Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file defines the interface for the loop memory dependence framework that |
||
| 10 | // was originally developed for the Loop Vectorizer. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H |
||
| 15 | #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/EquivalenceClasses.h" |
||
| 18 | #include "llvm/Analysis/LoopAnalysisManager.h" |
||
| 19 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
||
| 20 | #include "llvm/IR/DiagnosticInfo.h" |
||
| 21 | #include "llvm/Pass.h" |
||
| 22 | #include <optional> |
||
| 23 | |||
| 24 | namespace llvm { |
||
| 25 | |||
| 26 | class AAResults; |
||
| 27 | class DataLayout; |
||
| 28 | class Loop; |
||
| 29 | class LoopAccessInfo; |
||
| 30 | class raw_ostream; |
||
| 31 | class SCEV; |
||
| 32 | class SCEVUnionPredicate; |
||
| 33 | class Value; |
||
| 34 | |||
| 35 | /// Collection of parameters shared beetween the Loop Vectorizer and the |
||
| 36 | /// Loop Access Analysis. |
||
| 37 | struct VectorizerParams { |
||
| 38 | /// Maximum SIMD width. |
||
| 39 | static const unsigned MaxVectorWidth; |
||
| 40 | |||
| 41 | /// VF as overridden by the user. |
||
| 42 | static unsigned VectorizationFactor; |
||
| 43 | /// Interleave factor as overridden by the user. |
||
| 44 | static unsigned VectorizationInterleave; |
||
| 45 | /// True if force-vector-interleave was specified by the user. |
||
| 46 | static bool isInterleaveForced(); |
||
| 47 | |||
| 48 | /// \When performing memory disambiguation checks at runtime do not |
||
| 49 | /// make more than this number of comparisons. |
||
| 50 | static unsigned RuntimeMemoryCheckThreshold; |
||
| 51 | }; |
||
| 52 | |||
| 53 | /// Checks memory dependences among accesses to the same underlying |
||
| 54 | /// object to determine whether there vectorization is legal or not (and at |
||
| 55 | /// which vectorization factor). |
||
| 56 | /// |
||
| 57 | /// Note: This class will compute a conservative dependence for access to |
||
| 58 | /// different underlying pointers. Clients, such as the loop vectorizer, will |
||
| 59 | /// sometimes deal these potential dependencies by emitting runtime checks. |
||
| 60 | /// |
||
| 61 | /// We use the ScalarEvolution framework to symbolically evalutate access |
||
| 62 | /// functions pairs. Since we currently don't restructure the loop we can rely |
||
| 63 | /// on the program order of memory accesses to determine their safety. |
||
| 64 | /// At the moment we will only deem accesses as safe for: |
||
| 65 | /// * A negative constant distance assuming program order. |
||
| 66 | /// |
||
| 67 | /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; |
||
| 68 | /// a[i] = tmp; y = a[i]; |
||
| 69 | /// |
||
| 70 | /// The latter case is safe because later checks guarantuee that there can't |
||
| 71 | /// be a cycle through a phi node (that is, we check that "x" and "y" is not |
||
| 72 | /// the same variable: a header phi can only be an induction or a reduction, a |
||
| 73 | /// reduction can't have a memory sink, an induction can't have a memory |
||
| 74 | /// source). This is important and must not be violated (or we have to |
||
| 75 | /// resort to checking for cycles through memory). |
||
| 76 | /// |
||
| 77 | /// * A positive constant distance assuming program order that is bigger |
||
| 78 | /// than the biggest memory access. |
||
| 79 | /// |
||
| 80 | /// tmp = a[i] OR b[i] = x |
||
| 81 | /// a[i+2] = tmp y = b[i+2]; |
||
| 82 | /// |
||
| 83 | /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. |
||
| 84 | /// |
||
| 85 | /// * Zero distances and all accesses have the same size. |
||
| 86 | /// |
||
| 87 | class MemoryDepChecker { |
||
| 88 | public: |
||
| 89 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
||
| 90 | typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; |
||
| 91 | /// Set of potential dependent memory accesses. |
||
| 92 | typedef EquivalenceClasses<MemAccessInfo> DepCandidates; |
||
| 93 | |||
| 94 | /// Type to keep track of the status of the dependence check. The order of |
||
| 95 | /// the elements is important and has to be from most permissive to least |
||
| 96 | /// permissive. |
||
| 97 | enum class VectorizationSafetyStatus { |
||
| 98 | // Can vectorize safely without RT checks. All dependences are known to be |
||
| 99 | // safe. |
||
| 100 | Safe, |
||
| 101 | // Can possibly vectorize with RT checks to overcome unknown dependencies. |
||
| 102 | PossiblySafeWithRtChecks, |
||
| 103 | // Cannot vectorize due to known unsafe dependencies. |
||
| 104 | Unsafe, |
||
| 105 | }; |
||
| 106 | |||
| 107 | /// Dependece between memory access instructions. |
||
| 108 | struct Dependence { |
||
| 109 | /// The type of the dependence. |
||
| 110 | enum DepType { |
||
| 111 | // No dependence. |
||
| 112 | NoDep, |
||
| 113 | // We couldn't determine the direction or the distance. |
||
| 114 | Unknown, |
||
| 115 | // Lexically forward. |
||
| 116 | // |
||
| 117 | // FIXME: If we only have loop-independent forward dependences (e.g. a |
||
| 118 | // read and write of A[i]), LAA will locally deem the dependence "safe" |
||
| 119 | // without querying the MemoryDepChecker. Therefore we can miss |
||
| 120 | // enumerating loop-independent forward dependences in |
||
| 121 | // getDependences. Note that as soon as there are different |
||
| 122 | // indices used to access the same array, the MemoryDepChecker *is* |
||
| 123 | // queried and the dependence list is complete. |
||
| 124 | Forward, |
||
| 125 | // Forward, but if vectorized, is likely to prevent store-to-load |
||
| 126 | // forwarding. |
||
| 127 | ForwardButPreventsForwarding, |
||
| 128 | // Lexically backward. |
||
| 129 | Backward, |
||
| 130 | // Backward, but the distance allows a vectorization factor of |
||
| 131 | // MaxSafeDepDistBytes. |
||
| 132 | BackwardVectorizable, |
||
| 133 | // Same, but may prevent store-to-load forwarding. |
||
| 134 | BackwardVectorizableButPreventsForwarding |
||
| 135 | }; |
||
| 136 | |||
| 137 | /// String version of the types. |
||
| 138 | static const char *DepName[]; |
||
| 139 | |||
| 140 | /// Index of the source of the dependence in the InstMap vector. |
||
| 141 | unsigned Source; |
||
| 142 | /// Index of the destination of the dependence in the InstMap vector. |
||
| 143 | unsigned Destination; |
||
| 144 | /// The type of the dependence. |
||
| 145 | DepType Type; |
||
| 146 | |||
| 147 | Dependence(unsigned Source, unsigned Destination, DepType Type) |
||
| 148 | : Source(Source), Destination(Destination), Type(Type) {} |
||
| 149 | |||
| 150 | /// Return the source instruction of the dependence. |
||
| 151 | Instruction *getSource(const LoopAccessInfo &LAI) const; |
||
| 152 | /// Return the destination instruction of the dependence. |
||
| 153 | Instruction *getDestination(const LoopAccessInfo &LAI) const; |
||
| 154 | |||
| 155 | /// Dependence types that don't prevent vectorization. |
||
| 156 | static VectorizationSafetyStatus isSafeForVectorization(DepType Type); |
||
| 157 | |||
| 158 | /// Lexically forward dependence. |
||
| 159 | bool isForward() const; |
||
| 160 | /// Lexically backward dependence. |
||
| 161 | bool isBackward() const; |
||
| 162 | |||
| 163 | /// May be a lexically backward dependence type (includes Unknown). |
||
| 164 | bool isPossiblyBackward() const; |
||
| 165 | |||
| 166 | /// Print the dependence. \p Instr is used to map the instruction |
||
| 167 | /// indices to instructions. |
||
| 168 | void print(raw_ostream &OS, unsigned Depth, |
||
| 169 | const SmallVectorImpl<Instruction *> &Instrs) const; |
||
| 170 | }; |
||
| 171 | |||
| 172 | MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L) |
||
| 173 | : PSE(PSE), InnermostLoop(L) {} |
||
| 174 | |||
| 175 | /// Register the location (instructions are given increasing numbers) |
||
| 176 | /// of a write access. |
||
| 177 | void addAccess(StoreInst *SI); |
||
| 178 | |||
| 179 | /// Register the location (instructions are given increasing numbers) |
||
| 180 | /// of a write access. |
||
| 181 | void addAccess(LoadInst *LI); |
||
| 182 | |||
| 183 | /// Check whether the dependencies between the accesses are safe. |
||
| 184 | /// |
||
| 185 | /// Only checks sets with elements in \p CheckDeps. |
||
| 186 | bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, |
||
| 187 | const ValueToValueMap &Strides); |
||
| 188 | |||
| 189 | /// No memory dependence was encountered that would inhibit |
||
| 190 | /// vectorization. |
||
| 191 | bool isSafeForVectorization() const { |
||
| 192 | return Status == VectorizationSafetyStatus::Safe; |
||
| 193 | } |
||
| 194 | |||
| 195 | /// Return true if the number of elements that are safe to operate on |
||
| 196 | /// simultaneously is not bounded. |
||
| 197 | bool isSafeForAnyVectorWidth() const { |
||
| 198 | return MaxSafeVectorWidthInBits == UINT_MAX; |
||
| 199 | } |
||
| 200 | |||
| 201 | /// The maximum number of bytes of a vector register we can vectorize |
||
| 202 | /// the accesses safely with. |
||
| 203 | uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } |
||
| 204 | |||
| 205 | /// Return the number of elements that are safe to operate on |
||
| 206 | /// simultaneously, multiplied by the size of the element in bits. |
||
| 207 | uint64_t getMaxSafeVectorWidthInBits() const { |
||
| 208 | return MaxSafeVectorWidthInBits; |
||
| 209 | } |
||
| 210 | |||
| 211 | /// In same cases when the dependency check fails we can still |
||
| 212 | /// vectorize the loop with a dynamic array access check. |
||
| 213 | bool shouldRetryWithRuntimeCheck() const { |
||
| 214 | return FoundNonConstantDistanceDependence && |
||
| 215 | Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks; |
||
| 216 | } |
||
| 217 | |||
| 218 | /// Returns the memory dependences. If null is returned we exceeded |
||
| 219 | /// the MaxDependences threshold and this information is not |
||
| 220 | /// available. |
||
| 221 | const SmallVectorImpl<Dependence> *getDependences() const { |
||
| 222 | return RecordDependences ? &Dependences : nullptr; |
||
| 223 | } |
||
| 224 | |||
| 225 | void clearDependences() { Dependences.clear(); } |
||
| 226 | |||
| 227 | /// The vector of memory access instructions. The indices are used as |
||
| 228 | /// instruction identifiers in the Dependence class. |
||
| 229 | const SmallVectorImpl<Instruction *> &getMemoryInstructions() const { |
||
| 230 | return InstMap; |
||
| 231 | } |
||
| 232 | |||
| 233 | /// Generate a mapping between the memory instructions and their |
||
| 234 | /// indices according to program order. |
||
| 235 | DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const { |
||
| 236 | DenseMap<Instruction *, unsigned> OrderMap; |
||
| 237 | |||
| 238 | for (unsigned I = 0; I < InstMap.size(); ++I) |
||
| 239 | OrderMap[InstMap[I]] = I; |
||
| 240 | |||
| 241 | return OrderMap; |
||
| 242 | } |
||
| 243 | |||
| 244 | /// Find the set of instructions that read or write via \p Ptr. |
||
| 245 | SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, |
||
| 246 | bool isWrite) const; |
||
| 247 | |||
| 248 | /// Return the program order indices for the access location (Ptr, IsWrite). |
||
| 249 | /// Returns an empty ArrayRef if there are no accesses for the location. |
||
| 250 | ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const { |
||
| 251 | auto I = Accesses.find({Ptr, IsWrite}); |
||
| 252 | if (I != Accesses.end()) |
||
| 253 | return I->second; |
||
| 254 | return {}; |
||
| 255 | } |
||
| 256 | |||
| 257 | const Loop *getInnermostLoop() const { return InnermostLoop; } |
||
| 258 | |||
| 259 | private: |
||
| 260 | /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and |
||
| 261 | /// applies dynamic knowledge to simplify SCEV expressions and convert them |
||
| 262 | /// to a more usable form. We need this in case assumptions about SCEV |
||
| 263 | /// expressions need to be made in order to avoid unknown dependences. For |
||
| 264 | /// example we might assume a unit stride for a pointer in order to prove |
||
| 265 | /// that a memory access is strided and doesn't wrap. |
||
| 266 | PredicatedScalarEvolution &PSE; |
||
| 267 | const Loop *InnermostLoop; |
||
| 268 | |||
| 269 | /// Maps access locations (ptr, read/write) to program order. |
||
| 270 | DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; |
||
| 271 | |||
| 272 | /// Memory access instructions in program order. |
||
| 273 | SmallVector<Instruction *, 16> InstMap; |
||
| 274 | |||
| 275 | /// The program order index to be used for the next instruction. |
||
| 276 | unsigned AccessIdx = 0; |
||
| 277 | |||
| 278 | // We can access this many bytes in parallel safely. |
||
| 279 | uint64_t MaxSafeDepDistBytes = 0; |
||
| 280 | |||
| 281 | /// Number of elements (from consecutive iterations) that are safe to |
||
| 282 | /// operate on simultaneously, multiplied by the size of the element in bits. |
||
| 283 | /// The size of the element is taken from the memory access that is most |
||
| 284 | /// restrictive. |
||
| 285 | uint64_t MaxSafeVectorWidthInBits = -1U; |
||
| 286 | |||
| 287 | /// If we see a non-constant dependence distance we can still try to |
||
| 288 | /// vectorize this loop with runtime checks. |
||
| 289 | bool FoundNonConstantDistanceDependence = false; |
||
| 290 | |||
| 291 | /// Result of the dependence checks, indicating whether the checked |
||
| 292 | /// dependences are safe for vectorization, require RT checks or are known to |
||
| 293 | /// be unsafe. |
||
| 294 | VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe; |
||
| 295 | |||
| 296 | //// True if Dependences reflects the dependences in the |
||
| 297 | //// loop. If false we exceeded MaxDependences and |
||
| 298 | //// Dependences is invalid. |
||
| 299 | bool RecordDependences = true; |
||
| 300 | |||
| 301 | /// Memory dependences collected during the analysis. Only valid if |
||
| 302 | /// RecordDependences is true. |
||
| 303 | SmallVector<Dependence, 8> Dependences; |
||
| 304 | |||
| 305 | /// Check whether there is a plausible dependence between the two |
||
| 306 | /// accesses. |
||
| 307 | /// |
||
| 308 | /// Access \p A must happen before \p B in program order. The two indices |
||
| 309 | /// identify the index into the program order map. |
||
| 310 | /// |
||
| 311 | /// This function checks whether there is a plausible dependence (or the |
||
| 312 | /// absence of such can't be proved) between the two accesses. If there is a |
||
| 313 | /// plausible dependence but the dependence distance is bigger than one |
||
| 314 | /// element access it records this distance in \p MaxSafeDepDistBytes (if this |
||
| 315 | /// distance is smaller than any other distance encountered so far). |
||
| 316 | /// Otherwise, this function returns true signaling a possible dependence. |
||
| 317 | Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx, |
||
| 318 | const MemAccessInfo &B, unsigned BIdx, |
||
| 319 | const ValueToValueMap &Strides); |
||
| 320 | |||
| 321 | /// Check whether the data dependence could prevent store-load |
||
| 322 | /// forwarding. |
||
| 323 | /// |
||
| 324 | /// \return false if we shouldn't vectorize at all or avoid larger |
||
| 325 | /// vectorization factors by limiting MaxSafeDepDistBytes. |
||
| 326 | bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize); |
||
| 327 | |||
| 328 | /// Updates the current safety status with \p S. We can go from Safe to |
||
| 329 | /// either PossiblySafeWithRtChecks or Unsafe and from |
||
| 330 | /// PossiblySafeWithRtChecks to Unsafe. |
||
| 331 | void mergeInStatus(VectorizationSafetyStatus S); |
||
| 332 | }; |
||
| 333 | |||
| 334 | class RuntimePointerChecking; |
||
| 335 | /// A grouping of pointers. A single memcheck is required between |
||
| 336 | /// two groups. |
||
| 337 | struct RuntimeCheckingPtrGroup { |
||
| 338 | /// Create a new pointer checking group containing a single |
||
| 339 | /// pointer, with index \p Index in RtCheck. |
||
| 340 | RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck); |
||
| 341 | |||
| 342 | /// Tries to add the pointer recorded in RtCheck at index |
||
| 343 | /// \p Index to this pointer checking group. We can only add a pointer |
||
| 344 | /// to a checking group if we will still be able to get |
||
| 345 | /// the upper and lower bounds of the check. Returns true in case |
||
| 346 | /// of success, false otherwise. |
||
| 347 | bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck); |
||
| 348 | bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End, |
||
| 349 | unsigned AS, bool NeedsFreeze, ScalarEvolution &SE); |
||
| 350 | |||
| 351 | /// The SCEV expression which represents the upper bound of all the |
||
| 352 | /// pointers in this group. |
||
| 353 | const SCEV *High; |
||
| 354 | /// The SCEV expression which represents the lower bound of all the |
||
| 355 | /// pointers in this group. |
||
| 356 | const SCEV *Low; |
||
| 357 | /// Indices of all the pointers that constitute this grouping. |
||
| 358 | SmallVector<unsigned, 2> Members; |
||
| 359 | /// Address space of the involved pointers. |
||
| 360 | unsigned AddressSpace; |
||
| 361 | /// Whether the pointer needs to be frozen after expansion, e.g. because it |
||
| 362 | /// may be poison outside the loop. |
||
| 363 | bool NeedsFreeze = false; |
||
| 364 | }; |
||
| 365 | |||
| 366 | /// A memcheck which made up of a pair of grouped pointers. |
||
| 367 | typedef std::pair<const RuntimeCheckingPtrGroup *, |
||
| 368 | const RuntimeCheckingPtrGroup *> |
||
| 369 | RuntimePointerCheck; |
||
| 370 | |||
| 371 | struct PointerDiffInfo { |
||
| 372 | const SCEV *SrcStart; |
||
| 373 | const SCEV *SinkStart; |
||
| 374 | unsigned AccessSize; |
||
| 375 | bool NeedsFreeze; |
||
| 376 | |||
| 377 | PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart, |
||
| 378 | unsigned AccessSize, bool NeedsFreeze) |
||
| 379 | : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize), |
||
| 380 | NeedsFreeze(NeedsFreeze) {} |
||
| 381 | }; |
||
| 382 | |||
| 383 | /// Holds information about the memory runtime legality checks to verify |
||
| 384 | /// that a group of pointers do not overlap. |
||
| 385 | class RuntimePointerChecking { |
||
| 386 | friend struct RuntimeCheckingPtrGroup; |
||
| 387 | |||
| 388 | public: |
||
| 389 | struct PointerInfo { |
||
| 390 | /// Holds the pointer value that we need to check. |
||
| 391 | TrackingVH<Value> PointerValue; |
||
| 392 | /// Holds the smallest byte address accessed by the pointer throughout all |
||
| 393 | /// iterations of the loop. |
||
| 394 | const SCEV *Start; |
||
| 395 | /// Holds the largest byte address accessed by the pointer throughout all |
||
| 396 | /// iterations of the loop, plus 1. |
||
| 397 | const SCEV *End; |
||
| 398 | /// Holds the information if this pointer is used for writing to memory. |
||
| 399 | bool IsWritePtr; |
||
| 400 | /// Holds the id of the set of pointers that could be dependent because of a |
||
| 401 | /// shared underlying object. |
||
| 402 | unsigned DependencySetId; |
||
| 403 | /// Holds the id of the disjoint alias set to which this pointer belongs. |
||
| 404 | unsigned AliasSetId; |
||
| 405 | /// SCEV for the access. |
||
| 406 | const SCEV *Expr; |
||
| 407 | /// True if the pointer expressions needs to be frozen after expansion. |
||
| 408 | bool NeedsFreeze; |
||
| 409 | |||
| 410 | PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End, |
||
| 411 | bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId, |
||
| 412 | const SCEV *Expr, bool NeedsFreeze) |
||
| 413 | : PointerValue(PointerValue), Start(Start), End(End), |
||
| 414 | IsWritePtr(IsWritePtr), DependencySetId(DependencySetId), |
||
| 415 | AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {} |
||
| 416 | }; |
||
| 417 | |||
| 418 | RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE) |
||
| 419 | : DC(DC), SE(SE) {} |
||
| 420 | |||
| 421 | /// Reset the state of the pointer runtime information. |
||
| 422 | void reset() { |
||
| 423 | Need = false; |
||
| 424 | Pointers.clear(); |
||
| 425 | Checks.clear(); |
||
| 426 | } |
||
| 427 | |||
| 428 | /// Insert a pointer and calculate the start and end SCEVs. |
||
| 429 | /// We need \p PSE in order to compute the SCEV expression of the pointer |
||
| 430 | /// according to the assumptions that we've made during the analysis. |
||
| 431 | /// The method might also version the pointer stride according to \p Strides, |
||
| 432 | /// and add new predicates to \p PSE. |
||
| 433 | void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, |
||
| 434 | bool WritePtr, unsigned DepSetId, unsigned ASId, |
||
| 435 | PredicatedScalarEvolution &PSE, bool NeedsFreeze); |
||
| 436 | |||
| 437 | /// No run-time memory checking is necessary. |
||
| 438 | bool empty() const { return Pointers.empty(); } |
||
| 439 | |||
| 440 | /// Generate the checks and store it. This also performs the grouping |
||
| 441 | /// of pointers to reduce the number of memchecks necessary. |
||
| 442 | void generateChecks(MemoryDepChecker::DepCandidates &DepCands, |
||
| 443 | bool UseDependencies); |
||
| 444 | |||
| 445 | /// Returns the checks that generateChecks created. They can be used to ensure |
||
| 446 | /// no read/write accesses overlap across all loop iterations. |
||
| 447 | const SmallVectorImpl<RuntimePointerCheck> &getChecks() const { |
||
| 448 | return Checks; |
||
| 449 | } |
||
| 450 | |||
| 451 | // Returns an optional list of (pointer-difference expressions, access size) |
||
| 452 | // pairs that can be used to prove that there are no vectorization-preventing |
||
| 453 | // dependencies at runtime. There are is a vectorization-preventing dependency |
||
| 454 | // if any pointer-difference is <u VF * InterleaveCount * access size. Returns |
||
| 455 | // std::nullopt if pointer-difference checks cannot be used. |
||
| 456 | std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const { |
||
| 457 | if (!CanUseDiffCheck) |
||
| 458 | return std::nullopt; |
||
| 459 | return {DiffChecks}; |
||
| 460 | } |
||
| 461 | |||
| 462 | /// Decide if we need to add a check between two groups of pointers, |
||
| 463 | /// according to needsChecking. |
||
| 464 | bool needsChecking(const RuntimeCheckingPtrGroup &M, |
||
| 465 | const RuntimeCheckingPtrGroup &N) const; |
||
| 466 | |||
| 467 | /// Returns the number of run-time checks required according to |
||
| 468 | /// needsChecking. |
||
| 469 | unsigned getNumberOfChecks() const { return Checks.size(); } |
||
| 470 | |||
| 471 | /// Print the list run-time memory checks necessary. |
||
| 472 | void print(raw_ostream &OS, unsigned Depth = 0) const; |
||
| 473 | |||
| 474 | /// Print \p Checks. |
||
| 475 | void printChecks(raw_ostream &OS, |
||
| 476 | const SmallVectorImpl<RuntimePointerCheck> &Checks, |
||
| 477 | unsigned Depth = 0) const; |
||
| 478 | |||
| 479 | /// This flag indicates if we need to add the runtime check. |
||
| 480 | bool Need = false; |
||
| 481 | |||
| 482 | /// Information about the pointers that may require checking. |
||
| 483 | SmallVector<PointerInfo, 2> Pointers; |
||
| 484 | |||
| 485 | /// Holds a partitioning of pointers into "check groups". |
||
| 486 | SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups; |
||
| 487 | |||
| 488 | /// Check if pointers are in the same partition |
||
| 489 | /// |
||
| 490 | /// \p PtrToPartition contains the partition number for pointers (-1 if the |
||
| 491 | /// pointer belongs to multiple partitions). |
||
| 492 | static bool |
||
| 493 | arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition, |
||
| 494 | unsigned PtrIdx1, unsigned PtrIdx2); |
||
| 495 | |||
| 496 | /// Decide whether we need to issue a run-time check for pointer at |
||
| 497 | /// index \p I and \p J to prove their independence. |
||
| 498 | bool needsChecking(unsigned I, unsigned J) const; |
||
| 499 | |||
| 500 | /// Return PointerInfo for pointer at index \p PtrIdx. |
||
| 501 | const PointerInfo &getPointerInfo(unsigned PtrIdx) const { |
||
| 502 | return Pointers[PtrIdx]; |
||
| 503 | } |
||
| 504 | |||
| 505 | ScalarEvolution *getSE() const { return SE; } |
||
| 506 | |||
| 507 | private: |
||
| 508 | /// Groups pointers such that a single memcheck is required |
||
| 509 | /// between two different groups. This will clear the CheckingGroups vector |
||
| 510 | /// and re-compute it. We will only group dependecies if \p UseDependencies |
||
| 511 | /// is true, otherwise we will create a separate group for each pointer. |
||
| 512 | void groupChecks(MemoryDepChecker::DepCandidates &DepCands, |
||
| 513 | bool UseDependencies); |
||
| 514 | |||
| 515 | /// Generate the checks and return them. |
||
| 516 | SmallVector<RuntimePointerCheck, 4> generateChecks(); |
||
| 517 | |||
| 518 | /// Try to create add a new (pointer-difference, access size) pair to |
||
| 519 | /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference |
||
| 520 | /// checks cannot be used for the groups, set CanUseDiffCheck to false. |
||
| 521 | void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI, |
||
| 522 | const RuntimeCheckingPtrGroup &CGJ); |
||
| 523 | |||
| 524 | MemoryDepChecker &DC; |
||
| 525 | |||
| 526 | /// Holds a pointer to the ScalarEvolution analysis. |
||
| 527 | ScalarEvolution *SE; |
||
| 528 | |||
| 529 | /// Set of run-time checks required to establish independence of |
||
| 530 | /// otherwise may-aliasing pointers in the loop. |
||
| 531 | SmallVector<RuntimePointerCheck, 4> Checks; |
||
| 532 | |||
| 533 | /// Flag indicating if pointer-difference checks can be used |
||
| 534 | bool CanUseDiffCheck = true; |
||
| 535 | |||
| 536 | /// A list of (pointer-difference, access size) pairs that can be used to |
||
| 537 | /// prove that there are no vectorization-preventing dependencies. |
||
| 538 | SmallVector<PointerDiffInfo> DiffChecks; |
||
| 539 | }; |
||
| 540 | |||
| 541 | /// Drive the analysis of memory accesses in the loop |
||
| 542 | /// |
||
| 543 | /// This class is responsible for analyzing the memory accesses of a loop. It |
||
| 544 | /// collects the accesses and then its main helper the AccessAnalysis class |
||
| 545 | /// finds and categorizes the dependences in buildDependenceSets. |
||
| 546 | /// |
||
| 547 | /// For memory dependences that can be analyzed at compile time, it determines |
||
| 548 | /// whether the dependence is part of cycle inhibiting vectorization. This work |
||
| 549 | /// is delegated to the MemoryDepChecker class. |
||
| 550 | /// |
||
| 551 | /// For memory dependences that cannot be determined at compile time, it |
||
| 552 | /// generates run-time checks to prove independence. This is done by |
||
| 553 | /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the |
||
| 554 | /// RuntimePointerCheck class. |
||
| 555 | /// |
||
| 556 | /// If pointers can wrap or can't be expressed as affine AddRec expressions by |
||
| 557 | /// ScalarEvolution, we will generate run-time checks by emitting a |
||
| 558 | /// SCEVUnionPredicate. |
||
| 559 | /// |
||
| 560 | /// Checks for both memory dependences and the SCEV predicates contained in the |
||
| 561 | /// PSE must be emitted in order for the results of this analysis to be valid. |
||
| 562 | class LoopAccessInfo { |
||
| 563 | public: |
||
| 564 | LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI, |
||
| 565 | AAResults *AA, DominatorTree *DT, LoopInfo *LI); |
||
| 566 | |||
| 567 | /// Return true we can analyze the memory accesses in the loop and there are |
||
| 568 | /// no memory dependence cycles. |
||
| 569 | bool canVectorizeMemory() const { return CanVecMem; } |
||
| 570 | |||
| 571 | /// Return true if there is a convergent operation in the loop. There may |
||
| 572 | /// still be reported runtime pointer checks that would be required, but it is |
||
| 573 | /// not legal to insert them. |
||
| 574 | bool hasConvergentOp() const { return HasConvergentOp; } |
||
| 575 | |||
| 576 | const RuntimePointerChecking *getRuntimePointerChecking() const { |
||
| 577 | return PtrRtChecking.get(); |
||
| 578 | } |
||
| 579 | |||
| 580 | /// Number of memchecks required to prove independence of otherwise |
||
| 581 | /// may-alias pointers. |
||
| 582 | unsigned getNumRuntimePointerChecks() const { |
||
| 583 | return PtrRtChecking->getNumberOfChecks(); |
||
| 584 | } |
||
| 585 | |||
| 586 | /// Return true if the block BB needs to be predicated in order for the loop |
||
| 587 | /// to be vectorized. |
||
| 588 | static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
||
| 589 | DominatorTree *DT); |
||
| 590 | |||
| 591 | /// Returns true if the value V is uniform within the loop. |
||
| 592 | bool isUniform(Value *V) const; |
||
| 593 | |||
| 594 | uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; } |
||
| 595 | unsigned getNumStores() const { return NumStores; } |
||
| 596 | unsigned getNumLoads() const { return NumLoads;} |
||
| 597 | |||
| 598 | /// The diagnostics report generated for the analysis. E.g. why we |
||
| 599 | /// couldn't analyze the loop. |
||
| 600 | const OptimizationRemarkAnalysis *getReport() const { return Report.get(); } |
||
| 601 | |||
| 602 | /// the Memory Dependence Checker which can determine the |
||
| 603 | /// loop-independent and loop-carried dependences between memory accesses. |
||
| 604 | const MemoryDepChecker &getDepChecker() const { return *DepChecker; } |
||
| 605 | |||
| 606 | /// Return the list of instructions that use \p Ptr to read or write |
||
| 607 | /// memory. |
||
| 608 | SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, |
||
| 609 | bool isWrite) const { |
||
| 610 | return DepChecker->getInstructionsForAccess(Ptr, isWrite); |
||
| 611 | } |
||
| 612 | |||
| 613 | /// If an access has a symbolic strides, this maps the pointer value to |
||
| 614 | /// the stride symbol. |
||
| 615 | const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; } |
||
| 616 | |||
| 617 | /// Pointer has a symbolic stride. |
||
| 618 | bool hasStride(Value *V) const { return StrideSet.count(V); } |
||
| 619 | |||
| 620 | /// Print the information about the memory accesses in the loop. |
||
| 621 | void print(raw_ostream &OS, unsigned Depth = 0) const; |
||
| 622 | |||
| 623 | /// If the loop has memory dependence involving an invariant address, i.e. two |
||
| 624 | /// stores or a store and a load, then return true, else return false. |
||
| 625 | bool hasDependenceInvolvingLoopInvariantAddress() const { |
||
| 626 | return HasDependenceInvolvingLoopInvariantAddress; |
||
| 627 | } |
||
| 628 | |||
| 629 | /// Return the list of stores to invariant addresses. |
||
| 630 | ArrayRef<StoreInst *> getStoresToInvariantAddresses() const { |
||
| 631 | return StoresToInvariantAddresses; |
||
| 632 | } |
||
| 633 | |||
| 634 | /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts |
||
| 635 | /// them to a more usable form. All SCEV expressions during the analysis |
||
| 636 | /// should be re-written (and therefore simplified) according to PSE. |
||
| 637 | /// A user of LoopAccessAnalysis will need to emit the runtime checks |
||
| 638 | /// associated with this predicate. |
||
| 639 | const PredicatedScalarEvolution &getPSE() const { return *PSE; } |
||
| 640 | |||
| 641 | private: |
||
| 642 | /// Analyze the loop. |
||
| 643 | void analyzeLoop(AAResults *AA, LoopInfo *LI, |
||
| 644 | const TargetLibraryInfo *TLI, DominatorTree *DT); |
||
| 645 | |||
| 646 | /// Check if the structure of the loop allows it to be analyzed by this |
||
| 647 | /// pass. |
||
| 648 | bool canAnalyzeLoop(); |
||
| 649 | |||
| 650 | /// Save the analysis remark. |
||
| 651 | /// |
||
| 652 | /// LAA does not directly emits the remarks. Instead it stores it which the |
||
| 653 | /// client can retrieve and presents as its own analysis |
||
| 654 | /// (e.g. -Rpass-analysis=loop-vectorize). |
||
| 655 | OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName, |
||
| 656 | Instruction *Instr = nullptr); |
||
| 657 | |||
| 658 | /// Collect memory access with loop invariant strides. |
||
| 659 | /// |
||
| 660 | /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop |
||
| 661 | /// invariant. |
||
| 662 | void collectStridedAccess(Value *LoadOrStoreInst); |
||
| 663 | |||
| 664 | // Emits the first unsafe memory dependence in a loop. |
||
| 665 | // Emits nothing if there are no unsafe dependences |
||
| 666 | // or if the dependences were not recorded. |
||
| 667 | void emitUnsafeDependenceRemark(); |
||
| 668 | |||
| 669 | std::unique_ptr<PredicatedScalarEvolution> PSE; |
||
| 670 | |||
| 671 | /// We need to check that all of the pointers in this list are disjoint |
||
| 672 | /// at runtime. Using std::unique_ptr to make using move ctor simpler. |
||
| 673 | std::unique_ptr<RuntimePointerChecking> PtrRtChecking; |
||
| 674 | |||
| 675 | /// the Memory Dependence Checker which can determine the |
||
| 676 | /// loop-independent and loop-carried dependences between memory accesses. |
||
| 677 | std::unique_ptr<MemoryDepChecker> DepChecker; |
||
| 678 | |||
| 679 | Loop *TheLoop; |
||
| 680 | |||
| 681 | unsigned NumLoads = 0; |
||
| 682 | unsigned NumStores = 0; |
||
| 683 | |||
| 684 | uint64_t MaxSafeDepDistBytes = -1; |
||
| 685 | |||
| 686 | /// Cache the result of analyzeLoop. |
||
| 687 | bool CanVecMem = false; |
||
| 688 | bool HasConvergentOp = false; |
||
| 689 | |||
| 690 | /// Indicator that there are non vectorizable stores to a uniform address. |
||
| 691 | bool HasDependenceInvolvingLoopInvariantAddress = false; |
||
| 692 | |||
| 693 | /// List of stores to invariant addresses. |
||
| 694 | SmallVector<StoreInst *> StoresToInvariantAddresses; |
||
| 695 | |||
| 696 | /// The diagnostics report generated for the analysis. E.g. why we |
||
| 697 | /// couldn't analyze the loop. |
||
| 698 | std::unique_ptr<OptimizationRemarkAnalysis> Report; |
||
| 699 | |||
| 700 | /// If an access has a symbolic strides, this maps the pointer value to |
||
| 701 | /// the stride symbol. |
||
| 702 | ValueToValueMap SymbolicStrides; |
||
| 703 | |||
| 704 | /// Set of symbolic strides values. |
||
| 705 | SmallPtrSet<Value *, 8> StrideSet; |
||
| 706 | }; |
||
| 707 | |||
| 708 | Value *stripIntegerCast(Value *V); |
||
| 709 | |||
| 710 | /// Return the SCEV corresponding to a pointer with the symbolic stride |
||
| 711 | /// replaced with constant one, assuming the SCEV predicate associated with |
||
| 712 | /// \p PSE is true. |
||
| 713 | /// |
||
| 714 | /// If necessary this method will version the stride of the pointer according |
||
| 715 | /// to \p PtrToStride and therefore add further predicates to \p PSE. |
||
| 716 | /// |
||
| 717 | /// \p PtrToStride provides the mapping between the pointer value and its |
||
| 718 | /// stride as collected by LoopVectorizationLegality::collectStridedAccess. |
||
| 719 | const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, |
||
| 720 | const ValueToValueMap &PtrToStride, |
||
| 721 | Value *Ptr); |
||
| 722 | |||
| 723 | /// If the pointer has a constant stride return it in units of the access type |
||
| 724 | /// size. Otherwise return std::nullopt. |
||
| 725 | /// |
||
| 726 | /// Ensure that it does not wrap in the address space, assuming the predicate |
||
| 727 | /// associated with \p PSE is true. |
||
| 728 | /// |
||
| 729 | /// If necessary this method will version the stride of the pointer according |
||
| 730 | /// to \p PtrToStride and therefore add further predicates to \p PSE. |
||
| 731 | /// The \p Assume parameter indicates if we are allowed to make additional |
||
| 732 | /// run-time assumptions. |
||
| 733 | std::optional<int64_t> |
||
| 734 | getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, |
||
| 735 | const Loop *Lp, |
||
| 736 | const ValueToValueMap &StridesMap = ValueToValueMap(), |
||
| 737 | bool Assume = false, bool ShouldCheckWrap = true); |
||
| 738 | |||
| 739 | /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are |
||
| 740 | /// compatible and it is possible to calculate the distance between them. This |
||
| 741 | /// is a simple API that does not depend on the analysis pass. |
||
| 742 | /// \param StrictCheck Ensure that the calculated distance matches the |
||
| 743 | /// type-based one after all the bitcasts removal in the provided pointers. |
||
| 744 | std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, |
||
| 745 | Value *PtrB, const DataLayout &DL, |
||
| 746 | ScalarEvolution &SE, |
||
| 747 | bool StrictCheck = false, |
||
| 748 | bool CheckType = true); |
||
| 749 | |||
| 750 | /// Attempt to sort the pointers in \p VL and return the sorted indices |
||
| 751 | /// in \p SortedIndices, if reordering is required. |
||
| 752 | /// |
||
| 753 | /// Returns 'true' if sorting is legal, otherwise returns 'false'. |
||
| 754 | /// |
||
| 755 | /// For example, for a given \p VL of memory accesses in program order, a[i+4], |
||
| 756 | /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the |
||
| 757 | /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and |
||
| 758 | /// saves the mask for actual memory accesses in program order in |
||
| 759 | /// \p SortedIndices as <1,2,0,3> |
||
| 760 | bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL, |
||
| 761 | ScalarEvolution &SE, |
||
| 762 | SmallVectorImpl<unsigned> &SortedIndices); |
||
| 763 | |||
| 764 | /// Returns true if the memory operations \p A and \p B are consecutive. |
||
| 765 | /// This is a simple API that does not depend on the analysis pass. |
||
| 766 | bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, |
||
| 767 | ScalarEvolution &SE, bool CheckType = true); |
||
| 768 | |||
| 769 | class LoopAccessInfoManager { |
||
| 770 | /// The cache. |
||
| 771 | DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap; |
||
| 772 | |||
| 773 | // The used analysis passes. |
||
| 774 | ScalarEvolution &SE; |
||
| 775 | AAResults &AA; |
||
| 776 | DominatorTree &DT; |
||
| 777 | LoopInfo &LI; |
||
| 778 | const TargetLibraryInfo *TLI = nullptr; |
||
| 779 | |||
| 780 | public: |
||
| 781 | LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT, |
||
| 782 | LoopInfo &LI, const TargetLibraryInfo *TLI) |
||
| 783 | : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {} |
||
| 784 | |||
| 785 | const LoopAccessInfo &getInfo(Loop &L); |
||
| 786 | |||
| 787 | void clear() { LoopAccessInfoMap.clear(); } |
||
| 788 | }; |
||
| 789 | |||
| 790 | /// This analysis provides dependence information for the memory accesses |
||
| 791 | /// of a loop. |
||
| 792 | /// |
||
| 793 | /// It runs the analysis for a loop on demand. This can be initiated by |
||
| 794 | /// querying the loop access info via LAA::getInfo. getInfo return a |
||
| 795 | /// LoopAccessInfo object. See this class for the specifics of what information |
||
| 796 | /// is provided. |
||
| 797 | class LoopAccessLegacyAnalysis : public FunctionPass { |
||
| 798 | public: |
||
| 799 | static char ID; |
||
| 800 | |||
| 801 | LoopAccessLegacyAnalysis(); |
||
| 802 | |||
| 803 | bool runOnFunction(Function &F) override; |
||
| 804 | |||
| 805 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
| 806 | |||
| 807 | /// Return the proxy object for retrieving LoopAccessInfo for individual |
||
| 808 | /// loops. |
||
| 809 | /// |
||
| 810 | /// If there is no cached result available run the analysis. |
||
| 811 | LoopAccessInfoManager &getLAIs() { return *LAIs; } |
||
| 812 | |||
| 813 | void releaseMemory() override { |
||
| 814 | // Invalidate the cache when the pass is freed. |
||
| 815 | LAIs->clear(); |
||
| 816 | } |
||
| 817 | |||
| 818 | private: |
||
| 819 | std::unique_ptr<LoopAccessInfoManager> LAIs; |
||
| 820 | }; |
||
| 821 | |||
| 822 | /// This analysis provides dependence information for the memory |
||
| 823 | /// accesses of a loop. |
||
| 824 | /// |
||
| 825 | /// It runs the analysis for a loop on demand. This can be initiated by |
||
| 826 | /// querying the loop access info via AM.getResult<LoopAccessAnalysis>. |
||
| 827 | /// getResult return a LoopAccessInfo object. See this class for the |
||
| 828 | /// specifics of what information is provided. |
||
| 829 | class LoopAccessAnalysis |
||
| 830 | : public AnalysisInfoMixin<LoopAccessAnalysis> { |
||
| 831 | friend AnalysisInfoMixin<LoopAccessAnalysis>; |
||
| 832 | static AnalysisKey Key; |
||
| 833 | |||
| 834 | public: |
||
| 835 | typedef LoopAccessInfoManager Result; |
||
| 836 | |||
| 837 | Result run(Function &F, FunctionAnalysisManager &AM); |
||
| 838 | }; |
||
| 839 | |||
| 840 | inline Instruction *MemoryDepChecker::Dependence::getSource( |
||
| 841 | const LoopAccessInfo &LAI) const { |
||
| 842 | return LAI.getDepChecker().getMemoryInstructions()[Source]; |
||
| 843 | } |
||
| 844 | |||
| 845 | inline Instruction *MemoryDepChecker::Dependence::getDestination( |
||
| 846 | const LoopAccessInfo &LAI) const { |
||
| 847 | return LAI.getDepChecker().getMemoryInstructions()[Destination]; |
||
| 848 | } |
||
| 849 | |||
| 850 | } // End llvm namespace |
||
| 851 | |||
| 852 | #endif |