 
489
  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
490
                  DominatorTree &DT, LoopInfo &LI);
491
  ScalarEvolution(ScalarEvolution &&Arg);
492
  ~ScalarEvolution();
493
 
494
  LLVMContext &getContext() const { return F.getContext(); }
495
 
496
  /// Test if values of the given type are analyzable within the SCEV
497
  /// framework. This primarily includes integer types, and it can optionally
498
  /// include pointer types if the ScalarEvolution class has access to
499
  /// target-specific information.
500
  bool isSCEVable(Type *Ty) const;
501
 
502
  /// Return the size in bits of the specified type, for which isSCEVable must
503
  /// return true.
504
  uint64_t getTypeSizeInBits(Type *Ty) const;
505
 
506
  /// Return a type with the same bitwidth as the given type and which
507
  /// represents how SCEV will treat the given type, for which isSCEVable must
508
  /// return true. For pointer types, this is the pointer-sized integer type.
509
  Type *getEffectiveSCEVType(Type *Ty) const;
510
 
511
  // Returns a wider type among {Ty1, Ty2}.
512
  Type *getWiderType(Type *Ty1, Type *Ty2) const;
513
 
514
  /// Return true if there exists a point in the program at which both
515
  /// A and B could be operands to the same instruction.
516
  /// SCEV expressions are generally assumed to correspond to instructions
517
  /// which could exists in IR.  In general, this requires that there exists
518
  /// a use point in the program where all operands dominate the use.
519
  ///
520
  /// Example:
521
  /// loop {
522
  ///   if
523
  ///     loop { v1 = load @global1; }
524
  ///   else
525
  ///     loop { v2 = load @global2; }
526
  /// }
527
  /// No SCEV with operand V1, and v2 can exist in this program.
528
  bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B);
529
 
530
  /// Return true if the SCEV is a scAddRecExpr or it contains
531
  /// scAddRecExpr. The result will be cached in HasRecMap.
532
  bool containsAddRecurrence(const SCEV *S);
533
 
534
  /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
535
  /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
536
  /// no-overflow fact should be true in the context of this instruction.
537
  bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
538
                       const SCEV *LHS, const SCEV *RHS,
539
                       const Instruction *CtxI = nullptr);
540
 
541
  /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
542
  /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
543
  /// Does not mutate the original instruction. Returns std::nullopt if it could
544
  /// not deduce more precise flags than the instruction already has, otherwise
545
  /// returns proven flags.
546
  std::optional<SCEV::NoWrapFlags>
547
  getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
548
 
549
  /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
550
  void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
551
 
552
  /// Return true if the SCEV expression contains an undef value.
553
  bool containsUndefs(const SCEV *S) const;
554
 
555
  /// Return true if the SCEV expression contains a Value that has been
556
  /// optimised out and is now a nullptr.
557
  bool containsErasedValue(const SCEV *S) const;
558
 
559
  /// Return a SCEV expression for the full generality of the specified
560
  /// expression.
561
  const SCEV *getSCEV(Value *V);
562
 
563
  const SCEV *getConstant(ConstantInt *V);
564
  const SCEV *getConstant(const APInt &Val);
565
  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
566
  const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
567
  const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
568
  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
569
  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
570
  const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
571
                                    unsigned Depth = 0);
572
  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
573
  const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
574
                                    unsigned Depth = 0);
575
  const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
576
  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
577
  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
578
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
579
                         unsigned Depth = 0);
580
  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
581
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
582
                         unsigned Depth = 0) {
583
    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
584
    return getAddExpr(Ops, Flags, Depth);
585
  }
586
  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
587
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
588
                         unsigned Depth = 0) {
589
    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
590
    return getAddExpr(Ops, Flags, Depth);
591
  }
592
  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
593
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
594
                         unsigned Depth = 0);
595
  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
596
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
597
                         unsigned Depth = 0) {
598
    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
599
    return getMulExpr(Ops, Flags, Depth);
600
  }
601
  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
602
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
603
                         unsigned Depth = 0) {
604
    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
605
    return getMulExpr(Ops, Flags, Depth);
606
  }
607
  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
608
  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
609
  const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
610
  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
611
                            SCEV::NoWrapFlags Flags);
612
  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
613
                            const Loop *L, SCEV::NoWrapFlags Flags);
614
  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
615
                            const Loop *L, SCEV::NoWrapFlags Flags) {
616
    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
617
    return getAddRecExpr(NewOp, L, Flags);
618
  }
619
 
620
  /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
621
  /// Predicates. If successful return these <AddRecExpr, Predicates>;
622
  /// The function is intended to be called from PSCEV (the caller will decide
623
  /// whether to actually add the predicates and carry out the rewrites).
624
  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
625
  createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
626
 
627
  /// Returns an expression for a GEP
628
  ///
629
  /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
630
  /// instead we use IndexExprs.
631
  /// \p IndexExprs The expressions for the indices.
632
  const SCEV *getGEPExpr(GEPOperator *GEP,
633
                         const SmallVectorImpl<const SCEV *> &IndexExprs);
634
  const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
635
  const SCEV *getMinMaxExpr(SCEVTypes Kind,
636
                            SmallVectorImpl<const SCEV *> &Operands);
637
  const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
638
                                      SmallVectorImpl<const SCEV *> &Operands);
639
  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
640
  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
641
  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
642
  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
643
  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
644
  const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
645
  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
646
                          bool Sequential = false);
647
  const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
648
                          bool Sequential = false);
649
  const SCEV *getUnknown(Value *V);
650
  const SCEV *getCouldNotCompute();
651
 
652
  /// Return a SCEV for the constant 0 of a specific type.
653
  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
654
 
655
  /// Return a SCEV for the constant 1 of a specific type.
656
  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
657
 
658
  /// Return a SCEV for the constant -1 of a specific type.
659
  const SCEV *getMinusOne(Type *Ty) {
660
    return getConstant(Ty, -1, /*isSigned=*/true);
661
  }
662
 
663
  /// Return an expression for sizeof ScalableTy that is type IntTy, where
664
  /// ScalableTy is a scalable vector type.
665
  const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
666
                                          ScalableVectorType *ScalableTy);
667
 
668
  /// Return an expression for the alloc size of AllocTy that is type IntTy
669
  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
670
 
671
  /// Return an expression for the store size of StoreTy that is type IntTy
672
  const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
673
 
674
  /// Return an expression for offsetof on the given field with type IntTy
675
  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
676
 
677
  /// Return the SCEV object corresponding to -V.
678
  const SCEV *getNegativeSCEV(const SCEV *V,
679
                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
680
 
681
  /// Return the SCEV object corresponding to ~V.
682
  const SCEV *getNotSCEV(const SCEV *V);
683
 
684
  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
685
  ///
686
  /// If the LHS and RHS are pointers which don't share a common base
687
  /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
688
  /// To compute the difference between two unrelated pointers, you can
689
  /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
690
  /// types that support it.
691
  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
692
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
693
                           unsigned Depth = 0);
694
 
695
  /// Compute ceil(N / D). N and D are treated as unsigned values.
696
  ///
697
  /// Since SCEV doesn't have native ceiling division, this generates a
698
  /// SCEV expression of the following form:
699
  ///
700
  /// umin(N, 1) + floor((N - umin(N, 1)) / D)
701
  ///
702
  /// A denominator of zero or poison is handled the same way as getUDivExpr().
703
  const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
704
 
705
  /// Return a SCEV corresponding to a conversion of the input value to the
706
  /// specified type.  If the type must be extended, it is zero extended.
707
  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
708
                                      unsigned Depth = 0);
709
 
710
  /// Return a SCEV corresponding to a conversion of the input value to the
711
  /// specified type.  If the type must be extended, it is sign extended.
712
  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
713
                                      unsigned Depth = 0);
714
 
715
  /// Return a SCEV corresponding to a conversion of the input value to the
716
  /// specified type.  If the type must be extended, it is zero extended.  The
717
  /// conversion must not be narrowing.
718
  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
719
 
720
  /// Return a SCEV corresponding to a conversion of the input value to the
721
  /// specified type.  If the type must be extended, it is sign extended.  The
722
  /// conversion must not be narrowing.
723
  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
724
 
725
  /// Return a SCEV corresponding to a conversion of the input value to the
726
  /// specified type. If the type must be extended, it is extended with
727
  /// unspecified bits. The conversion must not be narrowing.
728
  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
729
 
730
  /// Return a SCEV corresponding to a conversion of the input value to the
731
  /// specified type.  The conversion must not be widening.
732
  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
733
 
734
  /// Promote the operands to the wider of the types using zero-extension, and
735
  /// then perform a umax operation with them.
736
  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
737
 
738
  /// Promote the operands to the wider of the types using zero-extension, and
739
  /// then perform a umin operation with them.
740
  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
741
                                         bool Sequential = false);
742
 
743
  /// Promote the operands to the wider of the types using zero-extension, and
744
  /// then perform a umin operation with them. N-ary function.
745
  const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
746
                                         bool Sequential = false);
747
 
748
  /// Transitively follow the chain of pointer-type operands until reaching a
749
  /// SCEV that does not have a single pointer operand. This returns a
750
  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
751
  /// cases do exist.
752
  const SCEV *getPointerBase(const SCEV *V);
753
 
754
  /// Compute an expression equivalent to S - getPointerBase(S).
755
  const SCEV *removePointerBase(const SCEV *S);
756
 
757
  /// Return a SCEV expression for the specified value at the specified scope
758
  /// in the program.  The L value specifies a loop nest to evaluate the
759
  /// expression at, where null is the top-level or a specified loop is
760
  /// immediately inside of the loop.
761
  ///
762
  /// This method can be used to compute the exit value for a variable defined
763
  /// in a loop by querying what the value will hold in the parent loop.
764
  ///
765
  /// In the case that a relevant loop exit value cannot be computed, the
766
  /// original value V is returned.
767
  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
768
 
769
  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
770
  const SCEV *getSCEVAtScope(Value *V, const Loop *L);
771
 
772
  /// Test whether entry to the loop is protected by a conditional between LHS
773
  /// and RHS.  This is used to help avoid max expressions in loop trip
774
  /// counts, and to eliminate casts.
775
  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
776
                                const SCEV *LHS, const SCEV *RHS);
777
 
778
  /// Test whether entry to the basic block is protected by a conditional
779
  /// between LHS and RHS.
780
  bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
781
                                      ICmpInst::Predicate Pred, const SCEV *LHS,
782
                                      const SCEV *RHS);
783
 
784
  /// Test whether the backedge of the loop is protected by a conditional
785
  /// between LHS and RHS.  This is used to eliminate casts.
786
  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
787
                                   const SCEV *LHS, const SCEV *RHS);
788
 
789
  /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
790
  /// count".  A "trip count" is the number of times the header of the loop
791
  /// will execute if an exit is taken after the specified number of backedges
792
  /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
793
  /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls
794
  /// how potential overflow is handled.  If true, a wider result type is
795
  /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned
796
  /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
797
  const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
798
                                        bool Extend = true);
799
 
800
  /// Returns the exact trip count of the loop if we can compute it, and
801
  /// the result is a small constant.  '0' is used to represent an unknown
802
  /// or non-constant trip count.  Note that a trip count is simply one more
803
  /// than the backedge taken count for the loop.
804
  unsigned getSmallConstantTripCount(const Loop *L);
805
 
806
  /// Return the exact trip count for this loop if we exit through ExitingBlock.
807
  /// '0' is used to represent an unknown or non-constant trip count.  Note
808
  /// that a trip count is simply one more than the backedge taken count for
809
  /// the same exit.
810
  /// This "trip count" assumes that control exits via ExitingBlock. More
811
  /// precisely, it is the number of times that control will reach ExitingBlock
812
  /// before taking the branch. For loops with multiple exits, it may not be
813
  /// the number times that the loop header executes if the loop exits
814
  /// prematurely via another branch.
815
  unsigned getSmallConstantTripCount(const Loop *L,
816
                                     const BasicBlock *ExitingBlock);
817
 
818
  /// Returns the upper bound of the loop trip count as a normal unsigned
819
  /// value.
820
  /// Returns 0 if the trip count is unknown or not constant.
821
  unsigned getSmallConstantMaxTripCount(const Loop *L);
822
 
823
  /// Returns the upper bound of the loop trip count infered from array size.
824
  /// Can not access bytes starting outside the statically allocated size
825
  /// without being immediate UB.
826
  /// Returns SCEVCouldNotCompute if the trip count could not inferred
827
  /// from array accesses.
828
  const SCEV *getConstantMaxTripCountFromArray(const Loop *L);
829
 
830
  /// Returns the largest constant divisor of the trip count as a normal
831
  /// unsigned value, if possible. This means that the actual trip count is
832
  /// always a multiple of the returned value. Returns 1 if the trip count is
833
  /// unknown or not guaranteed to be the multiple of a constant., Will also
834
  /// return 1 if the trip count is very large (>= 2^32).
835
  /// Note that the argument is an exit count for loop L, NOT a trip count.
836
  unsigned getSmallConstantTripMultiple(const Loop *L,
837
                                        const SCEV *ExitCount);
838
 
839
  /// Returns the largest constant divisor of the trip count of the
840
  /// loop.  Will return 1 if no trip count could be computed, or if a
841
  /// divisor could not be found.
842
  unsigned getSmallConstantTripMultiple(const Loop *L);
843
 
844
  /// Returns the largest constant divisor of the trip count of this loop as a
845
  /// normal unsigned value, if possible. This means that the actual trip
846
  /// count is always a multiple of the returned value (don't forget the trip
847
  /// count could very well be zero as well!). As explained in the comments
848
  /// for getSmallConstantTripCount, this assumes that control exits the loop
849
  /// via ExitingBlock.
850
  unsigned getSmallConstantTripMultiple(const Loop *L,
851
                                        const BasicBlock *ExitingBlock);
852
 
853
  /// The terms "backedge taken count" and "exit count" are used
854
  /// interchangeably to refer to the number of times the backedge of a loop 
855
  /// has executed before the loop is exited.
856
  enum ExitCountKind {
857
    /// An expression exactly describing the number of times the backedge has
858
    /// executed when a loop is exited.
859
    Exact,
860
    /// A constant which provides an upper bound on the exact trip count.
861
    ConstantMaximum,
862
    /// An expression which provides an upper bound on the exact trip count.
863
    SymbolicMaximum,
864
  };
865
 
866
  /// Return the number of times the backedge executes before the given exit
867
  /// would be taken; if not exactly computable, return SCEVCouldNotCompute. 
868
  /// For a single exit loop, this value is equivelent to the result of
869
  /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
870
  /// before the backedge is executed (ExitCount + 1) times.  Note that there
871
  /// is no guarantee about *which* exit is taken on the exiting iteration.
872
  const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
873
                           ExitCountKind Kind = Exact);
874
 
875
  /// If the specified loop has a predictable backedge-taken count, return it,
876
  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
877
  /// the number of times the loop header will be branched to from within the
878
  /// loop, assuming there are no abnormal exists like exception throws. This is
879
  /// one less than the trip count of the loop, since it doesn't count the first
880
  /// iteration, when the header is branched to from outside the loop.
881
  ///
882
  /// Note that it is not valid to call this method on a loop without a
883
  /// loop-invariant backedge-taken count (see
884
  /// hasLoopInvariantBackedgeTakenCount).
885
  const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
886
 
887
  /// Similar to getBackedgeTakenCount, except it will add a set of
888
  /// SCEV predicates to Predicates that are required to be true in order for
889
  /// the answer to be correct. Predicates can be checked with run-time
890
  /// checks and can be used to perform loop versioning.
891
  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
892
                                              SmallVector<const SCEVPredicate *, 4> &Predicates);
893
 
894
  /// When successful, this returns a SCEVConstant that is greater than or equal
895
  /// to (i.e. a "conservative over-approximation") of the value returend by
896
  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
897
  /// SCEVCouldNotCompute object.
898
  const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
899
    return getBackedgeTakenCount(L, ConstantMaximum);
900
  }
901
 
902
  /// When successful, this returns a SCEV that is greater than or equal
903
  /// to (i.e. a "conservative over-approximation") of the value returend by
904
  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
905
  /// SCEVCouldNotCompute object.
906
  const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
907
    return getBackedgeTakenCount(L, SymbolicMaximum);
908
  }
909
 
910
  /// Return true if the backedge taken count is either the value returned by
911
  /// getConstantMaxBackedgeTakenCount or zero.
912
  bool isBackedgeTakenCountMaxOrZero(const Loop *L);
913
 
914
  /// Return true if the specified loop has an analyzable loop-invariant
915
  /// backedge-taken count.
916
  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
917
 
918
  // This method should be called by the client when it made any change that
919
  // would invalidate SCEV's answers, and the client wants to remove all loop
920
  // information held internally by ScalarEvolution. This is intended to be used
921
  // when the alternative to forget a loop is too expensive (i.e. large loop
922
  // bodies).
923
  void forgetAllLoops();
924
 
925
  /// This method should be called by the client when it has changed a loop in
926
  /// a way that may effect ScalarEvolution's ability to compute a trip count,
927
  /// or if the loop is deleted.  This call is potentially expensive for large
928
  /// loop bodies.
929
  void forgetLoop(const Loop *L);
930
 
931
  // This method invokes forgetLoop for the outermost loop of the given loop
932
  // \p L, making ScalarEvolution forget about all this subtree. This needs to
933
  // be done whenever we make a transform that may affect the parameters of the
934
  // outer loop, such as exit counts for branches.
935
  void forgetTopmostLoop(const Loop *L);
936
 
937
  /// This method should be called by the client when it has changed a value
938
  /// in a way that may effect its value, or which may disconnect it from a
939
  /// def-use chain linking it to a loop.
940
  void forgetValue(Value *V);
941
 
942
  /// Called when the client has changed the disposition of values in
943
  /// this loop.
944
  ///
945
  /// We don't have a way to invalidate per-loop dispositions. Clear and
946
  /// recompute is simpler.
947
  void forgetLoopDispositions();
948
 
949
  /// Called when the client has changed the disposition of values in
950
  /// a loop or block.
951
  ///
952
  /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
953
  /// and recompute is simpler.
954
  void forgetBlockAndLoopDispositions(Value *V = nullptr);
955
 
956
  /// Determine the minimum number of zero bits that S is guaranteed to end in
957
  /// (at every loop iteration).  It is, at the same time, the minimum number
958
  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
959
  /// If S is guaranteed to be 0, it returns the bitwidth of S.
960
  uint32_t GetMinTrailingZeros(const SCEV *S);
961
 
962
  /// Determine the unsigned range for a particular SCEV.
963
  /// NOTE: This returns a copy of the reference returned by getRangeRef.
964
  ConstantRange getUnsignedRange(const SCEV *S) {
965
    return getRangeRef(S, HINT_RANGE_UNSIGNED);
966
  }
967
 
968
  /// Determine the min of the unsigned range for a particular SCEV.
969
  APInt getUnsignedRangeMin(const SCEV *S) {
970
    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
971
  }
972
 
973
  /// Determine the max of the unsigned range for a particular SCEV.
974
  APInt getUnsignedRangeMax(const SCEV *S) {
975
    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
976
  }
977
 
978
  /// Determine the signed range for a particular SCEV.
979
  /// NOTE: This returns a copy of the reference returned by getRangeRef.
980
  ConstantRange getSignedRange(const SCEV *S) {
981
    return getRangeRef(S, HINT_RANGE_SIGNED);
982
  }
983
 
984
  /// Determine the min of the signed range for a particular SCEV.
985
  APInt getSignedRangeMin(const SCEV *S) {
986
    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
987
  }
988
 
989
  /// Determine the max of the signed range for a particular SCEV.
990
  APInt getSignedRangeMax(const SCEV *S) {
991
    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
992
  }
993
 
994
  /// Test if the given expression is known to be negative.
995
  bool isKnownNegative(const SCEV *S);
996
 
997
  /// Test if the given expression is known to be positive.
998
  bool isKnownPositive(const SCEV *S);
999
 
1000
  /// Test if the given expression is known to be non-negative.
1001
  bool isKnownNonNegative(const SCEV *S);
1002
 
1003
  /// Test if the given expression is known to be non-positive.
1004
  bool isKnownNonPositive(const SCEV *S);
1005
 
1006
  /// Test if the given expression is known to be non-zero.
1007
  bool isKnownNonZero(const SCEV *S);
1008
 
1009
  /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1010
  /// \p S by substitution of all AddRec sub-expression related to loop \p L
1011
  /// with initial value of that SCEV. The second is obtained from \p S by
1012
  /// substitution of all AddRec sub-expressions related to loop \p L with post
1013
  /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1014
  /// sub-expressions (not related to \p L) remain the same.
1015
  /// If the \p S contains non-invariant unknown SCEV the function returns
1016
  /// CouldNotCompute SCEV in both values of std::pair.
1017
  /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1018
  /// the function returns pair:
1019
  /// first = {0, +, 1}<L2>
1020
  /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1021
  /// We can see that for the first AddRec sub-expression it was replaced with
1022
  /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1023
  /// increment value) for the second one. In both cases AddRec expression
1024
  /// related to L2 remains the same.
1025
  std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1026
                                                                const SCEV *S);
1027
 
1028
  /// We'd like to check the predicate on every iteration of the most dominated
1029
  /// loop between loops used in LHS and RHS.
1030
  /// To do this we use the following list of steps:
1031
  /// 1. Collect set S all loops on which either LHS or RHS depend.
1032
  /// 2. If S is non-empty
1033
  /// a. Let PD be the element of S which is dominated by all other elements.
1034
  /// b. Let E(LHS) be value of LHS on entry of PD.
1035
  ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
1036
  ///    attached to PD on with their entry values.
1037
  ///    Define E(RHS) in the same way.
1038
  /// c. Let B(LHS) be value of L on backedge of PD.
1039
  ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
1040
  ///    attached to PD on with their backedge values.
1041
  ///    Define B(RHS) in the same way.
1042
  /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1043
  ///    so we can assert on that.
1044
  /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1045
  ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1046
  bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
1047
                           const SCEV *RHS);
1048
 
1049
  /// Test if the given expression is known to satisfy the condition described
1050
  /// by Pred, LHS, and RHS.
1051
  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1052
                        const SCEV *RHS);
1053
 
1054
  /// Check whether the condition described by Pred, LHS, and RHS is true or
1055
  /// false. If we know it, return the evaluation of this condition. If neither
1056
  /// is proved, return std::nullopt.
1057
  std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred,
1058
                                        const SCEV *LHS, const SCEV *RHS);
1059
 
1060
  /// Test if the given expression is known to satisfy the condition described
1061
  /// by Pred, LHS, and RHS in the given Context.
1062
  bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1063
                          const SCEV *RHS, const Instruction *CtxI);
1064
 
1065
  /// Check whether the condition described by Pred, LHS, and RHS is true or
1066
  /// false in the given \p Context. If we know it, return the evaluation of
1067
  /// this condition. If neither is proved, return std::nullopt.
1068
  std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred,
1069
                                          const SCEV *LHS, const SCEV *RHS,
1070
                                          const Instruction *CtxI);
1071
 
1072
  /// Test if the condition described by Pred, LHS, RHS is known to be true on
1073
  /// every iteration of the loop of the recurrency LHS.
1074
  bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1075
                               const SCEVAddRecExpr *LHS, const SCEV *RHS);
1076
 
1077
  /// Information about the number of loop iterations for which a loop exit's
1078
  /// branch condition evaluates to the not-taken path.  This is a temporary
1079
  /// pair of exact and max expressions that are eventually summarized in
1080
  /// ExitNotTakenInfo and BackedgeTakenInfo.
1081
  struct ExitLimit {
1082
    const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1083
    const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1084
                                     // times
1085
    const SCEV *SymbolicMaxNotTaken;
1086
 
1087
    // Not taken either exactly ConstantMaxNotTaken or zero times
1088
    bool MaxOrZero = false;
1089
 
1090
    /// A set of predicate guards for this ExitLimit. The result is only valid
1091
    /// if all of the predicates in \c Predicates evaluate to 'true' at
1092
    /// run-time.
1093
    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1094
 
1095
    void addPredicate(const SCEVPredicate *P) {
1096
      assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1097
      Predicates.insert(P);
1098
    }
1099
 
1100
    /// Construct either an exact exit limit from a constant, or an unknown
1101
    /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1102
    /// as arguments and asserts enforce that internally.
1103
    /*implicit*/ ExitLimit(const SCEV *E);
1104
 
1105
    ExitLimit(
1106
        const SCEV *E, const SCEV *ConstantMaxNotTaken,
1107
        const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1108
        ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList =
1109
            std::nullopt);
1110
 
1111
    ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1112
              const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1113
              const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1114
 
1115
    /// Test whether this ExitLimit contains any computed information, or
1116
    /// whether it's all SCEVCouldNotCompute values.
1117
    bool hasAnyInfo() const {
1118
      return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1119
             !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
1120
    }
1121
 
1122
    /// Test whether this ExitLimit contains all information.
1123
    bool hasFullInfo() const {
1124
      return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1125
    }
1126
  };
1127
 
1128
  /// Compute the number of times the backedge of the specified loop will
1129
  /// execute if its exit condition were a conditional branch of ExitCond.
1130
  ///
1131
  /// \p ControlsExit is true if ExitCond directly controls the exit
1132
  /// branch. In this case, we can assume that the loop exits only if the
1133
  /// condition is true and can infer that failing to meet the condition prior
1134
  /// to integer wraparound results in undefined behavior.
1135
  ///
1136
  /// If \p AllowPredicates is set, this call will try to use a minimal set of
1137
  /// SCEV predicates in order to return an exact answer.
1138
  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1139
                                     bool ExitIfTrue, bool ControlsExit,
1140
                                     bool AllowPredicates = false);
1141
 
1142
  /// A predicate is said to be monotonically increasing if may go from being
1143
  /// false to being true as the loop iterates, but never the other way
1144
  /// around.  A predicate is said to be monotonically decreasing if may go
1145
  /// from being true to being false as the loop iterates, but never the other
1146
  /// way around.
1147
  enum MonotonicPredicateType {
1148
    MonotonicallyIncreasing,
1149
    MonotonicallyDecreasing
1150
  };
1151
 
1152
  /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1153
  /// monotonically increasing or decreasing, returns
1154
  /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1155
  /// respectively. If we could not prove either of these facts, returns
1156
  /// std::nullopt.
1157
  std::optional<MonotonicPredicateType>
1158
  getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1159
                            ICmpInst::Predicate Pred);
1160
 
1161
  struct LoopInvariantPredicate {
1162
    ICmpInst::Predicate Pred;
1163
    const SCEV *LHS;
1164
    const SCEV *RHS;
1165
 
1166
    LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1167
                           const SCEV *RHS)
1168
        : Pred(Pred), LHS(LHS), RHS(RHS) {}
1169
  };
1170
  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1171
  /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1172
  /// invariants, available at L's entry. Otherwise, return std::nullopt.
1173
  std::optional<LoopInvariantPredicate>
1174
  getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1175
                            const SCEV *RHS, const Loop *L,
1176
                            const Instruction *CtxI = nullptr);
1177
 
1178
  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1179
  /// respect to L at given Context during at least first MaxIter iterations,
1180
  /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1181
  /// available at L's entry. Otherwise, return std::nullopt. The predicate
1182
  /// should be the loop's exit condition.
1183
  std::optional<LoopInvariantPredicate>
1184
  getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1185
                                                const SCEV *LHS,
1186
                                                const SCEV *RHS, const Loop *L,
1187
                                                const Instruction *CtxI,
1188
                                                const SCEV *MaxIter);
1189
 
1190
  std::optional<LoopInvariantPredicate>
1191
  getLoopInvariantExitCondDuringFirstIterationsImpl(
1192
      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1193
      const Instruction *CtxI, const SCEV *MaxIter);
1194
 
1195
  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1196
  /// iff any changes were made. If the operands are provably equal or
1197
  /// unequal, LHS and RHS are set to the same value and Pred is set to either
1198
  /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison
1199
  /// controls the exit of a loop known to have a finite number of iterations.
1200
  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1201
                            const SCEV *&RHS, unsigned Depth = 0,
1202
                            bool ControllingFiniteLoop = false);
1203
 
1204
  /// Return the "disposition" of the given SCEV with respect to the given
1205
  /// loop.
1206
  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1207
 
1208
  /// Return true if the value of the given SCEV is unchanging in the
1209
  /// specified loop.
1210
  bool isLoopInvariant(const SCEV *S, const Loop *L);
1211
 
1212
  /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1213
  /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1214
  /// the header of loop L.
1215
  bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1216
 
1217
  /// Return true if the given SCEV changes value in a known way in the
1218
  /// specified loop.  This property being true implies that the value is
1219
  /// variant in the loop AND that we can emit an expression to compute the
1220
  /// value of the expression at any particular loop iteration.
1221
  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1222
 
1223
  /// Return the "disposition" of the given SCEV with respect to the given
1224
  /// block.
1225
  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1226
 
1227
  /// Return true if elements that makes up the given SCEV dominate the
1228
  /// specified basic block.
1229
  bool dominates(const SCEV *S, const BasicBlock *BB);
1230
 
1231
  /// Return true if elements that makes up the given SCEV properly dominate
1232
  /// the specified basic block.
1233
  bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1234
 
1235
  /// Test whether the given SCEV has Op as a direct or indirect operand.
1236
  bool hasOperand(const SCEV *S, const SCEV *Op) const;
1237
 
1238
  /// Return the size of an element read or written by Inst.
1239
  const SCEV *getElementSize(Instruction *Inst);
1240
 
1241
  void print(raw_ostream &OS) const;
1242
  void verify() const;
1243
  bool invalidate(Function &F, const PreservedAnalyses &PA,
1244
                  FunctionAnalysisManager::Invalidator &Inv);
1245
 
1246
  /// Return the DataLayout associated with the module this SCEV instance is
1247
  /// operating on.
1248
  const DataLayout &getDataLayout() const {
1249
    return F.getParent()->getDataLayout();
1250
  }
1251
 
1252
  const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1253
  const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
1254
                                           const SCEV *LHS, const SCEV *RHS);
1255
 
1256
  const SCEVPredicate *
1257
  getWrapPredicate(const SCEVAddRecExpr *AR,
1258
                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1259
 
1260
  /// Re-writes the SCEV according to the Predicates in \p A.
1261
  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1262
                                    const SCEVPredicate &A);
1263
  /// Tries to convert the \p S expression to an AddRec expression,
1264
  /// adding additional predicates to \p Preds as required.
1265
  const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1266
      const SCEV *S, const Loop *L,
1267
      SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1268
 
1269
  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1270
  /// constant, and std::nullopt if it isn't.
1271
  ///
1272
  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1273
  /// frugal here since we just bail out of actually constructing and
1274
  /// canonicalizing an expression in the cases where the result isn't going
1275
  /// to be a constant.
1276
  std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1277
                                                 const SCEV *RHS);
1278
 
1279
  /// Update no-wrap flags of an AddRec. This may drop the cached info about
1280
  /// this AddRec (such as range info) in case if new flags may potentially
1281
  /// sharpen it.
1282
  void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1283
 
1284
  /// Try to apply information from loop guards for \p L to \p Expr.
1285
  const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1286
 
1287
  /// Return true if the loop has no abnormal exits. That is, if the loop
1288
  /// is not infinite, it must exit through an explicit edge in the CFG.
1289
  /// (As opposed to either a) throwing out of the function or b) entering a
1290
  /// well defined infinite loop in some callee.)
1291
  bool loopHasNoAbnormalExits(const Loop *L) {
1292
    return getLoopProperties(L).HasNoAbnormalExits;
1293
  }
1294
 
1295
  /// Return true if this loop is finite by assumption.  That is,
1296
  /// to be infinite, it must also be undefined.
1297
  bool loopIsFiniteByAssumption(const Loop *L);
1298
 
1299
  class FoldID {
1300
    SmallVector<unsigned, 5> Bits;
1301
 
1302
  public:
1303
    void addInteger(unsigned long I) {
1304
      if (sizeof(long) == sizeof(int))
1305
        addInteger(unsigned(I));
1306
      else if (sizeof(long) == sizeof(long long))
1307
        addInteger((unsigned long long)I);
1308
      else
1309
        llvm_unreachable("unexpected sizeof(long)");
1310
    }
1311
    void addInteger(unsigned I) { Bits.push_back(I); }
1312
    void addInteger(int I) { Bits.push_back(I); }
1313
 
1314
    void addInteger(unsigned long long I) {
1315
      addInteger(unsigned(I));
1316
      addInteger(unsigned(I >> 32));
1317
    }
1318
 
1319
    void addPointer(const void *Ptr) {
1320
      // Note: this adds pointers to the hash using sizes and endianness that
1321
      // depend on the host. It doesn't matter, however, because hashing on
1322
      // pointer values is inherently unstable. Nothing should depend on the
1323
      // ordering of nodes in the folding set.
1324
      static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
1325
                    "unexpected pointer size");
1326
      addInteger(reinterpret_cast<uintptr_t>(Ptr));
1327
    }
1328
 
1329
    unsigned computeHash() const {
1330
      unsigned Hash = Bits.size();
1331
      for (unsigned I = 0; I != Bits.size(); ++I)
1332
        Hash = detail::combineHashValue(Hash, Bits[I]);
1333
      return Hash;
1334
    }
1335
    bool operator==(const FoldID &RHS) const {
1336
      if (Bits.size() != RHS.Bits.size())
1337
        return false;
1338
      for (unsigned I = 0; I != Bits.size(); ++I)
1339
        if (Bits[I] != RHS.Bits[I])
1340
          return false;
1341
      return true;
1342
    }
1343
  };
1344
 
1345
private:
1346
  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1347
  /// Value is deleted.
1348
  class SCEVCallbackVH final : public CallbackVH {
1349
    ScalarEvolution *SE;
1350
 
1351
    void deleted() override;
1352
    void allUsesReplacedWith(Value *New) override;
1353
 
1354
  public:
1355
    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1356
  };
1357
 
1358
  friend class SCEVCallbackVH;
1359
  friend class SCEVExpander;
1360
  friend class SCEVUnknown;
1361
 
1362
  /// The function we are analyzing.
1363
  Function &F;
1364
 
1365
  /// Does the module have any calls to the llvm.experimental.guard intrinsic
1366
  /// at all?  If this is false, we avoid doing work that will only help if
1367
  /// thare are guards present in the IR.
1368
  bool HasGuards;
1369
 
1370
  /// The target library information for the target we are targeting.
1371
  TargetLibraryInfo &TLI;
1372
 
1373
  /// The tracker for \@llvm.assume intrinsics in this function.
1374
  AssumptionCache &AC;
1375
 
1376
  /// The dominator tree.
1377
  DominatorTree &DT;
1378
 
1379
  /// The loop information for the function we are currently analyzing.
1380
  LoopInfo &LI;
1381
 
1382
  /// This SCEV is used to represent unknown trip counts and things.
1383
  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1384
 
1385
  /// The type for HasRecMap.
1386
  using HasRecMapType = DenseMap<const SCEV *, bool>;
1387
 
1388
  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1389
  HasRecMapType HasRecMap;
1390
 
1391
  /// The type for ExprValueMap.
1392
  using ValueSetVector = SmallSetVector<Value *, 4>;
1393
  using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1394
 
1395
  /// ExprValueMap -- This map records the original values from which
1396
  /// the SCEV expr is generated from.
1397
  ExprValueMapType ExprValueMap;
1398
 
1399
  /// The type for ValueExprMap.
1400
  using ValueExprMapType =
1401
      DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1402
 
1403
  /// This is a cache of the values we have analyzed so far.
1404
  ValueExprMapType ValueExprMap;
1405
 
1406
  /// This is a cache for expressions that got folded to a different existing
1407
  /// SCEV.
1408
  DenseMap<FoldID, const SCEV *> FoldCache;
1409
  DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
1410
 
1411
  /// Mark predicate values currently being processed by isImpliedCond.
1412
  SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1413
 
1414
  /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1415
  SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1416
 
1417
  /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1418
  SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1419
 
1420
  // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1421
  SmallPtrSet<const PHINode *, 6> PendingMerges;
1422
 
1423
  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1424
  /// conditions dominating the backedge of a loop.
1425
  bool WalkingBEDominatingConds = false;
1426
 
1427
  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1428
  /// predicate by splitting it into a set of independent predicates.
1429
  bool ProvingSplitPredicate = false;
1430
 
1431
  /// Memoized values for the GetMinTrailingZeros
1432
  DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1433
 
1434
  /// Return the Value set from which the SCEV expr is generated.
1435
  ArrayRef<Value *> getSCEVValues(const SCEV *S);
1436
 
1437
  /// Private helper method for the GetMinTrailingZeros method
1438
  uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1439
 
1440
  /// Information about the number of times a particular loop exit may be
1441
  /// reached before exiting the loop.
1442
  struct ExitNotTakenInfo {
1443
    PoisoningVH<BasicBlock> ExitingBlock;
1444
    const SCEV *ExactNotTaken;
1445
    const SCEV *ConstantMaxNotTaken;
1446
    const SCEV *SymbolicMaxNotTaken;
1447
    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1448
 
1449
    explicit ExitNotTakenInfo(
1450
        PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken,
1451
        const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken,
1452
        const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
1453
        : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1454
          ConstantMaxNotTaken(ConstantMaxNotTaken),
1455
          SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1456
 
1457
    bool hasAlwaysTruePredicate() const {
1458
      return Predicates.empty();
1459
    }
1460
  };
1461
 
1462
  /// Information about the backedge-taken count of a loop. This currently
1463
  /// includes an exact count and a maximum count.
1464
  ///
1465
  class BackedgeTakenInfo {
1466
    friend class ScalarEvolution;
1467
 
1468
    /// A list of computable exits and their not-taken counts.  Loops almost
1469
    /// never have more than one computable exit.
1470
    SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1471
 
1472
    /// Expression indicating the least constant maximum backedge-taken count of
1473
    /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1474
    /// only valid if the redicates associated with all loop exits are true.
1475
    const SCEV *ConstantMax = nullptr;
1476
 
1477
    /// Indicating if \c ExitNotTaken has an element for every exiting block in
1478
    /// the loop.
1479
    bool IsComplete = false;
1480
 
1481
    /// Expression indicating the least maximum backedge-taken count of the loop
1482
    /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1483
    const SCEV *SymbolicMax = nullptr;
1484
 
1485
    /// True iff the backedge is taken either exactly Max or zero times.
1486
    bool MaxOrZero = false;
1487
 
1488
    bool isComplete() const { return IsComplete; }
1489
    const SCEV *getConstantMax() const { return ConstantMax; }
1490
 
1491
  public:
1492
    BackedgeTakenInfo() = default;
1493
    BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1494
    BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1495
 
1496
    using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1497
 
1498
    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1499
    BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1500
                      const SCEV *ConstantMax, bool MaxOrZero);
1501
 
1502
    /// Test whether this BackedgeTakenInfo contains any computed information,
1503
    /// or whether it's all SCEVCouldNotCompute values.
1504
    bool hasAnyInfo() const {
1505
      return !ExitNotTaken.empty() ||
1506
             !isa<SCEVCouldNotCompute>(getConstantMax());
1507
    }
1508
 
1509
    /// Test whether this BackedgeTakenInfo contains complete information.
1510
    bool hasFullInfo() const { return isComplete(); }
1511
 
1512
    /// Return an expression indicating the exact *backedge-taken*
1513
    /// count of the loop if it is known or SCEVCouldNotCompute
1514
    /// otherwise.  If execution makes it to the backedge on every
1515
    /// iteration (i.e. there are no abnormal exists like exception
1516
    /// throws and thread exits) then this is the number of times the
1517
    /// loop header will execute minus one.
1518
    ///
1519
    /// If the SCEV predicate associated with the answer can be different
1520
    /// from AlwaysTrue, we must add a (non null) Predicates argument.
1521
    /// The SCEV predicate associated with the answer will be added to
1522
    /// Predicates. A run-time check needs to be emitted for the SCEV
1523
    /// predicate in order for the answer to be valid.
1524
    ///
1525
    /// Note that we should always know if we need to pass a predicate
1526
    /// argument or not from the way the ExitCounts vector was computed.
1527
    /// If we allowed SCEV predicates to be generated when populating this
1528
    /// vector, this information can contain them and therefore a
1529
    /// SCEVPredicate argument should be added to getExact.
1530
    const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1531
                         SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
1532
 
1533
    /// Return the number of times this loop exit may fall through to the back
1534
    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1535
    /// this block before this number of iterations, but may exit via another
1536
    /// block.
1537
    const SCEV *getExact(const BasicBlock *ExitingBlock,
1538
                         ScalarEvolution *SE) const;
1539
 
1540
    /// Get the constant max backedge taken count for the loop.
1541
    const SCEV *getConstantMax(ScalarEvolution *SE) const;
1542
 
1543
    /// Get the constant max backedge taken count for the particular loop exit.
1544
    const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1545
                               ScalarEvolution *SE) const;
1546
 
1547
    /// Get the symbolic max backedge taken count for the loop.
1548
    const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1549
 
1550
    /// Get the symbolic max backedge taken count for the particular loop exit.
1551
    const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock,
1552
                               ScalarEvolution *SE) const;
1553
 
1554
    /// Return true if the number of times this backedge is taken is either the
1555
    /// value returned by getConstantMax or zero.
1556
    bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1557
  };
1558
 
1559
  /// Cache the backedge-taken count of the loops for this function as they
1560
  /// are computed.
1561
  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1562
 
1563
  /// Cache the predicated backedge-taken count of the loops for this
1564
  /// function as they are computed.
1565
  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1566
 
1567
  /// Loops whose backedge taken counts directly use this non-constant SCEV.
1568
  DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1569
      BECountUsers;
1570
 
1571
  /// This map contains entries for all of the PHI instructions that we
1572
  /// attempt to compute constant evolutions for.  This allows us to avoid
1573
  /// potentially expensive recomputation of these properties.  An instruction
1574
  /// maps to null if we are unable to compute its exit value.
1575
  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1576
 
1577
  /// This map contains entries for all the expressions that we attempt to
1578
  /// compute getSCEVAtScope information for, which can be expensive in
1579
  /// extreme cases.
1580
  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1581
      ValuesAtScopes;
1582
 
1583
  /// Reverse map for invalidation purposes: Stores of which SCEV and which
1584
  /// loop this is the value-at-scope of.
1585
  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1586
      ValuesAtScopesUsers;
1587
 
1588
  /// Memoized computeLoopDisposition results.
1589
  DenseMap<const SCEV *,
1590
           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1591
      LoopDispositions;
1592
 
1593
  struct LoopProperties {
1594
    /// Set to true if the loop contains no instruction that can abnormally exit
1595
    /// the loop (i.e. via throwing an exception, by terminating the thread
1596
    /// cleanly or by infinite looping in a called function).  Strictly
1597
    /// speaking, the last one is not leaving the loop, but is identical to
1598
    /// leaving the loop for reasoning about undefined behavior.
1599
    bool HasNoAbnormalExits;
1600
 
1601
    /// Set to true if the loop contains no instruction that can have side
1602
    /// effects (i.e. via throwing an exception, volatile or atomic access).
1603
    bool HasNoSideEffects;
1604
  };
1605
 
1606
  /// Cache for \c getLoopProperties.
1607
  DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1608
 
1609
  /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1610
  LoopProperties getLoopProperties(const Loop *L);
1611
 
1612
  bool loopHasNoSideEffects(const Loop *L) {
1613
    return getLoopProperties(L).HasNoSideEffects;
1614
  }
1615
 
1616
  /// Compute a LoopDisposition value.
1617
  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1618
 
1619
  /// Memoized computeBlockDisposition results.
1620
  DenseMap<
1621
      const SCEV *,
1622
      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1623
      BlockDispositions;
1624
 
1625
  /// Compute a BlockDisposition value.
1626
  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1627
 
1628
  /// Stores all SCEV that use a given SCEV as its direct operand.
1629
  DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1630
 
1631
  /// Memoized results from getRange
1632
  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1633
 
1634
  /// Memoized results from getRange
1635
  DenseMap<const SCEV *, ConstantRange> SignedRanges;
1636
 
1637
  /// Used to parameterize getRange
1638
  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1639
 
1640
  /// Set the memoized range for the given SCEV.
1641
  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1642
                                ConstantRange CR) {
1643
    DenseMap<const SCEV *, ConstantRange> &Cache =
1644
        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1645
 
1646
    auto Pair = Cache.try_emplace(S, std::move(CR));
1647
    if (!Pair.second)
1648
      Pair.first->second = std::move(CR);
1649
    return Pair.first->second;
1650
  }
1651
 
1652
  /// Determine the range for a particular SCEV.
1653
  /// NOTE: This returns a reference to an entry in a cache. It must be
1654
  /// copied if its needed for longer.
1655
  const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1656
                                   unsigned Depth = 0);
1657
 
1658
  /// Determine the range for a particular SCEV, but evaluates ranges for
1659
  /// operands iteratively first.
1660
  const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1661
 
1662
  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1663
  /// Helper for \c getRange.
1664
  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1665
                                    const SCEV *MaxBECount, unsigned BitWidth);
1666
 
1667
  /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1668
  /// Start,+,\p Step}<nw>.
1669
  ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1670
                                                  const SCEV *MaxBECount,
1671
                                                  unsigned BitWidth,
1672
                                                  RangeSignHint SignHint);
1673
 
1674
  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1675
  /// Step} by "factoring out" a ternary expression from the add recurrence.
1676
  /// Helper called by \c getRange.
1677
  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1678
                                     const SCEV *MaxBECount, unsigned BitWidth);
1679
 
1680
  /// If the unknown expression U corresponds to a simple recurrence, return
1681
  /// a constant range which represents the entire recurrence.  Note that
1682
  /// *add* recurrences with loop invariant steps aren't represented by
1683
  /// SCEVUnknowns and thus don't use this mechanism.
1684
  ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1685
 
1686
  /// We know that there is no SCEV for the specified value.  Analyze the
1687
  /// expression recursively.
1688
  const SCEV *createSCEV(Value *V);
1689
 
1690
  /// We know that there is no SCEV for the specified value. Create a new SCEV
1691
  /// for \p V iteratively.
1692
  const SCEV *createSCEVIter(Value *V);
1693
  /// Collect operands of \p V for which SCEV expressions should be constructed
1694
  /// first. Returns a SCEV directly if it can be constructed trivially for \p
1695
  /// V.
1696
  const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1697
 
1698
  /// Provide the special handling we need to analyze PHI SCEVs.
1699
  const SCEV *createNodeForPHI(PHINode *PN);
1700
 
1701
  /// Helper function called from createNodeForPHI.
1702
  const SCEV *createAddRecFromPHI(PHINode *PN);
1703
 
1704
  /// A helper function for createAddRecFromPHI to handle simple cases.
1705
  const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1706
                                            Value *StartValueV);
1707
 
1708
  /// Helper function called from createNodeForPHI.
1709
  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1710
 
1711
  /// Provide special handling for a select-like instruction (currently this
1712
  /// is either a select instruction or a phi node).  \p Ty is the type of the
1713
  /// instruction being processed, that is assumed equivalent to
1714
  /// "Cond ? TrueVal : FalseVal".
1715
  std::optional<const SCEV *>
1716
  createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1717
                                               Value *TrueVal, Value *FalseVal);
1718
 
1719
  /// See if we can model this select-like instruction via umin_seq expression.
1720
  const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1721
                                                 Value *TrueVal,
1722
                                                 Value *FalseVal);
1723
 
1724
  /// Given a value \p V, which is a select-like instruction (currently this is
1725
  /// either a select instruction or a phi node), which is assumed equivalent to
1726
  ///   Cond ? TrueVal : FalseVal
1727
  /// see if we can model it as a SCEV expression.
1728
  const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1729
                                       Value *FalseVal);
1730
 
1731
  /// Provide the special handling we need to analyze GEP SCEVs.
1732
  const SCEV *createNodeForGEP(GEPOperator *GEP);
1733
 
1734
  /// Implementation code for getSCEVAtScope; called at most once for each
1735
  /// SCEV+Loop pair.
1736
  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1737
 
1738
  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1739
  /// values if the loop hasn't been analyzed yet. The returned result is
1740
  /// guaranteed not to be predicated.
1741
  BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1742
 
1743
  /// Similar to getBackedgeTakenInfo, but will add predicates as required
1744
  /// with the purpose of returning complete information.
1745
  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1746
 
1747
  /// Compute the number of times the specified loop will iterate.
1748
  /// If AllowPredicates is set, we will create new SCEV predicates as
1749
  /// necessary in order to return an exact answer.
1750
  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1751
                                              bool AllowPredicates = false);
1752
 
1753
  /// Compute the number of times the backedge of the specified loop will
1754
  /// execute if it exits via the specified block. If AllowPredicates is set,
1755
  /// this call will try to use a minimal set of SCEV predicates in order to
1756
  /// return an exact answer.
1757
  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1758
                             bool AllowPredicates = false);
1759
 
1760
  /// Return a symbolic upper bound for the backedge taken count of the loop.
1761
  /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1762
  /// an arbitrary expression as opposed to only constants.
1763
  const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1764
 
1765
  // Helper functions for computeExitLimitFromCond to avoid exponential time
1766
  // complexity.
1767
 
1768
  class ExitLimitCache {
1769
    // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1770
    // AllowPredicates) tuple, but recursive calls to
1771
    // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1772
    // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1773
    // initial values of the other values to assert our assumption.
1774
    SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1775
 
1776
    const Loop *L;
1777
    bool ExitIfTrue;
1778
    bool AllowPredicates;
1779
 
1780
  public:
1781
    ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1782
        : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1783
 
1784
    std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1785
                                  bool ExitIfTrue, bool ControlsExit,
1786
                                  bool AllowPredicates);
1787
 
1788
    void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1789
                bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1790
  };
1791
 
1792
  using ExitLimitCacheTy = ExitLimitCache;
1793
 
1794
  ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1795
                                           const Loop *L, Value *ExitCond,
1796
                                           bool ExitIfTrue,
1797
                                           bool ControlsExit,
1798
                                           bool AllowPredicates);
1799
  ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1800
                                         Value *ExitCond, bool ExitIfTrue,
1801
                                         bool ControlsExit,
1802
                                         bool AllowPredicates);
1803
  std::optional<ScalarEvolution::ExitLimit>
1804
  computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
1805
                                    Value *ExitCond, bool ExitIfTrue,
1806
                                    bool ControlsExit, bool AllowPredicates);
1807
 
1808
  /// Compute the number of times the backedge of the specified loop will
1809
  /// execute if its exit condition were a conditional branch of the ICmpInst
1810
  /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1811
  /// to use a minimal set of SCEV predicates in order to return an exact
1812
  /// answer.
1813
  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1814
                                     bool ExitIfTrue,
1815
                                     bool IsSubExpr,
1816
                                     bool AllowPredicates = false);
1817
 
1818
  /// Variant of previous which takes the components representing an ICmp
1819
  /// as opposed to the ICmpInst itself.  Note that the prior version can
1820
  /// return more precise results in some cases and is preferred when caller
1821
  /// has a materialized ICmp.
1822
  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
1823
                                     const SCEV *LHS, const SCEV *RHS,
1824
                                     bool IsSubExpr,
1825
                                     bool AllowPredicates = false);
1826
 
1827
  /// Compute the number of times the backedge of the specified loop will
1828
  /// execute if its exit condition were a switch with a single exiting case
1829
  /// to ExitingBB.
1830
  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1831
                                                 SwitchInst *Switch,
1832
                                                 BasicBlock *ExitingBB,
1833
                                                 bool IsSubExpr);
1834
 
1835
  /// Compute the exit limit of a loop that is controlled by a
1836
  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1837
  /// count in these cases (since SCEV has no way of expressing them), but we
1838
  /// can still sometimes compute an upper bound.
1839
  ///
1840
  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1841
  /// RHS`.
1842
  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1843
                                         ICmpInst::Predicate Pred);
1844
 
1845
  /// If the loop is known to execute a constant number of times (the
1846
  /// condition evolves only from constants), try to evaluate a few iterations
1847
  /// of the loop until we get the exit condition gets a value of ExitWhen
1848
  /// (true or false).  If we cannot evaluate the exit count of the loop,
1849
  /// return CouldNotCompute.
1850
  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1851
                                           bool ExitWhen);
1852
 
1853
  /// Return the number of times an exit condition comparing the specified
1854
  /// value to zero will execute.  If not computable, return CouldNotCompute.
1855
  /// If AllowPredicates is set, this call will try to use a minimal set of
1856
  /// SCEV predicates in order to return an exact answer.
1857
  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1858
                         bool AllowPredicates = false);
1859
 
1860
  /// Return the number of times an exit condition checking the specified
1861
  /// value for nonzero will execute.  If not computable, return
1862
  /// CouldNotCompute.
1863
  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1864
 
1865
  /// Return the number of times an exit condition containing the specified
1866
  /// less-than comparison will execute.  If not computable, return
1867
  /// CouldNotCompute.
1868
  ///
1869
  /// \p isSigned specifies whether the less-than is signed.
1870
  ///
1871
  /// \p ControlsExit is true when the LHS < RHS condition directly controls
1872
  /// the branch (loops exits only if condition is true). In this case, we can
1873
  /// use NoWrapFlags to skip overflow checks.
1874
  ///
1875
  /// If \p AllowPredicates is set, this call will try to use a minimal set of
1876
  /// SCEV predicates in order to return an exact answer.
1877
  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1878
                             bool isSigned, bool ControlsExit,
1879
                             bool AllowPredicates = false);
1880
 
1881
  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1882
                                bool isSigned, bool IsSubExpr,
1883
                                bool AllowPredicates = false);
1884
 
1885
  /// Return a predecessor of BB (which may not be an immediate predecessor)
1886
  /// which has exactly one successor from which BB is reachable, or null if
1887
  /// no such block is found.
1888
  std::pair<const BasicBlock *, const BasicBlock *>
1889
  getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1890
 
1891
  /// Test whether the condition described by Pred, LHS, and RHS is true
1892
  /// whenever the given FoundCondValue value evaluates to true in given
1893
  /// Context. If Context is nullptr, then the found predicate is true
1894
  /// everywhere. LHS and FoundLHS may have different type width.
1895
  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1896
                     const Value *FoundCondValue, bool Inverse,
1897
                     const Instruction *Context = nullptr);
1898
 
1899
  /// Test whether the condition described by Pred, LHS, and RHS is true
1900
  /// whenever the given FoundCondValue value evaluates to true in given
1901
  /// Context. If Context is nullptr, then the found predicate is true
1902
  /// everywhere. LHS and FoundLHS must have same type width.
1903
  bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1904
                                  const SCEV *RHS,
1905
                                  ICmpInst::Predicate FoundPred,
1906
                                  const SCEV *FoundLHS, const SCEV *FoundRHS,
1907
                                  const Instruction *CtxI);
1908
 
1909
  /// Test whether the condition described by Pred, LHS, and RHS is true
1910
  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1911
  /// true in given Context. If Context is nullptr, then the found predicate is
1912
  /// true everywhere.
1913
  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1914
                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1915
                     const SCEV *FoundRHS,
1916
                     const Instruction *Context = nullptr);
1917
 
1918
  /// Test whether the condition described by Pred, LHS, and RHS is true
1919
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1920
  /// true in given Context. If Context is nullptr, then the found predicate is
1921
  /// true everywhere.
1922
  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1923
                             const SCEV *RHS, const SCEV *FoundLHS,
1924
                             const SCEV *FoundRHS,
1925
                             const Instruction *Context = nullptr);
1926
 
1927
  /// Test whether the condition described by Pred, LHS, and RHS is true
1928
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1929
  /// true. Here LHS is an operation that includes FoundLHS as one of its
1930
  /// arguments.
1931
  bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1932
                              const SCEV *LHS, const SCEV *RHS,
1933
                              const SCEV *FoundLHS, const SCEV *FoundRHS,
1934
                              unsigned Depth = 0);
1935
 
1936
  /// Test whether the condition described by Pred, LHS, and RHS is true.
1937
  /// Use only simple non-recursive types of checks, such as range analysis etc.
1938
  bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1939
                                       const SCEV *LHS, const SCEV *RHS);
1940
 
1941
  /// Test whether the condition described by Pred, LHS, and RHS is true
1942
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1943
  /// true.
1944
  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1945
                                   const SCEV *RHS, const SCEV *FoundLHS,
1946
                                   const SCEV *FoundRHS);
1947
 
1948
  /// Test whether the condition described by Pred, LHS, and RHS is true
1949
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1950
  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1951
  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1952
  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1953
                                      const SCEV *RHS, const SCEV *FoundLHS,
1954
                                      const SCEV *FoundRHS);
1955
 
1956
  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1957
  /// by a call to @llvm.experimental.guard in \p BB.
1958
  bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1959
                         const SCEV *LHS, const SCEV *RHS);
1960
 
1961
  /// Test whether the condition described by Pred, LHS, and RHS is true
1962
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1963
  /// true.
1964
  ///
1965
  /// This routine tries to rule out certain kinds of integer overflow, and
1966
  /// then tries to reason about arithmetic properties of the predicates.
1967
  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1968
                                          const SCEV *LHS, const SCEV *RHS,
1969
                                          const SCEV *FoundLHS,
1970
                                          const SCEV *FoundRHS);
1971
 
1972
  /// Test whether the condition described by Pred, LHS, and RHS is true
1973
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1974
  /// true.
1975
  ///
1976
  /// This routine tries to weaken the known condition basing on fact that
1977
  /// FoundLHS is an AddRec.
1978
  bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1979
                                           const SCEV *LHS, const SCEV *RHS,
1980
                                           const SCEV *FoundLHS,
1981
                                           const SCEV *FoundRHS,
1982
                                           const Instruction *CtxI);
1983
 
1984
  /// Test whether the condition described by Pred, LHS, and RHS is true
1985
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1986
  /// true.
1987
  ///
1988
  /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1989
  /// if it is true for every possible incoming value from their respective
1990
  /// basic blocks.
1991
  bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1992
                         const SCEV *LHS, const SCEV *RHS,
1993
                         const SCEV *FoundLHS, const SCEV *FoundRHS,
1994
                         unsigned Depth);
1995
 
1996
  /// Test whether the condition described by Pred, LHS, and RHS is true
1997
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1998
  /// true.
1999
  ///
2000
  /// This routine tries to reason about shifts.
2001
  bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
2002
                                     const SCEV *RHS, const SCEV *FoundLHS,
2003
                                     const SCEV *FoundRHS);
2004
 
2005
  /// If we know that the specified Phi is in the header of its containing
2006
  /// loop, we know the loop executes a constant number of times, and the PHI
2007
  /// node is just a recurrence involving constants, fold it.
2008
  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2009
                                              const Loop *L);
2010
 
2011
  /// Test if the given expression is known to satisfy the condition described
2012
  /// by Pred and the known constant ranges of LHS and RHS.
2013
  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
2014
                                         const SCEV *LHS, const SCEV *RHS);
2015
 
2016
  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2017
  /// integer overflow.
2018
  ///
2019
  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2020
  /// positive.
2021
  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
2022
                                     const SCEV *RHS);
2023
 
2024
  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2025
  /// prove them individually.
2026
  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
2027
                                    const SCEV *RHS);
2028
 
2029
  /// Try to match the Expr as "(L + R)<Flags>".
2030
  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2031
                      SCEV::NoWrapFlags &Flags);
2032
 
2033
  /// Forget predicated/non-predicated backedge taken counts for the given loop.
2034
  void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2035
 
2036
  /// Drop memoized information for all \p SCEVs.
2037
  void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2038
 
2039
  /// Helper for forgetMemoizedResults.
2040
  void forgetMemoizedResultsImpl(const SCEV *S);
2041
 
2042
  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
2043
  const SCEV *getExistingSCEV(Value *V);
2044
 
2045
  /// Erase Value from ValueExprMap and ExprValueMap.
2046
  void eraseValueFromMap(Value *V);
2047
 
2048
  /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2049
  void insertValueToMap(Value *V, const SCEV *S);
2050
 
2051
  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2052
  /// pointer.
2053
  bool checkValidity(const SCEV *S) const;
2054
 
2055
  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2056
  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
2057
  /// equivalent to proving no signed (resp. unsigned) wrap in
2058
  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2059
  /// (resp. `SCEVZeroExtendExpr`).
2060
  template <typename ExtendOpTy>
2061
  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2062
                                 const Loop *L);
2063
 
2064
  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2065
  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2066
 
2067
  /// Try to prove NSW on \p AR by proving facts about conditions known  on
2068
  /// entry and backedge.
2069
  SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2070
 
2071
  /// Try to prove NUW on \p AR by proving facts about conditions known on
2072
  /// entry and backedge.
2073
  SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2074
 
2075
  std::optional<MonotonicPredicateType>
2076
  getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2077
                                ICmpInst::Predicate Pred);
2078
 
2079
  /// Return SCEV no-wrap flags that can be proven based on reasoning about
2080
  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2081
  /// would trigger undefined behavior on overflow.
2082
  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2083
 
2084
  /// Return a scope which provides an upper bound on the defining scope of
2085
  /// 'S'. Specifically, return the first instruction in said bounding scope.
2086
  /// Return nullptr if the scope is trivial (function entry).
2087
  /// (See scope definition rules associated with flag discussion above)
2088
  const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2089
 
2090
  /// Return a scope which provides an upper bound on the defining scope for
2091
  /// a SCEV with the operands in Ops.  The outparam Precise is set if the
2092
  /// bound found is a precise bound (i.e. must be the defining scope.)
2093
  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2094
                                           bool &Precise);
2095
 
2096
  /// Wrapper around the above for cases which don't care if the bound
2097
  /// is precise.
2098
  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2099
 
2100
  /// Given two instructions in the same function, return true if we can
2101
  /// prove B must execute given A executes.
2102
  bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2103
                                         const Instruction *B);
2104
 
2105
  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
2106
  /// this is more complex than proving that just \p I is never poison, since
2107
  /// SCEV commons expressions across control flow, and you can have cases
2108
  /// like:
2109
  ///
2110
  ///   idx0 = a + b;
2111
  ///   ptr[idx0] = 100;
2112
  ///   if (<condition>) {
2113
  ///     idx1 = a +nsw b;
2114
  ///     ptr[idx1] = 200;
2115
  ///   }
2116
  ///
2117
  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2118
  /// hence not sign-overflow) only if "<condition>" is true.  Since both
2119
  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2120
  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2121
  bool isSCEVExprNeverPoison(const Instruction *I);
2122
 
2123
  /// This is like \c isSCEVExprNeverPoison but it specifically works for
2124
  /// instructions that will get mapped to SCEV add recurrences.  Return true
2125
  /// if \p I will never generate poison under the assumption that \p I is an
2126
  /// add recurrence on the loop \p L.
2127
  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2128
 
2129
  /// Similar to createAddRecFromPHI, but with the additional flexibility of
2130
  /// suggesting runtime overflow checks in case casts are encountered.
2131
  /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2132
  /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2133
  /// into an AddRec, assuming some predicates; The function then returns the
2134
  /// AddRec and the predicates as a pair, and caches this pair in
2135
  /// PredicatedSCEVRewrites.
2136
  /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2137
  /// itself (with no predicates) is recorded, and a nullptr with an empty
2138
  /// predicates vector is returned as a pair.
2139
  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2140
  createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2141
 
2142
  /// Compute the maximum backedge count based on the range of values
2143
  /// permitted by Start, End, and Stride. This is for loops of the form
2144
  /// {Start, +, Stride} LT End.
2145
  ///
2146
  /// Preconditions:
2147
  /// * the induction variable is known to be positive.
2148
  /// * the induction variable is assumed not to overflow (i.e. either it
2149
  ///   actually doesn't, or we'd have to immediately execute UB)
2150
  /// We *don't* assert these preconditions so please be careful.
2151
  const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2152
                                     const SCEV *End, unsigned BitWidth,
2153
                                     bool IsSigned);
2154
 
2155
  /// Verify if an linear IV with positive stride can overflow when in a
2156
  /// less-than comparison, knowing the invariant term of the comparison,
2157
  /// the stride.
2158
  bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2159
 
2160
  /// Verify if an linear IV with negative stride can overflow when in a
2161
  /// greater-than comparison, knowing the invariant term of the comparison,
2162
  /// the stride.
2163
  bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2164
 
2165
  /// Get add expr already created or create a new one.
2166
  const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2167
                                 SCEV::NoWrapFlags Flags);
2168
 
2169
  /// Get mul expr already created or create a new one.
2170
  const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2171
                                 SCEV::NoWrapFlags Flags);
2172
 
2173
  // Get addrec expr already created or create a new one.
2174
  const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2175
                                    const Loop *L, SCEV::NoWrapFlags Flags);
2176
 
2177
  /// Return x if \p Val is f(x) where f is a 1-1 function.
2178
  const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2179
 
2180
  /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2181
  /// A loop is considered "used" by an expression if it contains
2182
  /// an add rec on said loop.
2183
  void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2184
 
2185
  /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2186
  /// Assign A and B to LHS and RHS, respectively.
2187
  bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2188
 
2189
  /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2190
  /// `UniqueSCEVs`.  Return if found, else nullptr.
2191
  SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2192
 
2193
  /// Get reachable blocks in this function, making limited use of SCEV
2194
  /// reasoning about conditions.
2195
  void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2196
                          Function &F);
2197
 
2198
  FoldingSet<SCEV> UniqueSCEVs;
2199
  FoldingSet<SCEVPredicate> UniquePreds;
2200
  BumpPtrAllocator SCEVAllocator;
2201
 
2202
  /// This maps loops to a list of addrecs that directly use said loop.
2203
  DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2204
 
2205
  /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2206
  /// they can be rewritten into under certain predicates.
2207
  DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2208
           std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2209
      PredicatedSCEVRewrites;
2210
 
2211
  /// Set of AddRecs for which proving NUW via an induction has already been
2212
  /// tried.
2213
  SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2214
 
2215
  /// Set of AddRecs for which proving NSW via an induction has already been
2216
  /// tried.
2217
  SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2218
 
2219
  /// The head of a linked list of all SCEVUnknown values that have been
2220
  /// allocated. This is used by releaseMemory to locate them all and call
2221
  /// their destructors.
2222
  SCEVUnknown *FirstUnknown = nullptr;
2223
};
2224
 
2225
/// Analysis pass that exposes the \c ScalarEvolution for a function.
2226
class ScalarEvolutionAnalysis
2227
    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2228
  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2229
 
2230
  static AnalysisKey Key;
2231
 
2232
public:
2233
  using Result = ScalarEvolution;
2234
 
2235
  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2236
};
2237
 
2238
/// Verifier pass for the \c ScalarEvolutionAnalysis results.
2239
class ScalarEvolutionVerifierPass
2240
    : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2241
public:
2242
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2243
};
2244
 
2245
/// Printer pass for the \c ScalarEvolutionAnalysis results.
2246
class ScalarEvolutionPrinterPass
2247
    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2248
  raw_ostream &OS;
2249
 
2250
public:
2251
  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2252
 
2253
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2254
};
2255
 
2256
class ScalarEvolutionWrapperPass : public FunctionPass {
2257
  std::unique_ptr<ScalarEvolution> SE;
2258
 
2259
public:
2260
  static char ID;
2261
 
2262
  ScalarEvolutionWrapperPass();
2263
 
2264
  ScalarEvolution &getSE() { return *SE; }
2265
  const ScalarEvolution &getSE() const { return *SE; }
2266
 
2267
  bool runOnFunction(Function &F) override;
2268
  void releaseMemory() override;
2269
  void getAnalysisUsage(AnalysisUsage &AU) const override;
2270
  void print(raw_ostream &OS, const Module * = nullptr) const override;
2271
  void verifyAnalysis() const override;
2272
};
2273
 
2274
/// An interface layer with SCEV used to manage how we see SCEV expressions
2275
/// for values in the context of existing predicates. We can add new
2276
/// predicates, but we cannot remove them.
2277
///
2278
/// This layer has multiple purposes:
2279
///   - provides a simple interface for SCEV versioning.
2280
///   - guarantees that the order of transformations applied on a SCEV
2281
///     expression for a single Value is consistent across two different
2282
///     getSCEV calls. This means that, for example, once we've obtained
2283
///     an AddRec expression for a certain value through expression
2284
///     rewriting, we will continue to get an AddRec expression for that
2285
///     Value.
2286
///   - lowers the number of expression rewrites.
2287
class PredicatedScalarEvolution {
2288
public:
2289
  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2290
 
2291
  const SCEVPredicate &getPredicate() const;
2292
 
2293
  /// Returns the SCEV expression of V, in the context of the current SCEV
2294
  /// predicate.  The order of transformations applied on the expression of V
2295
  /// returned by ScalarEvolution is guaranteed to be preserved, even when
2296
  /// adding new predicates.
2297
  const SCEV *getSCEV(Value *V);
2298
 
2299
  /// Get the (predicated) backedge count for the analyzed loop.
2300
  const SCEV *getBackedgeTakenCount();
2301
 
2302
  /// Adds a new predicate.
2303
  void addPredicate(const SCEVPredicate &Pred);
2304
 
2305
  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2306
  /// predicates. If we can't transform the expression into an AddRecExpr we
2307
  /// return nullptr and not add additional SCEV predicates to the current
2308
  /// context.
2309
  const SCEVAddRecExpr *getAsAddRec(Value *V);
2310
 
2311
  /// Proves that V doesn't overflow by adding SCEV predicate.
2312
  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2313
 
2314
  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2315
  /// predicate.
2316
  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2317
 
2318
  /// Returns the ScalarEvolution analysis used.
2319
  ScalarEvolution *getSE() const { return &SE; }
2320
 
2321
  /// We need to explicitly define the copy constructor because of FlagsMap.
2322
  PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2323
 
2324
  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2325
  /// The printed text is indented by \p Depth.
2326
  void print(raw_ostream &OS, unsigned Depth) const;
2327
 
2328
  /// Check if \p AR1 and \p AR2 are equal, while taking into account
2329
  /// Equal predicates in Preds.
2330
  bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2331
                                const SCEVAddRecExpr *AR2) const;
2332
 
2333
private:
2334
  /// Increments the version number of the predicate.  This needs to be called
2335
  /// every time the SCEV predicate changes.
2336
  void updateGeneration();
2337
 
2338
  /// Holds a SCEV and the version number of the SCEV predicate used to
2339
  /// perform the rewrite of the expression.
2340
  using RewriteEntry = std::pair<unsigned, const SCEV *>;
2341
 
2342
  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2343
  /// number. If this number doesn't match the current Generation, we will
2344
  /// need to do a rewrite. To preserve the transformation order of previous
2345
  /// rewrites, we will rewrite the previous result instead of the original
2346
  /// SCEV.
2347
  DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2348
 
2349
  /// Records what NoWrap flags we've added to a Value *.
2350
  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2351
 
2352
  /// The ScalarEvolution analysis.
2353
  ScalarEvolution &SE;
2354
 
2355
  /// The analyzed Loop.
2356
  const Loop &L;
2357
 
2358
  /// The SCEVPredicate that forms our context. We will rewrite all
2359
  /// expressions assuming that this predicate true.
2360
  std::unique_ptr<SCEVUnionPredicate> Preds;
2361
 
2362
  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2363
  /// expression we mark it with the version of the predicate. We use this to
2364
  /// figure out if the predicate has changed from the last rewrite of the
2365
  /// SCEV. If so, we need to perform a new rewrite.
2366
  unsigned Generation = 0;
2367
 
2368
  /// The backedge taken count.
2369
  const SCEV *BackedgeCount = nullptr;
2370
};
2371
 
2372
template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2373
  static inline ScalarEvolution::FoldID getEmptyKey() {
2374
    ScalarEvolution::FoldID ID;
2375
    ID.addInteger(~0ULL);
2376
    return ID;
2377
  }
2378
  static inline ScalarEvolution::FoldID getTombstoneKey() {
2379
    ScalarEvolution::FoldID ID;
2380
    ID.addInteger(~0ULL - 1ULL);
2381
    return ID;
2382
  }
2383
 
2384
  static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2385
    return Val.computeHash();
2386
  }
2387
 
2388
  static bool isEqual(const ScalarEvolution::FoldID &LHS,
2389
                      const ScalarEvolution::FoldID &RHS) {
2390
    return LHS == RHS;
2391
  }
2392
};
2393
 
2394
} // end namespace llvm
2395
 
2396
#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H