Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
///
10
/// Implements a lazy call graph analysis and related passes for the new pass
11
/// manager.
12
///
13
/// NB: This is *not* a traditional call graph! It is a graph which models both
14
/// the current calls and potential calls. As a consequence there are many
15
/// edges in this call graph that do not correspond to a 'call' or 'invoke'
16
/// instruction.
17
///
18
/// The primary use cases of this graph analysis is to facilitate iterating
19
/// across the functions of a module in ways that ensure all callees are
20
/// visited prior to a caller (given any SCC constraints), or vice versa. As
21
/// such is it particularly well suited to organizing CGSCC optimizations such
22
/// as inlining, outlining, argument promotion, etc. That is its primary use
23
/// case and motivates the design. It may not be appropriate for other
24
/// purposes. The use graph of functions or some other conservative analysis of
25
/// call instructions may be interesting for optimizations and subsequent
26
/// analyses which don't work in the context of an overly specified
27
/// potential-call-edge graph.
28
///
29
/// To understand the specific rules and nature of this call graph analysis,
30
/// see the documentation of the \c LazyCallGraph below.
31
///
32
//===----------------------------------------------------------------------===//
33
 
34
#ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
35
#define LLVM_ANALYSIS_LAZYCALLGRAPH_H
36
 
37
#include "llvm/ADT/ArrayRef.h"
38
#include "llvm/ADT/DenseMap.h"
39
#include "llvm/ADT/PointerIntPair.h"
40
#include "llvm/ADT/SetVector.h"
41
#include "llvm/ADT/SmallVector.h"
42
#include "llvm/ADT/StringRef.h"
43
#include "llvm/ADT/iterator.h"
44
#include "llvm/ADT/iterator_range.h"
45
#include "llvm/Analysis/TargetLibraryInfo.h"
46
#include "llvm/IR/PassManager.h"
47
#include "llvm/Support/Allocator.h"
48
#include "llvm/Support/raw_ostream.h"
49
#include <cassert>
50
#include <iterator>
51
#include <optional>
52
#include <string>
53
#include <utility>
54
 
55
namespace llvm {
56
 
57
class Constant;
58
class Function;
59
template <class GraphType> struct GraphTraits;
60
class Module;
61
class TargetLibraryInfo;
62
class Value;
63
 
64
/// A lazily constructed view of the call graph of a module.
65
///
66
/// With the edges of this graph, the motivating constraint that we are
67
/// attempting to maintain is that function-local optimization, CGSCC-local
68
/// optimizations, and optimizations transforming a pair of functions connected
69
/// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
70
/// DAG. That is, no optimizations will delete, remove, or add an edge such
71
/// that functions already visited in a bottom-up order of the SCC DAG are no
72
/// longer valid to have visited, or such that functions not yet visited in
73
/// a bottom-up order of the SCC DAG are not required to have already been
74
/// visited.
75
///
76
/// Within this constraint, the desire is to minimize the merge points of the
77
/// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
78
/// in the SCC DAG, the more independence there is in optimizing within it.
79
/// There is a strong desire to enable parallelization of optimizations over
80
/// the call graph, and both limited fanout and merge points will (artificially
81
/// in some cases) limit the scaling of such an effort.
82
///
83
/// To this end, graph represents both direct and any potential resolution to
84
/// an indirect call edge. Another way to think about it is that it represents
85
/// both the direct call edges and any direct call edges that might be formed
86
/// through static optimizations. Specifically, it considers taking the address
87
/// of a function to be an edge in the call graph because this might be
88
/// forwarded to become a direct call by some subsequent function-local
89
/// optimization. The result is that the graph closely follows the use-def
90
/// edges for functions. Walking "up" the graph can be done by looking at all
91
/// of the uses of a function.
92
///
93
/// The roots of the call graph are the external functions and functions
94
/// escaped into global variables. Those functions can be called from outside
95
/// of the module or via unknowable means in the IR -- we may not be able to
96
/// form even a potential call edge from a function body which may dynamically
97
/// load the function and call it.
98
///
99
/// This analysis still requires updates to remain valid after optimizations
100
/// which could potentially change the set of potential callees. The
101
/// constraints it operates under only make the traversal order remain valid.
102
///
103
/// The entire analysis must be re-computed if full interprocedural
104
/// optimizations run at any point. For example, globalopt completely
105
/// invalidates the information in this analysis.
106
///
107
/// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
108
/// it from the existing CallGraph. At some point, it is expected that this
109
/// will be the only call graph and it will be renamed accordingly.
110
class LazyCallGraph {
111
public:
112
  class Node;
113
  class EdgeSequence;
114
  class SCC;
115
  class RefSCC;
116
 
117
  /// A class used to represent edges in the call graph.
118
  ///
119
  /// The lazy call graph models both *call* edges and *reference* edges. Call
120
  /// edges are much what you would expect, and exist when there is a 'call' or
121
  /// 'invoke' instruction of some function. Reference edges are also tracked
122
  /// along side these, and exist whenever any instruction (transitively
123
  /// through its operands) references a function. All call edges are
124
  /// inherently reference edges, and so the reference graph forms a superset
125
  /// of the formal call graph.
126
  ///
127
  /// All of these forms of edges are fundamentally represented as outgoing
128
  /// edges. The edges are stored in the source node and point at the target
129
  /// node. This allows the edge structure itself to be a very compact data
130
  /// structure: essentially a tagged pointer.
131
  class Edge {
132
  public:
133
    /// The kind of edge in the graph.
134
    enum Kind : bool { Ref = false, Call = true };
135
 
136
    Edge();
137
    explicit Edge(Node &N, Kind K);
138
 
139
    /// Test whether the edge is null.
140
    ///
141
    /// This happens when an edge has been deleted. We leave the edge objects
142
    /// around but clear them.
143
    explicit operator bool() const;
144
 
145
    /// Returns the \c Kind of the edge.
146
    Kind getKind() const;
147
 
148
    /// Test whether the edge represents a direct call to a function.
149
    ///
150
    /// This requires that the edge is not null.
151
    bool isCall() const;
152
 
153
    /// Get the call graph node referenced by this edge.
154
    ///
155
    /// This requires that the edge is not null.
156
    Node &getNode() const;
157
 
158
    /// Get the function referenced by this edge.
159
    ///
160
    /// This requires that the edge is not null.
161
    Function &getFunction() const;
162
 
163
  private:
164
    friend class LazyCallGraph::EdgeSequence;
165
    friend class LazyCallGraph::RefSCC;
166
 
167
    PointerIntPair<Node *, 1, Kind> Value;
168
 
169
    void setKind(Kind K) { Value.setInt(K); }
170
  };
171
 
172
  /// The edge sequence object.
173
  ///
174
  /// This typically exists entirely within the node but is exposed as
175
  /// a separate type because a node doesn't initially have edges. An explicit
176
  /// population step is required to produce this sequence at first and it is
177
  /// then cached in the node. It is also used to represent edges entering the
178
  /// graph from outside the module to model the graph's roots.
179
  ///
180
  /// The sequence itself both iterable and indexable. The indexes remain
181
  /// stable even as the sequence mutates (including removal).
182
  class EdgeSequence {
183
    friend class LazyCallGraph;
184
    friend class LazyCallGraph::Node;
185
    friend class LazyCallGraph::RefSCC;
186
 
187
    using VectorT = SmallVector<Edge, 4>;
188
    using VectorImplT = SmallVectorImpl<Edge>;
189
 
190
  public:
191
    /// An iterator used for the edges to both entry nodes and child nodes.
192
    class iterator
193
        : public iterator_adaptor_base<iterator, VectorImplT::iterator,
194
                                       std::forward_iterator_tag> {
195
      friend class LazyCallGraph;
196
      friend class LazyCallGraph::Node;
197
 
198
      VectorImplT::iterator E;
199
 
200
      // Build the iterator for a specific position in the edge list.
201
      iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
202
          : iterator_adaptor_base(BaseI), E(E) {
203
        while (I != E && !*I)
204
          ++I;
205
      }
206
 
207
    public:
208
      iterator() = default;
209
 
210
      using iterator_adaptor_base::operator++;
211
      iterator &operator++() {
212
        do {
213
          ++I;
214
        } while (I != E && !*I);
215
        return *this;
216
      }
217
    };
218
 
219
    /// An iterator over specifically call edges.
220
    ///
221
    /// This has the same iteration properties as the \c iterator, but
222
    /// restricts itself to edges which represent actual calls.
223
    class call_iterator
224
        : public iterator_adaptor_base<call_iterator, VectorImplT::iterator,
225
                                       std::forward_iterator_tag> {
226
      friend class LazyCallGraph;
227
      friend class LazyCallGraph::Node;
228
 
229
      VectorImplT::iterator E;
230
 
231
      /// Advance the iterator to the next valid, call edge.
232
      void advanceToNextEdge() {
233
        while (I != E && (!*I || !I->isCall()))
234
          ++I;
235
      }
236
 
237
      // Build the iterator for a specific position in the edge list.
238
      call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
239
          : iterator_adaptor_base(BaseI), E(E) {
240
        advanceToNextEdge();
241
      }
242
 
243
    public:
244
      call_iterator() = default;
245
 
246
      using iterator_adaptor_base::operator++;
247
      call_iterator &operator++() {
248
        ++I;
249
        advanceToNextEdge();
250
        return *this;
251
      }
252
    };
253
 
254
    iterator begin() { return iterator(Edges.begin(), Edges.end()); }
255
    iterator end() { return iterator(Edges.end(), Edges.end()); }
256
 
257
    Edge &operator[](Node &N) {
258
      assert(EdgeIndexMap.find(&N) != EdgeIndexMap.end() && "No such edge!");
259
      auto &E = Edges[EdgeIndexMap.find(&N)->second];
260
      assert(E && "Dead or null edge!");
261
      return E;
262
    }
263
 
264
    Edge *lookup(Node &N) {
265
      auto EI = EdgeIndexMap.find(&N);
266
      if (EI == EdgeIndexMap.end())
267
        return nullptr;
268
      auto &E = Edges[EI->second];
269
      return E ? &E : nullptr;
270
    }
271
 
272
    call_iterator call_begin() {
273
      return call_iterator(Edges.begin(), Edges.end());
274
    }
275
    call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); }
276
 
277
    iterator_range<call_iterator> calls() {
278
      return make_range(call_begin(), call_end());
279
    }
280
 
281
    bool empty() {
282
      for (auto &E : Edges)
283
        if (E)
284
          return false;
285
 
286
      return true;
287
    }
288
 
289
  private:
290
    VectorT Edges;
291
    DenseMap<Node *, int> EdgeIndexMap;
292
 
293
    EdgeSequence() = default;
294
 
295
    /// Internal helper to insert an edge to a node.
296
    void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
297
 
298
    /// Internal helper to change an edge kind.
299
    void setEdgeKind(Node &ChildN, Edge::Kind EK);
300
 
301
    /// Internal helper to remove the edge to the given function.
302
    bool removeEdgeInternal(Node &ChildN);
303
  };
304
 
305
  /// A node in the call graph.
306
  ///
307
  /// This represents a single node. Its primary roles are to cache the list of
308
  /// callees, de-duplicate and provide fast testing of whether a function is a
309
  /// callee, and facilitate iteration of child nodes in the graph.
310
  ///
311
  /// The node works much like an optional in order to lazily populate the
312
  /// edges of each node. Until populated, there are no edges. Once populated,
313
  /// you can access the edges by dereferencing the node or using the `->`
314
  /// operator as if the node was an `std::optional<EdgeSequence>`.
315
  class Node {
316
    friend class LazyCallGraph;
317
    friend class LazyCallGraph::RefSCC;
318
 
319
  public:
320
    LazyCallGraph &getGraph() const { return *G; }
321
 
322
    Function &getFunction() const { return *F; }
323
 
324
    StringRef getName() const { return F->getName(); }
325
 
326
    /// Equality is defined as address equality.
327
    bool operator==(const Node &N) const { return this == &N; }
328
    bool operator!=(const Node &N) const { return !operator==(N); }
329
 
330
    /// Tests whether the node has been populated with edges.
331
    bool isPopulated() const { return Edges.has_value(); }
332
 
333
    /// Tests whether this is actually a dead node and no longer valid.
334
    ///
335
    /// Users rarely interact with nodes in this state and other methods are
336
    /// invalid. This is used to model a node in an edge list where the
337
    /// function has been completely removed.
338
    bool isDead() const {
339
      assert(!G == !F &&
340
             "Both graph and function pointers should be null or non-null.");
341
      return !G;
342
    }
343
 
344
    // We allow accessing the edges by dereferencing or using the arrow
345
    // operator, essentially wrapping the internal optional.
346
    EdgeSequence &operator*() const {
347
      // Rip const off because the node itself isn't changing here.
348
      return const_cast<EdgeSequence &>(*Edges);
349
    }
350
    EdgeSequence *operator->() const { return &**this; }
351
 
352
    /// Populate the edges of this node if necessary.
353
    ///
354
    /// The first time this is called it will populate the edges for this node
355
    /// in the graph. It does this by scanning the underlying function, so once
356
    /// this is done, any changes to that function must be explicitly reflected
357
    /// in updates to the graph.
358
    ///
359
    /// \returns the populated \c EdgeSequence to simplify walking it.
360
    ///
361
    /// This will not update or re-scan anything if called repeatedly. Instead,
362
    /// the edge sequence is cached and returned immediately on subsequent
363
    /// calls.
364
    EdgeSequence &populate() {
365
      if (Edges)
366
        return *Edges;
367
 
368
      return populateSlow();
369
    }
370
 
371
  private:
372
    LazyCallGraph *G;
373
    Function *F;
374
 
375
    // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
376
    // stored directly within the node. These are both '-1' when nodes are part
377
    // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
378
    int DFSNumber = 0;
379
    int LowLink = 0;
380
 
381
    std::optional<EdgeSequence> Edges;
382
 
383
    /// Basic constructor implements the scanning of F into Edges and
384
    /// EdgeIndexMap.
385
    Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {}
386
 
387
    /// Implementation of the scan when populating.
388
    EdgeSequence &populateSlow();
389
 
390
    /// Internal helper to directly replace the function with a new one.
391
    ///
392
    /// This is used to facilitate transformations which need to replace the
393
    /// formal Function object but directly move the body and users from one to
394
    /// the other.
395
    void replaceFunction(Function &NewF);
396
 
397
    void clear() { Edges.reset(); }
398
 
399
    /// Print the name of this node's function.
400
    friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
401
      return OS << N.F->getName();
402
    }
403
 
404
    /// Dump the name of this node's function to stderr.
405
    void dump() const;
406
  };
407
 
408
  /// An SCC of the call graph.
409
  ///
410
  /// This represents a Strongly Connected Component of the direct call graph
411
  /// -- ignoring indirect calls and function references. It stores this as
412
  /// a collection of call graph nodes. While the order of nodes in the SCC is
413
  /// stable, it is not any particular order.
414
  ///
415
  /// The SCCs are nested within a \c RefSCC, see below for details about that
416
  /// outer structure. SCCs do not support mutation of the call graph, that
417
  /// must be done through the containing \c RefSCC in order to fully reason
418
  /// about the ordering and connections of the graph.
419
  class LLVM_EXTERNAL_VISIBILITY SCC {
420
    friend class LazyCallGraph;
421
    friend class LazyCallGraph::Node;
422
 
423
    RefSCC *OuterRefSCC;
424
    SmallVector<Node *, 1> Nodes;
425
 
426
    template <typename NodeRangeT>
427
    SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
428
        : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
429
 
430
    void clear() {
431
      OuterRefSCC = nullptr;
432
      Nodes.clear();
433
    }
434
 
435
    /// Print a short description useful for debugging or logging.
436
    ///
437
    /// We print the function names in the SCC wrapped in '()'s and skipping
438
    /// the middle functions if there are a large number.
439
    //
440
    // Note: this is defined inline to dodge issues with GCC's interpretation
441
    // of enclosing namespaces for friend function declarations.
442
    friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
443
      OS << '(';
444
      int I = 0;
445
      for (LazyCallGraph::Node &N : C) {
446
        if (I > 0)
447
          OS << ", ";
448
        // Elide the inner elements if there are too many.
449
        if (I > 8) {
450
          OS << "..., " << *C.Nodes.back();
451
          break;
452
        }
453
        OS << N;
454
        ++I;
455
      }
456
      OS << ')';
457
      return OS;
458
    }
459
 
460
    /// Dump a short description of this SCC to stderr.
461
    void dump() const;
462
 
463
#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
464
    /// Verify invariants about the SCC.
465
    ///
466
    /// This will attempt to validate all of the basic invariants within an
467
    /// SCC, but not that it is a strongly connected component per se.
468
    /// Primarily useful while building and updating the graph to check that
469
    /// basic properties are in place rather than having inexplicable crashes
470
    /// later.
471
    void verify();
472
#endif
473
 
474
  public:
475
    using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>;
476
 
477
    iterator begin() const { return Nodes.begin(); }
478
    iterator end() const { return Nodes.end(); }
479
 
480
    int size() const { return Nodes.size(); }
481
 
482
    RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
483
 
484
    /// Test if this SCC is a parent of \a C.
485
    ///
486
    /// Note that this is linear in the number of edges departing the current
487
    /// SCC.
488
    bool isParentOf(const SCC &C) const;
489
 
490
    /// Test if this SCC is an ancestor of \a C.
491
    ///
492
    /// Note that in the worst case this is linear in the number of edges
493
    /// departing the current SCC and every SCC in the entire graph reachable
494
    /// from this SCC. Thus this very well may walk every edge in the entire
495
    /// call graph! Do not call this in a tight loop!
496
    bool isAncestorOf(const SCC &C) const;
497
 
498
    /// Test if this SCC is a child of \a C.
499
    ///
500
    /// See the comments for \c isParentOf for detailed notes about the
501
    /// complexity of this routine.
502
    bool isChildOf(const SCC &C) const { return C.isParentOf(*this); }
503
 
504
    /// Test if this SCC is a descendant of \a C.
505
    ///
506
    /// See the comments for \c isParentOf for detailed notes about the
507
    /// complexity of this routine.
508
    bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); }
509
 
510
    /// Provide a short name by printing this SCC to a std::string.
511
    ///
512
    /// This copes with the fact that we don't have a name per se for an SCC
513
    /// while still making the use of this in debugging and logging useful.
514
    std::string getName() const {
515
      std::string Name;
516
      raw_string_ostream OS(Name);
517
      OS << *this;
518
      OS.flush();
519
      return Name;
520
    }
521
  };
522
 
523
  /// A RefSCC of the call graph.
524
  ///
525
  /// This models a Strongly Connected Component of function reference edges in
526
  /// the call graph. As opposed to actual SCCs, these can be used to scope
527
  /// subgraphs of the module which are independent from other subgraphs of the
528
  /// module because they do not reference it in any way. This is also the unit
529
  /// where we do mutation of the graph in order to restrict mutations to those
530
  /// which don't violate this independence.
531
  ///
532
  /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
533
  /// are necessarily within some actual SCC that nests within it. Since
534
  /// a direct call *is* a reference, there will always be at least one RefSCC
535
  /// around any SCC.
536
  ///
537
  /// Spurious ref edges, meaning ref edges that still exist in the call graph
538
  /// even though the corresponding IR reference no longer exists, are allowed.
539
  /// This is mostly to support argument promotion, which can modify a caller to
540
  /// no longer pass a function. The only place that needs to specially handle
541
  /// this is deleting a dead function/node, otherwise the dead ref edges are
542
  /// automatically removed when visiting the function/node no longer containing
543
  /// the ref edge.
544
  class RefSCC {
545
    friend class LazyCallGraph;
546
    friend class LazyCallGraph::Node;
547
 
548
    LazyCallGraph *G;
549
 
550
    /// A postorder list of the inner SCCs.
551
    SmallVector<SCC *, 4> SCCs;
552
 
553
    /// A map from SCC to index in the postorder list.
554
    SmallDenseMap<SCC *, int, 4> SCCIndices;
555
 
556
    /// Fast-path constructor. RefSCCs should instead be constructed by calling
557
    /// formRefSCCFast on the graph itself.
558
    RefSCC(LazyCallGraph &G);
559
 
560
    void clear() {
561
      SCCs.clear();
562
      SCCIndices.clear();
563
    }
564
 
565
    /// Print a short description useful for debugging or logging.
566
    ///
567
    /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
568
    /// there are a large number.
569
    //
570
    // Note: this is defined inline to dodge issues with GCC's interpretation
571
    // of enclosing namespaces for friend function declarations.
572
    friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
573
      OS << '[';
574
      int I = 0;
575
      for (LazyCallGraph::SCC &C : RC) {
576
        if (I > 0)
577
          OS << ", ";
578
        // Elide the inner elements if there are too many.
579
        if (I > 4) {
580
          OS << "..., " << *RC.SCCs.back();
581
          break;
582
        }
583
        OS << C;
584
        ++I;
585
      }
586
      OS << ']';
587
      return OS;
588
    }
589
 
590
    /// Dump a short description of this RefSCC to stderr.
591
    void dump() const;
592
 
593
#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
594
    /// Verify invariants about the RefSCC and all its SCCs.
595
    ///
596
    /// This will attempt to validate all of the invariants *within* the
597
    /// RefSCC, but not that it is a strongly connected component of the larger
598
    /// graph. This makes it useful even when partially through an update.
599
    ///
600
    /// Invariants checked:
601
    /// - SCCs and their indices match.
602
    /// - The SCCs list is in fact in post-order.
603
    void verify();
604
#endif
605
 
606
  public:
607
    using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>;
608
    using range = iterator_range<iterator>;
609
    using parent_iterator =
610
        pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>;
611
 
612
    iterator begin() const { return SCCs.begin(); }
613
    iterator end() const { return SCCs.end(); }
614
 
615
    ssize_t size() const { return SCCs.size(); }
616
 
617
    SCC &operator[](int Idx) { return *SCCs[Idx]; }
618
 
619
    iterator find(SCC &C) const {
620
      return SCCs.begin() + SCCIndices.find(&C)->second;
621
    }
622
 
623
    /// Test if this RefSCC is a parent of \a RC.
624
    ///
625
    /// CAUTION: This method walks every edge in the \c RefSCC, it can be very
626
    /// expensive.
627
    bool isParentOf(const RefSCC &RC) const;
628
 
629
    /// Test if this RefSCC is an ancestor of \a RC.
630
    ///
631
    /// CAUTION: This method walks the directed graph of edges as far as
632
    /// necessary to find a possible path to the argument. In the worst case
633
    /// this may walk the entire graph and can be extremely expensive.
634
    bool isAncestorOf(const RefSCC &RC) const;
635
 
636
    /// Test if this RefSCC is a child of \a RC.
637
    ///
638
    /// CAUTION: This method walks every edge in the argument \c RefSCC, it can
639
    /// be very expensive.
640
    bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); }
641
 
642
    /// Test if this RefSCC is a descendant of \a RC.
643
    ///
644
    /// CAUTION: This method walks the directed graph of edges as far as
645
    /// necessary to find a possible path from the argument. In the worst case
646
    /// this may walk the entire graph and can be extremely expensive.
647
    bool isDescendantOf(const RefSCC &RC) const {
648
      return RC.isAncestorOf(*this);
649
    }
650
 
651
    /// Provide a short name by printing this RefSCC to a std::string.
652
    ///
653
    /// This copes with the fact that we don't have a name per se for an RefSCC
654
    /// while still making the use of this in debugging and logging useful.
655
    std::string getName() const {
656
      std::string Name;
657
      raw_string_ostream OS(Name);
658
      OS << *this;
659
      OS.flush();
660
      return Name;
661
    }
662
 
663
    ///@{
664
    /// \name Mutation API
665
    ///
666
    /// These methods provide the core API for updating the call graph in the
667
    /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs.
668
    ///
669
    /// Note that these methods sometimes have complex runtimes, so be careful
670
    /// how you call them.
671
 
672
    /// Make an existing internal ref edge into a call edge.
673
    ///
674
    /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
675
    /// If that happens, the optional callback \p MergedCB will be invoked (if
676
    /// provided) on the SCCs being merged away prior to actually performing
677
    /// the merge. Note that this will never include the target SCC as that
678
    /// will be the SCC functions are merged into to resolve the cycle. Once
679
    /// this function returns, these merged SCCs are not in a valid state but
680
    /// the pointers will remain valid until destruction of the parent graph
681
    /// instance for the purpose of clearing cached information. This function
682
    /// also returns 'true' if a cycle was formed and some SCCs merged away as
683
    /// a convenience.
684
    ///
685
    /// After this operation, both SourceN's SCC and TargetN's SCC may move
686
    /// position within this RefSCC's postorder list. Any SCCs merged are
687
    /// merged into the TargetN's SCC in order to preserve reachability analyses
688
    /// which took place on that SCC.
689
    bool switchInternalEdgeToCall(
690
        Node &SourceN, Node &TargetN,
691
        function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {});
692
 
693
    /// Make an existing internal call edge between separate SCCs into a ref
694
    /// edge.
695
    ///
696
    /// If SourceN and TargetN in separate SCCs within this RefSCC, changing
697
    /// the call edge between them to a ref edge is a trivial operation that
698
    /// does not require any structural changes to the call graph.
699
    void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN);
700
 
701
    /// Make an existing internal call edge within a single SCC into a ref
702
    /// edge.
703
    ///
704
    /// Since SourceN and TargetN are part of a single SCC, this SCC may be
705
    /// split up due to breaking a cycle in the call edges that formed it. If
706
    /// that happens, then this routine will insert new SCCs into the postorder
707
    /// list *before* the SCC of TargetN (previously the SCC of both). This
708
    /// preserves postorder as the TargetN can reach all of the other nodes by
709
    /// definition of previously being in a single SCC formed by the cycle from
710
    /// SourceN to TargetN.
711
    ///
712
    /// The newly added SCCs are added *immediately* and contiguously
713
    /// prior to the TargetN SCC and return the range covering the new SCCs in
714
    /// the RefSCC's postorder sequence. You can directly iterate the returned
715
    /// range to observe all of the new SCCs in postorder.
716
    ///
717
    /// Note that if SourceN and TargetN are in separate SCCs, the simpler
718
    /// routine `switchTrivialInternalEdgeToRef` should be used instead.
719
    iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN,
720
                                                     Node &TargetN);
721
 
722
    /// Make an existing outgoing ref edge into a call edge.
723
    ///
724
    /// Note that this is trivial as there are no cyclic impacts and there
725
    /// remains a reference edge.
726
    void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
727
 
728
    /// Make an existing outgoing call edge into a ref edge.
729
    ///
730
    /// This is trivial as there are no cyclic impacts and there remains
731
    /// a reference edge.
732
    void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
733
 
734
    /// Insert a ref edge from one node in this RefSCC to another in this
735
    /// RefSCC.
736
    ///
737
    /// This is always a trivial operation as it doesn't change any part of the
738
    /// graph structure besides connecting the two nodes.
739
    ///
740
    /// Note that we don't support directly inserting internal *call* edges
741
    /// because that could change the graph structure and requires returning
742
    /// information about what became invalid. As a consequence, the pattern
743
    /// should be to first insert the necessary ref edge, and then to switch it
744
    /// to a call edge if needed and handle any invalidation that results. See
745
    /// the \c switchInternalEdgeToCall routine for details.
746
    void insertInternalRefEdge(Node &SourceN, Node &TargetN);
747
 
748
    /// Insert an edge whose parent is in this RefSCC and child is in some
749
    /// child RefSCC.
750
    ///
751
    /// There must be an existing path from the \p SourceN to the \p TargetN.
752
    /// This operation is inexpensive and does not change the set of SCCs and
753
    /// RefSCCs in the graph.
754
    void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
755
 
756
    /// Insert an edge whose source is in a descendant RefSCC and target is in
757
    /// this RefSCC.
758
    ///
759
    /// There must be an existing path from the target to the source in this
760
    /// case.
761
    ///
762
    /// NB! This is has the potential to be a very expensive function. It
763
    /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
764
    /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
765
    /// participate in the cycle can in the worst case require traversing every
766
    /// RefSCC in the graph. Every attempt is made to avoid that, but passes
767
    /// must still exercise caution calling this routine repeatedly.
768
    ///
769
    /// Also note that this can only insert ref edges. In order to insert
770
    /// a call edge, first insert a ref edge and then switch it to a call edge.
771
    /// These are intentionally kept as separate interfaces because each step
772
    /// of the operation invalidates a different set of data structures.
773
    ///
774
    /// This returns all the RefSCCs which were merged into the this RefSCC
775
    /// (the target's). This allows callers to invalidate any cached
776
    /// information.
777
    ///
778
    /// FIXME: We could possibly optimize this quite a bit for cases where the
779
    /// caller and callee are very nearby in the graph. See comments in the
780
    /// implementation for details, but that use case might impact users.
781
    SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
782
                                                   Node &TargetN);
783
 
784
    /// Remove an edge whose source is in this RefSCC and target is *not*.
785
    ///
786
    /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
787
    /// from this SCC have been fully explored by any in-flight DFS graph
788
    /// formation, so this is always safe to call once you have the source
789
    /// RefSCC.
790
    ///
791
    /// This operation does not change the cyclic structure of the graph and so
792
    /// is very inexpensive. It may change the connectivity graph of the SCCs
793
    /// though, so be careful calling this while iterating over them.
794
    void removeOutgoingEdge(Node &SourceN, Node &TargetN);
795
 
796
    /// Remove a list of ref edges which are entirely within this RefSCC.
797
    ///
798
    /// Both the \a SourceN and all of the \a TargetNs must be within this
799
    /// RefSCC. Removing these edges may break cycles that form this RefSCC and
800
    /// thus this operation may change the RefSCC graph significantly. In
801
    /// particular, this operation will re-form new RefSCCs based on the
802
    /// remaining connectivity of the graph. The following invariants are
803
    /// guaranteed to hold after calling this method:
804
    ///
805
    /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact
806
    ///    and in the graph. No new RefSCCs are built.
807
    /// 2) Otherwise, this RefSCC will be dead after this call and no longer in
808
    ///    the graph or the postorder traversal of the call graph. Any iterator
809
    ///    pointing at this RefSCC will become invalid.
810
    /// 3) All newly formed RefSCCs will be returned and the order of the
811
    ///    RefSCCs returned will be a valid postorder traversal of the new
812
    ///    RefSCCs.
813
    /// 4) No RefSCC other than this RefSCC has its member set changed (this is
814
    ///    inherent in the definition of removing such an edge).
815
    ///
816
    /// These invariants are very important to ensure that we can build
817
    /// optimization pipelines on top of the CGSCC pass manager which
818
    /// intelligently update the RefSCC graph without invalidating other parts
819
    /// of the RefSCC graph.
820
    ///
821
    /// Note that we provide no routine to remove a *call* edge. Instead, you
822
    /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
823
    /// This split API is intentional as each of these two steps can invalidate
824
    /// a different aspect of the graph structure and needs to have the
825
    /// invalidation handled independently.
826
    ///
827
    /// The runtime complexity of this method is, in the worst case, O(V+E)
828
    /// where V is the number of nodes in this RefSCC and E is the number of
829
    /// edges leaving the nodes in this RefSCC. Note that E includes both edges
830
    /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
831
    /// effort has been made to minimize the overhead of common cases such as
832
    /// self-edges and edge removals which result in a spanning tree with no
833
    /// more cycles.
834
    [[nodiscard]] SmallVector<RefSCC *, 1>
835
    removeInternalRefEdge(Node &SourceN, ArrayRef<Node *> TargetNs);
836
 
837
    /// A convenience wrapper around the above to handle trivial cases of
838
    /// inserting a new call edge.
839
    ///
840
    /// This is trivial whenever the target is in the same SCC as the source or
841
    /// the edge is an outgoing edge to some descendant SCC. In these cases
842
    /// there is no change to the cyclic structure of SCCs or RefSCCs.
843
    ///
844
    /// To further make calling this convenient, it also handles inserting
845
    /// already existing edges.
846
    void insertTrivialCallEdge(Node &SourceN, Node &TargetN);
847
 
848
    /// A convenience wrapper around the above to handle trivial cases of
849
    /// inserting a new ref edge.
850
    ///
851
    /// This is trivial whenever the target is in the same RefSCC as the source
852
    /// or the edge is an outgoing edge to some descendant RefSCC. In these
853
    /// cases there is no change to the cyclic structure of the RefSCCs.
854
    ///
855
    /// To further make calling this convenient, it also handles inserting
856
    /// already existing edges.
857
    void insertTrivialRefEdge(Node &SourceN, Node &TargetN);
858
 
859
    /// Directly replace a node's function with a new function.
860
    ///
861
    /// This should be used when moving the body and users of a function to
862
    /// a new formal function object but not otherwise changing the call graph
863
    /// structure in any way.
864
    ///
865
    /// It requires that the old function in the provided node have zero uses
866
    /// and the new function must have calls and references to it establishing
867
    /// an equivalent graph.
868
    void replaceNodeFunction(Node &N, Function &NewF);
869
 
870
    ///@}
871
  };
872
 
873
  /// A post-order depth-first RefSCC iterator over the call graph.
874
  ///
875
  /// This iterator walks the cached post-order sequence of RefSCCs. However,
876
  /// it trades stability for flexibility. It is restricted to a forward
877
  /// iterator but will survive mutations which insert new RefSCCs and continue
878
  /// to point to the same RefSCC even if it moves in the post-order sequence.
879
  class postorder_ref_scc_iterator
880
      : public iterator_facade_base<postorder_ref_scc_iterator,
881
                                    std::forward_iterator_tag, RefSCC> {
882
    friend class LazyCallGraph;
883
    friend class LazyCallGraph::Node;
884
 
885
    /// Nonce type to select the constructor for the end iterator.
886
    struct IsAtEndT {};
887
 
888
    LazyCallGraph *G;
889
    RefSCC *RC = nullptr;
890
 
891
    /// Build the begin iterator for a node.
892
    postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) {
893
      incrementUntilNonEmptyRefSCC();
894
    }
895
 
896
    /// Build the end iterator for a node. This is selected purely by overload.
897
    postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {}
898
 
899
    /// Get the post-order RefSCC at the given index of the postorder walk,
900
    /// populating it if necessary.
901
    static RefSCC *getRC(LazyCallGraph &G, int Index) {
902
      if (Index == (int)G.PostOrderRefSCCs.size())
903
        // We're at the end.
904
        return nullptr;
905
 
906
      return G.PostOrderRefSCCs[Index];
907
    }
908
 
909
    // Keep incrementing until RC is non-empty (or null).
910
    void incrementUntilNonEmptyRefSCC() {
911
      while (RC && RC->size() == 0)
912
        increment();
913
    }
914
 
915
    void increment() {
916
      assert(RC && "Cannot increment the end iterator!");
917
      RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1);
918
    }
919
 
920
  public:
921
    bool operator==(const postorder_ref_scc_iterator &Arg) const {
922
      return G == Arg.G && RC == Arg.RC;
923
    }
924
 
925
    reference operator*() const { return *RC; }
926
 
927
    using iterator_facade_base::operator++;
928
    postorder_ref_scc_iterator &operator++() {
929
      increment();
930
      incrementUntilNonEmptyRefSCC();
931
      return *this;
932
    }
933
  };
934
 
935
  /// Construct a graph for the given module.
936
  ///
937
  /// This sets up the graph and computes all of the entry points of the graph.
938
  /// No function definitions are scanned until their nodes in the graph are
939
  /// requested during traversal.
940
  LazyCallGraph(Module &M,
941
                function_ref<TargetLibraryInfo &(Function &)> GetTLI);
942
 
943
  LazyCallGraph(LazyCallGraph &&G);
944
  LazyCallGraph &operator=(LazyCallGraph &&RHS);
945
 
946
  bool invalidate(Module &, const PreservedAnalyses &PA,
947
                  ModuleAnalysisManager::Invalidator &);
948
 
949
  EdgeSequence::iterator begin() { return EntryEdges.begin(); }
950
  EdgeSequence::iterator end() { return EntryEdges.end(); }
951
 
952
  void buildRefSCCs();
953
 
954
  postorder_ref_scc_iterator postorder_ref_scc_begin() {
955
    if (!EntryEdges.empty())
956
      assert(!PostOrderRefSCCs.empty() &&
957
             "Must form RefSCCs before iterating them!");
958
    return postorder_ref_scc_iterator(*this);
959
  }
960
  postorder_ref_scc_iterator postorder_ref_scc_end() {
961
    if (!EntryEdges.empty())
962
      assert(!PostOrderRefSCCs.empty() &&
963
             "Must form RefSCCs before iterating them!");
964
    return postorder_ref_scc_iterator(*this,
965
                                      postorder_ref_scc_iterator::IsAtEndT());
966
  }
967
 
968
  iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
969
    return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
970
  }
971
 
972
  /// Lookup a function in the graph which has already been scanned and added.
973
  Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
974
 
975
  /// Lookup a function's SCC in the graph.
976
  ///
977
  /// \returns null if the function hasn't been assigned an SCC via the RefSCC
978
  /// iterator walk.
979
  SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
980
 
981
  /// Lookup a function's RefSCC in the graph.
982
  ///
983
  /// \returns null if the function hasn't been assigned a RefSCC via the
984
  /// RefSCC iterator walk.
985
  RefSCC *lookupRefSCC(Node &N) const {
986
    if (SCC *C = lookupSCC(N))
987
      return &C->getOuterRefSCC();
988
 
989
    return nullptr;
990
  }
991
 
992
  /// Get a graph node for a given function, scanning it to populate the graph
993
  /// data as necessary.
994
  Node &get(Function &F) {
995
    Node *&N = NodeMap[&F];
996
    if (N)
997
      return *N;
998
 
999
    return insertInto(F, N);
1000
  }
1001
 
1002
  /// Get the sequence of known and defined library functions.
1003
  ///
1004
  /// These functions, because they are known to LLVM, can have calls
1005
  /// introduced out of thin air from arbitrary IR.
1006
  ArrayRef<Function *> getLibFunctions() const {
1007
    return LibFunctions.getArrayRef();
1008
  }
1009
 
1010
  /// Test whether a function is a known and defined library function tracked by
1011
  /// the call graph.
1012
  ///
1013
  /// Because these functions are known to LLVM they are specially modeled in
1014
  /// the call graph and even when all IR-level references have been removed
1015
  /// remain active and reachable.
1016
  bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
1017
 
1018
  ///@{
1019
  /// \name Pre-SCC Mutation API
1020
  ///
1021
  /// These methods are only valid to call prior to forming any SCCs for this
1022
  /// call graph. They can be used to update the core node-graph during
1023
  /// a node-based inorder traversal that precedes any SCC-based traversal.
1024
  ///
1025
  /// Once you begin manipulating a call graph's SCCs, most mutation of the
1026
  /// graph must be performed via a RefSCC method. There are some exceptions
1027
  /// below.
1028
 
1029
  /// Update the call graph after inserting a new edge.
1030
  void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
1031
 
1032
  /// Update the call graph after inserting a new edge.
1033
  void insertEdge(Function &Source, Function &Target, Edge::Kind EK) {
1034
    return insertEdge(get(Source), get(Target), EK);
1035
  }
1036
 
1037
  /// Update the call graph after deleting an edge.
1038
  void removeEdge(Node &SourceN, Node &TargetN);
1039
 
1040
  /// Update the call graph after deleting an edge.
1041
  void removeEdge(Function &Source, Function &Target) {
1042
    return removeEdge(get(Source), get(Target));
1043
  }
1044
 
1045
  ///@}
1046
 
1047
  ///@{
1048
  /// \name General Mutation API
1049
  ///
1050
  /// There are a very limited set of mutations allowed on the graph as a whole
1051
  /// once SCCs have started to be formed. These routines have strict contracts
1052
  /// but may be called at any point.
1053
 
1054
  /// Remove a dead function from the call graph (typically to delete it).
1055
  ///
1056
  /// Note that the function must have an empty use list, and the call graph
1057
  /// must be up-to-date prior to calling this. That means it is by itself in
1058
  /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural
1059
  /// changes result from calling this routine other than potentially removing
1060
  /// entry points into the call graph.
1061
  ///
1062
  /// If SCC formation has begun, this function must not be part of the current
1063
  /// DFS in order to call this safely. Typically, the function will have been
1064
  /// fully visited by the DFS prior to calling this routine.
1065
  void removeDeadFunction(Function &F);
1066
 
1067
  /// Add a new function split/outlined from an existing function.
1068
  ///
1069
  /// The new function may only reference other functions that the original
1070
  /// function did.
1071
  ///
1072
  /// The original function must reference (either directly or indirectly) the
1073
  /// new function.
1074
  ///
1075
  /// The new function may also reference the original function.
1076
  /// It may end up in a parent SCC in the case that the original function's
1077
  /// edge to the new function is a ref edge, and the edge back is a call edge.
1078
  void addSplitFunction(Function &OriginalFunction, Function &NewFunction);
1079
 
1080
  /// Add new ref-recursive functions split/outlined from an existing function.
1081
  ///
1082
  /// The new functions may only reference other functions that the original
1083
  /// function did. The new functions may reference (not call) the original
1084
  /// function.
1085
  ///
1086
  /// The original function must reference (not call) all new functions.
1087
  /// All new functions must reference (not call) each other.
1088
  void addSplitRefRecursiveFunctions(Function &OriginalFunction,
1089
                                     ArrayRef<Function *> NewFunctions);
1090
 
1091
  ///@}
1092
 
1093
  ///@{
1094
  /// \name Static helpers for code doing updates to the call graph.
1095
  ///
1096
  /// These helpers are used to implement parts of the call graph but are also
1097
  /// useful to code doing updates or otherwise wanting to walk the IR in the
1098
  /// same patterns as when we build the call graph.
1099
 
1100
  /// Recursively visits the defined functions whose address is reachable from
1101
  /// every constant in the \p Worklist.
1102
  ///
1103
  /// Doesn't recurse through any constants already in the \p Visited set, and
1104
  /// updates that set with every constant visited.
1105
  ///
1106
  /// For each defined function, calls \p Callback with that function.
1107
  static void visitReferences(SmallVectorImpl<Constant *> &Worklist,
1108
                              SmallPtrSetImpl<Constant *> &Visited,
1109
                              function_ref<void(Function &)> Callback);
1110
 
1111
  ///@}
1112
 
1113
private:
1114
  using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator;
1115
  using node_stack_range = iterator_range<node_stack_iterator>;
1116
 
1117
  /// Allocator that holds all the call graph nodes.
1118
  SpecificBumpPtrAllocator<Node> BPA;
1119
 
1120
  /// Maps function->node for fast lookup.
1121
  DenseMap<const Function *, Node *> NodeMap;
1122
 
1123
  /// The entry edges into the graph.
1124
  ///
1125
  /// These edges are from "external" sources. Put another way, they
1126
  /// escape at the module scope.
1127
  EdgeSequence EntryEdges;
1128
 
1129
  /// Allocator that holds all the call graph SCCs.
1130
  SpecificBumpPtrAllocator<SCC> SCCBPA;
1131
 
1132
  /// Maps Function -> SCC for fast lookup.
1133
  DenseMap<Node *, SCC *> SCCMap;
1134
 
1135
  /// Allocator that holds all the call graph RefSCCs.
1136
  SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
1137
 
1138
  /// The post-order sequence of RefSCCs.
1139
  ///
1140
  /// This list is lazily formed the first time we walk the graph.
1141
  SmallVector<RefSCC *, 16> PostOrderRefSCCs;
1142
 
1143
  /// A map from RefSCC to the index for it in the postorder sequence of
1144
  /// RefSCCs.
1145
  DenseMap<RefSCC *, int> RefSCCIndices;
1146
 
1147
  /// Defined functions that are also known library functions which the
1148
  /// optimizer can reason about and therefore might introduce calls to out of
1149
  /// thin air.
1150
  SmallSetVector<Function *, 4> LibFunctions;
1151
 
1152
  /// Helper to insert a new function, with an already looked-up entry in
1153
  /// the NodeMap.
1154
  Node &insertInto(Function &F, Node *&MappedN);
1155
 
1156
  /// Helper to initialize a new node created outside of creating SCCs and add
1157
  /// it to the NodeMap if necessary. For example, useful when a function is
1158
  /// split.
1159
  Node &initNode(Function &F);
1160
 
1161
  /// Helper to update pointers back to the graph object during moves.
1162
  void updateGraphPtrs();
1163
 
1164
  /// Allocates an SCC and constructs it using the graph allocator.
1165
  ///
1166
  /// The arguments are forwarded to the constructor.
1167
  template <typename... Ts> SCC *createSCC(Ts &&...Args) {
1168
    return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
1169
  }
1170
 
1171
  /// Allocates a RefSCC and constructs it using the graph allocator.
1172
  ///
1173
  /// The arguments are forwarded to the constructor.
1174
  template <typename... Ts> RefSCC *createRefSCC(Ts &&...Args) {
1175
    return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
1176
  }
1177
 
1178
  /// Common logic for building SCCs from a sequence of roots.
1179
  ///
1180
  /// This is a very generic implementation of the depth-first walk and SCC
1181
  /// formation algorithm. It uses a generic sequence of roots and generic
1182
  /// callbacks for each step. This is designed to be used to implement both
1183
  /// the RefSCC formation and SCC formation with shared logic.
1184
  ///
1185
  /// Currently this is a relatively naive implementation of Tarjan's DFS
1186
  /// algorithm to form the SCCs.
1187
  ///
1188
  /// FIXME: We should consider newer variants such as Nuutila.
1189
  template <typename RootsT, typename GetBeginT, typename GetEndT,
1190
            typename GetNodeT, typename FormSCCCallbackT>
1191
  static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1192
                               GetEndT &&GetEnd, GetNodeT &&GetNode,
1193
                               FormSCCCallbackT &&FormSCC);
1194
 
1195
  /// Build the SCCs for a RefSCC out of a list of nodes.
1196
  void buildSCCs(RefSCC &RC, node_stack_range Nodes);
1197
 
1198
  /// Get the index of a RefSCC within the postorder traversal.
1199
  ///
1200
  /// Requires that this RefSCC is a valid one in the (perhaps partial)
1201
  /// postorder traversed part of the graph.
1202
  int getRefSCCIndex(RefSCC &RC) {
1203
    auto IndexIt = RefSCCIndices.find(&RC);
1204
    assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!");
1205
    assert(PostOrderRefSCCs[IndexIt->second] == &RC &&
1206
           "Index does not point back at RC!");
1207
    return IndexIt->second;
1208
  }
1209
};
1210
 
1211
inline LazyCallGraph::Edge::Edge() = default;
1212
inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
1213
 
1214
inline LazyCallGraph::Edge::operator bool() const {
1215
  return Value.getPointer() && !Value.getPointer()->isDead();
1216
}
1217
 
1218
inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const {
1219
  assert(*this && "Queried a null edge!");
1220
  return Value.getInt();
1221
}
1222
 
1223
inline bool LazyCallGraph::Edge::isCall() const {
1224
  assert(*this && "Queried a null edge!");
1225
  return getKind() == Call;
1226
}
1227
 
1228
inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const {
1229
  assert(*this && "Queried a null edge!");
1230
  return *Value.getPointer();
1231
}
1232
 
1233
inline Function &LazyCallGraph::Edge::getFunction() const {
1234
  assert(*this && "Queried a null edge!");
1235
  return getNode().getFunction();
1236
}
1237
 
1238
// Provide GraphTraits specializations for call graphs.
1239
template <> struct GraphTraits<LazyCallGraph::Node *> {
1240
  using NodeRef = LazyCallGraph::Node *;
1241
  using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1242
 
1243
  static NodeRef getEntryNode(NodeRef N) { return N; }
1244
  static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1245
  static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1246
};
1247
template <> struct GraphTraits<LazyCallGraph *> {
1248
  using NodeRef = LazyCallGraph::Node *;
1249
  using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1250
 
1251
  static NodeRef getEntryNode(NodeRef N) { return N; }
1252
  static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1253
  static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1254
};
1255
 
1256
/// An analysis pass which computes the call graph for a module.
1257
class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
1258
  friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
1259
 
1260
  static AnalysisKey Key;
1261
 
1262
public:
1263
  /// Inform generic clients of the result type.
1264
  using Result = LazyCallGraph;
1265
 
1266
  /// Compute the \c LazyCallGraph for the module \c M.
1267
  ///
1268
  /// This just builds the set of entry points to the call graph. The rest is
1269
  /// built lazily as it is walked.
1270
  LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
1271
    FunctionAnalysisManager &FAM =
1272
        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1273
    auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1274
      return FAM.getResult<TargetLibraryAnalysis>(F);
1275
    };
1276
    return LazyCallGraph(M, GetTLI);
1277
  }
1278
};
1279
 
1280
/// A pass which prints the call graph to a \c raw_ostream.
1281
///
1282
/// This is primarily useful for testing the analysis.
1283
class LazyCallGraphPrinterPass
1284
    : public PassInfoMixin<LazyCallGraphPrinterPass> {
1285
  raw_ostream &OS;
1286
 
1287
public:
1288
  explicit LazyCallGraphPrinterPass(raw_ostream &OS);
1289
 
1290
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1291
};
1292
 
1293
/// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1294
///
1295
/// This is primarily useful for visualization purposes.
1296
class LazyCallGraphDOTPrinterPass
1297
    : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1298
  raw_ostream &OS;
1299
 
1300
public:
1301
  explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1302
 
1303
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1304
};
1305
 
1306
} // end namespace llvm
1307
 
1308
#endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H