Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // Calculate a program structure tree built out of single entry single exit |
||
| 10 | // regions. |
||
| 11 | // The basic ideas are taken from "The Program Structure Tree - Richard Johnson, |
||
| 12 | // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The |
||
| 13 | // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana |
||
| 14 | // Koehler - 2009". |
||
| 15 | // The algorithm to calculate these data structures however is completely |
||
| 16 | // different, as it takes advantage of existing information already available |
||
| 17 | // in (Post)dominace tree and dominance frontier passes. This leads to a simpler |
||
| 18 | // and in practice hopefully better performing algorithm. The runtime of the |
||
| 19 | // algorithms described in the papers above are both linear in graph size, |
||
| 20 | // O(V+E), whereas this algorithm is not, as the dominance frontier information |
||
| 21 | // itself is not, but in practice runtime seems to be in the order of magnitude |
||
| 22 | // of dominance tree calculation. |
||
| 23 | // |
||
| 24 | // WARNING: LLVM is generally very concerned about compile time such that |
||
| 25 | // the use of additional analysis passes in the default |
||
| 26 | // optimization sequence is avoided as much as possible. |
||
| 27 | // Specifically, if you do not need the RegionInfo, but dominance |
||
| 28 | // information could be sufficient please base your work only on |
||
| 29 | // the dominator tree. Most passes maintain it, such that using |
||
| 30 | // it has often near zero cost. In contrast RegionInfo is by |
||
| 31 | // default not available, is not maintained by existing |
||
| 32 | // transformations and there is no intention to do so. |
||
| 33 | // |
||
| 34 | //===----------------------------------------------------------------------===// |
||
| 35 | |||
| 36 | #ifndef LLVM_ANALYSIS_REGIONINFO_H |
||
| 37 | #define LLVM_ANALYSIS_REGIONINFO_H |
||
| 38 | |||
| 39 | #include "llvm/ADT/DenseMap.h" |
||
| 40 | #include "llvm/ADT/DepthFirstIterator.h" |
||
| 41 | #include "llvm/ADT/GraphTraits.h" |
||
| 42 | #include "llvm/ADT/PointerIntPair.h" |
||
| 43 | #include "llvm/ADT/iterator_range.h" |
||
| 44 | #include "llvm/Config/llvm-config.h" |
||
| 45 | #include "llvm/IR/Dominators.h" |
||
| 46 | #include "llvm/IR/PassManager.h" |
||
| 47 | #include "llvm/Pass.h" |
||
| 48 | #include <algorithm> |
||
| 49 | #include <cassert> |
||
| 50 | #include <map> |
||
| 51 | #include <memory> |
||
| 52 | #include <set> |
||
| 53 | #include <string> |
||
| 54 | #include <type_traits> |
||
| 55 | #include <vector> |
||
| 56 | |||
| 57 | namespace llvm { |
||
| 58 | |||
| 59 | class BasicBlock; |
||
| 60 | class DominanceFrontier; |
||
| 61 | class Loop; |
||
| 62 | class LoopInfo; |
||
| 63 | class PostDominatorTree; |
||
| 64 | class Region; |
||
| 65 | template <class RegionTr> class RegionBase; |
||
| 66 | class RegionInfo; |
||
| 67 | template <class RegionTr> class RegionInfoBase; |
||
| 68 | class RegionNode; |
||
| 69 | class raw_ostream; |
||
| 70 | |||
| 71 | // Class to be specialized for different users of RegionInfo |
||
| 72 | // (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to |
||
| 73 | // pass around an unreasonable number of template parameters. |
||
| 74 | template <class FuncT_> |
||
| 75 | struct RegionTraits { |
||
| 76 | // FuncT |
||
| 77 | // BlockT |
||
| 78 | // RegionT |
||
| 79 | // RegionNodeT |
||
| 80 | // RegionInfoT |
||
| 81 | using BrokenT = typename FuncT_::UnknownRegionTypeError; |
||
| 82 | }; |
||
| 83 | |||
| 84 | template <> |
||
| 85 | struct RegionTraits<Function> { |
||
| 86 | using FuncT = Function; |
||
| 87 | using BlockT = BasicBlock; |
||
| 88 | using RegionT = Region; |
||
| 89 | using RegionNodeT = RegionNode; |
||
| 90 | using RegionInfoT = RegionInfo; |
||
| 91 | using DomTreeT = DominatorTree; |
||
| 92 | using DomTreeNodeT = DomTreeNode; |
||
| 93 | using DomFrontierT = DominanceFrontier; |
||
| 94 | using PostDomTreeT = PostDominatorTree; |
||
| 95 | using InstT = Instruction; |
||
| 96 | using LoopT = Loop; |
||
| 97 | using LoopInfoT = LoopInfo; |
||
| 98 | |||
| 99 | static unsigned getNumSuccessors(BasicBlock *BB) { |
||
| 100 | return BB->getTerminator()->getNumSuccessors(); |
||
| 101 | } |
||
| 102 | }; |
||
| 103 | |||
| 104 | /// Marker class to iterate over the elements of a Region in flat mode. |
||
| 105 | /// |
||
| 106 | /// The class is used to either iterate in Flat mode or by not using it to not |
||
| 107 | /// iterate in Flat mode. During a Flat mode iteration all Regions are entered |
||
| 108 | /// and the iteration returns every BasicBlock. If the Flat mode is not |
||
| 109 | /// selected for SubRegions just one RegionNode containing the subregion is |
||
| 110 | /// returned. |
||
| 111 | template <class GraphType> |
||
| 112 | class FlatIt {}; |
||
| 113 | |||
| 114 | /// A RegionNode represents a subregion or a BasicBlock that is part of a |
||
| 115 | /// Region. |
||
| 116 | template <class Tr> |
||
| 117 | class RegionNodeBase { |
||
| 118 | friend class RegionBase<Tr>; |
||
| 119 | |||
| 120 | public: |
||
| 121 | using BlockT = typename Tr::BlockT; |
||
| 122 | using RegionT = typename Tr::RegionT; |
||
| 123 | |||
| 124 | private: |
||
| 125 | /// This is the entry basic block that starts this region node. If this is a |
||
| 126 | /// BasicBlock RegionNode, then entry is just the basic block, that this |
||
| 127 | /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode. |
||
| 128 | /// |
||
| 129 | /// In the BBtoRegionNode map of the parent of this node, BB will always map |
||
| 130 | /// to this node no matter which kind of node this one is. |
||
| 131 | /// |
||
| 132 | /// The node can hold either a Region or a BasicBlock. |
||
| 133 | /// Use one bit to save, if this RegionNode is a subregion or BasicBlock |
||
| 134 | /// RegionNode. |
||
| 135 | PointerIntPair<BlockT *, 1, bool> entry; |
||
| 136 | |||
| 137 | /// The parent Region of this RegionNode. |
||
| 138 | /// @see getParent() |
||
| 139 | RegionT *parent; |
||
| 140 | |||
| 141 | protected: |
||
| 142 | /// Create a RegionNode. |
||
| 143 | /// |
||
| 144 | /// @param Parent The parent of this RegionNode. |
||
| 145 | /// @param Entry The entry BasicBlock of the RegionNode. If this |
||
| 146 | /// RegionNode represents a BasicBlock, this is the |
||
| 147 | /// BasicBlock itself. If it represents a subregion, this |
||
| 148 | /// is the entry BasicBlock of the subregion. |
||
| 149 | /// @param isSubRegion If this RegionNode represents a SubRegion. |
||
| 150 | inline RegionNodeBase(RegionT *Parent, BlockT *Entry, |
||
| 151 | bool isSubRegion = false) |
||
| 152 | : entry(Entry, isSubRegion), parent(Parent) {} |
||
| 153 | |||
| 154 | public: |
||
| 155 | RegionNodeBase(const RegionNodeBase &) = delete; |
||
| 156 | RegionNodeBase &operator=(const RegionNodeBase &) = delete; |
||
| 157 | |||
| 158 | /// Get the parent Region of this RegionNode. |
||
| 159 | /// |
||
| 160 | /// The parent Region is the Region this RegionNode belongs to. If for |
||
| 161 | /// example a BasicBlock is element of two Regions, there exist two |
||
| 162 | /// RegionNodes for this BasicBlock. Each with the getParent() function |
||
| 163 | /// pointing to the Region this RegionNode belongs to. |
||
| 164 | /// |
||
| 165 | /// @return Get the parent Region of this RegionNode. |
||
| 166 | inline RegionT *getParent() const { return parent; } |
||
| 167 | |||
| 168 | /// Get the entry BasicBlock of this RegionNode. |
||
| 169 | /// |
||
| 170 | /// If this RegionNode represents a BasicBlock this is just the BasicBlock |
||
| 171 | /// itself, otherwise we return the entry BasicBlock of the Subregion |
||
| 172 | /// |
||
| 173 | /// @return The entry BasicBlock of this RegionNode. |
||
| 174 | inline BlockT *getEntry() const { return entry.getPointer(); } |
||
| 175 | |||
| 176 | /// Get the content of this RegionNode. |
||
| 177 | /// |
||
| 178 | /// This can be either a BasicBlock or a subregion. Before calling getNodeAs() |
||
| 179 | /// check the type of the content with the isSubRegion() function call. |
||
| 180 | /// |
||
| 181 | /// @return The content of this RegionNode. |
||
| 182 | template <class T> inline T *getNodeAs() const; |
||
| 183 | |||
| 184 | /// Is this RegionNode a subregion? |
||
| 185 | /// |
||
| 186 | /// @return True if it contains a subregion. False if it contains a |
||
| 187 | /// BasicBlock. |
||
| 188 | inline bool isSubRegion() const { return entry.getInt(); } |
||
| 189 | }; |
||
| 190 | |||
| 191 | //===----------------------------------------------------------------------===// |
||
| 192 | /// A single entry single exit Region. |
||
| 193 | /// |
||
| 194 | /// A Region is a connected subgraph of a control flow graph that has exactly |
||
| 195 | /// two connections to the remaining graph. It can be used to analyze or |
||
| 196 | /// optimize parts of the control flow graph. |
||
| 197 | /// |
||
| 198 | /// A <em> simple Region </em> is connected to the remaining graph by just two |
||
| 199 | /// edges. One edge entering the Region and another one leaving the Region. |
||
| 200 | /// |
||
| 201 | /// An <em> extended Region </em> (or just Region) is a subgraph that can be |
||
| 202 | /// transform into a simple Region. The transformation is done by adding |
||
| 203 | /// BasicBlocks that merge several entry or exit edges so that after the merge |
||
| 204 | /// just one entry and one exit edge exists. |
||
| 205 | /// |
||
| 206 | /// The \e Entry of a Region is the first BasicBlock that is passed after |
||
| 207 | /// entering the Region. It is an element of the Region. The entry BasicBlock |
||
| 208 | /// dominates all BasicBlocks in the Region. |
||
| 209 | /// |
||
| 210 | /// The \e Exit of a Region is the first BasicBlock that is passed after |
||
| 211 | /// leaving the Region. It is not an element of the Region. The exit BasicBlock, |
||
| 212 | /// postdominates all BasicBlocks in the Region. |
||
| 213 | /// |
||
| 214 | /// A <em> canonical Region </em> cannot be constructed by combining smaller |
||
| 215 | /// Regions. |
||
| 216 | /// |
||
| 217 | /// Region A is the \e parent of Region B, if B is completely contained in A. |
||
| 218 | /// |
||
| 219 | /// Two canonical Regions either do not intersect at all or one is |
||
| 220 | /// the parent of the other. |
||
| 221 | /// |
||
| 222 | /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of |
||
| 223 | /// Regions in the control flow graph and E is the \e parent relation of these |
||
| 224 | /// Regions. |
||
| 225 | /// |
||
| 226 | /// Example: |
||
| 227 | /// |
||
| 228 | /// \verbatim |
||
| 229 | /// A simple control flow graph, that contains two regions. |
||
| 230 | /// |
||
| 231 | /// 1 |
||
| 232 | /// / | |
||
| 233 | /// 2 | |
||
| 234 | /// / \ 3 |
||
| 235 | /// 4 5 | |
||
| 236 | /// | | | |
||
| 237 | /// 6 7 8 |
||
| 238 | /// \ | / |
||
| 239 | /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8} |
||
| 240 | /// 9 Region B: 2 -> 9 {2,4,5,6,7} |
||
| 241 | /// \endverbatim |
||
| 242 | /// |
||
| 243 | /// You can obtain more examples by either calling |
||
| 244 | /// |
||
| 245 | /// <tt> "opt -passes='print<regions>' anyprogram.ll" </tt> |
||
| 246 | /// or |
||
| 247 | /// <tt> "opt -view-regions-only anyprogram.ll" </tt> |
||
| 248 | /// |
||
| 249 | /// on any LLVM file you are interested in. |
||
| 250 | /// |
||
| 251 | /// The first call returns a textual representation of the program structure |
||
| 252 | /// tree, the second one creates a graphical representation using graphviz. |
||
| 253 | template <class Tr> |
||
| 254 | class RegionBase : public RegionNodeBase<Tr> { |
||
| 255 | friend class RegionInfoBase<Tr>; |
||
| 256 | |||
| 257 | using FuncT = typename Tr::FuncT; |
||
| 258 | using BlockT = typename Tr::BlockT; |
||
| 259 | using RegionInfoT = typename Tr::RegionInfoT; |
||
| 260 | using RegionT = typename Tr::RegionT; |
||
| 261 | using RegionNodeT = typename Tr::RegionNodeT; |
||
| 262 | using DomTreeT = typename Tr::DomTreeT; |
||
| 263 | using LoopT = typename Tr::LoopT; |
||
| 264 | using LoopInfoT = typename Tr::LoopInfoT; |
||
| 265 | using InstT = typename Tr::InstT; |
||
| 266 | |||
| 267 | using BlockTraits = GraphTraits<BlockT *>; |
||
| 268 | using InvBlockTraits = GraphTraits<Inverse<BlockT *>>; |
||
| 269 | using SuccIterTy = typename BlockTraits::ChildIteratorType; |
||
| 270 | using PredIterTy = typename InvBlockTraits::ChildIteratorType; |
||
| 271 | |||
| 272 | // Information necessary to manage this Region. |
||
| 273 | RegionInfoT *RI; |
||
| 274 | DomTreeT *DT; |
||
| 275 | |||
| 276 | // The exit BasicBlock of this region. |
||
| 277 | // (The entry BasicBlock is part of RegionNode) |
||
| 278 | BlockT *exit; |
||
| 279 | |||
| 280 | using RegionSet = std::vector<std::unique_ptr<RegionT>>; |
||
| 281 | |||
| 282 | // The subregions of this region. |
||
| 283 | RegionSet children; |
||
| 284 | |||
| 285 | using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>; |
||
| 286 | |||
| 287 | // Save the BasicBlock RegionNodes that are element of this Region. |
||
| 288 | mutable BBNodeMapT BBNodeMap; |
||
| 289 | |||
| 290 | /// Check if a BB is in this Region. This check also works |
||
| 291 | /// if the region is incorrectly built. (EXPENSIVE!) |
||
| 292 | void verifyBBInRegion(BlockT *BB) const; |
||
| 293 | |||
| 294 | /// Walk over all the BBs of the region starting from BB and |
||
| 295 | /// verify that all reachable basic blocks are elements of the region. |
||
| 296 | /// (EXPENSIVE!) |
||
| 297 | void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const; |
||
| 298 | |||
| 299 | /// Verify if the region and its children are valid regions (EXPENSIVE!) |
||
| 300 | void verifyRegionNest() const; |
||
| 301 | |||
| 302 | public: |
||
| 303 | /// Create a new region. |
||
| 304 | /// |
||
| 305 | /// @param Entry The entry basic block of the region. |
||
| 306 | /// @param Exit The exit basic block of the region. |
||
| 307 | /// @param RI The region info object that is managing this region. |
||
| 308 | /// @param DT The dominator tree of the current function. |
||
| 309 | /// @param Parent The surrounding region or NULL if this is a top level |
||
| 310 | /// region. |
||
| 311 | RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT, |
||
| 312 | RegionT *Parent = nullptr); |
||
| 313 | |||
| 314 | RegionBase(const RegionBase &) = delete; |
||
| 315 | RegionBase &operator=(const RegionBase &) = delete; |
||
| 316 | |||
| 317 | /// Delete the Region and all its subregions. |
||
| 318 | ~RegionBase(); |
||
| 319 | |||
| 320 | /// Get the entry BasicBlock of the Region. |
||
| 321 | /// @return The entry BasicBlock of the region. |
||
| 322 | BlockT *getEntry() const { |
||
| 323 | return RegionNodeBase<Tr>::getEntry(); |
||
| 324 | } |
||
| 325 | |||
| 326 | /// Replace the entry basic block of the region with the new basic |
||
| 327 | /// block. |
||
| 328 | /// |
||
| 329 | /// @param BB The new entry basic block of the region. |
||
| 330 | void replaceEntry(BlockT *BB); |
||
| 331 | |||
| 332 | /// Replace the exit basic block of the region with the new basic |
||
| 333 | /// block. |
||
| 334 | /// |
||
| 335 | /// @param BB The new exit basic block of the region. |
||
| 336 | void replaceExit(BlockT *BB); |
||
| 337 | |||
| 338 | /// Recursively replace the entry basic block of the region. |
||
| 339 | /// |
||
| 340 | /// This function replaces the entry basic block with a new basic block. It |
||
| 341 | /// also updates all child regions that have the same entry basic block as |
||
| 342 | /// this region. |
||
| 343 | /// |
||
| 344 | /// @param NewEntry The new entry basic block. |
||
| 345 | void replaceEntryRecursive(BlockT *NewEntry); |
||
| 346 | |||
| 347 | /// Recursively replace the exit basic block of the region. |
||
| 348 | /// |
||
| 349 | /// This function replaces the exit basic block with a new basic block. It |
||
| 350 | /// also updates all child regions that have the same exit basic block as |
||
| 351 | /// this region. |
||
| 352 | /// |
||
| 353 | /// @param NewExit The new exit basic block. |
||
| 354 | void replaceExitRecursive(BlockT *NewExit); |
||
| 355 | |||
| 356 | /// Get the exit BasicBlock of the Region. |
||
| 357 | /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel |
||
| 358 | /// Region. |
||
| 359 | BlockT *getExit() const { return exit; } |
||
| 360 | |||
| 361 | /// Get the parent of the Region. |
||
| 362 | /// @return The parent of the Region or NULL if this is a top level |
||
| 363 | /// Region. |
||
| 364 | RegionT *getParent() const { |
||
| 365 | return RegionNodeBase<Tr>::getParent(); |
||
| 366 | } |
||
| 367 | |||
| 368 | /// Get the RegionNode representing the current Region. |
||
| 369 | /// @return The RegionNode representing the current Region. |
||
| 370 | RegionNodeT *getNode() const { |
||
| 371 | return const_cast<RegionNodeT *>( |
||
| 372 | reinterpret_cast<const RegionNodeT *>(this)); |
||
| 373 | } |
||
| 374 | |||
| 375 | /// Get the nesting level of this Region. |
||
| 376 | /// |
||
| 377 | /// An toplevel Region has depth 0. |
||
| 378 | /// |
||
| 379 | /// @return The depth of the region. |
||
| 380 | unsigned getDepth() const; |
||
| 381 | |||
| 382 | /// Check if a Region is the TopLevel region. |
||
| 383 | /// |
||
| 384 | /// The toplevel region represents the whole function. |
||
| 385 | bool isTopLevelRegion() const { return exit == nullptr; } |
||
| 386 | |||
| 387 | /// Return a new (non-canonical) region, that is obtained by joining |
||
| 388 | /// this region with its predecessors. |
||
| 389 | /// |
||
| 390 | /// @return A region also starting at getEntry(), but reaching to the next |
||
| 391 | /// basic block that forms with getEntry() a (non-canonical) region. |
||
| 392 | /// NULL if such a basic block does not exist. |
||
| 393 | RegionT *getExpandedRegion() const; |
||
| 394 | |||
| 395 | /// Return the first block of this region's single entry edge, |
||
| 396 | /// if existing. |
||
| 397 | /// |
||
| 398 | /// @return The BasicBlock starting this region's single entry edge, |
||
| 399 | /// else NULL. |
||
| 400 | BlockT *getEnteringBlock() const; |
||
| 401 | |||
| 402 | /// Return the first block of this region's single exit edge, |
||
| 403 | /// if existing. |
||
| 404 | /// |
||
| 405 | /// @return The BasicBlock starting this region's single exit edge, |
||
| 406 | /// else NULL. |
||
| 407 | BlockT *getExitingBlock() const; |
||
| 408 | |||
| 409 | /// Collect all blocks of this region's single exit edge, if existing. |
||
| 410 | /// |
||
| 411 | /// @return True if this region contains all the predecessors of the exit. |
||
| 412 | bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const; |
||
| 413 | |||
| 414 | /// Is this a simple region? |
||
| 415 | /// |
||
| 416 | /// A region is simple if it has exactly one exit and one entry edge. |
||
| 417 | /// |
||
| 418 | /// @return True if the Region is simple. |
||
| 419 | bool isSimple() const; |
||
| 420 | |||
| 421 | /// Returns the name of the Region. |
||
| 422 | /// @return The Name of the Region. |
||
| 423 | std::string getNameStr() const; |
||
| 424 | |||
| 425 | /// Return the RegionInfo object, that belongs to this Region. |
||
| 426 | RegionInfoT *getRegionInfo() const { return RI; } |
||
| 427 | |||
| 428 | /// PrintStyle - Print region in difference ways. |
||
| 429 | enum PrintStyle { PrintNone, PrintBB, PrintRN }; |
||
| 430 | |||
| 431 | /// Print the region. |
||
| 432 | /// |
||
| 433 | /// @param OS The output stream the Region is printed to. |
||
| 434 | /// @param printTree Print also the tree of subregions. |
||
| 435 | /// @param level The indentation level used for printing. |
||
| 436 | void print(raw_ostream &OS, bool printTree = true, unsigned level = 0, |
||
| 437 | PrintStyle Style = PrintNone) const; |
||
| 438 | |||
| 439 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
| 440 | /// Print the region to stderr. |
||
| 441 | void dump() const; |
||
| 442 | #endif |
||
| 443 | |||
| 444 | /// Check if the region contains a BasicBlock. |
||
| 445 | /// |
||
| 446 | /// @param BB The BasicBlock that might be contained in this Region. |
||
| 447 | /// @return True if the block is contained in the region otherwise false. |
||
| 448 | bool contains(const BlockT *BB) const; |
||
| 449 | |||
| 450 | /// Check if the region contains another region. |
||
| 451 | /// |
||
| 452 | /// @param SubRegion The region that might be contained in this Region. |
||
| 453 | /// @return True if SubRegion is contained in the region otherwise false. |
||
| 454 | bool contains(const RegionT *SubRegion) const { |
||
| 455 | // Toplevel Region. |
||
| 456 | if (!getExit()) |
||
| 457 | return true; |
||
| 458 | |||
| 459 | return contains(SubRegion->getEntry()) && |
||
| 460 | (contains(SubRegion->getExit()) || |
||
| 461 | SubRegion->getExit() == getExit()); |
||
| 462 | } |
||
| 463 | |||
| 464 | /// Check if the region contains an Instruction. |
||
| 465 | /// |
||
| 466 | /// @param Inst The Instruction that might be contained in this region. |
||
| 467 | /// @return True if the Instruction is contained in the region otherwise |
||
| 468 | /// false. |
||
| 469 | bool contains(const InstT *Inst) const { return contains(Inst->getParent()); } |
||
| 470 | |||
| 471 | /// Check if the region contains a loop. |
||
| 472 | /// |
||
| 473 | /// @param L The loop that might be contained in this region. |
||
| 474 | /// @return True if the loop is contained in the region otherwise false. |
||
| 475 | /// In case a NULL pointer is passed to this function the result |
||
| 476 | /// is false, except for the region that describes the whole function. |
||
| 477 | /// In that case true is returned. |
||
| 478 | bool contains(const LoopT *L) const; |
||
| 479 | |||
| 480 | /// Get the outermost loop in the region that contains a loop. |
||
| 481 | /// |
||
| 482 | /// Find for a Loop L the outermost loop OuterL that is a parent loop of L |
||
| 483 | /// and is itself contained in the region. |
||
| 484 | /// |
||
| 485 | /// @param L The loop the lookup is started. |
||
| 486 | /// @return The outermost loop in the region, NULL if such a loop does not |
||
| 487 | /// exist or if the region describes the whole function. |
||
| 488 | LoopT *outermostLoopInRegion(LoopT *L) const; |
||
| 489 | |||
| 490 | /// Get the outermost loop in the region that contains a basic block. |
||
| 491 | /// |
||
| 492 | /// Find for a basic block BB the outermost loop L that contains BB and is |
||
| 493 | /// itself contained in the region. |
||
| 494 | /// |
||
| 495 | /// @param LI A pointer to a LoopInfo analysis. |
||
| 496 | /// @param BB The basic block surrounded by the loop. |
||
| 497 | /// @return The outermost loop in the region, NULL if such a loop does not |
||
| 498 | /// exist or if the region describes the whole function. |
||
| 499 | LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const; |
||
| 500 | |||
| 501 | /// Get the subregion that starts at a BasicBlock |
||
| 502 | /// |
||
| 503 | /// @param BB The BasicBlock the subregion should start. |
||
| 504 | /// @return The Subregion if available, otherwise NULL. |
||
| 505 | RegionT *getSubRegionNode(BlockT *BB) const; |
||
| 506 | |||
| 507 | /// Get the RegionNode for a BasicBlock |
||
| 508 | /// |
||
| 509 | /// @param BB The BasicBlock at which the RegionNode should start. |
||
| 510 | /// @return If available, the RegionNode that represents the subregion |
||
| 511 | /// starting at BB. If no subregion starts at BB, the RegionNode |
||
| 512 | /// representing BB. |
||
| 513 | RegionNodeT *getNode(BlockT *BB) const; |
||
| 514 | |||
| 515 | /// Get the BasicBlock RegionNode for a BasicBlock |
||
| 516 | /// |
||
| 517 | /// @param BB The BasicBlock for which the RegionNode is requested. |
||
| 518 | /// @return The RegionNode representing the BB. |
||
| 519 | RegionNodeT *getBBNode(BlockT *BB) const; |
||
| 520 | |||
| 521 | /// Add a new subregion to this Region. |
||
| 522 | /// |
||
| 523 | /// @param SubRegion The new subregion that will be added. |
||
| 524 | /// @param moveChildren Move the children of this region, that are also |
||
| 525 | /// contained in SubRegion into SubRegion. |
||
| 526 | void addSubRegion(RegionT *SubRegion, bool moveChildren = false); |
||
| 527 | |||
| 528 | /// Remove a subregion from this Region. |
||
| 529 | /// |
||
| 530 | /// The subregion is not deleted, as it will probably be inserted into another |
||
| 531 | /// region. |
||
| 532 | /// @param SubRegion The SubRegion that will be removed. |
||
| 533 | RegionT *removeSubRegion(RegionT *SubRegion); |
||
| 534 | |||
| 535 | /// Move all direct child nodes of this Region to another Region. |
||
| 536 | /// |
||
| 537 | /// @param To The Region the child nodes will be transferred to. |
||
| 538 | void transferChildrenTo(RegionT *To); |
||
| 539 | |||
| 540 | /// Verify if the region is a correct region. |
||
| 541 | /// |
||
| 542 | /// Check if this is a correctly build Region. This is an expensive check, as |
||
| 543 | /// the complete CFG of the Region will be walked. |
||
| 544 | void verifyRegion() const; |
||
| 545 | |||
| 546 | /// Clear the cache for BB RegionNodes. |
||
| 547 | /// |
||
| 548 | /// After calling this function the BasicBlock RegionNodes will be stored at |
||
| 549 | /// different memory locations. RegionNodes obtained before this function is |
||
| 550 | /// called are therefore not comparable to RegionNodes abtained afterwords. |
||
| 551 | void clearNodeCache(); |
||
| 552 | |||
| 553 | /// @name Subregion Iterators |
||
| 554 | /// |
||
| 555 | /// These iterators iterator over all subregions of this Region. |
||
| 556 | //@{ |
||
| 557 | using iterator = typename RegionSet::iterator; |
||
| 558 | using const_iterator = typename RegionSet::const_iterator; |
||
| 559 | |||
| 560 | iterator begin() { return children.begin(); } |
||
| 561 | iterator end() { return children.end(); } |
||
| 562 | |||
| 563 | const_iterator begin() const { return children.begin(); } |
||
| 564 | const_iterator end() const { return children.end(); } |
||
| 565 | //@} |
||
| 566 | |||
| 567 | /// @name BasicBlock Iterators |
||
| 568 | /// |
||
| 569 | /// These iterators iterate over all BasicBlocks that are contained in this |
||
| 570 | /// Region. The iterator also iterates over BasicBlocks that are elements of |
||
| 571 | /// a subregion of this Region. It is therefore called a flat iterator. |
||
| 572 | //@{ |
||
| 573 | template <bool IsConst> |
||
| 574 | class block_iterator_wrapper |
||
| 575 | : public df_iterator< |
||
| 576 | std::conditional_t<IsConst, const BlockT, BlockT> *> { |
||
| 577 | using super = |
||
| 578 | df_iterator<std::conditional_t<IsConst, const BlockT, BlockT> *>; |
||
| 579 | |||
| 580 | public: |
||
| 581 | using Self = block_iterator_wrapper<IsConst>; |
||
| 582 | using value_type = typename super::value_type; |
||
| 583 | |||
| 584 | // Construct the begin iterator. |
||
| 585 | block_iterator_wrapper(value_type Entry, value_type Exit) |
||
| 586 | : super(df_begin(Entry)) { |
||
| 587 | // Mark the exit of the region as visited, so that the children of the |
||
| 588 | // exit and the exit itself, i.e. the block outside the region will never |
||
| 589 | // be visited. |
||
| 590 | super::Visited.insert(Exit); |
||
| 591 | } |
||
| 592 | |||
| 593 | // Construct the end iterator. |
||
| 594 | block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {} |
||
| 595 | |||
| 596 | /*implicit*/ block_iterator_wrapper(super I) : super(I) {} |
||
| 597 | |||
| 598 | // FIXME: Even a const_iterator returns a non-const BasicBlock pointer. |
||
| 599 | // This was introduced for backwards compatibility, but should |
||
| 600 | // be removed as soon as all users are fixed. |
||
| 601 | BlockT *operator*() const { |
||
| 602 | return const_cast<BlockT *>(super::operator*()); |
||
| 603 | } |
||
| 604 | }; |
||
| 605 | |||
| 606 | using block_iterator = block_iterator_wrapper<false>; |
||
| 607 | using const_block_iterator = block_iterator_wrapper<true>; |
||
| 608 | |||
| 609 | block_iterator block_begin() { return block_iterator(getEntry(), getExit()); } |
||
| 610 | |||
| 611 | block_iterator block_end() { return block_iterator(); } |
||
| 612 | |||
| 613 | const_block_iterator block_begin() const { |
||
| 614 | return const_block_iterator(getEntry(), getExit()); |
||
| 615 | } |
||
| 616 | const_block_iterator block_end() const { return const_block_iterator(); } |
||
| 617 | |||
| 618 | using block_range = iterator_range<block_iterator>; |
||
| 619 | using const_block_range = iterator_range<const_block_iterator>; |
||
| 620 | |||
| 621 | /// Returns a range view of the basic blocks in the region. |
||
| 622 | inline block_range blocks() { |
||
| 623 | return block_range(block_begin(), block_end()); |
||
| 624 | } |
||
| 625 | |||
| 626 | /// Returns a range view of the basic blocks in the region. |
||
| 627 | /// |
||
| 628 | /// This is the 'const' version of the range view. |
||
| 629 | inline const_block_range blocks() const { |
||
| 630 | return const_block_range(block_begin(), block_end()); |
||
| 631 | } |
||
| 632 | //@} |
||
| 633 | |||
| 634 | /// @name Element Iterators |
||
| 635 | /// |
||
| 636 | /// These iterators iterate over all BasicBlock and subregion RegionNodes that |
||
| 637 | /// are direct children of this Region. It does not iterate over any |
||
| 638 | /// RegionNodes that are also element of a subregion of this Region. |
||
| 639 | //@{ |
||
| 640 | using element_iterator = |
||
| 641 | df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false, |
||
| 642 | GraphTraits<RegionNodeT *>>; |
||
| 643 | |||
| 644 | using const_element_iterator = |
||
| 645 | df_iterator<const RegionNodeT *, |
||
| 646 | df_iterator_default_set<const RegionNodeT *>, false, |
||
| 647 | GraphTraits<const RegionNodeT *>>; |
||
| 648 | |||
| 649 | element_iterator element_begin(); |
||
| 650 | element_iterator element_end(); |
||
| 651 | iterator_range<element_iterator> elements() { |
||
| 652 | return make_range(element_begin(), element_end()); |
||
| 653 | } |
||
| 654 | |||
| 655 | const_element_iterator element_begin() const; |
||
| 656 | const_element_iterator element_end() const; |
||
| 657 | iterator_range<const_element_iterator> elements() const { |
||
| 658 | return make_range(element_begin(), element_end()); |
||
| 659 | } |
||
| 660 | //@} |
||
| 661 | }; |
||
| 662 | |||
| 663 | /// Print a RegionNode. |
||
| 664 | template <class Tr> |
||
| 665 | inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node); |
||
| 666 | |||
| 667 | //===----------------------------------------------------------------------===// |
||
| 668 | /// Analysis that detects all canonical Regions. |
||
| 669 | /// |
||
| 670 | /// The RegionInfo pass detects all canonical regions in a function. The Regions |
||
| 671 | /// are connected using the parent relation. This builds a Program Structure |
||
| 672 | /// Tree. |
||
| 673 | template <class Tr> |
||
| 674 | class RegionInfoBase { |
||
| 675 | friend class RegionInfo; |
||
| 676 | friend class MachineRegionInfo; |
||
| 677 | |||
| 678 | using BlockT = typename Tr::BlockT; |
||
| 679 | using FuncT = typename Tr::FuncT; |
||
| 680 | using RegionT = typename Tr::RegionT; |
||
| 681 | using RegionInfoT = typename Tr::RegionInfoT; |
||
| 682 | using DomTreeT = typename Tr::DomTreeT; |
||
| 683 | using DomTreeNodeT = typename Tr::DomTreeNodeT; |
||
| 684 | using PostDomTreeT = typename Tr::PostDomTreeT; |
||
| 685 | using DomFrontierT = typename Tr::DomFrontierT; |
||
| 686 | using BlockTraits = GraphTraits<BlockT *>; |
||
| 687 | using InvBlockTraits = GraphTraits<Inverse<BlockT *>>; |
||
| 688 | using SuccIterTy = typename BlockTraits::ChildIteratorType; |
||
| 689 | using PredIterTy = typename InvBlockTraits::ChildIteratorType; |
||
| 690 | |||
| 691 | using BBtoBBMap = DenseMap<BlockT *, BlockT *>; |
||
| 692 | using BBtoRegionMap = DenseMap<BlockT *, RegionT *>; |
||
| 693 | |||
| 694 | RegionInfoBase(); |
||
| 695 | |||
| 696 | RegionInfoBase(RegionInfoBase &&Arg) |
||
| 697 | : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)), |
||
| 698 | TopLevelRegion(std::move(Arg.TopLevelRegion)), |
||
| 699 | BBtoRegion(std::move(Arg.BBtoRegion)) { |
||
| 700 | Arg.wipe(); |
||
| 701 | } |
||
| 702 | |||
| 703 | RegionInfoBase &operator=(RegionInfoBase &&RHS) { |
||
| 704 | DT = std::move(RHS.DT); |
||
| 705 | PDT = std::move(RHS.PDT); |
||
| 706 | DF = std::move(RHS.DF); |
||
| 707 | TopLevelRegion = std::move(RHS.TopLevelRegion); |
||
| 708 | BBtoRegion = std::move(RHS.BBtoRegion); |
||
| 709 | RHS.wipe(); |
||
| 710 | return *this; |
||
| 711 | } |
||
| 712 | |||
| 713 | virtual ~RegionInfoBase(); |
||
| 714 | |||
| 715 | DomTreeT *DT; |
||
| 716 | PostDomTreeT *PDT; |
||
| 717 | DomFrontierT *DF; |
||
| 718 | |||
| 719 | /// The top level region. |
||
| 720 | RegionT *TopLevelRegion = nullptr; |
||
| 721 | |||
| 722 | /// Map every BB to the smallest region, that contains BB. |
||
| 723 | BBtoRegionMap BBtoRegion; |
||
| 724 | |||
| 725 | protected: |
||
| 726 | /// Update refences to a RegionInfoT held by the RegionT managed here |
||
| 727 | /// |
||
| 728 | /// This is a post-move helper. Regions hold references to the owning |
||
| 729 | /// RegionInfo object. After a move these need to be fixed. |
||
| 730 | template<typename TheRegionT> |
||
| 731 | void updateRegionTree(RegionInfoT &RI, TheRegionT *R) { |
||
| 732 | if (!R) |
||
| 733 | return; |
||
| 734 | R->RI = &RI; |
||
| 735 | for (auto &SubR : *R) |
||
| 736 | updateRegionTree(RI, SubR.get()); |
||
| 737 | } |
||
| 738 | |||
| 739 | private: |
||
| 740 | /// Wipe this region tree's state without releasing any resources. |
||
| 741 | /// |
||
| 742 | /// This is essentially a post-move helper only. It leaves the object in an |
||
| 743 | /// assignable and destroyable state, but otherwise invalid. |
||
| 744 | void wipe() { |
||
| 745 | DT = nullptr; |
||
| 746 | PDT = nullptr; |
||
| 747 | DF = nullptr; |
||
| 748 | TopLevelRegion = nullptr; |
||
| 749 | BBtoRegion.clear(); |
||
| 750 | } |
||
| 751 | |||
| 752 | // Check whether the entries of BBtoRegion for the BBs of region |
||
| 753 | // SR are correct. Triggers an assertion if not. Calls itself recursively for |
||
| 754 | // subregions. |
||
| 755 | void verifyBBMap(const RegionT *SR) const; |
||
| 756 | |||
| 757 | // Returns true if BB is in the dominance frontier of |
||
| 758 | // entry, because it was inherited from exit. In the other case there is an |
||
| 759 | // edge going from entry to BB without passing exit. |
||
| 760 | bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const; |
||
| 761 | |||
| 762 | // Check if entry and exit surround a valid region, based on |
||
| 763 | // dominance tree and dominance frontier. |
||
| 764 | bool isRegion(BlockT *entry, BlockT *exit) const; |
||
| 765 | |||
| 766 | // Saves a shortcut pointing from entry to exit. |
||
| 767 | // This function may extend this shortcut if possible. |
||
| 768 | void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const; |
||
| 769 | |||
| 770 | // Returns the next BB that postdominates N, while skipping |
||
| 771 | // all post dominators that cannot finish a canonical region. |
||
| 772 | DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const; |
||
| 773 | |||
| 774 | // A region is trivial, if it contains only one BB. |
||
| 775 | bool isTrivialRegion(BlockT *entry, BlockT *exit) const; |
||
| 776 | |||
| 777 | // Creates a single entry single exit region. |
||
| 778 | RegionT *createRegion(BlockT *entry, BlockT *exit); |
||
| 779 | |||
| 780 | // Detect all regions starting with bb 'entry'. |
||
| 781 | void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut); |
||
| 782 | |||
| 783 | // Detects regions in F. |
||
| 784 | void scanForRegions(FuncT &F, BBtoBBMap *ShortCut); |
||
| 785 | |||
| 786 | // Get the top most parent with the same entry block. |
||
| 787 | RegionT *getTopMostParent(RegionT *region); |
||
| 788 | |||
| 789 | // Build the region hierarchy after all region detected. |
||
| 790 | void buildRegionsTree(DomTreeNodeT *N, RegionT *region); |
||
| 791 | |||
| 792 | // Update statistic about created regions. |
||
| 793 | virtual void updateStatistics(RegionT *R) = 0; |
||
| 794 | |||
| 795 | // Detect all regions in function and build the region tree. |
||
| 796 | void calculate(FuncT &F); |
||
| 797 | |||
| 798 | public: |
||
| 799 | RegionInfoBase(const RegionInfoBase &) = delete; |
||
| 800 | RegionInfoBase &operator=(const RegionInfoBase &) = delete; |
||
| 801 | |||
| 802 | static bool VerifyRegionInfo; |
||
| 803 | static typename RegionT::PrintStyle printStyle; |
||
| 804 | |||
| 805 | void print(raw_ostream &OS) const; |
||
| 806 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
| 807 | void dump() const; |
||
| 808 | #endif |
||
| 809 | |||
| 810 | void releaseMemory(); |
||
| 811 | |||
| 812 | /// Get the smallest region that contains a BasicBlock. |
||
| 813 | /// |
||
| 814 | /// @param BB The basic block. |
||
| 815 | /// @return The smallest region, that contains BB or NULL, if there is no |
||
| 816 | /// region containing BB. |
||
| 817 | RegionT *getRegionFor(BlockT *BB) const; |
||
| 818 | |||
| 819 | /// Set the smallest region that surrounds a basic block. |
||
| 820 | /// |
||
| 821 | /// @param BB The basic block surrounded by a region. |
||
| 822 | /// @param R The smallest region that surrounds BB. |
||
| 823 | void setRegionFor(BlockT *BB, RegionT *R); |
||
| 824 | |||
| 825 | /// A shortcut for getRegionFor(). |
||
| 826 | /// |
||
| 827 | /// @param BB The basic block. |
||
| 828 | /// @return The smallest region, that contains BB or NULL, if there is no |
||
| 829 | /// region containing BB. |
||
| 830 | RegionT *operator[](BlockT *BB) const; |
||
| 831 | |||
| 832 | /// Return the exit of the maximal refined region, that starts at a |
||
| 833 | /// BasicBlock. |
||
| 834 | /// |
||
| 835 | /// @param BB The BasicBlock the refined region starts. |
||
| 836 | BlockT *getMaxRegionExit(BlockT *BB) const; |
||
| 837 | |||
| 838 | /// Find the smallest region that contains two regions. |
||
| 839 | /// |
||
| 840 | /// @param A The first region. |
||
| 841 | /// @param B The second region. |
||
| 842 | /// @return The smallest region containing A and B. |
||
| 843 | RegionT *getCommonRegion(RegionT *A, RegionT *B) const; |
||
| 844 | |||
| 845 | /// Find the smallest region that contains two basic blocks. |
||
| 846 | /// |
||
| 847 | /// @param A The first basic block. |
||
| 848 | /// @param B The second basic block. |
||
| 849 | /// @return The smallest region that contains A and B. |
||
| 850 | RegionT *getCommonRegion(BlockT *A, BlockT *B) const { |
||
| 851 | return getCommonRegion(getRegionFor(A), getRegionFor(B)); |
||
| 852 | } |
||
| 853 | |||
| 854 | /// Find the smallest region that contains a set of regions. |
||
| 855 | /// |
||
| 856 | /// @param Regions A vector of regions. |
||
| 857 | /// @return The smallest region that contains all regions in Regions. |
||
| 858 | RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const; |
||
| 859 | |||
| 860 | /// Find the smallest region that contains a set of basic blocks. |
||
| 861 | /// |
||
| 862 | /// @param BBs A vector of basic blocks. |
||
| 863 | /// @return The smallest region that contains all basic blocks in BBS. |
||
| 864 | RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const; |
||
| 865 | |||
| 866 | RegionT *getTopLevelRegion() const { return TopLevelRegion; } |
||
| 867 | |||
| 868 | /// Clear the Node Cache for all Regions. |
||
| 869 | /// |
||
| 870 | /// @see Region::clearNodeCache() |
||
| 871 | void clearNodeCache() { |
||
| 872 | if (TopLevelRegion) |
||
| 873 | TopLevelRegion->clearNodeCache(); |
||
| 874 | } |
||
| 875 | |||
| 876 | void verifyAnalysis() const; |
||
| 877 | }; |
||
| 878 | |||
| 879 | class RegionNode : public RegionNodeBase<RegionTraits<Function>> { |
||
| 880 | public: |
||
| 881 | inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false) |
||
| 882 | : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {} |
||
| 883 | |||
| 884 | bool operator==(const Region &RN) const { |
||
| 885 | return this == reinterpret_cast<const RegionNode *>(&RN); |
||
| 886 | } |
||
| 887 | }; |
||
| 888 | |||
| 889 | class Region : public RegionBase<RegionTraits<Function>> { |
||
| 890 | public: |
||
| 891 | Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT, |
||
| 892 | Region *Parent = nullptr); |
||
| 893 | ~Region(); |
||
| 894 | |||
| 895 | bool operator==(const RegionNode &RN) const { |
||
| 896 | return &RN == reinterpret_cast<const RegionNode *>(this); |
||
| 897 | } |
||
| 898 | }; |
||
| 899 | |||
| 900 | class RegionInfo : public RegionInfoBase<RegionTraits<Function>> { |
||
| 901 | public: |
||
| 902 | using Base = RegionInfoBase<RegionTraits<Function>>; |
||
| 903 | |||
| 904 | explicit RegionInfo(); |
||
| 905 | |||
| 906 | RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) { |
||
| 907 | updateRegionTree(*this, TopLevelRegion); |
||
| 908 | } |
||
| 909 | |||
| 910 | RegionInfo &operator=(RegionInfo &&RHS) { |
||
| 911 | Base::operator=(std::move(static_cast<Base &>(RHS))); |
||
| 912 | updateRegionTree(*this, TopLevelRegion); |
||
| 913 | return *this; |
||
| 914 | } |
||
| 915 | |||
| 916 | ~RegionInfo() override; |
||
| 917 | |||
| 918 | /// Handle invalidation explicitly. |
||
| 919 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
||
| 920 | FunctionAnalysisManager::Invalidator &); |
||
| 921 | |||
| 922 | // updateStatistics - Update statistic about created regions. |
||
| 923 | void updateStatistics(Region *R) final; |
||
| 924 | |||
| 925 | void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT, |
||
| 926 | DominanceFrontier *DF); |
||
| 927 | |||
| 928 | #ifndef NDEBUG |
||
| 929 | /// Opens a viewer to show the GraphViz visualization of the regions. |
||
| 930 | /// |
||
| 931 | /// Useful during debugging as an alternative to dump(). |
||
| 932 | void view(); |
||
| 933 | |||
| 934 | /// Opens a viewer to show the GraphViz visualization of this region |
||
| 935 | /// without instructions in the BasicBlocks. |
||
| 936 | /// |
||
| 937 | /// Useful during debugging as an alternative to dump(). |
||
| 938 | void viewOnly(); |
||
| 939 | #endif |
||
| 940 | }; |
||
| 941 | |||
| 942 | class RegionInfoPass : public FunctionPass { |
||
| 943 | RegionInfo RI; |
||
| 944 | |||
| 945 | public: |
||
| 946 | static char ID; |
||
| 947 | |||
| 948 | explicit RegionInfoPass(); |
||
| 949 | ~RegionInfoPass() override; |
||
| 950 | |||
| 951 | RegionInfo &getRegionInfo() { return RI; } |
||
| 952 | |||
| 953 | const RegionInfo &getRegionInfo() const { return RI; } |
||
| 954 | |||
| 955 | /// @name FunctionPass interface |
||
| 956 | //@{ |
||
| 957 | bool runOnFunction(Function &F) override; |
||
| 958 | void releaseMemory() override; |
||
| 959 | void verifyAnalysis() const override; |
||
| 960 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
| 961 | void print(raw_ostream &OS, const Module *) const override; |
||
| 962 | void dump() const; |
||
| 963 | //@} |
||
| 964 | }; |
||
| 965 | |||
| 966 | /// Analysis pass that exposes the \c RegionInfo for a function. |
||
| 967 | class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> { |
||
| 968 | friend AnalysisInfoMixin<RegionInfoAnalysis>; |
||
| 969 | |||
| 970 | static AnalysisKey Key; |
||
| 971 | |||
| 972 | public: |
||
| 973 | using Result = RegionInfo; |
||
| 974 | |||
| 975 | RegionInfo run(Function &F, FunctionAnalysisManager &AM); |
||
| 976 | }; |
||
| 977 | |||
| 978 | /// Printer pass for the \c RegionInfo. |
||
| 979 | class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> { |
||
| 980 | raw_ostream &OS; |
||
| 981 | |||
| 982 | public: |
||
| 983 | explicit RegionInfoPrinterPass(raw_ostream &OS); |
||
| 984 | |||
| 985 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
| 986 | }; |
||
| 987 | |||
| 988 | /// Verifier pass for the \c RegionInfo. |
||
| 989 | struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> { |
||
| 990 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
| 991 | }; |
||
| 992 | |||
| 993 | template <> |
||
| 994 | template <> |
||
| 995 | inline BasicBlock * |
||
| 996 | RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const { |
||
| 997 | assert(!isSubRegion() && "This is not a BasicBlock RegionNode!"); |
||
| 998 | return getEntry(); |
||
| 999 | } |
||
| 1000 | |||
| 1001 | template <> |
||
| 1002 | template <> |
||
| 1003 | inline Region * |
||
| 1004 | RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const { |
||
| 1005 | assert(isSubRegion() && "This is not a subregion RegionNode!"); |
||
| 1006 | auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this); |
||
| 1007 | return reinterpret_cast<Region *>(Unconst); |
||
| 1008 | } |
||
| 1009 | |||
| 1010 | template <class Tr> |
||
| 1011 | inline raw_ostream &operator<<(raw_ostream &OS, |
||
| 1012 | const RegionNodeBase<Tr> &Node) { |
||
| 1013 | using BlockT = typename Tr::BlockT; |
||
| 1014 | using RegionT = typename Tr::RegionT; |
||
| 1015 | |||
| 1016 | if (Node.isSubRegion()) |
||
| 1017 | return OS << Node.template getNodeAs<RegionT>()->getNameStr(); |
||
| 1018 | else |
||
| 1019 | return OS << Node.template getNodeAs<BlockT>()->getName(); |
||
| 1020 | } |
||
| 1021 | |||
| 1022 | extern template class RegionBase<RegionTraits<Function>>; |
||
| 1023 | extern template class RegionNodeBase<RegionTraits<Function>>; |
||
| 1024 | extern template class RegionInfoBase<RegionTraits<Function>>; |
||
| 1025 | |||
| 1026 | } // end namespace llvm |
||
| 1027 | |||
| 1028 | #endif // LLVM_ANALYSIS_REGIONINFO_H |