Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | /// \file |
||
| 10 | /// This file exposes an interface to building/using memory SSA to |
||
| 11 | /// walk memory instructions using a use/def graph. |
||
| 12 | /// |
||
| 13 | /// Memory SSA class builds an SSA form that links together memory access |
||
| 14 | /// instructions such as loads, stores, atomics, and calls. Additionally, it |
||
| 15 | /// does a trivial form of "heap versioning" Every time the memory state changes |
||
| 16 | /// in the program, we generate a new heap version. It generates |
||
| 17 | /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions. |
||
| 18 | /// |
||
| 19 | /// As a trivial example, |
||
| 20 | /// define i32 @main() #0 { |
||
| 21 | /// entry: |
||
| 22 | /// %call = call noalias i8* @_Znwm(i64 4) #2 |
||
| 23 | /// %0 = bitcast i8* %call to i32* |
||
| 24 | /// %call1 = call noalias i8* @_Znwm(i64 4) #2 |
||
| 25 | /// %1 = bitcast i8* %call1 to i32* |
||
| 26 | /// store i32 5, i32* %0, align 4 |
||
| 27 | /// store i32 7, i32* %1, align 4 |
||
| 28 | /// %2 = load i32* %0, align 4 |
||
| 29 | /// %3 = load i32* %1, align 4 |
||
| 30 | /// %add = add nsw i32 %2, %3 |
||
| 31 | /// ret i32 %add |
||
| 32 | /// } |
||
| 33 | /// |
||
| 34 | /// Will become |
||
| 35 | /// define i32 @main() #0 { |
||
| 36 | /// entry: |
||
| 37 | /// ; 1 = MemoryDef(0) |
||
| 38 | /// %call = call noalias i8* @_Znwm(i64 4) #3 |
||
| 39 | /// %2 = bitcast i8* %call to i32* |
||
| 40 | /// ; 2 = MemoryDef(1) |
||
| 41 | /// %call1 = call noalias i8* @_Znwm(i64 4) #3 |
||
| 42 | /// %4 = bitcast i8* %call1 to i32* |
||
| 43 | /// ; 3 = MemoryDef(2) |
||
| 44 | /// store i32 5, i32* %2, align 4 |
||
| 45 | /// ; 4 = MemoryDef(3) |
||
| 46 | /// store i32 7, i32* %4, align 4 |
||
| 47 | /// ; MemoryUse(3) |
||
| 48 | /// %7 = load i32* %2, align 4 |
||
| 49 | /// ; MemoryUse(4) |
||
| 50 | /// %8 = load i32* %4, align 4 |
||
| 51 | /// %add = add nsw i32 %7, %8 |
||
| 52 | /// ret i32 %add |
||
| 53 | /// } |
||
| 54 | /// |
||
| 55 | /// Given this form, all the stores that could ever effect the load at %8 can be |
||
| 56 | /// gotten by using the MemoryUse associated with it, and walking from use to |
||
| 57 | /// def until you hit the top of the function. |
||
| 58 | /// |
||
| 59 | /// Each def also has a list of users associated with it, so you can walk from |
||
| 60 | /// both def to users, and users to defs. Note that we disambiguate MemoryUses, |
||
| 61 | /// but not the RHS of MemoryDefs. You can see this above at %7, which would |
||
| 62 | /// otherwise be a MemoryUse(4). Being disambiguated means that for a given |
||
| 63 | /// store, all the MemoryUses on its use lists are may-aliases of that store |
||
| 64 | /// (but the MemoryDefs on its use list may not be). |
||
| 65 | /// |
||
| 66 | /// MemoryDefs are not disambiguated because it would require multiple reaching |
||
| 67 | /// definitions, which would require multiple phis, and multiple memoryaccesses |
||
| 68 | /// per instruction. |
||
| 69 | /// |
||
| 70 | /// In addition to the def/use graph described above, MemoryDefs also contain |
||
| 71 | /// an "optimized" definition use. The "optimized" use points to some def |
||
| 72 | /// reachable through the memory def chain. The optimized def *may* (but is |
||
| 73 | /// not required to) alias the original MemoryDef, but no def *closer* to the |
||
| 74 | /// source def may alias it. As the name implies, the purpose of the optimized |
||
| 75 | /// use is to allow caching of clobber searches for memory defs. The optimized |
||
| 76 | /// def may be nullptr, in which case clients must walk the defining access |
||
| 77 | /// chain. |
||
| 78 | /// |
||
| 79 | /// When iterating the uses of a MemoryDef, both defining uses and optimized |
||
| 80 | /// uses will be encountered. If only one type is needed, the client must |
||
| 81 | /// filter the use walk. |
||
| 82 | // |
||
| 83 | //===----------------------------------------------------------------------===// |
||
| 84 | |||
| 85 | #ifndef LLVM_ANALYSIS_MEMORYSSA_H |
||
| 86 | #define LLVM_ANALYSIS_MEMORYSSA_H |
||
| 87 | |||
| 88 | #include "llvm/ADT/DenseMap.h" |
||
| 89 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 90 | #include "llvm/ADT/SmallVector.h" |
||
| 91 | #include "llvm/ADT/ilist_node.h" |
||
| 92 | #include "llvm/ADT/iterator_range.h" |
||
| 93 | #include "llvm/Analysis/AliasAnalysis.h" |
||
| 94 | #include "llvm/Analysis/MemoryLocation.h" |
||
| 95 | #include "llvm/Analysis/PHITransAddr.h" |
||
| 96 | #include "llvm/IR/DerivedUser.h" |
||
| 97 | #include "llvm/IR/Dominators.h" |
||
| 98 | #include "llvm/IR/Type.h" |
||
| 99 | #include "llvm/IR/User.h" |
||
| 100 | #include "llvm/Pass.h" |
||
| 101 | #include <algorithm> |
||
| 102 | #include <cassert> |
||
| 103 | #include <cstddef> |
||
| 104 | #include <iterator> |
||
| 105 | #include <memory> |
||
| 106 | #include <utility> |
||
| 107 | |||
| 108 | namespace llvm { |
||
| 109 | |||
| 110 | template <class GraphType> struct GraphTraits; |
||
| 111 | class BasicBlock; |
||
| 112 | class Function; |
||
| 113 | class Instruction; |
||
| 114 | class LLVMContext; |
||
| 115 | class MemoryAccess; |
||
| 116 | class MemorySSAWalker; |
||
| 117 | class Module; |
||
| 118 | class Use; |
||
| 119 | class Value; |
||
| 120 | class raw_ostream; |
||
| 121 | |||
| 122 | namespace MSSAHelpers { |
||
| 123 | |||
| 124 | struct AllAccessTag {}; |
||
| 125 | struct DefsOnlyTag {}; |
||
| 126 | |||
| 127 | } // end namespace MSSAHelpers |
||
| 128 | |||
| 129 | enum : unsigned { |
||
| 130 | // Used to signify what the default invalid ID is for MemoryAccess's |
||
| 131 | // getID() |
||
| 132 | INVALID_MEMORYACCESS_ID = -1U |
||
| 133 | }; |
||
| 134 | |||
| 135 | template <class T> class memoryaccess_def_iterator_base; |
||
| 136 | using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>; |
||
| 137 | using const_memoryaccess_def_iterator = |
||
| 138 | memoryaccess_def_iterator_base<const MemoryAccess>; |
||
| 139 | |||
| 140 | // The base for all memory accesses. All memory accesses in a block are |
||
| 141 | // linked together using an intrusive list. |
||
| 142 | class MemoryAccess |
||
| 143 | : public DerivedUser, |
||
| 144 | public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>, |
||
| 145 | public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> { |
||
| 146 | public: |
||
| 147 | using AllAccessType = |
||
| 148 | ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; |
||
| 149 | using DefsOnlyType = |
||
| 150 | ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; |
||
| 151 | |||
| 152 | MemoryAccess(const MemoryAccess &) = delete; |
||
| 153 | MemoryAccess &operator=(const MemoryAccess &) = delete; |
||
| 154 | |||
| 155 | void *operator new(size_t) = delete; |
||
| 156 | |||
| 157 | // Methods for support type inquiry through isa, cast, and |
||
| 158 | // dyn_cast |
||
| 159 | static bool classof(const Value *V) { |
||
| 160 | unsigned ID = V->getValueID(); |
||
| 161 | return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal; |
||
| 162 | } |
||
| 163 | |||
| 164 | BasicBlock *getBlock() const { return Block; } |
||
| 165 | |||
| 166 | void print(raw_ostream &OS) const; |
||
| 167 | void dump() const; |
||
| 168 | |||
| 169 | /// The user iterators for a memory access |
||
| 170 | using iterator = user_iterator; |
||
| 171 | using const_iterator = const_user_iterator; |
||
| 172 | |||
| 173 | /// This iterator walks over all of the defs in a given |
||
| 174 | /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For |
||
| 175 | /// MemoryUse/MemoryDef, this walks the defining access. |
||
| 176 | memoryaccess_def_iterator defs_begin(); |
||
| 177 | const_memoryaccess_def_iterator defs_begin() const; |
||
| 178 | memoryaccess_def_iterator defs_end(); |
||
| 179 | const_memoryaccess_def_iterator defs_end() const; |
||
| 180 | |||
| 181 | /// Get the iterators for the all access list and the defs only list |
||
| 182 | /// We default to the all access list. |
||
| 183 | AllAccessType::self_iterator getIterator() { |
||
| 184 | return this->AllAccessType::getIterator(); |
||
| 185 | } |
||
| 186 | AllAccessType::const_self_iterator getIterator() const { |
||
| 187 | return this->AllAccessType::getIterator(); |
||
| 188 | } |
||
| 189 | AllAccessType::reverse_self_iterator getReverseIterator() { |
||
| 190 | return this->AllAccessType::getReverseIterator(); |
||
| 191 | } |
||
| 192 | AllAccessType::const_reverse_self_iterator getReverseIterator() const { |
||
| 193 | return this->AllAccessType::getReverseIterator(); |
||
| 194 | } |
||
| 195 | DefsOnlyType::self_iterator getDefsIterator() { |
||
| 196 | return this->DefsOnlyType::getIterator(); |
||
| 197 | } |
||
| 198 | DefsOnlyType::const_self_iterator getDefsIterator() const { |
||
| 199 | return this->DefsOnlyType::getIterator(); |
||
| 200 | } |
||
| 201 | DefsOnlyType::reverse_self_iterator getReverseDefsIterator() { |
||
| 202 | return this->DefsOnlyType::getReverseIterator(); |
||
| 203 | } |
||
| 204 | DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const { |
||
| 205 | return this->DefsOnlyType::getReverseIterator(); |
||
| 206 | } |
||
| 207 | |||
| 208 | protected: |
||
| 209 | friend class MemoryDef; |
||
| 210 | friend class MemoryPhi; |
||
| 211 | friend class MemorySSA; |
||
| 212 | friend class MemoryUse; |
||
| 213 | friend class MemoryUseOrDef; |
||
| 214 | |||
| 215 | /// Used by MemorySSA to change the block of a MemoryAccess when it is |
||
| 216 | /// moved. |
||
| 217 | void setBlock(BasicBlock *BB) { Block = BB; } |
||
| 218 | |||
| 219 | /// Used for debugging and tracking things about MemoryAccesses. |
||
| 220 | /// Guaranteed unique among MemoryAccesses, no guarantees otherwise. |
||
| 221 | inline unsigned getID() const; |
||
| 222 | |||
| 223 | MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue, |
||
| 224 | BasicBlock *BB, unsigned NumOperands) |
||
| 225 | : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue), |
||
| 226 | Block(BB) {} |
||
| 227 | |||
| 228 | // Use deleteValue() to delete a generic MemoryAccess. |
||
| 229 | ~MemoryAccess() = default; |
||
| 230 | |||
| 231 | private: |
||
| 232 | BasicBlock *Block; |
||
| 233 | }; |
||
| 234 | |||
| 235 | template <> |
||
| 236 | struct ilist_alloc_traits<MemoryAccess> { |
||
| 237 | static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); } |
||
| 238 | }; |
||
| 239 | |||
| 240 | inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) { |
||
| 241 | MA.print(OS); |
||
| 242 | return OS; |
||
| 243 | } |
||
| 244 | |||
| 245 | /// Class that has the common methods + fields of memory uses/defs. It's |
||
| 246 | /// a little awkward to have, but there are many cases where we want either a |
||
| 247 | /// use or def, and there are many cases where uses are needed (defs aren't |
||
| 248 | /// acceptable), and vice-versa. |
||
| 249 | /// |
||
| 250 | /// This class should never be instantiated directly; make a MemoryUse or |
||
| 251 | /// MemoryDef instead. |
||
| 252 | class MemoryUseOrDef : public MemoryAccess { |
||
| 253 | public: |
||
| 254 | void *operator new(size_t) = delete; |
||
| 255 | |||
| 256 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
||
| 257 | |||
| 258 | /// Get the instruction that this MemoryUse represents. |
||
| 259 | Instruction *getMemoryInst() const { return MemoryInstruction; } |
||
| 260 | |||
| 261 | /// Get the access that produces the memory state used by this Use. |
||
| 262 | MemoryAccess *getDefiningAccess() const { return getOperand(0); } |
||
| 263 | |||
| 264 | static bool classof(const Value *MA) { |
||
| 265 | return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal; |
||
| 266 | } |
||
| 267 | |||
| 268 | /// Do we have an optimized use? |
||
| 269 | inline bool isOptimized() const; |
||
| 270 | /// Return the MemoryAccess associated with the optimized use, or nullptr. |
||
| 271 | inline MemoryAccess *getOptimized() const; |
||
| 272 | /// Sets the optimized use for a MemoryDef. |
||
| 273 | inline void setOptimized(MemoryAccess *); |
||
| 274 | |||
| 275 | /// Reset the ID of what this MemoryUse was optimized to, causing it to |
||
| 276 | /// be rewalked by the walker if necessary. |
||
| 277 | /// This really should only be called by tests. |
||
| 278 | inline void resetOptimized(); |
||
| 279 | |||
| 280 | protected: |
||
| 281 | friend class MemorySSA; |
||
| 282 | friend class MemorySSAUpdater; |
||
| 283 | |||
| 284 | MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty, |
||
| 285 | DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB, |
||
| 286 | unsigned NumOperands) |
||
| 287 | : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands), |
||
| 288 | MemoryInstruction(MI) { |
||
| 289 | setDefiningAccess(DMA); |
||
| 290 | } |
||
| 291 | |||
| 292 | // Use deleteValue() to delete a generic MemoryUseOrDef. |
||
| 293 | ~MemoryUseOrDef() = default; |
||
| 294 | |||
| 295 | void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false) { |
||
| 296 | if (!Optimized) { |
||
| 297 | setOperand(0, DMA); |
||
| 298 | return; |
||
| 299 | } |
||
| 300 | setOptimized(DMA); |
||
| 301 | } |
||
| 302 | |||
| 303 | private: |
||
| 304 | Instruction *MemoryInstruction; |
||
| 305 | }; |
||
| 306 | |||
| 307 | /// Represents read-only accesses to memory |
||
| 308 | /// |
||
| 309 | /// In particular, the set of Instructions that will be represented by |
||
| 310 | /// MemoryUse's is exactly the set of Instructions for which |
||
| 311 | /// AliasAnalysis::getModRefInfo returns "Ref". |
||
| 312 | class MemoryUse final : public MemoryUseOrDef { |
||
| 313 | public: |
||
| 314 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
||
| 315 | |||
| 316 | MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB) |
||
| 317 | : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB, |
||
| 318 | /*NumOperands=*/1) {} |
||
| 319 | |||
| 320 | // allocate space for exactly one operand |
||
| 321 | void *operator new(size_t S) { return User::operator new(S, 1); } |
||
| 322 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
||
| 323 | |||
| 324 | static bool classof(const Value *MA) { |
||
| 325 | return MA->getValueID() == MemoryUseVal; |
||
| 326 | } |
||
| 327 | |||
| 328 | void print(raw_ostream &OS) const; |
||
| 329 | |||
| 330 | void setOptimized(MemoryAccess *DMA) { |
||
| 331 | OptimizedID = DMA->getID(); |
||
| 332 | setOperand(0, DMA); |
||
| 333 | } |
||
| 334 | |||
| 335 | /// Whether the MemoryUse is optimized. If ensureOptimizedUses() was called, |
||
| 336 | /// uses will usually be optimized, but this is not guaranteed (e.g. due to |
||
| 337 | /// invalidation and optimization limits.) |
||
| 338 | bool isOptimized() const { |
||
| 339 | return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID(); |
||
| 340 | } |
||
| 341 | |||
| 342 | MemoryAccess *getOptimized() const { |
||
| 343 | return getDefiningAccess(); |
||
| 344 | } |
||
| 345 | |||
| 346 | void resetOptimized() { |
||
| 347 | OptimizedID = INVALID_MEMORYACCESS_ID; |
||
| 348 | } |
||
| 349 | |||
| 350 | protected: |
||
| 351 | friend class MemorySSA; |
||
| 352 | |||
| 353 | private: |
||
| 354 | static void deleteMe(DerivedUser *Self); |
||
| 355 | |||
| 356 | unsigned OptimizedID = INVALID_MEMORYACCESS_ID; |
||
| 357 | }; |
||
| 358 | |||
| 359 | template <> |
||
| 360 | struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {}; |
||
| 361 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess) |
||
| 362 | |||
| 363 | /// Represents a read-write access to memory, whether it is a must-alias, |
||
| 364 | /// or a may-alias. |
||
| 365 | /// |
||
| 366 | /// In particular, the set of Instructions that will be represented by |
||
| 367 | /// MemoryDef's is exactly the set of Instructions for which |
||
| 368 | /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef". |
||
| 369 | /// Note that, in order to provide def-def chains, all defs also have a use |
||
| 370 | /// associated with them. This use points to the nearest reaching |
||
| 371 | /// MemoryDef/MemoryPhi. |
||
| 372 | class MemoryDef final : public MemoryUseOrDef { |
||
| 373 | public: |
||
| 374 | friend class MemorySSA; |
||
| 375 | |||
| 376 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
||
| 377 | |||
| 378 | MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB, |
||
| 379 | unsigned Ver) |
||
| 380 | : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB, |
||
| 381 | /*NumOperands=*/2), |
||
| 382 | ID(Ver) {} |
||
| 383 | |||
| 384 | // allocate space for exactly two operands |
||
| 385 | void *operator new(size_t S) { return User::operator new(S, 2); } |
||
| 386 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
||
| 387 | |||
| 388 | static bool classof(const Value *MA) { |
||
| 389 | return MA->getValueID() == MemoryDefVal; |
||
| 390 | } |
||
| 391 | |||
| 392 | void setOptimized(MemoryAccess *MA) { |
||
| 393 | setOperand(1, MA); |
||
| 394 | OptimizedID = MA->getID(); |
||
| 395 | } |
||
| 396 | |||
| 397 | MemoryAccess *getOptimized() const { |
||
| 398 | return cast_or_null<MemoryAccess>(getOperand(1)); |
||
| 399 | } |
||
| 400 | |||
| 401 | bool isOptimized() const { |
||
| 402 | return getOptimized() && OptimizedID == getOptimized()->getID(); |
||
| 403 | } |
||
| 404 | |||
| 405 | void resetOptimized() { |
||
| 406 | OptimizedID = INVALID_MEMORYACCESS_ID; |
||
| 407 | setOperand(1, nullptr); |
||
| 408 | } |
||
| 409 | |||
| 410 | void print(raw_ostream &OS) const; |
||
| 411 | |||
| 412 | unsigned getID() const { return ID; } |
||
| 413 | |||
| 414 | private: |
||
| 415 | static void deleteMe(DerivedUser *Self); |
||
| 416 | |||
| 417 | const unsigned ID; |
||
| 418 | unsigned OptimizedID = INVALID_MEMORYACCESS_ID; |
||
| 419 | }; |
||
| 420 | |||
| 421 | template <> |
||
| 422 | struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {}; |
||
| 423 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess) |
||
| 424 | |||
| 425 | template <> |
||
| 426 | struct OperandTraits<MemoryUseOrDef> { |
||
| 427 | static Use *op_begin(MemoryUseOrDef *MUD) { |
||
| 428 | if (auto *MU = dyn_cast<MemoryUse>(MUD)) |
||
| 429 | return OperandTraits<MemoryUse>::op_begin(MU); |
||
| 430 | return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD)); |
||
| 431 | } |
||
| 432 | |||
| 433 | static Use *op_end(MemoryUseOrDef *MUD) { |
||
| 434 | if (auto *MU = dyn_cast<MemoryUse>(MUD)) |
||
| 435 | return OperandTraits<MemoryUse>::op_end(MU); |
||
| 436 | return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD)); |
||
| 437 | } |
||
| 438 | |||
| 439 | static unsigned operands(const MemoryUseOrDef *MUD) { |
||
| 440 | if (const auto *MU = dyn_cast<MemoryUse>(MUD)) |
||
| 441 | return OperandTraits<MemoryUse>::operands(MU); |
||
| 442 | return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD)); |
||
| 443 | } |
||
| 444 | }; |
||
| 445 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess) |
||
| 446 | |||
| 447 | /// Represents phi nodes for memory accesses. |
||
| 448 | /// |
||
| 449 | /// These have the same semantic as regular phi nodes, with the exception that |
||
| 450 | /// only one phi will ever exist in a given basic block. |
||
| 451 | /// Guaranteeing one phi per block means guaranteeing there is only ever one |
||
| 452 | /// valid reaching MemoryDef/MemoryPHI along each path to the phi node. |
||
| 453 | /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or |
||
| 454 | /// a MemoryPhi's operands. |
||
| 455 | /// That is, given |
||
| 456 | /// if (a) { |
||
| 457 | /// store %a |
||
| 458 | /// store %b |
||
| 459 | /// } |
||
| 460 | /// it *must* be transformed into |
||
| 461 | /// if (a) { |
||
| 462 | /// 1 = MemoryDef(liveOnEntry) |
||
| 463 | /// store %a |
||
| 464 | /// 2 = MemoryDef(1) |
||
| 465 | /// store %b |
||
| 466 | /// } |
||
| 467 | /// and *not* |
||
| 468 | /// if (a) { |
||
| 469 | /// 1 = MemoryDef(liveOnEntry) |
||
| 470 | /// store %a |
||
| 471 | /// 2 = MemoryDef(liveOnEntry) |
||
| 472 | /// store %b |
||
| 473 | /// } |
||
| 474 | /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the |
||
| 475 | /// end of the branch, and if there are not two phi nodes, one will be |
||
| 476 | /// disconnected completely from the SSA graph below that point. |
||
| 477 | /// Because MemoryUse's do not generate new definitions, they do not have this |
||
| 478 | /// issue. |
||
| 479 | class MemoryPhi final : public MemoryAccess { |
||
| 480 | // allocate space for exactly zero operands |
||
| 481 | void *operator new(size_t S) { return User::operator new(S); } |
||
| 482 | |||
| 483 | public: |
||
| 484 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
||
| 485 | |||
| 486 | /// Provide fast operand accessors |
||
| 487 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
||
| 488 | |||
| 489 | MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0) |
||
| 490 | : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver), |
||
| 491 | ReservedSpace(NumPreds) { |
||
| 492 | allocHungoffUses(ReservedSpace); |
||
| 493 | } |
||
| 494 | |||
| 495 | // Block iterator interface. This provides access to the list of incoming |
||
| 496 | // basic blocks, which parallels the list of incoming values. |
||
| 497 | using block_iterator = BasicBlock **; |
||
| 498 | using const_block_iterator = BasicBlock *const *; |
||
| 499 | |||
| 500 | block_iterator block_begin() { |
||
| 501 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
||
| 502 | } |
||
| 503 | |||
| 504 | const_block_iterator block_begin() const { |
||
| 505 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
||
| 506 | } |
||
| 507 | |||
| 508 | block_iterator block_end() { return block_begin() + getNumOperands(); } |
||
| 509 | |||
| 510 | const_block_iterator block_end() const { |
||
| 511 | return block_begin() + getNumOperands(); |
||
| 512 | } |
||
| 513 | |||
| 514 | iterator_range<block_iterator> blocks() { |
||
| 515 | return make_range(block_begin(), block_end()); |
||
| 516 | } |
||
| 517 | |||
| 518 | iterator_range<const_block_iterator> blocks() const { |
||
| 519 | return make_range(block_begin(), block_end()); |
||
| 520 | } |
||
| 521 | |||
| 522 | op_range incoming_values() { return operands(); } |
||
| 523 | |||
| 524 | const_op_range incoming_values() const { return operands(); } |
||
| 525 | |||
| 526 | /// Return the number of incoming edges |
||
| 527 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
||
| 528 | |||
| 529 | /// Return incoming value number x |
||
| 530 | MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); } |
||
| 531 | void setIncomingValue(unsigned I, MemoryAccess *V) { |
||
| 532 | assert(V && "PHI node got a null value!"); |
||
| 533 | setOperand(I, V); |
||
| 534 | } |
||
| 535 | |||
| 536 | static unsigned getOperandNumForIncomingValue(unsigned I) { return I; } |
||
| 537 | static unsigned getIncomingValueNumForOperand(unsigned I) { return I; } |
||
| 538 | |||
| 539 | /// Return incoming basic block number @p i. |
||
| 540 | BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; } |
||
| 541 | |||
| 542 | /// Return incoming basic block corresponding |
||
| 543 | /// to an operand of the PHI. |
||
| 544 | BasicBlock *getIncomingBlock(const Use &U) const { |
||
| 545 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); |
||
| 546 | return getIncomingBlock(unsigned(&U - op_begin())); |
||
| 547 | } |
||
| 548 | |||
| 549 | /// Return incoming basic block corresponding |
||
| 550 | /// to value use iterator. |
||
| 551 | BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const { |
||
| 552 | return getIncomingBlock(I.getUse()); |
||
| 553 | } |
||
| 554 | |||
| 555 | void setIncomingBlock(unsigned I, BasicBlock *BB) { |
||
| 556 | assert(BB && "PHI node got a null basic block!"); |
||
| 557 | block_begin()[I] = BB; |
||
| 558 | } |
||
| 559 | |||
| 560 | /// Add an incoming value to the end of the PHI list |
||
| 561 | void addIncoming(MemoryAccess *V, BasicBlock *BB) { |
||
| 562 | if (getNumOperands() == ReservedSpace) |
||
| 563 | growOperands(); // Get more space! |
||
| 564 | // Initialize some new operands. |
||
| 565 | setNumHungOffUseOperands(getNumOperands() + 1); |
||
| 566 | setIncomingValue(getNumOperands() - 1, V); |
||
| 567 | setIncomingBlock(getNumOperands() - 1, BB); |
||
| 568 | } |
||
| 569 | |||
| 570 | /// Return the first index of the specified basic |
||
| 571 | /// block in the value list for this PHI. Returns -1 if no instance. |
||
| 572 | int getBasicBlockIndex(const BasicBlock *BB) const { |
||
| 573 | for (unsigned I = 0, E = getNumOperands(); I != E; ++I) |
||
| 574 | if (block_begin()[I] == BB) |
||
| 575 | return I; |
||
| 576 | return -1; |
||
| 577 | } |
||
| 578 | |||
| 579 | MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const { |
||
| 580 | int Idx = getBasicBlockIndex(BB); |
||
| 581 | assert(Idx >= 0 && "Invalid basic block argument!"); |
||
| 582 | return getIncomingValue(Idx); |
||
| 583 | } |
||
| 584 | |||
| 585 | // After deleting incoming position I, the order of incoming may be changed. |
||
| 586 | void unorderedDeleteIncoming(unsigned I) { |
||
| 587 | unsigned E = getNumOperands(); |
||
| 588 | assert(I < E && "Cannot remove out of bounds Phi entry."); |
||
| 589 | // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi |
||
| 590 | // itself should be deleted. |
||
| 591 | assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with " |
||
| 592 | "at least 2 values."); |
||
| 593 | setIncomingValue(I, getIncomingValue(E - 1)); |
||
| 594 | setIncomingBlock(I, block_begin()[E - 1]); |
||
| 595 | setOperand(E - 1, nullptr); |
||
| 596 | block_begin()[E - 1] = nullptr; |
||
| 597 | setNumHungOffUseOperands(getNumOperands() - 1); |
||
| 598 | } |
||
| 599 | |||
| 600 | // After deleting entries that satisfy Pred, remaining entries may have |
||
| 601 | // changed order. |
||
| 602 | template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) { |
||
| 603 | for (unsigned I = 0, E = getNumOperands(); I != E; ++I) |
||
| 604 | if (Pred(getIncomingValue(I), getIncomingBlock(I))) { |
||
| 605 | unorderedDeleteIncoming(I); |
||
| 606 | E = getNumOperands(); |
||
| 607 | --I; |
||
| 608 | } |
||
| 609 | assert(getNumOperands() >= 1 && |
||
| 610 | "Cannot remove all incoming blocks in a MemoryPhi."); |
||
| 611 | } |
||
| 612 | |||
| 613 | // After deleting incoming block BB, the incoming blocks order may be changed. |
||
| 614 | void unorderedDeleteIncomingBlock(const BasicBlock *BB) { |
||
| 615 | unorderedDeleteIncomingIf( |
||
| 616 | [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; }); |
||
| 617 | } |
||
| 618 | |||
| 619 | // After deleting incoming memory access MA, the incoming accesses order may |
||
| 620 | // be changed. |
||
| 621 | void unorderedDeleteIncomingValue(const MemoryAccess *MA) { |
||
| 622 | unorderedDeleteIncomingIf( |
||
| 623 | [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; }); |
||
| 624 | } |
||
| 625 | |||
| 626 | static bool classof(const Value *V) { |
||
| 627 | return V->getValueID() == MemoryPhiVal; |
||
| 628 | } |
||
| 629 | |||
| 630 | void print(raw_ostream &OS) const; |
||
| 631 | |||
| 632 | unsigned getID() const { return ID; } |
||
| 633 | |||
| 634 | protected: |
||
| 635 | friend class MemorySSA; |
||
| 636 | |||
| 637 | /// this is more complicated than the generic |
||
| 638 | /// User::allocHungoffUses, because we have to allocate Uses for the incoming |
||
| 639 | /// values and pointers to the incoming blocks, all in one allocation. |
||
| 640 | void allocHungoffUses(unsigned N) { |
||
| 641 | User::allocHungoffUses(N, /* IsPhi */ true); |
||
| 642 | } |
||
| 643 | |||
| 644 | private: |
||
| 645 | // For debugging only |
||
| 646 | const unsigned ID; |
||
| 647 | unsigned ReservedSpace; |
||
| 648 | |||
| 649 | /// This grows the operand list in response to a push_back style of |
||
| 650 | /// operation. This grows the number of ops by 1.5 times. |
||
| 651 | void growOperands() { |
||
| 652 | unsigned E = getNumOperands(); |
||
| 653 | // 2 op PHI nodes are VERY common, so reserve at least enough for that. |
||
| 654 | ReservedSpace = std::max(E + E / 2, 2u); |
||
| 655 | growHungoffUses(ReservedSpace, /* IsPhi */ true); |
||
| 656 | } |
||
| 657 | |||
| 658 | static void deleteMe(DerivedUser *Self); |
||
| 659 | }; |
||
| 660 | |||
| 661 | inline unsigned MemoryAccess::getID() const { |
||
| 662 | assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) && |
||
| 663 | "only memory defs and phis have ids"); |
||
| 664 | if (const auto *MD = dyn_cast<MemoryDef>(this)) |
||
| 665 | return MD->getID(); |
||
| 666 | return cast<MemoryPhi>(this)->getID(); |
||
| 667 | } |
||
| 668 | |||
| 669 | inline bool MemoryUseOrDef::isOptimized() const { |
||
| 670 | if (const auto *MD = dyn_cast<MemoryDef>(this)) |
||
| 671 | return MD->isOptimized(); |
||
| 672 | return cast<MemoryUse>(this)->isOptimized(); |
||
| 673 | } |
||
| 674 | |||
| 675 | inline MemoryAccess *MemoryUseOrDef::getOptimized() const { |
||
| 676 | if (const auto *MD = dyn_cast<MemoryDef>(this)) |
||
| 677 | return MD->getOptimized(); |
||
| 678 | return cast<MemoryUse>(this)->getOptimized(); |
||
| 679 | } |
||
| 680 | |||
| 681 | inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) { |
||
| 682 | if (auto *MD = dyn_cast<MemoryDef>(this)) |
||
| 683 | MD->setOptimized(MA); |
||
| 684 | else |
||
| 685 | cast<MemoryUse>(this)->setOptimized(MA); |
||
| 686 | } |
||
| 687 | |||
| 688 | inline void MemoryUseOrDef::resetOptimized() { |
||
| 689 | if (auto *MD = dyn_cast<MemoryDef>(this)) |
||
| 690 | MD->resetOptimized(); |
||
| 691 | else |
||
| 692 | cast<MemoryUse>(this)->resetOptimized(); |
||
| 693 | } |
||
| 694 | |||
| 695 | template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {}; |
||
| 696 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess) |
||
| 697 | |||
| 698 | /// Encapsulates MemorySSA, including all data associated with memory |
||
| 699 | /// accesses. |
||
| 700 | class MemorySSA { |
||
| 701 | public: |
||
| 702 | MemorySSA(Function &, AliasAnalysis *, DominatorTree *); |
||
| 703 | |||
| 704 | // MemorySSA must remain where it's constructed; Walkers it creates store |
||
| 705 | // pointers to it. |
||
| 706 | MemorySSA(MemorySSA &&) = delete; |
||
| 707 | |||
| 708 | ~MemorySSA(); |
||
| 709 | |||
| 710 | MemorySSAWalker *getWalker(); |
||
| 711 | MemorySSAWalker *getSkipSelfWalker(); |
||
| 712 | |||
| 713 | /// Given a memory Mod/Ref'ing instruction, get the MemorySSA |
||
| 714 | /// access associated with it. If passed a basic block gets the memory phi |
||
| 715 | /// node that exists for that block, if there is one. Otherwise, this will get |
||
| 716 | /// a MemoryUseOrDef. |
||
| 717 | MemoryUseOrDef *getMemoryAccess(const Instruction *I) const { |
||
| 718 | return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); |
||
| 719 | } |
||
| 720 | |||
| 721 | MemoryPhi *getMemoryAccess(const BasicBlock *BB) const { |
||
| 722 | return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); |
||
| 723 | } |
||
| 724 | |||
| 725 | DominatorTree &getDomTree() const { return *DT; } |
||
| 726 | |||
| 727 | void dump() const; |
||
| 728 | void print(raw_ostream &) const; |
||
| 729 | |||
| 730 | /// Return true if \p MA represents the live on entry value |
||
| 731 | /// |
||
| 732 | /// Loads and stores from pointer arguments and other global values may be |
||
| 733 | /// defined by memory operations that do not occur in the current function, so |
||
| 734 | /// they may be live on entry to the function. MemorySSA represents such |
||
| 735 | /// memory state by the live on entry definition, which is guaranteed to occur |
||
| 736 | /// before any other memory access in the function. |
||
| 737 | inline bool isLiveOnEntryDef(const MemoryAccess *MA) const { |
||
| 738 | return MA == LiveOnEntryDef.get(); |
||
| 739 | } |
||
| 740 | |||
| 741 | inline MemoryAccess *getLiveOnEntryDef() const { |
||
| 742 | return LiveOnEntryDef.get(); |
||
| 743 | } |
||
| 744 | |||
| 745 | // Sadly, iplists, by default, owns and deletes pointers added to the |
||
| 746 | // list. It's not currently possible to have two iplists for the same type, |
||
| 747 | // where one owns the pointers, and one does not. This is because the traits |
||
| 748 | // are per-type, not per-tag. If this ever changes, we should make the |
||
| 749 | // DefList an iplist. |
||
| 750 | using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; |
||
| 751 | using DefsList = |
||
| 752 | simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; |
||
| 753 | |||
| 754 | /// Return the list of MemoryAccess's for a given basic block. |
||
| 755 | /// |
||
| 756 | /// This list is not modifiable by the user. |
||
| 757 | const AccessList *getBlockAccesses(const BasicBlock *BB) const { |
||
| 758 | return getWritableBlockAccesses(BB); |
||
| 759 | } |
||
| 760 | |||
| 761 | /// Return the list of MemoryDef's and MemoryPhi's for a given basic |
||
| 762 | /// block. |
||
| 763 | /// |
||
| 764 | /// This list is not modifiable by the user. |
||
| 765 | const DefsList *getBlockDefs(const BasicBlock *BB) const { |
||
| 766 | return getWritableBlockDefs(BB); |
||
| 767 | } |
||
| 768 | |||
| 769 | /// Given two memory accesses in the same basic block, determine |
||
| 770 | /// whether MemoryAccess \p A dominates MemoryAccess \p B. |
||
| 771 | bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const; |
||
| 772 | |||
| 773 | /// Given two memory accesses in potentially different blocks, |
||
| 774 | /// determine whether MemoryAccess \p A dominates MemoryAccess \p B. |
||
| 775 | bool dominates(const MemoryAccess *A, const MemoryAccess *B) const; |
||
| 776 | |||
| 777 | /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A |
||
| 778 | /// dominates Use \p B. |
||
| 779 | bool dominates(const MemoryAccess *A, const Use &B) const; |
||
| 780 | |||
| 781 | enum class VerificationLevel { Fast, Full }; |
||
| 782 | /// Verify that MemorySSA is self consistent (IE definitions dominate |
||
| 783 | /// all uses, uses appear in the right places). This is used by unit tests. |
||
| 784 | void verifyMemorySSA(VerificationLevel = VerificationLevel::Fast) const; |
||
| 785 | |||
| 786 | /// Used in various insertion functions to specify whether we are talking |
||
| 787 | /// about the beginning or end of a block. |
||
| 788 | enum InsertionPlace { Beginning, End, BeforeTerminator }; |
||
| 789 | |||
| 790 | /// By default, uses are *not* optimized during MemorySSA construction. |
||
| 791 | /// Calling this method will attempt to optimize all MemoryUses, if this has |
||
| 792 | /// not happened yet for this MemorySSA instance. This should be done if you |
||
| 793 | /// plan to query the clobbering access for most uses, or if you walk the |
||
| 794 | /// def-use chain of uses. |
||
| 795 | void ensureOptimizedUses(); |
||
| 796 | |||
| 797 | AliasAnalysis &getAA() { return *AA; } |
||
| 798 | |||
| 799 | protected: |
||
| 800 | // Used by Memory SSA dumpers and wrapper pass |
||
| 801 | friend class MemorySSAPrinterLegacyPass; |
||
| 802 | friend class MemorySSAUpdater; |
||
| 803 | |||
| 804 | void verifyOrderingDominationAndDefUses( |
||
| 805 | Function &F, VerificationLevel = VerificationLevel::Fast) const; |
||
| 806 | void verifyDominationNumbers(const Function &F) const; |
||
| 807 | void verifyPrevDefInPhis(Function &F) const; |
||
| 808 | |||
| 809 | // This is used by the use optimizer and updater. |
||
| 810 | AccessList *getWritableBlockAccesses(const BasicBlock *BB) const { |
||
| 811 | auto It = PerBlockAccesses.find(BB); |
||
| 812 | return It == PerBlockAccesses.end() ? nullptr : It->second.get(); |
||
| 813 | } |
||
| 814 | |||
| 815 | // This is used by the use optimizer and updater. |
||
| 816 | DefsList *getWritableBlockDefs(const BasicBlock *BB) const { |
||
| 817 | auto It = PerBlockDefs.find(BB); |
||
| 818 | return It == PerBlockDefs.end() ? nullptr : It->second.get(); |
||
| 819 | } |
||
| 820 | |||
| 821 | // These is used by the updater to perform various internal MemorySSA |
||
| 822 | // machinsations. They do not always leave the IR in a correct state, and |
||
| 823 | // relies on the updater to fixup what it breaks, so it is not public. |
||
| 824 | |||
| 825 | void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where); |
||
| 826 | void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point); |
||
| 827 | |||
| 828 | // Rename the dominator tree branch rooted at BB. |
||
| 829 | void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal, |
||
| 830 | SmallPtrSetImpl<BasicBlock *> &Visited) { |
||
| 831 | renamePass(DT->getNode(BB), IncomingVal, Visited, true, true); |
||
| 832 | } |
||
| 833 | |||
| 834 | void removeFromLookups(MemoryAccess *); |
||
| 835 | void removeFromLists(MemoryAccess *, bool ShouldDelete = true); |
||
| 836 | void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *, |
||
| 837 | InsertionPlace); |
||
| 838 | void insertIntoListsBefore(MemoryAccess *, const BasicBlock *, |
||
| 839 | AccessList::iterator); |
||
| 840 | MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *, |
||
| 841 | const MemoryUseOrDef *Template = nullptr, |
||
| 842 | bool CreationMustSucceed = true); |
||
| 843 | |||
| 844 | private: |
||
| 845 | class ClobberWalkerBase; |
||
| 846 | class CachingWalker; |
||
| 847 | class SkipSelfWalker; |
||
| 848 | class OptimizeUses; |
||
| 849 | |||
| 850 | CachingWalker *getWalkerImpl(); |
||
| 851 | void buildMemorySSA(BatchAAResults &BAA); |
||
| 852 | |||
| 853 | void prepareForMoveTo(MemoryAccess *, BasicBlock *); |
||
| 854 | void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const; |
||
| 855 | |||
| 856 | using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>; |
||
| 857 | using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>; |
||
| 858 | |||
| 859 | void markUnreachableAsLiveOnEntry(BasicBlock *BB); |
||
| 860 | MemoryPhi *createMemoryPhi(BasicBlock *BB); |
||
| 861 | template <typename AliasAnalysisType> |
||
| 862 | MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *, |
||
| 863 | const MemoryUseOrDef *Template = nullptr); |
||
| 864 | void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &); |
||
| 865 | MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool); |
||
| 866 | void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool); |
||
| 867 | void renamePass(DomTreeNode *, MemoryAccess *IncomingVal, |
||
| 868 | SmallPtrSetImpl<BasicBlock *> &Visited, |
||
| 869 | bool SkipVisited = false, bool RenameAllUses = false); |
||
| 870 | AccessList *getOrCreateAccessList(const BasicBlock *); |
||
| 871 | DefsList *getOrCreateDefsList(const BasicBlock *); |
||
| 872 | void renumberBlock(const BasicBlock *) const; |
||
| 873 | AliasAnalysis *AA = nullptr; |
||
| 874 | DominatorTree *DT; |
||
| 875 | Function &F; |
||
| 876 | |||
| 877 | // Memory SSA mappings |
||
| 878 | DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess; |
||
| 879 | |||
| 880 | // These two mappings contain the main block to access/def mappings for |
||
| 881 | // MemorySSA. The list contained in PerBlockAccesses really owns all the |
||
| 882 | // MemoryAccesses. |
||
| 883 | // Both maps maintain the invariant that if a block is found in them, the |
||
| 884 | // corresponding list is not empty, and if a block is not found in them, the |
||
| 885 | // corresponding list is empty. |
||
| 886 | AccessMap PerBlockAccesses; |
||
| 887 | DefsMap PerBlockDefs; |
||
| 888 | std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef; |
||
| 889 | |||
| 890 | // Domination mappings |
||
| 891 | // Note that the numbering is local to a block, even though the map is |
||
| 892 | // global. |
||
| 893 | mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid; |
||
| 894 | mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering; |
||
| 895 | |||
| 896 | // Memory SSA building info |
||
| 897 | std::unique_ptr<ClobberWalkerBase> WalkerBase; |
||
| 898 | std::unique_ptr<CachingWalker> Walker; |
||
| 899 | std::unique_ptr<SkipSelfWalker> SkipWalker; |
||
| 900 | unsigned NextID = 0; |
||
| 901 | bool IsOptimized = false; |
||
| 902 | }; |
||
| 903 | |||
| 904 | /// Enables verification of MemorySSA. |
||
| 905 | /// |
||
| 906 | /// The checks which this flag enables is exensive and disabled by default |
||
| 907 | /// unless `EXPENSIVE_CHECKS` is defined. The flag `-verify-memoryssa` can be |
||
| 908 | /// used to selectively enable the verification without re-compilation. |
||
| 909 | extern bool VerifyMemorySSA; |
||
| 910 | |||
| 911 | // Internal MemorySSA utils, for use by MemorySSA classes and walkers |
||
| 912 | class MemorySSAUtil { |
||
| 913 | protected: |
||
| 914 | friend class GVNHoist; |
||
| 915 | friend class MemorySSAWalker; |
||
| 916 | |||
| 917 | // This function should not be used by new passes. |
||
| 918 | static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, |
||
| 919 | AliasAnalysis &AA); |
||
| 920 | }; |
||
| 921 | |||
| 922 | // This pass does eager building and then printing of MemorySSA. It is used by |
||
| 923 | // the tests to be able to build, dump, and verify Memory SSA. |
||
| 924 | class MemorySSAPrinterLegacyPass : public FunctionPass { |
||
| 925 | public: |
||
| 926 | MemorySSAPrinterLegacyPass(); |
||
| 927 | |||
| 928 | bool runOnFunction(Function &) override; |
||
| 929 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
| 930 | |||
| 931 | static char ID; |
||
| 932 | }; |
||
| 933 | |||
| 934 | /// An analysis that produces \c MemorySSA for a function. |
||
| 935 | /// |
||
| 936 | class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> { |
||
| 937 | friend AnalysisInfoMixin<MemorySSAAnalysis>; |
||
| 938 | |||
| 939 | static AnalysisKey Key; |
||
| 940 | |||
| 941 | public: |
||
| 942 | // Wrap MemorySSA result to ensure address stability of internal MemorySSA |
||
| 943 | // pointers after construction. Use a wrapper class instead of plain |
||
| 944 | // unique_ptr<MemorySSA> to avoid build breakage on MSVC. |
||
| 945 | struct Result { |
||
| 946 | Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {} |
||
| 947 | |||
| 948 | MemorySSA &getMSSA() { return *MSSA.get(); } |
||
| 949 | |||
| 950 | std::unique_ptr<MemorySSA> MSSA; |
||
| 951 | |||
| 952 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
||
| 953 | FunctionAnalysisManager::Invalidator &Inv); |
||
| 954 | }; |
||
| 955 | |||
| 956 | Result run(Function &F, FunctionAnalysisManager &AM); |
||
| 957 | }; |
||
| 958 | |||
| 959 | /// Printer pass for \c MemorySSA. |
||
| 960 | class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> { |
||
| 961 | raw_ostream &OS; |
||
| 962 | |||
| 963 | public: |
||
| 964 | explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {} |
||
| 965 | |||
| 966 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
| 967 | }; |
||
| 968 | |||
| 969 | /// Printer pass for \c MemorySSA via the walker. |
||
| 970 | class MemorySSAWalkerPrinterPass |
||
| 971 | : public PassInfoMixin<MemorySSAWalkerPrinterPass> { |
||
| 972 | raw_ostream &OS; |
||
| 973 | |||
| 974 | public: |
||
| 975 | explicit MemorySSAWalkerPrinterPass(raw_ostream &OS) : OS(OS) {} |
||
| 976 | |||
| 977 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
| 978 | }; |
||
| 979 | |||
| 980 | /// Verifier pass for \c MemorySSA. |
||
| 981 | struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> { |
||
| 982 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
| 983 | }; |
||
| 984 | |||
| 985 | /// Legacy analysis pass which computes \c MemorySSA. |
||
| 986 | class MemorySSAWrapperPass : public FunctionPass { |
||
| 987 | public: |
||
| 988 | MemorySSAWrapperPass(); |
||
| 989 | |||
| 990 | static char ID; |
||
| 991 | |||
| 992 | bool runOnFunction(Function &) override; |
||
| 993 | void releaseMemory() override; |
||
| 994 | MemorySSA &getMSSA() { return *MSSA; } |
||
| 995 | const MemorySSA &getMSSA() const { return *MSSA; } |
||
| 996 | |||
| 997 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
| 998 | |||
| 999 | void verifyAnalysis() const override; |
||
| 1000 | void print(raw_ostream &OS, const Module *M = nullptr) const override; |
||
| 1001 | |||
| 1002 | private: |
||
| 1003 | std::unique_ptr<MemorySSA> MSSA; |
||
| 1004 | }; |
||
| 1005 | |||
| 1006 | /// This is the generic walker interface for walkers of MemorySSA. |
||
| 1007 | /// Walkers are used to be able to further disambiguate the def-use chains |
||
| 1008 | /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives |
||
| 1009 | /// you. |
||
| 1010 | /// In particular, while the def-use chains provide basic information, and are |
||
| 1011 | /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a |
||
| 1012 | /// MemoryUse as AliasAnalysis considers it, a user mant want better or other |
||
| 1013 | /// information. In particular, they may want to use SCEV info to further |
||
| 1014 | /// disambiguate memory accesses, or they may want the nearest dominating |
||
| 1015 | /// may-aliasing MemoryDef for a call or a store. This API enables a |
||
| 1016 | /// standardized interface to getting and using that info. |
||
| 1017 | class MemorySSAWalker { |
||
| 1018 | public: |
||
| 1019 | MemorySSAWalker(MemorySSA *); |
||
| 1020 | virtual ~MemorySSAWalker() = default; |
||
| 1021 | |||
| 1022 | using MemoryAccessSet = SmallVector<MemoryAccess *, 8>; |
||
| 1023 | |||
| 1024 | /// Given a memory Mod/Ref/ModRef'ing instruction, calling this |
||
| 1025 | /// will give you the nearest dominating MemoryAccess that Mod's the location |
||
| 1026 | /// the instruction accesses (by skipping any def which AA can prove does not |
||
| 1027 | /// alias the location(s) accessed by the instruction given). |
||
| 1028 | /// |
||
| 1029 | /// Note that this will return a single access, and it must dominate the |
||
| 1030 | /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction, |
||
| 1031 | /// this will return the MemoryPhi, not the operand. This means that |
||
| 1032 | /// given: |
||
| 1033 | /// if (a) { |
||
| 1034 | /// 1 = MemoryDef(liveOnEntry) |
||
| 1035 | /// store %a |
||
| 1036 | /// } else { |
||
| 1037 | /// 2 = MemoryDef(liveOnEntry) |
||
| 1038 | /// store %b |
||
| 1039 | /// } |
||
| 1040 | /// 3 = MemoryPhi(2, 1) |
||
| 1041 | /// MemoryUse(3) |
||
| 1042 | /// load %a |
||
| 1043 | /// |
||
| 1044 | /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef |
||
| 1045 | /// in the if (a) branch. |
||
| 1046 | MemoryAccess *getClobberingMemoryAccess(const Instruction *I, |
||
| 1047 | BatchAAResults &AA) { |
||
| 1048 | MemoryAccess *MA = MSSA->getMemoryAccess(I); |
||
| 1049 | assert(MA && "Handed an instruction that MemorySSA doesn't recognize?"); |
||
| 1050 | return getClobberingMemoryAccess(MA, AA); |
||
| 1051 | } |
||
| 1052 | |||
| 1053 | /// Does the same thing as getClobberingMemoryAccess(const Instruction *I), |
||
| 1054 | /// but takes a MemoryAccess instead of an Instruction. |
||
| 1055 | virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
||
| 1056 | BatchAAResults &AA) = 0; |
||
| 1057 | |||
| 1058 | /// Given a potentially clobbering memory access and a new location, |
||
| 1059 | /// calling this will give you the nearest dominating clobbering MemoryAccess |
||
| 1060 | /// (by skipping non-aliasing def links). |
||
| 1061 | /// |
||
| 1062 | /// This version of the function is mainly used to disambiguate phi translated |
||
| 1063 | /// pointers, where the value of a pointer may have changed from the initial |
||
| 1064 | /// memory access. Note that this expects to be handed either a MemoryUse, |
||
| 1065 | /// or an already potentially clobbering access. Unlike the above API, if |
||
| 1066 | /// given a MemoryDef that clobbers the pointer as the starting access, it |
||
| 1067 | /// will return that MemoryDef, whereas the above would return the clobber |
||
| 1068 | /// starting from the use side of the memory def. |
||
| 1069 | virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
||
| 1070 | const MemoryLocation &, |
||
| 1071 | BatchAAResults &AA) = 0; |
||
| 1072 | |||
| 1073 | MemoryAccess *getClobberingMemoryAccess(const Instruction *I) { |
||
| 1074 | BatchAAResults BAA(MSSA->getAA()); |
||
| 1075 | return getClobberingMemoryAccess(I, BAA); |
||
| 1076 | } |
||
| 1077 | |||
| 1078 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) { |
||
| 1079 | BatchAAResults BAA(MSSA->getAA()); |
||
| 1080 | return getClobberingMemoryAccess(MA, BAA); |
||
| 1081 | } |
||
| 1082 | |||
| 1083 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
||
| 1084 | const MemoryLocation &Loc) { |
||
| 1085 | BatchAAResults BAA(MSSA->getAA()); |
||
| 1086 | return getClobberingMemoryAccess(MA, Loc, BAA); |
||
| 1087 | } |
||
| 1088 | |||
| 1089 | /// Given a memory access, invalidate anything this walker knows about |
||
| 1090 | /// that access. |
||
| 1091 | /// This API is used by walkers that store information to perform basic cache |
||
| 1092 | /// invalidation. This will be called by MemorySSA at appropriate times for |
||
| 1093 | /// the walker it uses or returns. |
||
| 1094 | virtual void invalidateInfo(MemoryAccess *) {} |
||
| 1095 | |||
| 1096 | protected: |
||
| 1097 | friend class MemorySSA; // For updating MSSA pointer in MemorySSA move |
||
| 1098 | // constructor. |
||
| 1099 | MemorySSA *MSSA; |
||
| 1100 | }; |
||
| 1101 | |||
| 1102 | /// A MemorySSAWalker that does no alias queries, or anything else. It |
||
| 1103 | /// simply returns the links as they were constructed by the builder. |
||
| 1104 | class DoNothingMemorySSAWalker final : public MemorySSAWalker { |
||
| 1105 | public: |
||
| 1106 | // Keep the overrides below from hiding the Instruction overload of |
||
| 1107 | // getClobberingMemoryAccess. |
||
| 1108 | using MemorySSAWalker::getClobberingMemoryAccess; |
||
| 1109 | |||
| 1110 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
||
| 1111 | BatchAAResults &) override; |
||
| 1112 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
||
| 1113 | const MemoryLocation &, |
||
| 1114 | BatchAAResults &) override; |
||
| 1115 | }; |
||
| 1116 | |||
| 1117 | using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>; |
||
| 1118 | using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>; |
||
| 1119 | |||
| 1120 | /// Iterator base class used to implement const and non-const iterators |
||
| 1121 | /// over the defining accesses of a MemoryAccess. |
||
| 1122 | template <class T> |
||
| 1123 | class memoryaccess_def_iterator_base |
||
| 1124 | : public iterator_facade_base<memoryaccess_def_iterator_base<T>, |
||
| 1125 | std::forward_iterator_tag, T, ptrdiff_t, T *, |
||
| 1126 | T *> { |
||
| 1127 | using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base; |
||
| 1128 | |||
| 1129 | public: |
||
| 1130 | memoryaccess_def_iterator_base(T *Start) : Access(Start) {} |
||
| 1131 | memoryaccess_def_iterator_base() = default; |
||
| 1132 | |||
| 1133 | bool operator==(const memoryaccess_def_iterator_base &Other) const { |
||
| 1134 | return Access == Other.Access && (!Access || ArgNo == Other.ArgNo); |
||
| 1135 | } |
||
| 1136 | |||
| 1137 | // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the |
||
| 1138 | // block from the operand in constant time (In a PHINode, the uselist has |
||
| 1139 | // both, so it's just subtraction). We provide it as part of the |
||
| 1140 | // iterator to avoid callers having to linear walk to get the block. |
||
| 1141 | // If the operation becomes constant time on MemoryPHI's, this bit of |
||
| 1142 | // abstraction breaking should be removed. |
||
| 1143 | BasicBlock *getPhiArgBlock() const { |
||
| 1144 | MemoryPhi *MP = dyn_cast<MemoryPhi>(Access); |
||
| 1145 | assert(MP && "Tried to get phi arg block when not iterating over a PHI"); |
||
| 1146 | return MP->getIncomingBlock(ArgNo); |
||
| 1147 | } |
||
| 1148 | |||
| 1149 | typename std::iterator_traits<BaseT>::pointer operator*() const { |
||
| 1150 | assert(Access && "Tried to access past the end of our iterator"); |
||
| 1151 | // Go to the first argument for phis, and the defining access for everything |
||
| 1152 | // else. |
||
| 1153 | if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) |
||
| 1154 | return MP->getIncomingValue(ArgNo); |
||
| 1155 | return cast<MemoryUseOrDef>(Access)->getDefiningAccess(); |
||
| 1156 | } |
||
| 1157 | |||
| 1158 | using BaseT::operator++; |
||
| 1159 | memoryaccess_def_iterator_base &operator++() { |
||
| 1160 | assert(Access && "Hit end of iterator"); |
||
| 1161 | if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) { |
||
| 1162 | if (++ArgNo >= MP->getNumIncomingValues()) { |
||
| 1163 | ArgNo = 0; |
||
| 1164 | Access = nullptr; |
||
| 1165 | } |
||
| 1166 | } else { |
||
| 1167 | Access = nullptr; |
||
| 1168 | } |
||
| 1169 | return *this; |
||
| 1170 | } |
||
| 1171 | |||
| 1172 | private: |
||
| 1173 | T *Access = nullptr; |
||
| 1174 | unsigned ArgNo = 0; |
||
| 1175 | }; |
||
| 1176 | |||
| 1177 | inline memoryaccess_def_iterator MemoryAccess::defs_begin() { |
||
| 1178 | return memoryaccess_def_iterator(this); |
||
| 1179 | } |
||
| 1180 | |||
| 1181 | inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const { |
||
| 1182 | return const_memoryaccess_def_iterator(this); |
||
| 1183 | } |
||
| 1184 | |||
| 1185 | inline memoryaccess_def_iterator MemoryAccess::defs_end() { |
||
| 1186 | return memoryaccess_def_iterator(); |
||
| 1187 | } |
||
| 1188 | |||
| 1189 | inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const { |
||
| 1190 | return const_memoryaccess_def_iterator(); |
||
| 1191 | } |
||
| 1192 | |||
| 1193 | /// GraphTraits for a MemoryAccess, which walks defs in the normal case, |
||
| 1194 | /// and uses in the inverse case. |
||
| 1195 | template <> struct GraphTraits<MemoryAccess *> { |
||
| 1196 | using NodeRef = MemoryAccess *; |
||
| 1197 | using ChildIteratorType = memoryaccess_def_iterator; |
||
| 1198 | |||
| 1199 | static NodeRef getEntryNode(NodeRef N) { return N; } |
||
| 1200 | static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); } |
||
| 1201 | static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); } |
||
| 1202 | }; |
||
| 1203 | |||
| 1204 | template <> struct GraphTraits<Inverse<MemoryAccess *>> { |
||
| 1205 | using NodeRef = MemoryAccess *; |
||
| 1206 | using ChildIteratorType = MemoryAccess::iterator; |
||
| 1207 | |||
| 1208 | static NodeRef getEntryNode(NodeRef N) { return N; } |
||
| 1209 | static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); } |
||
| 1210 | static ChildIteratorType child_end(NodeRef N) { return N->user_end(); } |
||
| 1211 | }; |
||
| 1212 | |||
| 1213 | /// Provide an iterator that walks defs, giving both the memory access, |
||
| 1214 | /// and the current pointer location, updating the pointer location as it |
||
| 1215 | /// changes due to phi node translation. |
||
| 1216 | /// |
||
| 1217 | /// This iterator, while somewhat specialized, is what most clients actually |
||
| 1218 | /// want when walking upwards through MemorySSA def chains. It takes a pair of |
||
| 1219 | /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the |
||
| 1220 | /// memory location through phi nodes for the user. |
||
| 1221 | class upward_defs_iterator |
||
| 1222 | : public iterator_facade_base<upward_defs_iterator, |
||
| 1223 | std::forward_iterator_tag, |
||
| 1224 | const MemoryAccessPair> { |
||
| 1225 | using BaseT = upward_defs_iterator::iterator_facade_base; |
||
| 1226 | |||
| 1227 | public: |
||
| 1228 | upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT) |
||
| 1229 | : DefIterator(Info.first), Location(Info.second), |
||
| 1230 | OriginalAccess(Info.first), DT(DT) { |
||
| 1231 | CurrentPair.first = nullptr; |
||
| 1232 | |||
| 1233 | WalkingPhi = Info.first && isa<MemoryPhi>(Info.first); |
||
| 1234 | fillInCurrentPair(); |
||
| 1235 | } |
||
| 1236 | |||
| 1237 | upward_defs_iterator() { CurrentPair.first = nullptr; } |
||
| 1238 | |||
| 1239 | bool operator==(const upward_defs_iterator &Other) const { |
||
| 1240 | return DefIterator == Other.DefIterator; |
||
| 1241 | } |
||
| 1242 | |||
| 1243 | typename std::iterator_traits<BaseT>::reference operator*() const { |
||
| 1244 | assert(DefIterator != OriginalAccess->defs_end() && |
||
| 1245 | "Tried to access past the end of our iterator"); |
||
| 1246 | return CurrentPair; |
||
| 1247 | } |
||
| 1248 | |||
| 1249 | using BaseT::operator++; |
||
| 1250 | upward_defs_iterator &operator++() { |
||
| 1251 | assert(DefIterator != OriginalAccess->defs_end() && |
||
| 1252 | "Tried to access past the end of the iterator"); |
||
| 1253 | ++DefIterator; |
||
| 1254 | if (DefIterator != OriginalAccess->defs_end()) |
||
| 1255 | fillInCurrentPair(); |
||
| 1256 | return *this; |
||
| 1257 | } |
||
| 1258 | |||
| 1259 | BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); } |
||
| 1260 | |||
| 1261 | private: |
||
| 1262 | /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible |
||
| 1263 | /// loop. In particular, this guarantees that it only references a single |
||
| 1264 | /// MemoryLocation during execution of the containing function. |
||
| 1265 | bool IsGuaranteedLoopInvariant(const Value *Ptr) const; |
||
| 1266 | |||
| 1267 | void fillInCurrentPair() { |
||
| 1268 | CurrentPair.first = *DefIterator; |
||
| 1269 | CurrentPair.second = Location; |
||
| 1270 | if (WalkingPhi && Location.Ptr) { |
||
| 1271 | PHITransAddr Translator( |
||
| 1272 | const_cast<Value *>(Location.Ptr), |
||
| 1273 | OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr); |
||
| 1274 | |||
| 1275 | if (!Translator.PHITranslateValue(OriginalAccess->getBlock(), |
||
| 1276 | DefIterator.getPhiArgBlock(), DT, true)) |
||
| 1277 | if (Translator.getAddr() != CurrentPair.second.Ptr) |
||
| 1278 | CurrentPair.second = |
||
| 1279 | CurrentPair.second.getWithNewPtr(Translator.getAddr()); |
||
| 1280 | |||
| 1281 | // Mark size as unknown, if the location is not guaranteed to be |
||
| 1282 | // loop-invariant for any possible loop in the function. Setting the size |
||
| 1283 | // to unknown guarantees that any memory accesses that access locations |
||
| 1284 | // after the pointer are considered as clobbers, which is important to |
||
| 1285 | // catch loop carried dependences. |
||
| 1286 | if (!IsGuaranteedLoopInvariant(CurrentPair.second.Ptr)) |
||
| 1287 | CurrentPair.second = CurrentPair.second.getWithNewSize( |
||
| 1288 | LocationSize::beforeOrAfterPointer()); |
||
| 1289 | } |
||
| 1290 | } |
||
| 1291 | |||
| 1292 | MemoryAccessPair CurrentPair; |
||
| 1293 | memoryaccess_def_iterator DefIterator; |
||
| 1294 | MemoryLocation Location; |
||
| 1295 | MemoryAccess *OriginalAccess = nullptr; |
||
| 1296 | DominatorTree *DT = nullptr; |
||
| 1297 | bool WalkingPhi = false; |
||
| 1298 | }; |
||
| 1299 | |||
| 1300 | inline upward_defs_iterator |
||
| 1301 | upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT) { |
||
| 1302 | return upward_defs_iterator(Pair, &DT); |
||
| 1303 | } |
||
| 1304 | |||
| 1305 | inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); } |
||
| 1306 | |||
| 1307 | inline iterator_range<upward_defs_iterator> |
||
| 1308 | upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) { |
||
| 1309 | return make_range(upward_defs_begin(Pair, DT), upward_defs_end()); |
||
| 1310 | } |
||
| 1311 | |||
| 1312 | /// Walks the defining accesses of MemoryDefs. Stops after we hit something that |
||
| 1313 | /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when |
||
| 1314 | /// comparing against a null def_chain_iterator, this will compare equal only |
||
| 1315 | /// after walking said Phi/liveOnEntry. |
||
| 1316 | /// |
||
| 1317 | /// The UseOptimizedChain flag specifies whether to walk the clobbering |
||
| 1318 | /// access chain, or all the accesses. |
||
| 1319 | /// |
||
| 1320 | /// Normally, MemoryDef are all just def/use linked together, so a def_chain on |
||
| 1321 | /// a MemoryDef will walk all MemoryDefs above it in the program until it hits |
||
| 1322 | /// a phi node. The optimized chain walks the clobbering access of a store. |
||
| 1323 | /// So if you are just trying to find, given a store, what the next |
||
| 1324 | /// thing that would clobber the same memory is, you want the optimized chain. |
||
| 1325 | template <class T, bool UseOptimizedChain = false> |
||
| 1326 | struct def_chain_iterator |
||
| 1327 | : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>, |
||
| 1328 | std::forward_iterator_tag, MemoryAccess *> { |
||
| 1329 | def_chain_iterator() : MA(nullptr) {} |
||
| 1330 | def_chain_iterator(T MA) : MA(MA) {} |
||
| 1331 | |||
| 1332 | T operator*() const { return MA; } |
||
| 1333 | |||
| 1334 | def_chain_iterator &operator++() { |
||
| 1335 | // N.B. liveOnEntry has a null defining access. |
||
| 1336 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { |
||
| 1337 | if (UseOptimizedChain && MUD->isOptimized()) |
||
| 1338 | MA = MUD->getOptimized(); |
||
| 1339 | else |
||
| 1340 | MA = MUD->getDefiningAccess(); |
||
| 1341 | } else { |
||
| 1342 | MA = nullptr; |
||
| 1343 | } |
||
| 1344 | |||
| 1345 | return *this; |
||
| 1346 | } |
||
| 1347 | |||
| 1348 | bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } |
||
| 1349 | |||
| 1350 | private: |
||
| 1351 | T MA; |
||
| 1352 | }; |
||
| 1353 | |||
| 1354 | template <class T> |
||
| 1355 | inline iterator_range<def_chain_iterator<T>> |
||
| 1356 | def_chain(T MA, MemoryAccess *UpTo = nullptr) { |
||
| 1357 | #ifdef EXPENSIVE_CHECKS |
||
| 1358 | assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) && |
||
| 1359 | "UpTo isn't in the def chain!"); |
||
| 1360 | #endif |
||
| 1361 | return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo)); |
||
| 1362 | } |
||
| 1363 | |||
| 1364 | template <class T> |
||
| 1365 | inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) { |
||
| 1366 | return make_range(def_chain_iterator<T, true>(MA), |
||
| 1367 | def_chain_iterator<T, true>(nullptr)); |
||
| 1368 | } |
||
| 1369 | |||
| 1370 | } // end namespace llvm |
||
| 1371 | |||
| 1372 | #endif // LLVM_ANALYSIS_MEMORYSSA_H |