Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// \file
10
// An automatic updater for MemorySSA that handles arbitrary insertion,
11
// deletion, and moves.  It performs phi insertion where necessary, and
12
// automatically updates the MemorySSA IR to be correct.
13
// While updating loads or removing instructions is often easy enough to not
14
// need this, updating stores should generally not be attemped outside this
15
// API.
16
//
17
// Basic API usage:
18
// Create the memory access you want for the instruction (this is mainly so
19
// we know where it is, without having to duplicate the entire set of create
20
// functions MemorySSA supports).
21
// Call insertDef or insertUse depending on whether it's a MemoryUse or a
22
// MemoryDef.
23
// That's it.
24
//
25
// For moving, first, move the instruction itself using the normal SSA
26
// instruction moving API, then just call moveBefore, moveAfter,or moveTo with
27
// the right arguments.
28
//
29
//===----------------------------------------------------------------------===//
30
 
31
#ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
32
#define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
33
 
34
#include "llvm/ADT/SmallPtrSet.h"
35
#include "llvm/ADT/SmallSet.h"
36
#include "llvm/ADT/SmallVector.h"
37
#include "llvm/Analysis/MemorySSA.h"
38
#include "llvm/IR/ValueHandle.h"
39
#include "llvm/IR/ValueMap.h"
40
#include "llvm/Support/CFGDiff.h"
41
 
42
namespace llvm {
43
 
44
class BasicBlock;
45
class DominatorTree;
46
class Instruction;
47
class LoopBlocksRPO;
48
template <typename T, unsigned int N> class SmallSetVector;
49
 
50
using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
51
using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
52
using CFGUpdate = cfg::Update<BasicBlock *>;
53
 
54
class MemorySSAUpdater {
55
private:
56
  MemorySSA *MSSA;
57
 
58
  /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
59
  /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
60
  SmallVector<WeakVH, 16> InsertedPHIs;
61
 
62
  SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
63
  SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
64
 
65
public:
66
  MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
67
 
68
  /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
69
  /// below the new def block (and any inserted phis).  RenameUses should be set
70
  /// to true if the definition may cause new aliases for loads below it.  This
71
  /// is not the case for hoisting or sinking or other forms of code *movement*.
72
  /// It *is* the case for straight code insertion.
73
  /// For example:
74
  /// store a
75
  /// if (foo) { }
76
  /// load a
77
  ///
78
  /// Moving the store into the if block, and calling insertDef, does not
79
  /// require RenameUses.
80
  /// However, changing it to:
81
  /// store a
82
  /// if (foo) { store b }
83
  /// load a
84
  /// Where a mayalias b, *does* require RenameUses be set to true.
85
  void insertDef(MemoryDef *Def, bool RenameUses = false);
86
  void insertUse(MemoryUse *Use, bool RenameUses = false);
87
  /// Update the MemoryPhi in `To` following an edge deletion between `From` and
88
  /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
89
  void removeEdge(BasicBlock *From, BasicBlock *To);
90
  /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
91
  /// following a CFG change that replaced multiple edges (switch) with a direct
92
  /// branch.
93
  void removeDuplicatePhiEdgesBetween(const BasicBlock *From,
94
                                      const BasicBlock *To);
95
  /// Update MemorySSA when inserting a unique backedge block for a loop.
96
  void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader,
97
                                                  BasicBlock *LoopPreheader,
98
                                                  BasicBlock *BackedgeBlock);
99
  /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
100
  /// the exit blocks and a 1:1 mapping of all blocks and instructions
101
  /// cloned. This involves duplicating all defs and uses in the cloned blocks
102
  /// Updating phi nodes in exit block successors is done separately.
103
  void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
104
                           ArrayRef<BasicBlock *> ExitBlocks,
105
                           const ValueToValueMapTy &VM,
106
                           bool IgnoreIncomingWithNoClones = false);
107
  // Block BB was fully or partially cloned into its predecessor P1. Map
108
  // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
109
  void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
110
                                    const ValueToValueMapTy &VM);
111
  /// Update phi nodes in exit block successors following cloning. Exit blocks
112
  /// that were not cloned don't have additional predecessors added.
113
  void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
114
                                     const ValueToValueMapTy &VMap,
115
                                     DominatorTree &DT);
116
  void updateExitBlocksForClonedLoop(
117
      ArrayRef<BasicBlock *> ExitBlocks,
118
      ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
119
 
120
  /// Apply CFG updates, analogous with the DT edge updates. By default, the
121
  /// DT is assumed to be already up to date. If UpdateDTFirst is true, first
122
  /// update the DT with the same updates.
123
  void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT,
124
                    bool UpdateDTFirst = false);
125
  /// Apply CFG insert updates, analogous with the DT edge updates.
126
  void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
127
 
128
  void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
129
  void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
130
  void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
131
                   MemorySSA::InsertionPlace Where);
132
  /// `From` block was spliced into `From` and `To`. There is a CFG edge from
133
  /// `From` to `To`. Move all accesses from `From` to `To` starting at
134
  /// instruction `Start`. `To` is newly created BB, so empty of
135
  /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
136
  /// `To` with MPhi nodes need to update incoming block.
137
  /// |------|        |------|
138
  /// | From |        | From |
139
  /// |      |        |------|
140
  /// |      |           ||
141
  /// |      |   =>      \/
142
  /// |      |        |------|  <- Start
143
  /// |      |        |  To  |
144
  /// |------|        |------|
145
  void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
146
                                Instruction *Start);
147
  /// `From` block was merged into `To`. There is a CFG edge from `To` to
148
  /// `From`.`To` still branches to `From`, but all instructions were moved and
149
  /// `From` is now an empty block; `From` is about to be deleted. Move all
150
  /// accesses from `From` to `To` starting at instruction `Start`. `To` may
151
  /// have multiple successors, `From` has a single predecessor. `From` may have
152
  /// successors with MPhi nodes, replace their incoming block with `To`.
153
  /// |------|        |------|
154
  /// |  To  |        |  To  |
155
  /// |------|        |      |
156
  ///    ||      =>   |      |
157
  ///    \/           |      |
158
  /// |------|        |      |  <- Start
159
  /// | From |        |      |
160
  /// |------|        |------|
161
  void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
162
                               Instruction *Start);
163
  /// A new empty BasicBlock (New) now branches directly to Old. Some of
164
  /// Old's predecessors (Preds) are now branching to New instead of Old.
165
  /// If New is the only predecessor, move Old's Phi, if present, to New.
166
  /// Otherwise, add a new Phi in New with appropriate incoming values, and
167
  /// update the incoming values in Old's Phi node too, if present.
168
  void wireOldPredecessorsToNewImmediatePredecessor(
169
      BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
170
      bool IdenticalEdgesWereMerged = true);
171
  // The below are utility functions. Other than creation of accesses to pass
172
  // to insertDef, and removeAccess to remove accesses, you should generally
173
  // not attempt to update memoryssa yourself. It is very non-trivial to get
174
  // the edge cases right, and the above calls already operate in near-optimal
175
  // time bounds.
176
 
177
  /// Create a MemoryAccess in MemorySSA at a specified point in a block,
178
  /// with a specified clobbering definition.
179
  ///
180
  /// Returns the new MemoryAccess.
181
  /// This should be called when a memory instruction is created that is being
182
  /// used to replace an existing memory instruction. It will *not* create PHI
183
  /// nodes, or verify the clobbering definition. The insertion place is used
184
  /// solely to determine where in the memoryssa access lists the instruction
185
  /// will be placed. The caller is expected to keep ordering the same as
186
  /// instructions.
187
  /// It will return the new MemoryAccess.
188
  /// Note: If a MemoryAccess already exists for I, this function will make it
189
  /// inaccessible and it *must* have removeMemoryAccess called on it.
190
  MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
191
                                       const BasicBlock *BB,
192
                                       MemorySSA::InsertionPlace Point);
193
 
194
  /// Create a MemoryAccess in MemorySSA before or after an existing
195
  /// MemoryAccess.
196
  ///
197
  /// Returns the new MemoryAccess.
198
  /// This should be called when a memory instruction is created that is being
199
  /// used to replace an existing memory instruction. It will *not* create PHI
200
  /// nodes, or verify the clobbering definition.
201
  ///
202
  /// Note: If a MemoryAccess already exists for I, this function will make it
203
  /// inaccessible and it *must* have removeMemoryAccess called on it.
204
  MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
205
                                           MemoryAccess *Definition,
206
                                           MemoryUseOrDef *InsertPt);
207
  MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
208
                                          MemoryAccess *Definition,
209
                                          MemoryAccess *InsertPt);
210
 
211
  /// Remove a MemoryAccess from MemorySSA, including updating all
212
  /// definitions and uses.
213
  /// This should be called when a memory instruction that has a MemoryAccess
214
  /// associated with it is erased from the program.  For example, if a store or
215
  /// load is simply erased (not replaced), removeMemoryAccess should be called
216
  /// on the MemoryAccess for that store/load.
217
  void removeMemoryAccess(MemoryAccess *, bool OptimizePhis = false);
218
 
219
  /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
220
  /// This should be called when an instruction (load/store) is deleted from
221
  /// the program.
222
  void removeMemoryAccess(const Instruction *I, bool OptimizePhis = false) {
223
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
224
      removeMemoryAccess(MA, OptimizePhis);
225
  }
226
 
227
  /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
228
  /// Assumption we make here: all uses of deleted defs and phi must either
229
  /// occur in blocks about to be deleted (thus will be deleted as well), or
230
  /// they occur in phis that will simply lose an incoming value.
231
  /// Deleted blocks still have successor info, but their predecessor edges and
232
  /// Phi nodes may already be updated. Instructions in DeadBlocks should be
233
  /// deleted after this call.
234
  void removeBlocks(const SmallSetVector<BasicBlock *, 8> &DeadBlocks);
235
 
236
  /// Instruction I will be changed to an unreachable. Remove all accesses in
237
  /// I's block that follow I (inclusive), and update the Phis in the blocks'
238
  /// successors.
239
  void changeToUnreachable(const Instruction *I);
240
 
241
  /// Get handle on MemorySSA.
242
  MemorySSA* getMemorySSA() const { return MSSA; }
243
 
244
private:
245
  // Move What before Where in the MemorySSA IR.
246
  template <class WhereType>
247
  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
248
  // Move all memory accesses from `From` to `To` starting at `Start`.
249
  // Restrictions apply, see public wrappers of this method.
250
  void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
251
  MemoryAccess *getPreviousDef(MemoryAccess *);
252
  MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
253
  MemoryAccess *
254
  getPreviousDefFromEnd(BasicBlock *,
255
                        DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
256
  MemoryAccess *
257
  getPreviousDefRecursive(BasicBlock *,
258
                          DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
259
  MemoryAccess *recursePhi(MemoryAccess *Phi);
260
  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi);
261
  template <class RangeType>
262
  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
263
  void tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs);
264
  void fixupDefs(const SmallVectorImpl<WeakVH> &);
265
  // Clone all uses and defs from BB to NewBB given a 1:1 map of all
266
  // instructions and blocks cloned, and a map of MemoryPhi : Definition
267
  // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
268
  // instructions and old blocks to cloned blocks. MPhiMap, is created in the
269
  // caller of this private method, and maps existing MemoryPhis to new
270
  // definitions that new MemoryAccesses must point to. These definitions may
271
  // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
272
  // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
273
  // may be MemoryPhis or MemoryDefs and not MemoryUses.
274
  // If CloneWasSimplified = true, the clone was exact. Otherwise, assume that
275
  // the clone involved simplifications that may have: (1) turned a MemoryUse
276
  // into an instruction that MemorySSA has no representation for, or (2) turned
277
  // a MemoryDef into a MemoryUse or an instruction that MemorySSA has no
278
  // representation for. No other cases are supported.
279
  void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
280
                        const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
281
                        bool CloneWasSimplified = false);
282
  template <typename Iter>
283
  void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
284
                                            Iter ValuesBegin, Iter ValuesEnd,
285
                                            DominatorTree &DT);
286
  void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
287
                          const GraphDiff<BasicBlock *> *GD);
288
};
289
} // end namespace llvm
290
 
291
#endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H