Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // The ScalarEvolution class is an LLVM pass which can be used to analyze and |
||
10 | // categorize scalar expressions in loops. It specializes in recognizing |
||
11 | // general induction variables, representing them with the abstract and opaque |
||
12 | // SCEV class. Given this analysis, trip counts of loops and other important |
||
13 | // properties can be obtained. |
||
14 | // |
||
15 | // This analysis is primarily useful for induction variable substitution and |
||
16 | // strength reduction. |
||
17 | // |
||
18 | //===----------------------------------------------------------------------===// |
||
19 | |||
20 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H |
||
21 | #define LLVM_ANALYSIS_SCALAREVOLUTION_H |
||
22 | |||
23 | #include "llvm/ADT/APInt.h" |
||
24 | #include "llvm/ADT/ArrayRef.h" |
||
25 | #include "llvm/ADT/DenseMap.h" |
||
26 | #include "llvm/ADT/DenseMapInfo.h" |
||
27 | #include "llvm/ADT/FoldingSet.h" |
||
28 | #include "llvm/ADT/PointerIntPair.h" |
||
29 | #include "llvm/ADT/SetVector.h" |
||
30 | #include "llvm/ADT/SmallPtrSet.h" |
||
31 | #include "llvm/ADT/SmallVector.h" |
||
32 | #include "llvm/IR/ConstantRange.h" |
||
33 | #include "llvm/IR/InstrTypes.h" |
||
34 | #include "llvm/IR/Instructions.h" |
||
35 | #include "llvm/IR/PassManager.h" |
||
36 | #include "llvm/IR/ValueHandle.h" |
||
37 | #include "llvm/IR/ValueMap.h" |
||
38 | #include "llvm/Pass.h" |
||
39 | #include <cassert> |
||
40 | #include <cstdint> |
||
41 | #include <memory> |
||
42 | #include <optional> |
||
43 | #include <utility> |
||
44 | |||
45 | namespace llvm { |
||
46 | |||
47 | class OverflowingBinaryOperator; |
||
48 | class AssumptionCache; |
||
49 | class BasicBlock; |
||
50 | class Constant; |
||
51 | class ConstantInt; |
||
52 | class DataLayout; |
||
53 | class DominatorTree; |
||
54 | class Function; |
||
55 | class GEPOperator; |
||
56 | class Instruction; |
||
57 | class LLVMContext; |
||
58 | class Loop; |
||
59 | class LoopInfo; |
||
60 | class raw_ostream; |
||
61 | class ScalarEvolution; |
||
62 | class SCEVAddRecExpr; |
||
63 | class SCEVUnknown; |
||
64 | class StructType; |
||
65 | class TargetLibraryInfo; |
||
66 | class Type; |
||
67 | class Value; |
||
68 | enum SCEVTypes : unsigned short; |
||
69 | |||
70 | extern bool VerifySCEV; |
||
71 | |||
72 | /// This class represents an analyzed expression in the program. These are |
||
73 | /// opaque objects that the client is not allowed to do much with directly. |
||
74 | /// |
||
75 | class SCEV : public FoldingSetNode { |
||
76 | friend struct FoldingSetTrait<SCEV>; |
||
77 | |||
78 | /// A reference to an Interned FoldingSetNodeID for this node. The |
||
79 | /// ScalarEvolution's BumpPtrAllocator holds the data. |
||
80 | FoldingSetNodeIDRef FastID; |
||
81 | |||
82 | // The SCEV baseclass this node corresponds to |
||
83 | const SCEVTypes SCEVType; |
||
84 | |||
85 | protected: |
||
86 | // Estimated complexity of this node's expression tree size. |
||
87 | const unsigned short ExpressionSize; |
||
88 | |||
89 | /// This field is initialized to zero and may be used in subclasses to store |
||
90 | /// miscellaneous information. |
||
91 | unsigned short SubclassData = 0; |
||
92 | |||
93 | public: |
||
94 | /// NoWrapFlags are bitfield indices into SubclassData. |
||
95 | /// |
||
96 | /// Add and Mul expressions may have no-unsigned-wrap <NUW> or |
||
97 | /// no-signed-wrap <NSW> properties, which are derived from the IR |
||
98 | /// operator. NSW is a misnomer that we use to mean no signed overflow or |
||
99 | /// underflow. |
||
100 | /// |
||
101 | /// AddRec expressions may have a no-self-wraparound <NW> property if, in |
||
102 | /// the integer domain, abs(step) * max-iteration(loop) <= |
||
103 | /// unsigned-max(bitwidth). This means that the recurrence will never reach |
||
104 | /// its start value if the step is non-zero. Computing the same value on |
||
105 | /// each iteration is not considered wrapping, and recurrences with step = 0 |
||
106 | /// are trivially <NW>. <NW> is independent of the sign of step and the |
||
107 | /// value the add recurrence starts with. |
||
108 | /// |
||
109 | /// Note that NUW and NSW are also valid properties of a recurrence, and |
||
110 | /// either implies NW. For convenience, NW will be set for a recurrence |
||
111 | /// whenever either NUW or NSW are set. |
||
112 | /// |
||
113 | /// We require that the flag on a SCEV apply to the entire scope in which |
||
114 | /// that SCEV is defined. A SCEV's scope is set of locations dominated by |
||
115 | /// a defining location, which is in turn described by the following rules: |
||
116 | /// * A SCEVUnknown is at the point of definition of the Value. |
||
117 | /// * A SCEVConstant is defined at all points. |
||
118 | /// * A SCEVAddRec is defined starting with the header of the associated |
||
119 | /// loop. |
||
120 | /// * All other SCEVs are defined at the earlest point all operands are |
||
121 | /// defined. |
||
122 | /// |
||
123 | /// The above rules describe a maximally hoisted form (without regards to |
||
124 | /// potential control dependence). A SCEV is defined anywhere a |
||
125 | /// corresponding instruction could be defined in said maximally hoisted |
||
126 | /// form. Note that SCEVUDivExpr (currently the only expression type which |
||
127 | /// can trap) can be defined per these rules in regions where it would trap |
||
128 | /// at runtime. A SCEV being defined does not require the existence of any |
||
129 | /// instruction within the defined scope. |
||
130 | enum NoWrapFlags { |
||
131 | FlagAnyWrap = 0, // No guarantee. |
||
132 | FlagNW = (1 << 0), // No self-wrap. |
||
133 | FlagNUW = (1 << 1), // No unsigned wrap. |
||
134 | FlagNSW = (1 << 2), // No signed wrap. |
||
135 | NoWrapMask = (1 << 3) - 1 |
||
136 | }; |
||
137 | |||
138 | explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, |
||
139 | unsigned short ExpressionSize) |
||
140 | : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {} |
||
141 | SCEV(const SCEV &) = delete; |
||
142 | SCEV &operator=(const SCEV &) = delete; |
||
143 | |||
144 | SCEVTypes getSCEVType() const { return SCEVType; } |
||
145 | |||
146 | /// Return the LLVM type of this SCEV expression. |
||
147 | Type *getType() const; |
||
148 | |||
149 | /// Return operands of this SCEV expression. |
||
150 | ArrayRef<const SCEV *> operands() const; |
||
151 | |||
152 | /// Return true if the expression is a constant zero. |
||
153 | bool isZero() const; |
||
154 | |||
155 | /// Return true if the expression is a constant one. |
||
156 | bool isOne() const; |
||
157 | |||
158 | /// Return true if the expression is a constant all-ones value. |
||
159 | bool isAllOnesValue() const; |
||
160 | |||
161 | /// Return true if the specified scev is negated, but not a constant. |
||
162 | bool isNonConstantNegative() const; |
||
163 | |||
164 | // Returns estimated size of the mathematical expression represented by this |
||
165 | // SCEV. The rules of its calculation are following: |
||
166 | // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1; |
||
167 | // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula: |
||
168 | // (1 + Size(Op1) + ... + Size(OpN)). |
||
169 | // This value gives us an estimation of time we need to traverse through this |
||
170 | // SCEV and all its operands recursively. We may use it to avoid performing |
||
171 | // heavy transformations on SCEVs of excessive size for sake of saving the |
||
172 | // compilation time. |
||
173 | unsigned short getExpressionSize() const { |
||
174 | return ExpressionSize; |
||
175 | } |
||
176 | |||
177 | /// Print out the internal representation of this scalar to the specified |
||
178 | /// stream. This should really only be used for debugging purposes. |
||
179 | void print(raw_ostream &OS) const; |
||
180 | |||
181 | /// This method is used for debugging. |
||
182 | void dump() const; |
||
183 | }; |
||
184 | |||
185 | // Specialize FoldingSetTrait for SCEV to avoid needing to compute |
||
186 | // temporary FoldingSetNodeID values. |
||
187 | template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { |
||
188 | static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; } |
||
189 | |||
190 | static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, |
||
191 | FoldingSetNodeID &TempID) { |
||
192 | return ID == X.FastID; |
||
193 | } |
||
194 | |||
195 | static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { |
||
196 | return X.FastID.ComputeHash(); |
||
197 | } |
||
198 | }; |
||
199 | |||
200 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { |
||
201 | S.print(OS); |
||
202 | return OS; |
||
203 | } |
||
204 | |||
205 | /// An object of this class is returned by queries that could not be answered. |
||
206 | /// For example, if you ask for the number of iterations of a linked-list |
||
207 | /// traversal loop, you will get one of these. None of the standard SCEV |
||
208 | /// operations are valid on this class, it is just a marker. |
||
209 | struct SCEVCouldNotCompute : public SCEV { |
||
210 | SCEVCouldNotCompute(); |
||
211 | |||
212 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
213 | static bool classof(const SCEV *S); |
||
214 | }; |
||
215 | |||
216 | /// This class represents an assumption made using SCEV expressions which can |
||
217 | /// be checked at run-time. |
||
218 | class SCEVPredicate : public FoldingSetNode { |
||
219 | friend struct FoldingSetTrait<SCEVPredicate>; |
||
220 | |||
221 | /// A reference to an Interned FoldingSetNodeID for this node. The |
||
222 | /// ScalarEvolution's BumpPtrAllocator holds the data. |
||
223 | FoldingSetNodeIDRef FastID; |
||
224 | |||
225 | public: |
||
226 | enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap }; |
||
227 | |||
228 | protected: |
||
229 | SCEVPredicateKind Kind; |
||
230 | ~SCEVPredicate() = default; |
||
231 | SCEVPredicate(const SCEVPredicate &) = default; |
||
232 | SCEVPredicate &operator=(const SCEVPredicate &) = default; |
||
233 | |||
234 | public: |
||
235 | SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind); |
||
236 | |||
237 | SCEVPredicateKind getKind() const { return Kind; } |
||
238 | |||
239 | /// Returns the estimated complexity of this predicate. This is roughly |
||
240 | /// measured in the number of run-time checks required. |
||
241 | virtual unsigned getComplexity() const { return 1; } |
||
242 | |||
243 | /// Returns true if the predicate is always true. This means that no |
||
244 | /// assumptions were made and nothing needs to be checked at run-time. |
||
245 | virtual bool isAlwaysTrue() const = 0; |
||
246 | |||
247 | /// Returns true if this predicate implies \p N. |
||
248 | virtual bool implies(const SCEVPredicate *N) const = 0; |
||
249 | |||
250 | /// Prints a textual representation of this predicate with an indentation of |
||
251 | /// \p Depth. |
||
252 | virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; |
||
253 | }; |
||
254 | |||
255 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { |
||
256 | P.print(OS); |
||
257 | return OS; |
||
258 | } |
||
259 | |||
260 | // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute |
||
261 | // temporary FoldingSetNodeID values. |
||
262 | template <> |
||
263 | struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> { |
||
264 | static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { |
||
265 | ID = X.FastID; |
||
266 | } |
||
267 | |||
268 | static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, |
||
269 | unsigned IDHash, FoldingSetNodeID &TempID) { |
||
270 | return ID == X.FastID; |
||
271 | } |
||
272 | |||
273 | static unsigned ComputeHash(const SCEVPredicate &X, |
||
274 | FoldingSetNodeID &TempID) { |
||
275 | return X.FastID.ComputeHash(); |
||
276 | } |
||
277 | }; |
||
278 | |||
279 | /// This class represents an assumption that the expression LHS Pred RHS |
||
280 | /// evaluates to true, and this can be checked at run-time. |
||
281 | class SCEVComparePredicate final : public SCEVPredicate { |
||
282 | /// We assume that LHS Pred RHS is true. |
||
283 | const ICmpInst::Predicate Pred; |
||
284 | const SCEV *LHS; |
||
285 | const SCEV *RHS; |
||
286 | |||
287 | public: |
||
288 | SCEVComparePredicate(const FoldingSetNodeIDRef ID, |
||
289 | const ICmpInst::Predicate Pred, |
||
290 | const SCEV *LHS, const SCEV *RHS); |
||
291 | |||
292 | /// Implementation of the SCEVPredicate interface |
||
293 | bool implies(const SCEVPredicate *N) const override; |
||
294 | void print(raw_ostream &OS, unsigned Depth = 0) const override; |
||
295 | bool isAlwaysTrue() const override; |
||
296 | |||
297 | ICmpInst::Predicate getPredicate() const { return Pred; } |
||
298 | |||
299 | /// Returns the left hand side of the predicate. |
||
300 | const SCEV *getLHS() const { return LHS; } |
||
301 | |||
302 | /// Returns the right hand side of the predicate. |
||
303 | const SCEV *getRHS() const { return RHS; } |
||
304 | |||
305 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
306 | static bool classof(const SCEVPredicate *P) { |
||
307 | return P->getKind() == P_Compare; |
||
308 | } |
||
309 | }; |
||
310 | |||
311 | /// This class represents an assumption made on an AddRec expression. Given an |
||
312 | /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw |
||
313 | /// flags (defined below) in the first X iterations of the loop, where X is a |
||
314 | /// SCEV expression returned by getPredicatedBackedgeTakenCount). |
||
315 | /// |
||
316 | /// Note that this does not imply that X is equal to the backedge taken |
||
317 | /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a |
||
318 | /// predicated backedge taken count of X, we only guarantee that {0,+,1} has |
||
319 | /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we |
||
320 | /// have more than X iterations. |
||
321 | class SCEVWrapPredicate final : public SCEVPredicate { |
||
322 | public: |
||
323 | /// Similar to SCEV::NoWrapFlags, but with slightly different semantics |
||
324 | /// for FlagNUSW. The increment is considered to be signed, and a + b |
||
325 | /// (where b is the increment) is considered to wrap if: |
||
326 | /// zext(a + b) != zext(a) + sext(b) |
||
327 | /// |
||
328 | /// If Signed is a function that takes an n-bit tuple and maps to the |
||
329 | /// integer domain as the tuples value interpreted as twos complement, |
||
330 | /// and Unsigned a function that takes an n-bit tuple and maps to the |
||
331 | /// integer domain as as the base two value of input tuple, then a + b |
||
332 | /// has IncrementNUSW iff: |
||
333 | /// |
||
334 | /// 0 <= Unsigned(a) + Signed(b) < 2^n |
||
335 | /// |
||
336 | /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW. |
||
337 | /// |
||
338 | /// Note that the IncrementNUSW flag is not commutative: if base + inc |
||
339 | /// has IncrementNUSW, then inc + base doesn't neccessarily have this |
||
340 | /// property. The reason for this is that this is used for sign/zero |
||
341 | /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is |
||
342 | /// assumed. A {base,+,inc} expression is already non-commutative with |
||
343 | /// regards to base and inc, since it is interpreted as: |
||
344 | /// (((base + inc) + inc) + inc) ... |
||
345 | enum IncrementWrapFlags { |
||
346 | IncrementAnyWrap = 0, // No guarantee. |
||
347 | IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap. |
||
348 | IncrementNSSW = (1 << 1), // No signed with signed increment wrap |
||
349 | // (equivalent with SCEV::NSW) |
||
350 | IncrementNoWrapMask = (1 << 2) - 1 |
||
351 | }; |
||
352 | |||
353 | /// Convenient IncrementWrapFlags manipulation methods. |
||
354 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
||
355 | clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, |
||
356 | SCEVWrapPredicate::IncrementWrapFlags OffFlags) { |
||
357 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
||
358 | assert((OffFlags & IncrementNoWrapMask) == OffFlags && |
||
359 | "Invalid flags value!"); |
||
360 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags); |
||
361 | } |
||
362 | |||
363 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
||
364 | maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) { |
||
365 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
||
366 | assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!"); |
||
367 | |||
368 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask); |
||
369 | } |
||
370 | |||
371 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
||
372 | setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, |
||
373 | SCEVWrapPredicate::IncrementWrapFlags OnFlags) { |
||
374 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
||
375 | assert((OnFlags & IncrementNoWrapMask) == OnFlags && |
||
376 | "Invalid flags value!"); |
||
377 | |||
378 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags); |
||
379 | } |
||
380 | |||
381 | /// Returns the set of SCEVWrapPredicate no wrap flags implied by a |
||
382 | /// SCEVAddRecExpr. |
||
383 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
||
384 | getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE); |
||
385 | |||
386 | private: |
||
387 | const SCEVAddRecExpr *AR; |
||
388 | IncrementWrapFlags Flags; |
||
389 | |||
390 | public: |
||
391 | explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID, |
||
392 | const SCEVAddRecExpr *AR, |
||
393 | IncrementWrapFlags Flags); |
||
394 | |||
395 | /// Returns the set assumed no overflow flags. |
||
396 | IncrementWrapFlags getFlags() const { return Flags; } |
||
397 | |||
398 | /// Implementation of the SCEVPredicate interface |
||
399 | const SCEVAddRecExpr *getExpr() const; |
||
400 | bool implies(const SCEVPredicate *N) const override; |
||
401 | void print(raw_ostream &OS, unsigned Depth = 0) const override; |
||
402 | bool isAlwaysTrue() const override; |
||
403 | |||
404 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
405 | static bool classof(const SCEVPredicate *P) { |
||
406 | return P->getKind() == P_Wrap; |
||
407 | } |
||
408 | }; |
||
409 | |||
410 | /// This class represents a composition of other SCEV predicates, and is the |
||
411 | /// class that most clients will interact with. This is equivalent to a |
||
412 | /// logical "AND" of all the predicates in the union. |
||
413 | /// |
||
414 | /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the |
||
415 | /// ScalarEvolution::Preds folding set. This is why the \c add function is sound. |
||
416 | class SCEVUnionPredicate final : public SCEVPredicate { |
||
417 | private: |
||
418 | using PredicateMap = |
||
419 | DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>; |
||
420 | |||
421 | /// Vector with references to all predicates in this union. |
||
422 | SmallVector<const SCEVPredicate *, 16> Preds; |
||
423 | |||
424 | /// Adds a predicate to this union. |
||
425 | void add(const SCEVPredicate *N); |
||
426 | |||
427 | public: |
||
428 | SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds); |
||
429 | |||
430 | const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const { |
||
431 | return Preds; |
||
432 | } |
||
433 | |||
434 | /// Implementation of the SCEVPredicate interface |
||
435 | bool isAlwaysTrue() const override; |
||
436 | bool implies(const SCEVPredicate *N) const override; |
||
437 | void print(raw_ostream &OS, unsigned Depth) const override; |
||
438 | |||
439 | /// We estimate the complexity of a union predicate as the size number of |
||
440 | /// predicates in the union. |
||
441 | unsigned getComplexity() const override { return Preds.size(); } |
||
442 | |||
443 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
444 | static bool classof(const SCEVPredicate *P) { |
||
445 | return P->getKind() == P_Union; |
||
446 | } |
||
447 | }; |
||
448 | |||
449 | /// The main scalar evolution driver. Because client code (intentionally) |
||
450 | /// can't do much with the SCEV objects directly, they must ask this class |
||
451 | /// for services. |
||
452 | class ScalarEvolution { |
||
453 | friend class ScalarEvolutionsTest; |
||
454 | |||
455 | public: |
||
456 | /// An enum describing the relationship between a SCEV and a loop. |
||
457 | enum LoopDisposition { |
||
458 | LoopVariant, ///< The SCEV is loop-variant (unknown). |
||
459 | LoopInvariant, ///< The SCEV is loop-invariant. |
||
460 | LoopComputable ///< The SCEV varies predictably with the loop. |
||
461 | }; |
||
462 | |||
463 | /// An enum describing the relationship between a SCEV and a basic block. |
||
464 | enum BlockDisposition { |
||
465 | DoesNotDominateBlock, ///< The SCEV does not dominate the block. |
||
466 | DominatesBlock, ///< The SCEV dominates the block. |
||
467 | ProperlyDominatesBlock ///< The SCEV properly dominates the block. |
||
468 | }; |
||
469 | |||
470 | /// Convenient NoWrapFlags manipulation that hides enum casts and is |
||
471 | /// visible in the ScalarEvolution name space. |
||
472 | [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, |
||
473 | int Mask) { |
||
474 | return (SCEV::NoWrapFlags)(Flags & Mask); |
||
475 | } |
||
476 | [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, |
||
477 | SCEV::NoWrapFlags OnFlags) { |
||
478 | return (SCEV::NoWrapFlags)(Flags | OnFlags); |
||
479 | } |
||
480 | [[nodiscard]] static SCEV::NoWrapFlags |
||
481 | clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { |
||
482 | return (SCEV::NoWrapFlags)(Flags & ~OffFlags); |
||
483 | } |
||
484 | [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags, |
||
485 | SCEV::NoWrapFlags TestFlags) { |
||
486 | return TestFlags == maskFlags(Flags, TestFlags); |
||
487 | }; |
||
488 | |||
489 | ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, |
||
490 | DominatorTree &DT, LoopInfo &LI); |
||
491 | ScalarEvolution(ScalarEvolution &&Arg); |
||
492 | ~ScalarEvolution(); |
||
493 | |||
494 | LLVMContext &getContext() const { return F.getContext(); } |
||
495 | |||
496 | /// Test if values of the given type are analyzable within the SCEV |
||
497 | /// framework. This primarily includes integer types, and it can optionally |
||
498 | /// include pointer types if the ScalarEvolution class has access to |
||
499 | /// target-specific information. |
||
500 | bool isSCEVable(Type *Ty) const; |
||
501 | |||
502 | /// Return the size in bits of the specified type, for which isSCEVable must |
||
503 | /// return true. |
||
504 | uint64_t getTypeSizeInBits(Type *Ty) const; |
||
505 | |||
506 | /// Return a type with the same bitwidth as the given type and which |
||
507 | /// represents how SCEV will treat the given type, for which isSCEVable must |
||
508 | /// return true. For pointer types, this is the pointer-sized integer type. |
||
509 | Type *getEffectiveSCEVType(Type *Ty) const; |
||
510 | |||
511 | // Returns a wider type among {Ty1, Ty2}. |
||
512 | Type *getWiderType(Type *Ty1, Type *Ty2) const; |
||
513 | |||
514 | /// Return true if there exists a point in the program at which both |
||
515 | /// A and B could be operands to the same instruction. |
||
516 | /// SCEV expressions are generally assumed to correspond to instructions |
||
517 | /// which could exists in IR. In general, this requires that there exists |
||
518 | /// a use point in the program where all operands dominate the use. |
||
519 | /// |
||
520 | /// Example: |
||
521 | /// loop { |
||
522 | /// if |
||
523 | /// loop { v1 = load @global1; } |
||
524 | /// else |
||
525 | /// loop { v2 = load @global2; } |
||
526 | /// } |
||
527 | /// No SCEV with operand V1, and v2 can exist in this program. |
||
528 | bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B); |
||
529 | |||
530 | /// Return true if the SCEV is a scAddRecExpr or it contains |
||
531 | /// scAddRecExpr. The result will be cached in HasRecMap. |
||
532 | bool containsAddRecurrence(const SCEV *S); |
||
533 | |||
534 | /// Is operation \p BinOp between \p LHS and \p RHS provably does not have |
||
535 | /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the |
||
536 | /// no-overflow fact should be true in the context of this instruction. |
||
537 | bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, |
||
538 | const SCEV *LHS, const SCEV *RHS, |
||
539 | const Instruction *CtxI = nullptr); |
||
540 | |||
541 | /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into |
||
542 | /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet. |
||
543 | /// Does not mutate the original instruction. Returns std::nullopt if it could |
||
544 | /// not deduce more precise flags than the instruction already has, otherwise |
||
545 | /// returns proven flags. |
||
546 | std::optional<SCEV::NoWrapFlags> |
||
547 | getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO); |
||
548 | |||
549 | /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops. |
||
550 | void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops); |
||
551 | |||
552 | /// Return true if the SCEV expression contains an undef value. |
||
553 | bool containsUndefs(const SCEV *S) const; |
||
554 | |||
555 | /// Return true if the SCEV expression contains a Value that has been |
||
556 | /// optimised out and is now a nullptr. |
||
557 | bool containsErasedValue(const SCEV *S) const; |
||
558 | |||
559 | /// Return a SCEV expression for the full generality of the specified |
||
560 | /// expression. |
||
561 | const SCEV *getSCEV(Value *V); |
||
562 | |||
563 | const SCEV *getConstant(ConstantInt *V); |
||
564 | const SCEV *getConstant(const APInt &Val); |
||
565 | const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); |
||
566 | const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0); |
||
567 | const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty); |
||
568 | const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); |
||
569 | const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); |
||
570 | const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty, |
||
571 | unsigned Depth = 0); |
||
572 | const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); |
||
573 | const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty, |
||
574 | unsigned Depth = 0); |
||
575 | const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty); |
||
576 | const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); |
||
577 | const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
||
578 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
579 | unsigned Depth = 0); |
||
580 | const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, |
||
581 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
582 | unsigned Depth = 0) { |
||
583 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
||
584 | return getAddExpr(Ops, Flags, Depth); |
||
585 | } |
||
586 | const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, |
||
587 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
588 | unsigned Depth = 0) { |
||
589 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; |
||
590 | return getAddExpr(Ops, Flags, Depth); |
||
591 | } |
||
592 | const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
||
593 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
594 | unsigned Depth = 0); |
||
595 | const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, |
||
596 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
597 | unsigned Depth = 0) { |
||
598 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
||
599 | return getMulExpr(Ops, Flags, Depth); |
||
600 | } |
||
601 | const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, |
||
602 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
603 | unsigned Depth = 0) { |
||
604 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; |
||
605 | return getMulExpr(Ops, Flags, Depth); |
||
606 | } |
||
607 | const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); |
||
608 | const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); |
||
609 | const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS); |
||
610 | const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, |
||
611 | SCEV::NoWrapFlags Flags); |
||
612 | const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
||
613 | const Loop *L, SCEV::NoWrapFlags Flags); |
||
614 | const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, |
||
615 | const Loop *L, SCEV::NoWrapFlags Flags) { |
||
616 | SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); |
||
617 | return getAddRecExpr(NewOp, L, Flags); |
||
618 | } |
||
619 | |||
620 | /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some |
||
621 | /// Predicates. If successful return these <AddRecExpr, Predicates>; |
||
622 | /// The function is intended to be called from PSCEV (the caller will decide |
||
623 | /// whether to actually add the predicates and carry out the rewrites). |
||
624 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
||
625 | createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI); |
||
626 | |||
627 | /// Returns an expression for a GEP |
||
628 | /// |
||
629 | /// \p GEP The GEP. The indices contained in the GEP itself are ignored, |
||
630 | /// instead we use IndexExprs. |
||
631 | /// \p IndexExprs The expressions for the indices. |
||
632 | const SCEV *getGEPExpr(GEPOperator *GEP, |
||
633 | const SmallVectorImpl<const SCEV *> &IndexExprs); |
||
634 | const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW); |
||
635 | const SCEV *getMinMaxExpr(SCEVTypes Kind, |
||
636 | SmallVectorImpl<const SCEV *> &Operands); |
||
637 | const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind, |
||
638 | SmallVectorImpl<const SCEV *> &Operands); |
||
639 | const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); |
||
640 | const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); |
||
641 | const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); |
||
642 | const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); |
||
643 | const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); |
||
644 | const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands); |
||
645 | const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS, |
||
646 | bool Sequential = false); |
||
647 | const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands, |
||
648 | bool Sequential = false); |
||
649 | const SCEV *getUnknown(Value *V); |
||
650 | const SCEV *getCouldNotCompute(); |
||
651 | |||
652 | /// Return a SCEV for the constant 0 of a specific type. |
||
653 | const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); } |
||
654 | |||
655 | /// Return a SCEV for the constant 1 of a specific type. |
||
656 | const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); } |
||
657 | |||
658 | /// Return a SCEV for the constant -1 of a specific type. |
||
659 | const SCEV *getMinusOne(Type *Ty) { |
||
660 | return getConstant(Ty, -1, /*isSigned=*/true); |
||
661 | } |
||
662 | |||
663 | /// Return an expression for sizeof ScalableTy that is type IntTy, where |
||
664 | /// ScalableTy is a scalable vector type. |
||
665 | const SCEV *getSizeOfScalableVectorExpr(Type *IntTy, |
||
666 | ScalableVectorType *ScalableTy); |
||
667 | |||
668 | /// Return an expression for the alloc size of AllocTy that is type IntTy |
||
669 | const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy); |
||
670 | |||
671 | /// Return an expression for the store size of StoreTy that is type IntTy |
||
672 | const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy); |
||
673 | |||
674 | /// Return an expression for offsetof on the given field with type IntTy |
||
675 | const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo); |
||
676 | |||
677 | /// Return the SCEV object corresponding to -V. |
||
678 | const SCEV *getNegativeSCEV(const SCEV *V, |
||
679 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); |
||
680 | |||
681 | /// Return the SCEV object corresponding to ~V. |
||
682 | const SCEV *getNotSCEV(const SCEV *V); |
||
683 | |||
684 | /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1. |
||
685 | /// |
||
686 | /// If the LHS and RHS are pointers which don't share a common base |
||
687 | /// (according to getPointerBase()), this returns a SCEVCouldNotCompute. |
||
688 | /// To compute the difference between two unrelated pointers, you can |
||
689 | /// explicitly convert the arguments using getPtrToIntExpr(), for pointer |
||
690 | /// types that support it. |
||
691 | const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, |
||
692 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
||
693 | unsigned Depth = 0); |
||
694 | |||
695 | /// Compute ceil(N / D). N and D are treated as unsigned values. |
||
696 | /// |
||
697 | /// Since SCEV doesn't have native ceiling division, this generates a |
||
698 | /// SCEV expression of the following form: |
||
699 | /// |
||
700 | /// umin(N, 1) + floor((N - umin(N, 1)) / D) |
||
701 | /// |
||
702 | /// A denominator of zero or poison is handled the same way as getUDivExpr(). |
||
703 | const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D); |
||
704 | |||
705 | /// Return a SCEV corresponding to a conversion of the input value to the |
||
706 | /// specified type. If the type must be extended, it is zero extended. |
||
707 | const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty, |
||
708 | unsigned Depth = 0); |
||
709 | |||
710 | /// Return a SCEV corresponding to a conversion of the input value to the |
||
711 | /// specified type. If the type must be extended, it is sign extended. |
||
712 | const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty, |
||
713 | unsigned Depth = 0); |
||
714 | |||
715 | /// Return a SCEV corresponding to a conversion of the input value to the |
||
716 | /// specified type. If the type must be extended, it is zero extended. The |
||
717 | /// conversion must not be narrowing. |
||
718 | const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); |
||
719 | |||
720 | /// Return a SCEV corresponding to a conversion of the input value to the |
||
721 | /// specified type. If the type must be extended, it is sign extended. The |
||
722 | /// conversion must not be narrowing. |
||
723 | const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); |
||
724 | |||
725 | /// Return a SCEV corresponding to a conversion of the input value to the |
||
726 | /// specified type. If the type must be extended, it is extended with |
||
727 | /// unspecified bits. The conversion must not be narrowing. |
||
728 | const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); |
||
729 | |||
730 | /// Return a SCEV corresponding to a conversion of the input value to the |
||
731 | /// specified type. The conversion must not be widening. |
||
732 | const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); |
||
733 | |||
734 | /// Promote the operands to the wider of the types using zero-extension, and |
||
735 | /// then perform a umax operation with them. |
||
736 | const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); |
||
737 | |||
738 | /// Promote the operands to the wider of the types using zero-extension, and |
||
739 | /// then perform a umin operation with them. |
||
740 | const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, |
||
741 | bool Sequential = false); |
||
742 | |||
743 | /// Promote the operands to the wider of the types using zero-extension, and |
||
744 | /// then perform a umin operation with them. N-ary function. |
||
745 | const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, |
||
746 | bool Sequential = false); |
||
747 | |||
748 | /// Transitively follow the chain of pointer-type operands until reaching a |
||
749 | /// SCEV that does not have a single pointer operand. This returns a |
||
750 | /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner |
||
751 | /// cases do exist. |
||
752 | const SCEV *getPointerBase(const SCEV *V); |
||
753 | |||
754 | /// Compute an expression equivalent to S - getPointerBase(S). |
||
755 | const SCEV *removePointerBase(const SCEV *S); |
||
756 | |||
757 | /// Return a SCEV expression for the specified value at the specified scope |
||
758 | /// in the program. The L value specifies a loop nest to evaluate the |
||
759 | /// expression at, where null is the top-level or a specified loop is |
||
760 | /// immediately inside of the loop. |
||
761 | /// |
||
762 | /// This method can be used to compute the exit value for a variable defined |
||
763 | /// in a loop by querying what the value will hold in the parent loop. |
||
764 | /// |
||
765 | /// In the case that a relevant loop exit value cannot be computed, the |
||
766 | /// original value V is returned. |
||
767 | const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); |
||
768 | |||
769 | /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). |
||
770 | const SCEV *getSCEVAtScope(Value *V, const Loop *L); |
||
771 | |||
772 | /// Test whether entry to the loop is protected by a conditional between LHS |
||
773 | /// and RHS. This is used to help avoid max expressions in loop trip |
||
774 | /// counts, and to eliminate casts. |
||
775 | bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, |
||
776 | const SCEV *LHS, const SCEV *RHS); |
||
777 | |||
778 | /// Test whether entry to the basic block is protected by a conditional |
||
779 | /// between LHS and RHS. |
||
780 | bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, |
||
781 | ICmpInst::Predicate Pred, const SCEV *LHS, |
||
782 | const SCEV *RHS); |
||
783 | |||
784 | /// Test whether the backedge of the loop is protected by a conditional |
||
785 | /// between LHS and RHS. This is used to eliminate casts. |
||
786 | bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, |
||
787 | const SCEV *LHS, const SCEV *RHS); |
||
788 | |||
789 | /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip |
||
790 | /// count". A "trip count" is the number of times the header of the loop |
||
791 | /// will execute if an exit is taken after the specified number of backedges |
||
792 | /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the |
||
793 | /// expression can overflow if ExitCount = UINT_MAX. \p Extend controls |
||
794 | /// how potential overflow is handled. If true, a wider result type is |
||
795 | /// returned. ex: EC = 255 (i8), TC = 256 (i9). If false, result unsigned |
||
796 | /// wraps with 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8) |
||
797 | const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, |
||
798 | bool Extend = true); |
||
799 | |||
800 | /// Returns the exact trip count of the loop if we can compute it, and |
||
801 | /// the result is a small constant. '0' is used to represent an unknown |
||
802 | /// or non-constant trip count. Note that a trip count is simply one more |
||
803 | /// than the backedge taken count for the loop. |
||
804 | unsigned getSmallConstantTripCount(const Loop *L); |
||
805 | |||
806 | /// Return the exact trip count for this loop if we exit through ExitingBlock. |
||
807 | /// '0' is used to represent an unknown or non-constant trip count. Note |
||
808 | /// that a trip count is simply one more than the backedge taken count for |
||
809 | /// the same exit. |
||
810 | /// This "trip count" assumes that control exits via ExitingBlock. More |
||
811 | /// precisely, it is the number of times that control will reach ExitingBlock |
||
812 | /// before taking the branch. For loops with multiple exits, it may not be |
||
813 | /// the number times that the loop header executes if the loop exits |
||
814 | /// prematurely via another branch. |
||
815 | unsigned getSmallConstantTripCount(const Loop *L, |
||
816 | const BasicBlock *ExitingBlock); |
||
817 | |||
818 | /// Returns the upper bound of the loop trip count as a normal unsigned |
||
819 | /// value. |
||
820 | /// Returns 0 if the trip count is unknown or not constant. |
||
821 | unsigned getSmallConstantMaxTripCount(const Loop *L); |
||
822 | |||
823 | /// Returns the upper bound of the loop trip count infered from array size. |
||
824 | /// Can not access bytes starting outside the statically allocated size |
||
825 | /// without being immediate UB. |
||
826 | /// Returns SCEVCouldNotCompute if the trip count could not inferred |
||
827 | /// from array accesses. |
||
828 | const SCEV *getConstantMaxTripCountFromArray(const Loop *L); |
||
829 | |||
830 | /// Returns the largest constant divisor of the trip count as a normal |
||
831 | /// unsigned value, if possible. This means that the actual trip count is |
||
832 | /// always a multiple of the returned value. Returns 1 if the trip count is |
||
833 | /// unknown or not guaranteed to be the multiple of a constant., Will also |
||
834 | /// return 1 if the trip count is very large (>= 2^32). |
||
835 | /// Note that the argument is an exit count for loop L, NOT a trip count. |
||
836 | unsigned getSmallConstantTripMultiple(const Loop *L, |
||
837 | const SCEV *ExitCount); |
||
838 | |||
839 | /// Returns the largest constant divisor of the trip count of the |
||
840 | /// loop. Will return 1 if no trip count could be computed, or if a |
||
841 | /// divisor could not be found. |
||
842 | unsigned getSmallConstantTripMultiple(const Loop *L); |
||
843 | |||
844 | /// Returns the largest constant divisor of the trip count of this loop as a |
||
845 | /// normal unsigned value, if possible. This means that the actual trip |
||
846 | /// count is always a multiple of the returned value (don't forget the trip |
||
847 | /// count could very well be zero as well!). As explained in the comments |
||
848 | /// for getSmallConstantTripCount, this assumes that control exits the loop |
||
849 | /// via ExitingBlock. |
||
850 | unsigned getSmallConstantTripMultiple(const Loop *L, |
||
851 | const BasicBlock *ExitingBlock); |
||
852 | |||
853 | /// The terms "backedge taken count" and "exit count" are used |
||
854 | /// interchangeably to refer to the number of times the backedge of a loop |
||
855 | /// has executed before the loop is exited. |
||
856 | enum ExitCountKind { |
||
857 | /// An expression exactly describing the number of times the backedge has |
||
858 | /// executed when a loop is exited. |
||
859 | Exact, |
||
860 | /// A constant which provides an upper bound on the exact trip count. |
||
861 | ConstantMaximum, |
||
862 | /// An expression which provides an upper bound on the exact trip count. |
||
863 | SymbolicMaximum, |
||
864 | }; |
||
865 | |||
866 | /// Return the number of times the backedge executes before the given exit |
||
867 | /// would be taken; if not exactly computable, return SCEVCouldNotCompute. |
||
868 | /// For a single exit loop, this value is equivelent to the result of |
||
869 | /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit) |
||
870 | /// before the backedge is executed (ExitCount + 1) times. Note that there |
||
871 | /// is no guarantee about *which* exit is taken on the exiting iteration. |
||
872 | const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock, |
||
873 | ExitCountKind Kind = Exact); |
||
874 | |||
875 | /// If the specified loop has a predictable backedge-taken count, return it, |
||
876 | /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is |
||
877 | /// the number of times the loop header will be branched to from within the |
||
878 | /// loop, assuming there are no abnormal exists like exception throws. This is |
||
879 | /// one less than the trip count of the loop, since it doesn't count the first |
||
880 | /// iteration, when the header is branched to from outside the loop. |
||
881 | /// |
||
882 | /// Note that it is not valid to call this method on a loop without a |
||
883 | /// loop-invariant backedge-taken count (see |
||
884 | /// hasLoopInvariantBackedgeTakenCount). |
||
885 | const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact); |
||
886 | |||
887 | /// Similar to getBackedgeTakenCount, except it will add a set of |
||
888 | /// SCEV predicates to Predicates that are required to be true in order for |
||
889 | /// the answer to be correct. Predicates can be checked with run-time |
||
890 | /// checks and can be used to perform loop versioning. |
||
891 | const SCEV *getPredicatedBackedgeTakenCount(const Loop *L, |
||
892 | SmallVector<const SCEVPredicate *, 4> &Predicates); |
||
893 | |||
894 | /// When successful, this returns a SCEVConstant that is greater than or equal |
||
895 | /// to (i.e. a "conservative over-approximation") of the value returend by |
||
896 | /// getBackedgeTakenCount. If such a value cannot be computed, it returns the |
||
897 | /// SCEVCouldNotCompute object. |
||
898 | const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) { |
||
899 | return getBackedgeTakenCount(L, ConstantMaximum); |
||
900 | } |
||
901 | |||
902 | /// When successful, this returns a SCEV that is greater than or equal |
||
903 | /// to (i.e. a "conservative over-approximation") of the value returend by |
||
904 | /// getBackedgeTakenCount. If such a value cannot be computed, it returns the |
||
905 | /// SCEVCouldNotCompute object. |
||
906 | const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) { |
||
907 | return getBackedgeTakenCount(L, SymbolicMaximum); |
||
908 | } |
||
909 | |||
910 | /// Return true if the backedge taken count is either the value returned by |
||
911 | /// getConstantMaxBackedgeTakenCount or zero. |
||
912 | bool isBackedgeTakenCountMaxOrZero(const Loop *L); |
||
913 | |||
914 | /// Return true if the specified loop has an analyzable loop-invariant |
||
915 | /// backedge-taken count. |
||
916 | bool hasLoopInvariantBackedgeTakenCount(const Loop *L); |
||
917 | |||
918 | // This method should be called by the client when it made any change that |
||
919 | // would invalidate SCEV's answers, and the client wants to remove all loop |
||
920 | // information held internally by ScalarEvolution. This is intended to be used |
||
921 | // when the alternative to forget a loop is too expensive (i.e. large loop |
||
922 | // bodies). |
||
923 | void forgetAllLoops(); |
||
924 | |||
925 | /// This method should be called by the client when it has changed a loop in |
||
926 | /// a way that may effect ScalarEvolution's ability to compute a trip count, |
||
927 | /// or if the loop is deleted. This call is potentially expensive for large |
||
928 | /// loop bodies. |
||
929 | void forgetLoop(const Loop *L); |
||
930 | |||
931 | // This method invokes forgetLoop for the outermost loop of the given loop |
||
932 | // \p L, making ScalarEvolution forget about all this subtree. This needs to |
||
933 | // be done whenever we make a transform that may affect the parameters of the |
||
934 | // outer loop, such as exit counts for branches. |
||
935 | void forgetTopmostLoop(const Loop *L); |
||
936 | |||
937 | /// This method should be called by the client when it has changed a value |
||
938 | /// in a way that may effect its value, or which may disconnect it from a |
||
939 | /// def-use chain linking it to a loop. |
||
940 | void forgetValue(Value *V); |
||
941 | |||
942 | /// Called when the client has changed the disposition of values in |
||
943 | /// this loop. |
||
944 | /// |
||
945 | /// We don't have a way to invalidate per-loop dispositions. Clear and |
||
946 | /// recompute is simpler. |
||
947 | void forgetLoopDispositions(); |
||
948 | |||
949 | /// Called when the client has changed the disposition of values in |
||
950 | /// a loop or block. |
||
951 | /// |
||
952 | /// We don't have a way to invalidate per-loop/per-block dispositions. Clear |
||
953 | /// and recompute is simpler. |
||
954 | void forgetBlockAndLoopDispositions(Value *V = nullptr); |
||
955 | |||
956 | /// Determine the minimum number of zero bits that S is guaranteed to end in |
||
957 | /// (at every loop iteration). It is, at the same time, the minimum number |
||
958 | /// of times S is divisible by 2. For example, given {4,+,8} it returns 2. |
||
959 | /// If S is guaranteed to be 0, it returns the bitwidth of S. |
||
960 | uint32_t GetMinTrailingZeros(const SCEV *S); |
||
961 | |||
962 | /// Determine the unsigned range for a particular SCEV. |
||
963 | /// NOTE: This returns a copy of the reference returned by getRangeRef. |
||
964 | ConstantRange getUnsignedRange(const SCEV *S) { |
||
965 | return getRangeRef(S, HINT_RANGE_UNSIGNED); |
||
966 | } |
||
967 | |||
968 | /// Determine the min of the unsigned range for a particular SCEV. |
||
969 | APInt getUnsignedRangeMin(const SCEV *S) { |
||
970 | return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin(); |
||
971 | } |
||
972 | |||
973 | /// Determine the max of the unsigned range for a particular SCEV. |
||
974 | APInt getUnsignedRangeMax(const SCEV *S) { |
||
975 | return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax(); |
||
976 | } |
||
977 | |||
978 | /// Determine the signed range for a particular SCEV. |
||
979 | /// NOTE: This returns a copy of the reference returned by getRangeRef. |
||
980 | ConstantRange getSignedRange(const SCEV *S) { |
||
981 | return getRangeRef(S, HINT_RANGE_SIGNED); |
||
982 | } |
||
983 | |||
984 | /// Determine the min of the signed range for a particular SCEV. |
||
985 | APInt getSignedRangeMin(const SCEV *S) { |
||
986 | return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin(); |
||
987 | } |
||
988 | |||
989 | /// Determine the max of the signed range for a particular SCEV. |
||
990 | APInt getSignedRangeMax(const SCEV *S) { |
||
991 | return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax(); |
||
992 | } |
||
993 | |||
994 | /// Test if the given expression is known to be negative. |
||
995 | bool isKnownNegative(const SCEV *S); |
||
996 | |||
997 | /// Test if the given expression is known to be positive. |
||
998 | bool isKnownPositive(const SCEV *S); |
||
999 | |||
1000 | /// Test if the given expression is known to be non-negative. |
||
1001 | bool isKnownNonNegative(const SCEV *S); |
||
1002 | |||
1003 | /// Test if the given expression is known to be non-positive. |
||
1004 | bool isKnownNonPositive(const SCEV *S); |
||
1005 | |||
1006 | /// Test if the given expression is known to be non-zero. |
||
1007 | bool isKnownNonZero(const SCEV *S); |
||
1008 | |||
1009 | /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from |
||
1010 | /// \p S by substitution of all AddRec sub-expression related to loop \p L |
||
1011 | /// with initial value of that SCEV. The second is obtained from \p S by |
||
1012 | /// substitution of all AddRec sub-expressions related to loop \p L with post |
||
1013 | /// increment of this AddRec in the loop \p L. In both cases all other AddRec |
||
1014 | /// sub-expressions (not related to \p L) remain the same. |
||
1015 | /// If the \p S contains non-invariant unknown SCEV the function returns |
||
1016 | /// CouldNotCompute SCEV in both values of std::pair. |
||
1017 | /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1 |
||
1018 | /// the function returns pair: |
||
1019 | /// first = {0, +, 1}<L2> |
||
1020 | /// second = {1, +, 1}<L1> + {0, +, 1}<L2> |
||
1021 | /// We can see that for the first AddRec sub-expression it was replaced with |
||
1022 | /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post |
||
1023 | /// increment value) for the second one. In both cases AddRec expression |
||
1024 | /// related to L2 remains the same. |
||
1025 | std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L, |
||
1026 | const SCEV *S); |
||
1027 | |||
1028 | /// We'd like to check the predicate on every iteration of the most dominated |
||
1029 | /// loop between loops used in LHS and RHS. |
||
1030 | /// To do this we use the following list of steps: |
||
1031 | /// 1. Collect set S all loops on which either LHS or RHS depend. |
||
1032 | /// 2. If S is non-empty |
||
1033 | /// a. Let PD be the element of S which is dominated by all other elements. |
||
1034 | /// b. Let E(LHS) be value of LHS on entry of PD. |
||
1035 | /// To get E(LHS), we should just take LHS and replace all AddRecs that are |
||
1036 | /// attached to PD on with their entry values. |
||
1037 | /// Define E(RHS) in the same way. |
||
1038 | /// c. Let B(LHS) be value of L on backedge of PD. |
||
1039 | /// To get B(LHS), we should just take LHS and replace all AddRecs that are |
||
1040 | /// attached to PD on with their backedge values. |
||
1041 | /// Define B(RHS) in the same way. |
||
1042 | /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD, |
||
1043 | /// so we can assert on that. |
||
1044 | /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) && |
||
1045 | /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS)) |
||
1046 | bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1047 | const SCEV *RHS); |
||
1048 | |||
1049 | /// Test if the given expression is known to satisfy the condition described |
||
1050 | /// by Pred, LHS, and RHS. |
||
1051 | bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1052 | const SCEV *RHS); |
||
1053 | |||
1054 | /// Check whether the condition described by Pred, LHS, and RHS is true or |
||
1055 | /// false. If we know it, return the evaluation of this condition. If neither |
||
1056 | /// is proved, return std::nullopt. |
||
1057 | std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, |
||
1058 | const SCEV *LHS, const SCEV *RHS); |
||
1059 | |||
1060 | /// Test if the given expression is known to satisfy the condition described |
||
1061 | /// by Pred, LHS, and RHS in the given Context. |
||
1062 | bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1063 | const SCEV *RHS, const Instruction *CtxI); |
||
1064 | |||
1065 | /// Check whether the condition described by Pred, LHS, and RHS is true or |
||
1066 | /// false in the given \p Context. If we know it, return the evaluation of |
||
1067 | /// this condition. If neither is proved, return std::nullopt. |
||
1068 | std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, |
||
1069 | const SCEV *LHS, const SCEV *RHS, |
||
1070 | const Instruction *CtxI); |
||
1071 | |||
1072 | /// Test if the condition described by Pred, LHS, RHS is known to be true on |
||
1073 | /// every iteration of the loop of the recurrency LHS. |
||
1074 | bool isKnownOnEveryIteration(ICmpInst::Predicate Pred, |
||
1075 | const SCEVAddRecExpr *LHS, const SCEV *RHS); |
||
1076 | |||
1077 | /// Information about the number of loop iterations for which a loop exit's |
||
1078 | /// branch condition evaluates to the not-taken path. This is a temporary |
||
1079 | /// pair of exact and max expressions that are eventually summarized in |
||
1080 | /// ExitNotTakenInfo and BackedgeTakenInfo. |
||
1081 | struct ExitLimit { |
||
1082 | const SCEV *ExactNotTaken; // The exit is not taken exactly this many times |
||
1083 | const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many |
||
1084 | // times |
||
1085 | const SCEV *SymbolicMaxNotTaken; |
||
1086 | |||
1087 | // Not taken either exactly ConstantMaxNotTaken or zero times |
||
1088 | bool MaxOrZero = false; |
||
1089 | |||
1090 | /// A set of predicate guards for this ExitLimit. The result is only valid |
||
1091 | /// if all of the predicates in \c Predicates evaluate to 'true' at |
||
1092 | /// run-time. |
||
1093 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; |
||
1094 | |||
1095 | void addPredicate(const SCEVPredicate *P) { |
||
1096 | assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!"); |
||
1097 | Predicates.insert(P); |
||
1098 | } |
||
1099 | |||
1100 | /// Construct either an exact exit limit from a constant, or an unknown |
||
1101 | /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed |
||
1102 | /// as arguments and asserts enforce that internally. |
||
1103 | /*implicit*/ ExitLimit(const SCEV *E); |
||
1104 | |||
1105 | ExitLimit( |
||
1106 | const SCEV *E, const SCEV *ConstantMaxNotTaken, |
||
1107 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, |
||
1108 | ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList = |
||
1109 | std::nullopt); |
||
1110 | |||
1111 | ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken, |
||
1112 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, |
||
1113 | const SmallPtrSetImpl<const SCEVPredicate *> &PredSet); |
||
1114 | |||
1115 | /// Test whether this ExitLimit contains any computed information, or |
||
1116 | /// whether it's all SCEVCouldNotCompute values. |
||
1117 | bool hasAnyInfo() const { |
||
1118 | return !isa<SCEVCouldNotCompute>(ExactNotTaken) || |
||
1119 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken); |
||
1120 | } |
||
1121 | |||
1122 | /// Test whether this ExitLimit contains all information. |
||
1123 | bool hasFullInfo() const { |
||
1124 | return !isa<SCEVCouldNotCompute>(ExactNotTaken); |
||
1125 | } |
||
1126 | }; |
||
1127 | |||
1128 | /// Compute the number of times the backedge of the specified loop will |
||
1129 | /// execute if its exit condition were a conditional branch of ExitCond. |
||
1130 | /// |
||
1131 | /// \p ControlsExit is true if ExitCond directly controls the exit |
||
1132 | /// branch. In this case, we can assume that the loop exits only if the |
||
1133 | /// condition is true and can infer that failing to meet the condition prior |
||
1134 | /// to integer wraparound results in undefined behavior. |
||
1135 | /// |
||
1136 | /// If \p AllowPredicates is set, this call will try to use a minimal set of |
||
1137 | /// SCEV predicates in order to return an exact answer. |
||
1138 | ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, |
||
1139 | bool ExitIfTrue, bool ControlsExit, |
||
1140 | bool AllowPredicates = false); |
||
1141 | |||
1142 | /// A predicate is said to be monotonically increasing if may go from being |
||
1143 | /// false to being true as the loop iterates, but never the other way |
||
1144 | /// around. A predicate is said to be monotonically decreasing if may go |
||
1145 | /// from being true to being false as the loop iterates, but never the other |
||
1146 | /// way around. |
||
1147 | enum MonotonicPredicateType { |
||
1148 | MonotonicallyIncreasing, |
||
1149 | MonotonicallyDecreasing |
||
1150 | }; |
||
1151 | |||
1152 | /// If, for all loop invariant X, the predicate "LHS `Pred` X" is |
||
1153 | /// monotonically increasing or decreasing, returns |
||
1154 | /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing) |
||
1155 | /// respectively. If we could not prove either of these facts, returns |
||
1156 | /// std::nullopt. |
||
1157 | std::optional<MonotonicPredicateType> |
||
1158 | getMonotonicPredicateType(const SCEVAddRecExpr *LHS, |
||
1159 | ICmpInst::Predicate Pred); |
||
1160 | |||
1161 | struct LoopInvariantPredicate { |
||
1162 | ICmpInst::Predicate Pred; |
||
1163 | const SCEV *LHS; |
||
1164 | const SCEV *RHS; |
||
1165 | |||
1166 | LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1167 | const SCEV *RHS) |
||
1168 | : Pred(Pred), LHS(LHS), RHS(RHS) {} |
||
1169 | }; |
||
1170 | /// If the result of the predicate LHS `Pred` RHS is loop invariant with |
||
1171 | /// respect to L, return a LoopInvariantPredicate with LHS and RHS being |
||
1172 | /// invariants, available at L's entry. Otherwise, return std::nullopt. |
||
1173 | std::optional<LoopInvariantPredicate> |
||
1174 | getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1175 | const SCEV *RHS, const Loop *L, |
||
1176 | const Instruction *CtxI = nullptr); |
||
1177 | |||
1178 | /// If the result of the predicate LHS `Pred` RHS is loop invariant with |
||
1179 | /// respect to L at given Context during at least first MaxIter iterations, |
||
1180 | /// return a LoopInvariantPredicate with LHS and RHS being invariants, |
||
1181 | /// available at L's entry. Otherwise, return std::nullopt. The predicate |
||
1182 | /// should be the loop's exit condition. |
||
1183 | std::optional<LoopInvariantPredicate> |
||
1184 | getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred, |
||
1185 | const SCEV *LHS, |
||
1186 | const SCEV *RHS, const Loop *L, |
||
1187 | const Instruction *CtxI, |
||
1188 | const SCEV *MaxIter); |
||
1189 | |||
1190 | std::optional<LoopInvariantPredicate> |
||
1191 | getLoopInvariantExitCondDuringFirstIterationsImpl( |
||
1192 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
||
1193 | const Instruction *CtxI, const SCEV *MaxIter); |
||
1194 | |||
1195 | /// Simplify LHS and RHS in a comparison with predicate Pred. Return true |
||
1196 | /// iff any changes were made. If the operands are provably equal or |
||
1197 | /// unequal, LHS and RHS are set to the same value and Pred is set to either |
||
1198 | /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison |
||
1199 | /// controls the exit of a loop known to have a finite number of iterations. |
||
1200 | bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, |
||
1201 | const SCEV *&RHS, unsigned Depth = 0, |
||
1202 | bool ControllingFiniteLoop = false); |
||
1203 | |||
1204 | /// Return the "disposition" of the given SCEV with respect to the given |
||
1205 | /// loop. |
||
1206 | LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); |
||
1207 | |||
1208 | /// Return true if the value of the given SCEV is unchanging in the |
||
1209 | /// specified loop. |
||
1210 | bool isLoopInvariant(const SCEV *S, const Loop *L); |
||
1211 | |||
1212 | /// Determine if the SCEV can be evaluated at loop's entry. It is true if it |
||
1213 | /// doesn't depend on a SCEVUnknown of an instruction which is dominated by |
||
1214 | /// the header of loop L. |
||
1215 | bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L); |
||
1216 | |||
1217 | /// Return true if the given SCEV changes value in a known way in the |
||
1218 | /// specified loop. This property being true implies that the value is |
||
1219 | /// variant in the loop AND that we can emit an expression to compute the |
||
1220 | /// value of the expression at any particular loop iteration. |
||
1221 | bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); |
||
1222 | |||
1223 | /// Return the "disposition" of the given SCEV with respect to the given |
||
1224 | /// block. |
||
1225 | BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); |
||
1226 | |||
1227 | /// Return true if elements that makes up the given SCEV dominate the |
||
1228 | /// specified basic block. |
||
1229 | bool dominates(const SCEV *S, const BasicBlock *BB); |
||
1230 | |||
1231 | /// Return true if elements that makes up the given SCEV properly dominate |
||
1232 | /// the specified basic block. |
||
1233 | bool properlyDominates(const SCEV *S, const BasicBlock *BB); |
||
1234 | |||
1235 | /// Test whether the given SCEV has Op as a direct or indirect operand. |
||
1236 | bool hasOperand(const SCEV *S, const SCEV *Op) const; |
||
1237 | |||
1238 | /// Return the size of an element read or written by Inst. |
||
1239 | const SCEV *getElementSize(Instruction *Inst); |
||
1240 | |||
1241 | void print(raw_ostream &OS) const; |
||
1242 | void verify() const; |
||
1243 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
||
1244 | FunctionAnalysisManager::Invalidator &Inv); |
||
1245 | |||
1246 | /// Return the DataLayout associated with the module this SCEV instance is |
||
1247 | /// operating on. |
||
1248 | const DataLayout &getDataLayout() const { |
||
1249 | return F.getParent()->getDataLayout(); |
||
1250 | } |
||
1251 | |||
1252 | const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS); |
||
1253 | const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred, |
||
1254 | const SCEV *LHS, const SCEV *RHS); |
||
1255 | |||
1256 | const SCEVPredicate * |
||
1257 | getWrapPredicate(const SCEVAddRecExpr *AR, |
||
1258 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags); |
||
1259 | |||
1260 | /// Re-writes the SCEV according to the Predicates in \p A. |
||
1261 | const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L, |
||
1262 | const SCEVPredicate &A); |
||
1263 | /// Tries to convert the \p S expression to an AddRec expression, |
||
1264 | /// adding additional predicates to \p Preds as required. |
||
1265 | const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates( |
||
1266 | const SCEV *S, const Loop *L, |
||
1267 | SmallPtrSetImpl<const SCEVPredicate *> &Preds); |
||
1268 | |||
1269 | /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a |
||
1270 | /// constant, and std::nullopt if it isn't. |
||
1271 | /// |
||
1272 | /// This is intended to be a cheaper version of getMinusSCEV. We can be |
||
1273 | /// frugal here since we just bail out of actually constructing and |
||
1274 | /// canonicalizing an expression in the cases where the result isn't going |
||
1275 | /// to be a constant. |
||
1276 | std::optional<APInt> computeConstantDifference(const SCEV *LHS, |
||
1277 | const SCEV *RHS); |
||
1278 | |||
1279 | /// Update no-wrap flags of an AddRec. This may drop the cached info about |
||
1280 | /// this AddRec (such as range info) in case if new flags may potentially |
||
1281 | /// sharpen it. |
||
1282 | void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags); |
||
1283 | |||
1284 | /// Try to apply information from loop guards for \p L to \p Expr. |
||
1285 | const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L); |
||
1286 | |||
1287 | /// Return true if the loop has no abnormal exits. That is, if the loop |
||
1288 | /// is not infinite, it must exit through an explicit edge in the CFG. |
||
1289 | /// (As opposed to either a) throwing out of the function or b) entering a |
||
1290 | /// well defined infinite loop in some callee.) |
||
1291 | bool loopHasNoAbnormalExits(const Loop *L) { |
||
1292 | return getLoopProperties(L).HasNoAbnormalExits; |
||
1293 | } |
||
1294 | |||
1295 | /// Return true if this loop is finite by assumption. That is, |
||
1296 | /// to be infinite, it must also be undefined. |
||
1297 | bool loopIsFiniteByAssumption(const Loop *L); |
||
1298 | |||
1299 | class FoldID { |
||
1300 | SmallVector<unsigned, 5> Bits; |
||
1301 | |||
1302 | public: |
||
1303 | void addInteger(unsigned long I) { |
||
1304 | if (sizeof(long) == sizeof(int)) |
||
1305 | addInteger(unsigned(I)); |
||
1306 | else if (sizeof(long) == sizeof(long long)) |
||
1307 | addInteger((unsigned long long)I); |
||
1308 | else |
||
1309 | llvm_unreachable("unexpected sizeof(long)"); |
||
1310 | } |
||
1311 | void addInteger(unsigned I) { Bits.push_back(I); } |
||
1312 | void addInteger(int I) { Bits.push_back(I); } |
||
1313 | |||
1314 | void addInteger(unsigned long long I) { |
||
1315 | addInteger(unsigned(I)); |
||
1316 | addInteger(unsigned(I >> 32)); |
||
1317 | } |
||
1318 | |||
1319 | void addPointer(const void *Ptr) { |
||
1320 | // Note: this adds pointers to the hash using sizes and endianness that |
||
1321 | // depend on the host. It doesn't matter, however, because hashing on |
||
1322 | // pointer values is inherently unstable. Nothing should depend on the |
||
1323 | // ordering of nodes in the folding set. |
||
1324 | static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), |
||
1325 | "unexpected pointer size"); |
||
1326 | addInteger(reinterpret_cast<uintptr_t>(Ptr)); |
||
1327 | } |
||
1328 | |||
1329 | unsigned computeHash() const { |
||
1330 | unsigned Hash = Bits.size(); |
||
1331 | for (unsigned I = 0; I != Bits.size(); ++I) |
||
1332 | Hash = detail::combineHashValue(Hash, Bits[I]); |
||
1333 | return Hash; |
||
1334 | } |
||
1335 | bool operator==(const FoldID &RHS) const { |
||
1336 | if (Bits.size() != RHS.Bits.size()) |
||
1337 | return false; |
||
1338 | for (unsigned I = 0; I != Bits.size(); ++I) |
||
1339 | if (Bits[I] != RHS.Bits[I]) |
||
1340 | return false; |
||
1341 | return true; |
||
1342 | } |
||
1343 | }; |
||
1344 | |||
1345 | private: |
||
1346 | /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a |
||
1347 | /// Value is deleted. |
||
1348 | class SCEVCallbackVH final : public CallbackVH { |
||
1349 | ScalarEvolution *SE; |
||
1350 | |||
1351 | void deleted() override; |
||
1352 | void allUsesReplacedWith(Value *New) override; |
||
1353 | |||
1354 | public: |
||
1355 | SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); |
||
1356 | }; |
||
1357 | |||
1358 | friend class SCEVCallbackVH; |
||
1359 | friend class SCEVExpander; |
||
1360 | friend class SCEVUnknown; |
||
1361 | |||
1362 | /// The function we are analyzing. |
||
1363 | Function &F; |
||
1364 | |||
1365 | /// Does the module have any calls to the llvm.experimental.guard intrinsic |
||
1366 | /// at all? If this is false, we avoid doing work that will only help if |
||
1367 | /// thare are guards present in the IR. |
||
1368 | bool HasGuards; |
||
1369 | |||
1370 | /// The target library information for the target we are targeting. |
||
1371 | TargetLibraryInfo &TLI; |
||
1372 | |||
1373 | /// The tracker for \@llvm.assume intrinsics in this function. |
||
1374 | AssumptionCache &AC; |
||
1375 | |||
1376 | /// The dominator tree. |
||
1377 | DominatorTree &DT; |
||
1378 | |||
1379 | /// The loop information for the function we are currently analyzing. |
||
1380 | LoopInfo &LI; |
||
1381 | |||
1382 | /// This SCEV is used to represent unknown trip counts and things. |
||
1383 | std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute; |
||
1384 | |||
1385 | /// The type for HasRecMap. |
||
1386 | using HasRecMapType = DenseMap<const SCEV *, bool>; |
||
1387 | |||
1388 | /// This is a cache to record whether a SCEV contains any scAddRecExpr. |
||
1389 | HasRecMapType HasRecMap; |
||
1390 | |||
1391 | /// The type for ExprValueMap. |
||
1392 | using ValueSetVector = SmallSetVector<Value *, 4>; |
||
1393 | using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>; |
||
1394 | |||
1395 | /// ExprValueMap -- This map records the original values from which |
||
1396 | /// the SCEV expr is generated from. |
||
1397 | ExprValueMapType ExprValueMap; |
||
1398 | |||
1399 | /// The type for ValueExprMap. |
||
1400 | using ValueExprMapType = |
||
1401 | DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>; |
||
1402 | |||
1403 | /// This is a cache of the values we have analyzed so far. |
||
1404 | ValueExprMapType ValueExprMap; |
||
1405 | |||
1406 | /// This is a cache for expressions that got folded to a different existing |
||
1407 | /// SCEV. |
||
1408 | DenseMap<FoldID, const SCEV *> FoldCache; |
||
1409 | DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser; |
||
1410 | |||
1411 | /// Mark predicate values currently being processed by isImpliedCond. |
||
1412 | SmallPtrSet<const Value *, 6> PendingLoopPredicates; |
||
1413 | |||
1414 | /// Mark SCEVUnknown Phis currently being processed by getRangeRef. |
||
1415 | SmallPtrSet<const PHINode *, 6> PendingPhiRanges; |
||
1416 | |||
1417 | /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter. |
||
1418 | SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter; |
||
1419 | |||
1420 | // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge. |
||
1421 | SmallPtrSet<const PHINode *, 6> PendingMerges; |
||
1422 | |||
1423 | /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of |
||
1424 | /// conditions dominating the backedge of a loop. |
||
1425 | bool WalkingBEDominatingConds = false; |
||
1426 | |||
1427 | /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a |
||
1428 | /// predicate by splitting it into a set of independent predicates. |
||
1429 | bool ProvingSplitPredicate = false; |
||
1430 | |||
1431 | /// Memoized values for the GetMinTrailingZeros |
||
1432 | DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache; |
||
1433 | |||
1434 | /// Return the Value set from which the SCEV expr is generated. |
||
1435 | ArrayRef<Value *> getSCEVValues(const SCEV *S); |
||
1436 | |||
1437 | /// Private helper method for the GetMinTrailingZeros method |
||
1438 | uint32_t GetMinTrailingZerosImpl(const SCEV *S); |
||
1439 | |||
1440 | /// Information about the number of times a particular loop exit may be |
||
1441 | /// reached before exiting the loop. |
||
1442 | struct ExitNotTakenInfo { |
||
1443 | PoisoningVH<BasicBlock> ExitingBlock; |
||
1444 | const SCEV *ExactNotTaken; |
||
1445 | const SCEV *ConstantMaxNotTaken; |
||
1446 | const SCEV *SymbolicMaxNotTaken; |
||
1447 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; |
||
1448 | |||
1449 | explicit ExitNotTakenInfo( |
||
1450 | PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken, |
||
1451 | const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken, |
||
1452 | const SmallPtrSet<const SCEVPredicate *, 4> &Predicates) |
||
1453 | : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken), |
||
1454 | ConstantMaxNotTaken(ConstantMaxNotTaken), |
||
1455 | SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {} |
||
1456 | |||
1457 | bool hasAlwaysTruePredicate() const { |
||
1458 | return Predicates.empty(); |
||
1459 | } |
||
1460 | }; |
||
1461 | |||
1462 | /// Information about the backedge-taken count of a loop. This currently |
||
1463 | /// includes an exact count and a maximum count. |
||
1464 | /// |
||
1465 | class BackedgeTakenInfo { |
||
1466 | friend class ScalarEvolution; |
||
1467 | |||
1468 | /// A list of computable exits and their not-taken counts. Loops almost |
||
1469 | /// never have more than one computable exit. |
||
1470 | SmallVector<ExitNotTakenInfo, 1> ExitNotTaken; |
||
1471 | |||
1472 | /// Expression indicating the least constant maximum backedge-taken count of |
||
1473 | /// the loop that is known, or a SCEVCouldNotCompute. This expression is |
||
1474 | /// only valid if the redicates associated with all loop exits are true. |
||
1475 | const SCEV *ConstantMax = nullptr; |
||
1476 | |||
1477 | /// Indicating if \c ExitNotTaken has an element for every exiting block in |
||
1478 | /// the loop. |
||
1479 | bool IsComplete = false; |
||
1480 | |||
1481 | /// Expression indicating the least maximum backedge-taken count of the loop |
||
1482 | /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query. |
||
1483 | const SCEV *SymbolicMax = nullptr; |
||
1484 | |||
1485 | /// True iff the backedge is taken either exactly Max or zero times. |
||
1486 | bool MaxOrZero = false; |
||
1487 | |||
1488 | bool isComplete() const { return IsComplete; } |
||
1489 | const SCEV *getConstantMax() const { return ConstantMax; } |
||
1490 | |||
1491 | public: |
||
1492 | BackedgeTakenInfo() = default; |
||
1493 | BackedgeTakenInfo(BackedgeTakenInfo &&) = default; |
||
1494 | BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default; |
||
1495 | |||
1496 | using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>; |
||
1497 | |||
1498 | /// Initialize BackedgeTakenInfo from a list of exact exit counts. |
||
1499 | BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete, |
||
1500 | const SCEV *ConstantMax, bool MaxOrZero); |
||
1501 | |||
1502 | /// Test whether this BackedgeTakenInfo contains any computed information, |
||
1503 | /// or whether it's all SCEVCouldNotCompute values. |
||
1504 | bool hasAnyInfo() const { |
||
1505 | return !ExitNotTaken.empty() || |
||
1506 | !isa<SCEVCouldNotCompute>(getConstantMax()); |
||
1507 | } |
||
1508 | |||
1509 | /// Test whether this BackedgeTakenInfo contains complete information. |
||
1510 | bool hasFullInfo() const { return isComplete(); } |
||
1511 | |||
1512 | /// Return an expression indicating the exact *backedge-taken* |
||
1513 | /// count of the loop if it is known or SCEVCouldNotCompute |
||
1514 | /// otherwise. If execution makes it to the backedge on every |
||
1515 | /// iteration (i.e. there are no abnormal exists like exception |
||
1516 | /// throws and thread exits) then this is the number of times the |
||
1517 | /// loop header will execute minus one. |
||
1518 | /// |
||
1519 | /// If the SCEV predicate associated with the answer can be different |
||
1520 | /// from AlwaysTrue, we must add a (non null) Predicates argument. |
||
1521 | /// The SCEV predicate associated with the answer will be added to |
||
1522 | /// Predicates. A run-time check needs to be emitted for the SCEV |
||
1523 | /// predicate in order for the answer to be valid. |
||
1524 | /// |
||
1525 | /// Note that we should always know if we need to pass a predicate |
||
1526 | /// argument or not from the way the ExitCounts vector was computed. |
||
1527 | /// If we allowed SCEV predicates to be generated when populating this |
||
1528 | /// vector, this information can contain them and therefore a |
||
1529 | /// SCEVPredicate argument should be added to getExact. |
||
1530 | const SCEV *getExact(const Loop *L, ScalarEvolution *SE, |
||
1531 | SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const; |
||
1532 | |||
1533 | /// Return the number of times this loop exit may fall through to the back |
||
1534 | /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via |
||
1535 | /// this block before this number of iterations, but may exit via another |
||
1536 | /// block. |
||
1537 | const SCEV *getExact(const BasicBlock *ExitingBlock, |
||
1538 | ScalarEvolution *SE) const; |
||
1539 | |||
1540 | /// Get the constant max backedge taken count for the loop. |
||
1541 | const SCEV *getConstantMax(ScalarEvolution *SE) const; |
||
1542 | |||
1543 | /// Get the constant max backedge taken count for the particular loop exit. |
||
1544 | const SCEV *getConstantMax(const BasicBlock *ExitingBlock, |
||
1545 | ScalarEvolution *SE) const; |
||
1546 | |||
1547 | /// Get the symbolic max backedge taken count for the loop. |
||
1548 | const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE); |
||
1549 | |||
1550 | /// Get the symbolic max backedge taken count for the particular loop exit. |
||
1551 | const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock, |
||
1552 | ScalarEvolution *SE) const; |
||
1553 | |||
1554 | /// Return true if the number of times this backedge is taken is either the |
||
1555 | /// value returned by getConstantMax or zero. |
||
1556 | bool isConstantMaxOrZero(ScalarEvolution *SE) const; |
||
1557 | }; |
||
1558 | |||
1559 | /// Cache the backedge-taken count of the loops for this function as they |
||
1560 | /// are computed. |
||
1561 | DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts; |
||
1562 | |||
1563 | /// Cache the predicated backedge-taken count of the loops for this |
||
1564 | /// function as they are computed. |
||
1565 | DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts; |
||
1566 | |||
1567 | /// Loops whose backedge taken counts directly use this non-constant SCEV. |
||
1568 | DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>> |
||
1569 | BECountUsers; |
||
1570 | |||
1571 | /// This map contains entries for all of the PHI instructions that we |
||
1572 | /// attempt to compute constant evolutions for. This allows us to avoid |
||
1573 | /// potentially expensive recomputation of these properties. An instruction |
||
1574 | /// maps to null if we are unable to compute its exit value. |
||
1575 | DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue; |
||
1576 | |||
1577 | /// This map contains entries for all the expressions that we attempt to |
||
1578 | /// compute getSCEVAtScope information for, which can be expensive in |
||
1579 | /// extreme cases. |
||
1580 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> |
||
1581 | ValuesAtScopes; |
||
1582 | |||
1583 | /// Reverse map for invalidation purposes: Stores of which SCEV and which |
||
1584 | /// loop this is the value-at-scope of. |
||
1585 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> |
||
1586 | ValuesAtScopesUsers; |
||
1587 | |||
1588 | /// Memoized computeLoopDisposition results. |
||
1589 | DenseMap<const SCEV *, |
||
1590 | SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>> |
||
1591 | LoopDispositions; |
||
1592 | |||
1593 | struct LoopProperties { |
||
1594 | /// Set to true if the loop contains no instruction that can abnormally exit |
||
1595 | /// the loop (i.e. via throwing an exception, by terminating the thread |
||
1596 | /// cleanly or by infinite looping in a called function). Strictly |
||
1597 | /// speaking, the last one is not leaving the loop, but is identical to |
||
1598 | /// leaving the loop for reasoning about undefined behavior. |
||
1599 | bool HasNoAbnormalExits; |
||
1600 | |||
1601 | /// Set to true if the loop contains no instruction that can have side |
||
1602 | /// effects (i.e. via throwing an exception, volatile or atomic access). |
||
1603 | bool HasNoSideEffects; |
||
1604 | }; |
||
1605 | |||
1606 | /// Cache for \c getLoopProperties. |
||
1607 | DenseMap<const Loop *, LoopProperties> LoopPropertiesCache; |
||
1608 | |||
1609 | /// Return a \c LoopProperties instance for \p L, creating one if necessary. |
||
1610 | LoopProperties getLoopProperties(const Loop *L); |
||
1611 | |||
1612 | bool loopHasNoSideEffects(const Loop *L) { |
||
1613 | return getLoopProperties(L).HasNoSideEffects; |
||
1614 | } |
||
1615 | |||
1616 | /// Compute a LoopDisposition value. |
||
1617 | LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); |
||
1618 | |||
1619 | /// Memoized computeBlockDisposition results. |
||
1620 | DenseMap< |
||
1621 | const SCEV *, |
||
1622 | SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>> |
||
1623 | BlockDispositions; |
||
1624 | |||
1625 | /// Compute a BlockDisposition value. |
||
1626 | BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); |
||
1627 | |||
1628 | /// Stores all SCEV that use a given SCEV as its direct operand. |
||
1629 | DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers; |
||
1630 | |||
1631 | /// Memoized results from getRange |
||
1632 | DenseMap<const SCEV *, ConstantRange> UnsignedRanges; |
||
1633 | |||
1634 | /// Memoized results from getRange |
||
1635 | DenseMap<const SCEV *, ConstantRange> SignedRanges; |
||
1636 | |||
1637 | /// Used to parameterize getRange |
||
1638 | enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED }; |
||
1639 | |||
1640 | /// Set the memoized range for the given SCEV. |
||
1641 | const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, |
||
1642 | ConstantRange CR) { |
||
1643 | DenseMap<const SCEV *, ConstantRange> &Cache = |
||
1644 | Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges; |
||
1645 | |||
1646 | auto Pair = Cache.try_emplace(S, std::move(CR)); |
||
1647 | if (!Pair.second) |
||
1648 | Pair.first->second = std::move(CR); |
||
1649 | return Pair.first->second; |
||
1650 | } |
||
1651 | |||
1652 | /// Determine the range for a particular SCEV. |
||
1653 | /// NOTE: This returns a reference to an entry in a cache. It must be |
||
1654 | /// copied if its needed for longer. |
||
1655 | const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint, |
||
1656 | unsigned Depth = 0); |
||
1657 | |||
1658 | /// Determine the range for a particular SCEV, but evaluates ranges for |
||
1659 | /// operands iteratively first. |
||
1660 | const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint); |
||
1661 | |||
1662 | /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}. |
||
1663 | /// Helper for \c getRange. |
||
1664 | ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step, |
||
1665 | const SCEV *MaxBECount, unsigned BitWidth); |
||
1666 | |||
1667 | /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p |
||
1668 | /// Start,+,\p Step}<nw>. |
||
1669 | ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec, |
||
1670 | const SCEV *MaxBECount, |
||
1671 | unsigned BitWidth, |
||
1672 | RangeSignHint SignHint); |
||
1673 | |||
1674 | /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p |
||
1675 | /// Step} by "factoring out" a ternary expression from the add recurrence. |
||
1676 | /// Helper called by \c getRange. |
||
1677 | ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step, |
||
1678 | const SCEV *MaxBECount, unsigned BitWidth); |
||
1679 | |||
1680 | /// If the unknown expression U corresponds to a simple recurrence, return |
||
1681 | /// a constant range which represents the entire recurrence. Note that |
||
1682 | /// *add* recurrences with loop invariant steps aren't represented by |
||
1683 | /// SCEVUnknowns and thus don't use this mechanism. |
||
1684 | ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U); |
||
1685 | |||
1686 | /// We know that there is no SCEV for the specified value. Analyze the |
||
1687 | /// expression recursively. |
||
1688 | const SCEV *createSCEV(Value *V); |
||
1689 | |||
1690 | /// We know that there is no SCEV for the specified value. Create a new SCEV |
||
1691 | /// for \p V iteratively. |
||
1692 | const SCEV *createSCEVIter(Value *V); |
||
1693 | /// Collect operands of \p V for which SCEV expressions should be constructed |
||
1694 | /// first. Returns a SCEV directly if it can be constructed trivially for \p |
||
1695 | /// V. |
||
1696 | const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops); |
||
1697 | |||
1698 | /// Provide the special handling we need to analyze PHI SCEVs. |
||
1699 | const SCEV *createNodeForPHI(PHINode *PN); |
||
1700 | |||
1701 | /// Helper function called from createNodeForPHI. |
||
1702 | const SCEV *createAddRecFromPHI(PHINode *PN); |
||
1703 | |||
1704 | /// A helper function for createAddRecFromPHI to handle simple cases. |
||
1705 | const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV, |
||
1706 | Value *StartValueV); |
||
1707 | |||
1708 | /// Helper function called from createNodeForPHI. |
||
1709 | const SCEV *createNodeFromSelectLikePHI(PHINode *PN); |
||
1710 | |||
1711 | /// Provide special handling for a select-like instruction (currently this |
||
1712 | /// is either a select instruction or a phi node). \p Ty is the type of the |
||
1713 | /// instruction being processed, that is assumed equivalent to |
||
1714 | /// "Cond ? TrueVal : FalseVal". |
||
1715 | std::optional<const SCEV *> |
||
1716 | createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond, |
||
1717 | Value *TrueVal, Value *FalseVal); |
||
1718 | |||
1719 | /// See if we can model this select-like instruction via umin_seq expression. |
||
1720 | const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond, |
||
1721 | Value *TrueVal, |
||
1722 | Value *FalseVal); |
||
1723 | |||
1724 | /// Given a value \p V, which is a select-like instruction (currently this is |
||
1725 | /// either a select instruction or a phi node), which is assumed equivalent to |
||
1726 | /// Cond ? TrueVal : FalseVal |
||
1727 | /// see if we can model it as a SCEV expression. |
||
1728 | const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal, |
||
1729 | Value *FalseVal); |
||
1730 | |||
1731 | /// Provide the special handling we need to analyze GEP SCEVs. |
||
1732 | const SCEV *createNodeForGEP(GEPOperator *GEP); |
||
1733 | |||
1734 | /// Implementation code for getSCEVAtScope; called at most once for each |
||
1735 | /// SCEV+Loop pair. |
||
1736 | const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); |
||
1737 | |||
1738 | /// Return the BackedgeTakenInfo for the given loop, lazily computing new |
||
1739 | /// values if the loop hasn't been analyzed yet. The returned result is |
||
1740 | /// guaranteed not to be predicated. |
||
1741 | BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); |
||
1742 | |||
1743 | /// Similar to getBackedgeTakenInfo, but will add predicates as required |
||
1744 | /// with the purpose of returning complete information. |
||
1745 | const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L); |
||
1746 | |||
1747 | /// Compute the number of times the specified loop will iterate. |
||
1748 | /// If AllowPredicates is set, we will create new SCEV predicates as |
||
1749 | /// necessary in order to return an exact answer. |
||
1750 | BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L, |
||
1751 | bool AllowPredicates = false); |
||
1752 | |||
1753 | /// Compute the number of times the backedge of the specified loop will |
||
1754 | /// execute if it exits via the specified block. If AllowPredicates is set, |
||
1755 | /// this call will try to use a minimal set of SCEV predicates in order to |
||
1756 | /// return an exact answer. |
||
1757 | ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, |
||
1758 | bool AllowPredicates = false); |
||
1759 | |||
1760 | /// Return a symbolic upper bound for the backedge taken count of the loop. |
||
1761 | /// This is more general than getConstantMaxBackedgeTakenCount as it returns |
||
1762 | /// an arbitrary expression as opposed to only constants. |
||
1763 | const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L); |
||
1764 | |||
1765 | // Helper functions for computeExitLimitFromCond to avoid exponential time |
||
1766 | // complexity. |
||
1767 | |||
1768 | class ExitLimitCache { |
||
1769 | // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit, |
||
1770 | // AllowPredicates) tuple, but recursive calls to |
||
1771 | // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only |
||
1772 | // vary the in \c ExitCond and \c ControlsExit parameters. We remember the |
||
1773 | // initial values of the other values to assert our assumption. |
||
1774 | SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap; |
||
1775 | |||
1776 | const Loop *L; |
||
1777 | bool ExitIfTrue; |
||
1778 | bool AllowPredicates; |
||
1779 | |||
1780 | public: |
||
1781 | ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates) |
||
1782 | : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {} |
||
1783 | |||
1784 | std::optional<ExitLimit> find(const Loop *L, Value *ExitCond, |
||
1785 | bool ExitIfTrue, bool ControlsExit, |
||
1786 | bool AllowPredicates); |
||
1787 | |||
1788 | void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue, |
||
1789 | bool ControlsExit, bool AllowPredicates, const ExitLimit &EL); |
||
1790 | }; |
||
1791 | |||
1792 | using ExitLimitCacheTy = ExitLimitCache; |
||
1793 | |||
1794 | ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache, |
||
1795 | const Loop *L, Value *ExitCond, |
||
1796 | bool ExitIfTrue, |
||
1797 | bool ControlsExit, |
||
1798 | bool AllowPredicates); |
||
1799 | ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L, |
||
1800 | Value *ExitCond, bool ExitIfTrue, |
||
1801 | bool ControlsExit, |
||
1802 | bool AllowPredicates); |
||
1803 | std::optional<ScalarEvolution::ExitLimit> |
||
1804 | computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L, |
||
1805 | Value *ExitCond, bool ExitIfTrue, |
||
1806 | bool ControlsExit, bool AllowPredicates); |
||
1807 | |||
1808 | /// Compute the number of times the backedge of the specified loop will |
||
1809 | /// execute if its exit condition were a conditional branch of the ICmpInst |
||
1810 | /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try |
||
1811 | /// to use a minimal set of SCEV predicates in order to return an exact |
||
1812 | /// answer. |
||
1813 | ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, |
||
1814 | bool ExitIfTrue, |
||
1815 | bool IsSubExpr, |
||
1816 | bool AllowPredicates = false); |
||
1817 | |||
1818 | /// Variant of previous which takes the components representing an ICmp |
||
1819 | /// as opposed to the ICmpInst itself. Note that the prior version can |
||
1820 | /// return more precise results in some cases and is preferred when caller |
||
1821 | /// has a materialized ICmp. |
||
1822 | ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred, |
||
1823 | const SCEV *LHS, const SCEV *RHS, |
||
1824 | bool IsSubExpr, |
||
1825 | bool AllowPredicates = false); |
||
1826 | |||
1827 | /// Compute the number of times the backedge of the specified loop will |
||
1828 | /// execute if its exit condition were a switch with a single exiting case |
||
1829 | /// to ExitingBB. |
||
1830 | ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, |
||
1831 | SwitchInst *Switch, |
||
1832 | BasicBlock *ExitingBB, |
||
1833 | bool IsSubExpr); |
||
1834 | |||
1835 | /// Compute the exit limit of a loop that is controlled by a |
||
1836 | /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip |
||
1837 | /// count in these cases (since SCEV has no way of expressing them), but we |
||
1838 | /// can still sometimes compute an upper bound. |
||
1839 | /// |
||
1840 | /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred |
||
1841 | /// RHS`. |
||
1842 | ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, |
||
1843 | ICmpInst::Predicate Pred); |
||
1844 | |||
1845 | /// If the loop is known to execute a constant number of times (the |
||
1846 | /// condition evolves only from constants), try to evaluate a few iterations |
||
1847 | /// of the loop until we get the exit condition gets a value of ExitWhen |
||
1848 | /// (true or false). If we cannot evaluate the exit count of the loop, |
||
1849 | /// return CouldNotCompute. |
||
1850 | const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, |
||
1851 | bool ExitWhen); |
||
1852 | |||
1853 | /// Return the number of times an exit condition comparing the specified |
||
1854 | /// value to zero will execute. If not computable, return CouldNotCompute. |
||
1855 | /// If AllowPredicates is set, this call will try to use a minimal set of |
||
1856 | /// SCEV predicates in order to return an exact answer. |
||
1857 | ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr, |
||
1858 | bool AllowPredicates = false); |
||
1859 | |||
1860 | /// Return the number of times an exit condition checking the specified |
||
1861 | /// value for nonzero will execute. If not computable, return |
||
1862 | /// CouldNotCompute. |
||
1863 | ExitLimit howFarToNonZero(const SCEV *V, const Loop *L); |
||
1864 | |||
1865 | /// Return the number of times an exit condition containing the specified |
||
1866 | /// less-than comparison will execute. If not computable, return |
||
1867 | /// CouldNotCompute. |
||
1868 | /// |
||
1869 | /// \p isSigned specifies whether the less-than is signed. |
||
1870 | /// |
||
1871 | /// \p ControlsExit is true when the LHS < RHS condition directly controls |
||
1872 | /// the branch (loops exits only if condition is true). In this case, we can |
||
1873 | /// use NoWrapFlags to skip overflow checks. |
||
1874 | /// |
||
1875 | /// If \p AllowPredicates is set, this call will try to use a minimal set of |
||
1876 | /// SCEV predicates in order to return an exact answer. |
||
1877 | ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, |
||
1878 | bool isSigned, bool ControlsExit, |
||
1879 | bool AllowPredicates = false); |
||
1880 | |||
1881 | ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, |
||
1882 | bool isSigned, bool IsSubExpr, |
||
1883 | bool AllowPredicates = false); |
||
1884 | |||
1885 | /// Return a predecessor of BB (which may not be an immediate predecessor) |
||
1886 | /// which has exactly one successor from which BB is reachable, or null if |
||
1887 | /// no such block is found. |
||
1888 | std::pair<const BasicBlock *, const BasicBlock *> |
||
1889 | getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const; |
||
1890 | |||
1891 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1892 | /// whenever the given FoundCondValue value evaluates to true in given |
||
1893 | /// Context. If Context is nullptr, then the found predicate is true |
||
1894 | /// everywhere. LHS and FoundLHS may have different type width. |
||
1895 | bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
||
1896 | const Value *FoundCondValue, bool Inverse, |
||
1897 | const Instruction *Context = nullptr); |
||
1898 | |||
1899 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1900 | /// whenever the given FoundCondValue value evaluates to true in given |
||
1901 | /// Context. If Context is nullptr, then the found predicate is true |
||
1902 | /// everywhere. LHS and FoundLHS must have same type width. |
||
1903 | bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1904 | const SCEV *RHS, |
||
1905 | ICmpInst::Predicate FoundPred, |
||
1906 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
||
1907 | const Instruction *CtxI); |
||
1908 | |||
1909 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1910 | /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is |
||
1911 | /// true in given Context. If Context is nullptr, then the found predicate is |
||
1912 | /// true everywhere. |
||
1913 | bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
||
1914 | ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, |
||
1915 | const SCEV *FoundRHS, |
||
1916 | const Instruction *Context = nullptr); |
||
1917 | |||
1918 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1919 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1920 | /// true in given Context. If Context is nullptr, then the found predicate is |
||
1921 | /// true everywhere. |
||
1922 | bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1923 | const SCEV *RHS, const SCEV *FoundLHS, |
||
1924 | const SCEV *FoundRHS, |
||
1925 | const Instruction *Context = nullptr); |
||
1926 | |||
1927 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1928 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1929 | /// true. Here LHS is an operation that includes FoundLHS as one of its |
||
1930 | /// arguments. |
||
1931 | bool isImpliedViaOperations(ICmpInst::Predicate Pred, |
||
1932 | const SCEV *LHS, const SCEV *RHS, |
||
1933 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
||
1934 | unsigned Depth = 0); |
||
1935 | |||
1936 | /// Test whether the condition described by Pred, LHS, and RHS is true. |
||
1937 | /// Use only simple non-recursive types of checks, such as range analysis etc. |
||
1938 | bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, |
||
1939 | const SCEV *LHS, const SCEV *RHS); |
||
1940 | |||
1941 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1942 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1943 | /// true. |
||
1944 | bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1945 | const SCEV *RHS, const SCEV *FoundLHS, |
||
1946 | const SCEV *FoundRHS); |
||
1947 | |||
1948 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1949 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1950 | /// true. Utility function used by isImpliedCondOperands. Tries to get |
||
1951 | /// cases like "X `sgt` 0 => X - 1 `sgt` -1". |
||
1952 | bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
1953 | const SCEV *RHS, const SCEV *FoundLHS, |
||
1954 | const SCEV *FoundRHS); |
||
1955 | |||
1956 | /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied |
||
1957 | /// by a call to @llvm.experimental.guard in \p BB. |
||
1958 | bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred, |
||
1959 | const SCEV *LHS, const SCEV *RHS); |
||
1960 | |||
1961 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1962 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1963 | /// true. |
||
1964 | /// |
||
1965 | /// This routine tries to rule out certain kinds of integer overflow, and |
||
1966 | /// then tries to reason about arithmetic properties of the predicates. |
||
1967 | bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred, |
||
1968 | const SCEV *LHS, const SCEV *RHS, |
||
1969 | const SCEV *FoundLHS, |
||
1970 | const SCEV *FoundRHS); |
||
1971 | |||
1972 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1973 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1974 | /// true. |
||
1975 | /// |
||
1976 | /// This routine tries to weaken the known condition basing on fact that |
||
1977 | /// FoundLHS is an AddRec. |
||
1978 | bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred, |
||
1979 | const SCEV *LHS, const SCEV *RHS, |
||
1980 | const SCEV *FoundLHS, |
||
1981 | const SCEV *FoundRHS, |
||
1982 | const Instruction *CtxI); |
||
1983 | |||
1984 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1985 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1986 | /// true. |
||
1987 | /// |
||
1988 | /// This routine tries to figure out predicate for Phis which are SCEVUnknown |
||
1989 | /// if it is true for every possible incoming value from their respective |
||
1990 | /// basic blocks. |
||
1991 | bool isImpliedViaMerge(ICmpInst::Predicate Pred, |
||
1992 | const SCEV *LHS, const SCEV *RHS, |
||
1993 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
||
1994 | unsigned Depth); |
||
1995 | |||
1996 | /// Test whether the condition described by Pred, LHS, and RHS is true |
||
1997 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
||
1998 | /// true. |
||
1999 | /// |
||
2000 | /// This routine tries to reason about shifts. |
||
2001 | bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
2002 | const SCEV *RHS, const SCEV *FoundLHS, |
||
2003 | const SCEV *FoundRHS); |
||
2004 | |||
2005 | /// If we know that the specified Phi is in the header of its containing |
||
2006 | /// loop, we know the loop executes a constant number of times, and the PHI |
||
2007 | /// node is just a recurrence involving constants, fold it. |
||
2008 | Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, |
||
2009 | const Loop *L); |
||
2010 | |||
2011 | /// Test if the given expression is known to satisfy the condition described |
||
2012 | /// by Pred and the known constant ranges of LHS and RHS. |
||
2013 | bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred, |
||
2014 | const SCEV *LHS, const SCEV *RHS); |
||
2015 | |||
2016 | /// Try to prove the condition described by "LHS Pred RHS" by ruling out |
||
2017 | /// integer overflow. |
||
2018 | /// |
||
2019 | /// For instance, this will return true for "A s< (A + C)<nsw>" if C is |
||
2020 | /// positive. |
||
2021 | bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
2022 | const SCEV *RHS); |
||
2023 | |||
2024 | /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to |
||
2025 | /// prove them individually. |
||
2026 | bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS, |
||
2027 | const SCEV *RHS); |
||
2028 | |||
2029 | /// Try to match the Expr as "(L + R)<Flags>". |
||
2030 | bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, |
||
2031 | SCEV::NoWrapFlags &Flags); |
||
2032 | |||
2033 | /// Forget predicated/non-predicated backedge taken counts for the given loop. |
||
2034 | void forgetBackedgeTakenCounts(const Loop *L, bool Predicated); |
||
2035 | |||
2036 | /// Drop memoized information for all \p SCEVs. |
||
2037 | void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs); |
||
2038 | |||
2039 | /// Helper for forgetMemoizedResults. |
||
2040 | void forgetMemoizedResultsImpl(const SCEV *S); |
||
2041 | |||
2042 | /// Return an existing SCEV for V if there is one, otherwise return nullptr. |
||
2043 | const SCEV *getExistingSCEV(Value *V); |
||
2044 | |||
2045 | /// Erase Value from ValueExprMap and ExprValueMap. |
||
2046 | void eraseValueFromMap(Value *V); |
||
2047 | |||
2048 | /// Insert V to S mapping into ValueExprMap and ExprValueMap. |
||
2049 | void insertValueToMap(Value *V, const SCEV *S); |
||
2050 | |||
2051 | /// Return false iff given SCEV contains a SCEVUnknown with NULL value- |
||
2052 | /// pointer. |
||
2053 | bool checkValidity(const SCEV *S) const; |
||
2054 | |||
2055 | /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be |
||
2056 | /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is |
||
2057 | /// equivalent to proving no signed (resp. unsigned) wrap in |
||
2058 | /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` |
||
2059 | /// (resp. `SCEVZeroExtendExpr`). |
||
2060 | template <typename ExtendOpTy> |
||
2061 | bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, |
||
2062 | const Loop *L); |
||
2063 | |||
2064 | /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation. |
||
2065 | SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR); |
||
2066 | |||
2067 | /// Try to prove NSW on \p AR by proving facts about conditions known on |
||
2068 | /// entry and backedge. |
||
2069 | SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR); |
||
2070 | |||
2071 | /// Try to prove NUW on \p AR by proving facts about conditions known on |
||
2072 | /// entry and backedge. |
||
2073 | SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR); |
||
2074 | |||
2075 | std::optional<MonotonicPredicateType> |
||
2076 | getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, |
||
2077 | ICmpInst::Predicate Pred); |
||
2078 | |||
2079 | /// Return SCEV no-wrap flags that can be proven based on reasoning about |
||
2080 | /// how poison produced from no-wrap flags on this value (e.g. a nuw add) |
||
2081 | /// would trigger undefined behavior on overflow. |
||
2082 | SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V); |
||
2083 | |||
2084 | /// Return a scope which provides an upper bound on the defining scope of |
||
2085 | /// 'S'. Specifically, return the first instruction in said bounding scope. |
||
2086 | /// Return nullptr if the scope is trivial (function entry). |
||
2087 | /// (See scope definition rules associated with flag discussion above) |
||
2088 | const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S); |
||
2089 | |||
2090 | /// Return a scope which provides an upper bound on the defining scope for |
||
2091 | /// a SCEV with the operands in Ops. The outparam Precise is set if the |
||
2092 | /// bound found is a precise bound (i.e. must be the defining scope.) |
||
2093 | const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops, |
||
2094 | bool &Precise); |
||
2095 | |||
2096 | /// Wrapper around the above for cases which don't care if the bound |
||
2097 | /// is precise. |
||
2098 | const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops); |
||
2099 | |||
2100 | /// Given two instructions in the same function, return true if we can |
||
2101 | /// prove B must execute given A executes. |
||
2102 | bool isGuaranteedToTransferExecutionTo(const Instruction *A, |
||
2103 | const Instruction *B); |
||
2104 | |||
2105 | /// Return true if the SCEV corresponding to \p I is never poison. Proving |
||
2106 | /// this is more complex than proving that just \p I is never poison, since |
||
2107 | /// SCEV commons expressions across control flow, and you can have cases |
||
2108 | /// like: |
||
2109 | /// |
||
2110 | /// idx0 = a + b; |
||
2111 | /// ptr[idx0] = 100; |
||
2112 | /// if (<condition>) { |
||
2113 | /// idx1 = a +nsw b; |
||
2114 | /// ptr[idx1] = 200; |
||
2115 | /// } |
||
2116 | /// |
||
2117 | /// where the SCEV expression (+ a b) is guaranteed to not be poison (and |
||
2118 | /// hence not sign-overflow) only if "<condition>" is true. Since both |
||
2119 | /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b), |
||
2120 | /// it is not okay to annotate (+ a b) with <nsw> in the above example. |
||
2121 | bool isSCEVExprNeverPoison(const Instruction *I); |
||
2122 | |||
2123 | /// This is like \c isSCEVExprNeverPoison but it specifically works for |
||
2124 | /// instructions that will get mapped to SCEV add recurrences. Return true |
||
2125 | /// if \p I will never generate poison under the assumption that \p I is an |
||
2126 | /// add recurrence on the loop \p L. |
||
2127 | bool isAddRecNeverPoison(const Instruction *I, const Loop *L); |
||
2128 | |||
2129 | /// Similar to createAddRecFromPHI, but with the additional flexibility of |
||
2130 | /// suggesting runtime overflow checks in case casts are encountered. |
||
2131 | /// If successful, the analysis records that for this loop, \p SymbolicPHI, |
||
2132 | /// which is the UnknownSCEV currently representing the PHI, can be rewritten |
||
2133 | /// into an AddRec, assuming some predicates; The function then returns the |
||
2134 | /// AddRec and the predicates as a pair, and caches this pair in |
||
2135 | /// PredicatedSCEVRewrites. |
||
2136 | /// If the analysis is not successful, a mapping from the \p SymbolicPHI to |
||
2137 | /// itself (with no predicates) is recorded, and a nullptr with an empty |
||
2138 | /// predicates vector is returned as a pair. |
||
2139 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
||
2140 | createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI); |
||
2141 | |||
2142 | /// Compute the maximum backedge count based on the range of values |
||
2143 | /// permitted by Start, End, and Stride. This is for loops of the form |
||
2144 | /// {Start, +, Stride} LT End. |
||
2145 | /// |
||
2146 | /// Preconditions: |
||
2147 | /// * the induction variable is known to be positive. |
||
2148 | /// * the induction variable is assumed not to overflow (i.e. either it |
||
2149 | /// actually doesn't, or we'd have to immediately execute UB) |
||
2150 | /// We *don't* assert these preconditions so please be careful. |
||
2151 | const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride, |
||
2152 | const SCEV *End, unsigned BitWidth, |
||
2153 | bool IsSigned); |
||
2154 | |||
2155 | /// Verify if an linear IV with positive stride can overflow when in a |
||
2156 | /// less-than comparison, knowing the invariant term of the comparison, |
||
2157 | /// the stride. |
||
2158 | bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); |
||
2159 | |||
2160 | /// Verify if an linear IV with negative stride can overflow when in a |
||
2161 | /// greater-than comparison, knowing the invariant term of the comparison, |
||
2162 | /// the stride. |
||
2163 | bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); |
||
2164 | |||
2165 | /// Get add expr already created or create a new one. |
||
2166 | const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, |
||
2167 | SCEV::NoWrapFlags Flags); |
||
2168 | |||
2169 | /// Get mul expr already created or create a new one. |
||
2170 | const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, |
||
2171 | SCEV::NoWrapFlags Flags); |
||
2172 | |||
2173 | // Get addrec expr already created or create a new one. |
||
2174 | const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, |
||
2175 | const Loop *L, SCEV::NoWrapFlags Flags); |
||
2176 | |||
2177 | /// Return x if \p Val is f(x) where f is a 1-1 function. |
||
2178 | const SCEV *stripInjectiveFunctions(const SCEV *Val) const; |
||
2179 | |||
2180 | /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed. |
||
2181 | /// A loop is considered "used" by an expression if it contains |
||
2182 | /// an add rec on said loop. |
||
2183 | void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed); |
||
2184 | |||
2185 | /// Try to match the pattern generated by getURemExpr(A, B). If successful, |
||
2186 | /// Assign A and B to LHS and RHS, respectively. |
||
2187 | bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS); |
||
2188 | |||
2189 | /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in |
||
2190 | /// `UniqueSCEVs`. Return if found, else nullptr. |
||
2191 | SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops); |
||
2192 | |||
2193 | /// Get reachable blocks in this function, making limited use of SCEV |
||
2194 | /// reasoning about conditions. |
||
2195 | void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, |
||
2196 | Function &F); |
||
2197 | |||
2198 | FoldingSet<SCEV> UniqueSCEVs; |
||
2199 | FoldingSet<SCEVPredicate> UniquePreds; |
||
2200 | BumpPtrAllocator SCEVAllocator; |
||
2201 | |||
2202 | /// This maps loops to a list of addrecs that directly use said loop. |
||
2203 | DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers; |
||
2204 | |||
2205 | /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression |
||
2206 | /// they can be rewritten into under certain predicates. |
||
2207 | DenseMap<std::pair<const SCEVUnknown *, const Loop *>, |
||
2208 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
||
2209 | PredicatedSCEVRewrites; |
||
2210 | |||
2211 | /// Set of AddRecs for which proving NUW via an induction has already been |
||
2212 | /// tried. |
||
2213 | SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried; |
||
2214 | |||
2215 | /// Set of AddRecs for which proving NSW via an induction has already been |
||
2216 | /// tried. |
||
2217 | SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried; |
||
2218 | |||
2219 | /// The head of a linked list of all SCEVUnknown values that have been |
||
2220 | /// allocated. This is used by releaseMemory to locate them all and call |
||
2221 | /// their destructors. |
||
2222 | SCEVUnknown *FirstUnknown = nullptr; |
||
2223 | }; |
||
2224 | |||
2225 | /// Analysis pass that exposes the \c ScalarEvolution for a function. |
||
2226 | class ScalarEvolutionAnalysis |
||
2227 | : public AnalysisInfoMixin<ScalarEvolutionAnalysis> { |
||
2228 | friend AnalysisInfoMixin<ScalarEvolutionAnalysis>; |
||
2229 | |||
2230 | static AnalysisKey Key; |
||
2231 | |||
2232 | public: |
||
2233 | using Result = ScalarEvolution; |
||
2234 | |||
2235 | ScalarEvolution run(Function &F, FunctionAnalysisManager &AM); |
||
2236 | }; |
||
2237 | |||
2238 | /// Verifier pass for the \c ScalarEvolutionAnalysis results. |
||
2239 | class ScalarEvolutionVerifierPass |
||
2240 | : public PassInfoMixin<ScalarEvolutionVerifierPass> { |
||
2241 | public: |
||
2242 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
2243 | }; |
||
2244 | |||
2245 | /// Printer pass for the \c ScalarEvolutionAnalysis results. |
||
2246 | class ScalarEvolutionPrinterPass |
||
2247 | : public PassInfoMixin<ScalarEvolutionPrinterPass> { |
||
2248 | raw_ostream &OS; |
||
2249 | |||
2250 | public: |
||
2251 | explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {} |
||
2252 | |||
2253 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
2254 | }; |
||
2255 | |||
2256 | class ScalarEvolutionWrapperPass : public FunctionPass { |
||
2257 | std::unique_ptr<ScalarEvolution> SE; |
||
2258 | |||
2259 | public: |
||
2260 | static char ID; |
||
2261 | |||
2262 | ScalarEvolutionWrapperPass(); |
||
2263 | |||
2264 | ScalarEvolution &getSE() { return *SE; } |
||
2265 | const ScalarEvolution &getSE() const { return *SE; } |
||
2266 | |||
2267 | bool runOnFunction(Function &F) override; |
||
2268 | void releaseMemory() override; |
||
2269 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
2270 | void print(raw_ostream &OS, const Module * = nullptr) const override; |
||
2271 | void verifyAnalysis() const override; |
||
2272 | }; |
||
2273 | |||
2274 | /// An interface layer with SCEV used to manage how we see SCEV expressions |
||
2275 | /// for values in the context of existing predicates. We can add new |
||
2276 | /// predicates, but we cannot remove them. |
||
2277 | /// |
||
2278 | /// This layer has multiple purposes: |
||
2279 | /// - provides a simple interface for SCEV versioning. |
||
2280 | /// - guarantees that the order of transformations applied on a SCEV |
||
2281 | /// expression for a single Value is consistent across two different |
||
2282 | /// getSCEV calls. This means that, for example, once we've obtained |
||
2283 | /// an AddRec expression for a certain value through expression |
||
2284 | /// rewriting, we will continue to get an AddRec expression for that |
||
2285 | /// Value. |
||
2286 | /// - lowers the number of expression rewrites. |
||
2287 | class PredicatedScalarEvolution { |
||
2288 | public: |
||
2289 | PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L); |
||
2290 | |||
2291 | const SCEVPredicate &getPredicate() const; |
||
2292 | |||
2293 | /// Returns the SCEV expression of V, in the context of the current SCEV |
||
2294 | /// predicate. The order of transformations applied on the expression of V |
||
2295 | /// returned by ScalarEvolution is guaranteed to be preserved, even when |
||
2296 | /// adding new predicates. |
||
2297 | const SCEV *getSCEV(Value *V); |
||
2298 | |||
2299 | /// Get the (predicated) backedge count for the analyzed loop. |
||
2300 | const SCEV *getBackedgeTakenCount(); |
||
2301 | |||
2302 | /// Adds a new predicate. |
||
2303 | void addPredicate(const SCEVPredicate &Pred); |
||
2304 | |||
2305 | /// Attempts to produce an AddRecExpr for V by adding additional SCEV |
||
2306 | /// predicates. If we can't transform the expression into an AddRecExpr we |
||
2307 | /// return nullptr and not add additional SCEV predicates to the current |
||
2308 | /// context. |
||
2309 | const SCEVAddRecExpr *getAsAddRec(Value *V); |
||
2310 | |||
2311 | /// Proves that V doesn't overflow by adding SCEV predicate. |
||
2312 | void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); |
||
2313 | |||
2314 | /// Returns true if we've proved that V doesn't wrap by means of a SCEV |
||
2315 | /// predicate. |
||
2316 | bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); |
||
2317 | |||
2318 | /// Returns the ScalarEvolution analysis used. |
||
2319 | ScalarEvolution *getSE() const { return &SE; } |
||
2320 | |||
2321 | /// We need to explicitly define the copy constructor because of FlagsMap. |
||
2322 | PredicatedScalarEvolution(const PredicatedScalarEvolution &); |
||
2323 | |||
2324 | /// Print the SCEV mappings done by the Predicated Scalar Evolution. |
||
2325 | /// The printed text is indented by \p Depth. |
||
2326 | void print(raw_ostream &OS, unsigned Depth) const; |
||
2327 | |||
2328 | /// Check if \p AR1 and \p AR2 are equal, while taking into account |
||
2329 | /// Equal predicates in Preds. |
||
2330 | bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, |
||
2331 | const SCEVAddRecExpr *AR2) const; |
||
2332 | |||
2333 | private: |
||
2334 | /// Increments the version number of the predicate. This needs to be called |
||
2335 | /// every time the SCEV predicate changes. |
||
2336 | void updateGeneration(); |
||
2337 | |||
2338 | /// Holds a SCEV and the version number of the SCEV predicate used to |
||
2339 | /// perform the rewrite of the expression. |
||
2340 | using RewriteEntry = std::pair<unsigned, const SCEV *>; |
||
2341 | |||
2342 | /// Maps a SCEV to the rewrite result of that SCEV at a certain version |
||
2343 | /// number. If this number doesn't match the current Generation, we will |
||
2344 | /// need to do a rewrite. To preserve the transformation order of previous |
||
2345 | /// rewrites, we will rewrite the previous result instead of the original |
||
2346 | /// SCEV. |
||
2347 | DenseMap<const SCEV *, RewriteEntry> RewriteMap; |
||
2348 | |||
2349 | /// Records what NoWrap flags we've added to a Value *. |
||
2350 | ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap; |
||
2351 | |||
2352 | /// The ScalarEvolution analysis. |
||
2353 | ScalarEvolution &SE; |
||
2354 | |||
2355 | /// The analyzed Loop. |
||
2356 | const Loop &L; |
||
2357 | |||
2358 | /// The SCEVPredicate that forms our context. We will rewrite all |
||
2359 | /// expressions assuming that this predicate true. |
||
2360 | std::unique_ptr<SCEVUnionPredicate> Preds; |
||
2361 | |||
2362 | /// Marks the version of the SCEV predicate used. When rewriting a SCEV |
||
2363 | /// expression we mark it with the version of the predicate. We use this to |
||
2364 | /// figure out if the predicate has changed from the last rewrite of the |
||
2365 | /// SCEV. If so, we need to perform a new rewrite. |
||
2366 | unsigned Generation = 0; |
||
2367 | |||
2368 | /// The backedge taken count. |
||
2369 | const SCEV *BackedgeCount = nullptr; |
||
2370 | }; |
||
2371 | |||
2372 | template <> struct DenseMapInfo<ScalarEvolution::FoldID> { |
||
2373 | static inline ScalarEvolution::FoldID getEmptyKey() { |
||
2374 | ScalarEvolution::FoldID ID; |
||
2375 | ID.addInteger(~0ULL); |
||
2376 | return ID; |
||
2377 | } |
||
2378 | static inline ScalarEvolution::FoldID getTombstoneKey() { |
||
2379 | ScalarEvolution::FoldID ID; |
||
2380 | ID.addInteger(~0ULL - 1ULL); |
||
2381 | return ID; |
||
2382 | } |
||
2383 | |||
2384 | static unsigned getHashValue(const ScalarEvolution::FoldID &Val) { |
||
2385 | return Val.computeHash(); |
||
2386 | } |
||
2387 | |||
2388 | static bool isEqual(const ScalarEvolution::FoldID &LHS, |
||
2389 | const ScalarEvolution::FoldID &RHS) { |
||
2390 | return LHS == RHS; |
||
2391 | } |
||
2392 | }; |
||
2393 | |||
2394 | } // end namespace llvm |
||
2395 | |||
2396 | #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H |