Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file "describes" induction and recurrence variables. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H |
||
14 | #define LLVM_ANALYSIS_IVDESCRIPTORS_H |
||
15 | |||
16 | #include "llvm/ADT/MapVector.h" |
||
17 | #include "llvm/ADT/SmallPtrSet.h" |
||
18 | #include "llvm/ADT/SmallVector.h" |
||
19 | #include "llvm/IR/IntrinsicInst.h" |
||
20 | #include "llvm/IR/ValueHandle.h" |
||
21 | |||
22 | namespace llvm { |
||
23 | |||
24 | class AssumptionCache; |
||
25 | class DemandedBits; |
||
26 | class DominatorTree; |
||
27 | class Instruction; |
||
28 | class Loop; |
||
29 | class PredicatedScalarEvolution; |
||
30 | class ScalarEvolution; |
||
31 | class SCEV; |
||
32 | class StoreInst; |
||
33 | |||
34 | /// These are the kinds of recurrences that we support. |
||
35 | enum class RecurKind { |
||
36 | None, ///< Not a recurrence. |
||
37 | Add, ///< Sum of integers. |
||
38 | Mul, ///< Product of integers. |
||
39 | Or, ///< Bitwise or logical OR of integers. |
||
40 | And, ///< Bitwise or logical AND of integers. |
||
41 | Xor, ///< Bitwise or logical XOR of integers. |
||
42 | SMin, ///< Signed integer min implemented in terms of select(cmp()). |
||
43 | SMax, ///< Signed integer max implemented in terms of select(cmp()). |
||
44 | UMin, ///< Unisgned integer min implemented in terms of select(cmp()). |
||
45 | UMax, ///< Unsigned integer max implemented in terms of select(cmp()). |
||
46 | FAdd, ///< Sum of floats. |
||
47 | FMul, ///< Product of floats. |
||
48 | FMin, ///< FP min implemented in terms of select(cmp()). |
||
49 | FMax, ///< FP max implemented in terms of select(cmp()). |
||
50 | FMulAdd, ///< Fused multiply-add of floats (a * b + c). |
||
51 | SelectICmp, ///< Integer select(icmp(),x,y) where one of (x,y) is loop |
||
52 | ///< invariant |
||
53 | SelectFCmp ///< Integer select(fcmp(),x,y) where one of (x,y) is loop |
||
54 | ///< invariant |
||
55 | }; |
||
56 | |||
57 | /// The RecurrenceDescriptor is used to identify recurrences variables in a |
||
58 | /// loop. Reduction is a special case of recurrence that has uses of the |
||
59 | /// recurrence variable outside the loop. The method isReductionPHI identifies |
||
60 | /// reductions that are basic recurrences. |
||
61 | /// |
||
62 | /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min, |
||
63 | /// or max of a set of terms. For example: for(i=0; i<n; i++) { total += |
||
64 | /// array[i]; } is a summation of array elements. Basic recurrences are a |
||
65 | /// special case of chains of recurrences (CR). See ScalarEvolution for CR |
||
66 | /// references. |
||
67 | |||
68 | /// This struct holds information about recurrence variables. |
||
69 | class RecurrenceDescriptor { |
||
70 | public: |
||
71 | RecurrenceDescriptor() = default; |
||
72 | |||
73 | RecurrenceDescriptor(Value *Start, Instruction *Exit, StoreInst *Store, |
||
74 | RecurKind K, FastMathFlags FMF, Instruction *ExactFP, |
||
75 | Type *RT, bool Signed, bool Ordered, |
||
76 | SmallPtrSetImpl<Instruction *> &CI, |
||
77 | unsigned MinWidthCastToRecurTy) |
||
78 | : IntermediateStore(Store), StartValue(Start), LoopExitInstr(Exit), |
||
79 | Kind(K), FMF(FMF), ExactFPMathInst(ExactFP), RecurrenceType(RT), |
||
80 | IsSigned(Signed), IsOrdered(Ordered), |
||
81 | MinWidthCastToRecurrenceType(MinWidthCastToRecurTy) { |
||
82 | CastInsts.insert(CI.begin(), CI.end()); |
||
83 | } |
||
84 | |||
85 | /// This POD struct holds information about a potential recurrence operation. |
||
86 | class InstDesc { |
||
87 | public: |
||
88 | InstDesc(bool IsRecur, Instruction *I, Instruction *ExactFP = nullptr) |
||
89 | : IsRecurrence(IsRecur), PatternLastInst(I), |
||
90 | RecKind(RecurKind::None), ExactFPMathInst(ExactFP) {} |
||
91 | |||
92 | InstDesc(Instruction *I, RecurKind K, Instruction *ExactFP = nullptr) |
||
93 | : IsRecurrence(true), PatternLastInst(I), RecKind(K), |
||
94 | ExactFPMathInst(ExactFP) {} |
||
95 | |||
96 | bool isRecurrence() const { return IsRecurrence; } |
||
97 | |||
98 | bool needsExactFPMath() const { return ExactFPMathInst != nullptr; } |
||
99 | |||
100 | Instruction *getExactFPMathInst() const { return ExactFPMathInst; } |
||
101 | |||
102 | RecurKind getRecKind() const { return RecKind; } |
||
103 | |||
104 | Instruction *getPatternInst() const { return PatternLastInst; } |
||
105 | |||
106 | private: |
||
107 | // Is this instruction a recurrence candidate. |
||
108 | bool IsRecurrence; |
||
109 | // The last instruction in a min/max pattern (select of the select(icmp()) |
||
110 | // pattern), or the current recurrence instruction otherwise. |
||
111 | Instruction *PatternLastInst; |
||
112 | // If this is a min/max pattern. |
||
113 | RecurKind RecKind; |
||
114 | // Recurrence does not allow floating-point reassociation. |
||
115 | Instruction *ExactFPMathInst; |
||
116 | }; |
||
117 | |||
118 | /// Returns a struct describing if the instruction 'I' can be a recurrence |
||
119 | /// variable of type 'Kind' for a Loop \p L and reduction PHI \p Phi. |
||
120 | /// If the recurrence is a min/max pattern of select(icmp()) this function |
||
121 | /// advances the instruction pointer 'I' from the compare instruction to the |
||
122 | /// select instruction and stores this pointer in 'PatternLastInst' member of |
||
123 | /// the returned struct. |
||
124 | static InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I, |
||
125 | RecurKind Kind, InstDesc &Prev, |
||
126 | FastMathFlags FuncFMF); |
||
127 | |||
128 | /// Returns true if instruction I has multiple uses in Insts |
||
129 | static bool hasMultipleUsesOf(Instruction *I, |
||
130 | SmallPtrSetImpl<Instruction *> &Insts, |
||
131 | unsigned MaxNumUses); |
||
132 | |||
133 | /// Returns true if all uses of the instruction I is within the Set. |
||
134 | static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set); |
||
135 | |||
136 | /// Returns a struct describing if the instruction is a llvm.(s/u)(min/max), |
||
137 | /// llvm.minnum/maxnum or a Select(ICmp(X, Y), X, Y) pair of instructions |
||
138 | /// corresponding to a min(X, Y) or max(X, Y), matching the recurrence kind \p |
||
139 | /// Kind. \p Prev specifies the description of an already processed select |
||
140 | /// instruction, so its corresponding cmp can be matched to it. |
||
141 | static InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind, |
||
142 | const InstDesc &Prev); |
||
143 | |||
144 | /// Returns a struct describing whether the instruction is either a |
||
145 | /// Select(ICmp(A, B), X, Y), or |
||
146 | /// Select(FCmp(A, B), X, Y) |
||
147 | /// where one of (X, Y) is a loop invariant integer and the other is a PHI |
||
148 | /// value. \p Prev specifies the description of an already processed select |
||
149 | /// instruction, so its corresponding cmp can be matched to it. |
||
150 | static InstDesc isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi, |
||
151 | Instruction *I, InstDesc &Prev); |
||
152 | |||
153 | /// Returns a struct describing if the instruction is a |
||
154 | /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern. |
||
155 | static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I); |
||
156 | |||
157 | /// Returns identity corresponding to the RecurrenceKind. |
||
158 | Value *getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) const; |
||
159 | |||
160 | /// Returns the opcode corresponding to the RecurrenceKind. |
||
161 | static unsigned getOpcode(RecurKind Kind); |
||
162 | |||
163 | /// Returns true if Phi is a reduction of type Kind and adds it to the |
||
164 | /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are |
||
165 | /// non-null, the minimal bit width needed to compute the reduction will be |
||
166 | /// computed. |
||
167 | static bool |
||
168 | AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop, |
||
169 | FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes, |
||
170 | DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr, |
||
171 | DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr); |
||
172 | |||
173 | /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor |
||
174 | /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are |
||
175 | /// non-null, the minimal bit width needed to compute the reduction will be |
||
176 | /// computed. If \p SE is non-null, store instructions to loop invariant |
||
177 | /// addresses are processed. |
||
178 | static bool |
||
179 | isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, |
||
180 | DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr, |
||
181 | DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr); |
||
182 | |||
183 | /// Returns true if Phi is a fixed-order recurrence. A fixed-order recurrence |
||
184 | /// is a non-reduction recurrence relation in which the value of the |
||
185 | /// recurrence in the current loop iteration equals a value defined in a |
||
186 | /// previous iteration (e.g. if the value is defined in the previous |
||
187 | /// iteration, we refer to it as first-order recurrence, if it is defined in |
||
188 | /// the iteration before the previous, we refer to it as second-order |
||
189 | /// recurrence and so on). \p SinkAfter includes pairs of instructions where |
||
190 | /// the first will be rescheduled to appear after the second if/when the loop |
||
191 | /// is vectorized. It may be augmented with additional pairs if needed in |
||
192 | /// order to handle Phi as a first-order recurrence. |
||
193 | static bool |
||
194 | isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
||
195 | MapVector<Instruction *, Instruction *> &SinkAfter, |
||
196 | DominatorTree *DT); |
||
197 | |||
198 | RecurKind getRecurrenceKind() const { return Kind; } |
||
199 | |||
200 | unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); } |
||
201 | |||
202 | FastMathFlags getFastMathFlags() const { return FMF; } |
||
203 | |||
204 | TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; } |
||
205 | |||
206 | Instruction *getLoopExitInstr() const { return LoopExitInstr; } |
||
207 | |||
208 | /// Returns true if the recurrence has floating-point math that requires |
||
209 | /// precise (ordered) operations. |
||
210 | bool hasExactFPMath() const { return ExactFPMathInst != nullptr; } |
||
211 | |||
212 | /// Returns 1st non-reassociative FP instruction in the PHI node's use-chain. |
||
213 | Instruction *getExactFPMathInst() const { return ExactFPMathInst; } |
||
214 | |||
215 | /// Returns true if the recurrence kind is an integer kind. |
||
216 | static bool isIntegerRecurrenceKind(RecurKind Kind); |
||
217 | |||
218 | /// Returns true if the recurrence kind is a floating point kind. |
||
219 | static bool isFloatingPointRecurrenceKind(RecurKind Kind); |
||
220 | |||
221 | /// Returns true if the recurrence kind is an integer min/max kind. |
||
222 | static bool isIntMinMaxRecurrenceKind(RecurKind Kind) { |
||
223 | return Kind == RecurKind::UMin || Kind == RecurKind::UMax || |
||
224 | Kind == RecurKind::SMin || Kind == RecurKind::SMax; |
||
225 | } |
||
226 | |||
227 | /// Returns true if the recurrence kind is a floating-point min/max kind. |
||
228 | static bool isFPMinMaxRecurrenceKind(RecurKind Kind) { |
||
229 | return Kind == RecurKind::FMin || Kind == RecurKind::FMax; |
||
230 | } |
||
231 | |||
232 | /// Returns true if the recurrence kind is any min/max kind. |
||
233 | static bool isMinMaxRecurrenceKind(RecurKind Kind) { |
||
234 | return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind); |
||
235 | } |
||
236 | |||
237 | /// Returns true if the recurrence kind is of the form |
||
238 | /// select(cmp(),x,y) where one of (x,y) is loop invariant. |
||
239 | static bool isSelectCmpRecurrenceKind(RecurKind Kind) { |
||
240 | return Kind == RecurKind::SelectICmp || Kind == RecurKind::SelectFCmp; |
||
241 | } |
||
242 | |||
243 | /// Returns the type of the recurrence. This type can be narrower than the |
||
244 | /// actual type of the Phi if the recurrence has been type-promoted. |
||
245 | Type *getRecurrenceType() const { return RecurrenceType; } |
||
246 | |||
247 | /// Returns a reference to the instructions used for type-promoting the |
||
248 | /// recurrence. |
||
249 | const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; } |
||
250 | |||
251 | /// Returns the minimum width used by the recurrence in bits. |
||
252 | unsigned getMinWidthCastToRecurrenceTypeInBits() const { |
||
253 | return MinWidthCastToRecurrenceType; |
||
254 | } |
||
255 | |||
256 | /// Returns true if all source operands of the recurrence are SExtInsts. |
||
257 | bool isSigned() const { return IsSigned; } |
||
258 | |||
259 | /// Expose an ordered FP reduction to the instance users. |
||
260 | bool isOrdered() const { return IsOrdered; } |
||
261 | |||
262 | /// Attempts to find a chain of operations from Phi to LoopExitInst that can |
||
263 | /// be treated as a set of reductions instructions for in-loop reductions. |
||
264 | SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi, |
||
265 | Loop *L) const; |
||
266 | |||
267 | /// Returns true if the instruction is a call to the llvm.fmuladd intrinsic. |
||
268 | static bool isFMulAddIntrinsic(Instruction *I) { |
||
269 | return isa<IntrinsicInst>(I) && |
||
270 | cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fmuladd; |
||
271 | } |
||
272 | |||
273 | /// Reductions may store temporary or final result to an invariant address. |
||
274 | /// If there is such a store in the loop then, after successfull run of |
||
275 | /// AddReductionVar method, this field will be assigned the last met store. |
||
276 | StoreInst *IntermediateStore = nullptr; |
||
277 | |||
278 | private: |
||
279 | // The starting value of the recurrence. |
||
280 | // It does not have to be zero! |
||
281 | TrackingVH<Value> StartValue; |
||
282 | // The instruction who's value is used outside the loop. |
||
283 | Instruction *LoopExitInstr = nullptr; |
||
284 | // The kind of the recurrence. |
||
285 | RecurKind Kind = RecurKind::None; |
||
286 | // The fast-math flags on the recurrent instructions. We propagate these |
||
287 | // fast-math flags into the vectorized FP instructions we generate. |
||
288 | FastMathFlags FMF; |
||
289 | // First instance of non-reassociative floating-point in the PHI's use-chain. |
||
290 | Instruction *ExactFPMathInst = nullptr; |
||
291 | // The type of the recurrence. |
||
292 | Type *RecurrenceType = nullptr; |
||
293 | // True if all source operands of the recurrence are SExtInsts. |
||
294 | bool IsSigned = false; |
||
295 | // True if this recurrence can be treated as an in-order reduction. |
||
296 | // Currently only a non-reassociative FAdd can be considered in-order, |
||
297 | // if it is also the only FAdd in the PHI's use chain. |
||
298 | bool IsOrdered = false; |
||
299 | // Instructions used for type-promoting the recurrence. |
||
300 | SmallPtrSet<Instruction *, 8> CastInsts; |
||
301 | // The minimum width used by the recurrence. |
||
302 | unsigned MinWidthCastToRecurrenceType; |
||
303 | }; |
||
304 | |||
305 | /// A struct for saving information about induction variables. |
||
306 | class InductionDescriptor { |
||
307 | public: |
||
308 | /// This enum represents the kinds of inductions that we support. |
||
309 | enum InductionKind { |
||
310 | IK_NoInduction, ///< Not an induction variable. |
||
311 | IK_IntInduction, ///< Integer induction variable. Step = C. |
||
312 | IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem). |
||
313 | IK_FpInduction ///< Floating point induction variable. |
||
314 | }; |
||
315 | |||
316 | public: |
||
317 | /// Default constructor - creates an invalid induction. |
||
318 | InductionDescriptor() = default; |
||
319 | |||
320 | Value *getStartValue() const { return StartValue; } |
||
321 | InductionKind getKind() const { return IK; } |
||
322 | const SCEV *getStep() const { return Step; } |
||
323 | BinaryOperator *getInductionBinOp() const { return InductionBinOp; } |
||
324 | ConstantInt *getConstIntStepValue() const; |
||
325 | |||
326 | /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an |
||
327 | /// induction, the induction descriptor \p D will contain the data describing |
||
328 | /// this induction. If by some other means the caller has a better SCEV |
||
329 | /// expression for \p Phi than the one returned by the ScalarEvolution |
||
330 | /// analysis, it can be passed through \p Expr. If the def-use chain |
||
331 | /// associated with the phi includes casts (that we know we can ignore |
||
332 | /// under proper runtime checks), they are passed through \p CastsToIgnore. |
||
333 | static bool |
||
334 | isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, |
||
335 | InductionDescriptor &D, const SCEV *Expr = nullptr, |
||
336 | SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr); |
||
337 | |||
338 | /// Returns true if \p Phi is a floating point induction in the loop \p L. |
||
339 | /// If \p Phi is an induction, the induction descriptor \p D will contain |
||
340 | /// the data describing this induction. |
||
341 | static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, |
||
342 | InductionDescriptor &D); |
||
343 | |||
344 | /// Returns true if \p Phi is a loop \p L induction, in the context associated |
||
345 | /// with the run-time predicate of PSE. If \p Assume is true, this can add |
||
346 | /// further SCEV predicates to \p PSE in order to prove that \p Phi is an |
||
347 | /// induction. |
||
348 | /// If \p Phi is an induction, \p D will contain the data describing this |
||
349 | /// induction. |
||
350 | static bool isInductionPHI(PHINode *Phi, const Loop *L, |
||
351 | PredicatedScalarEvolution &PSE, |
||
352 | InductionDescriptor &D, bool Assume = false); |
||
353 | |||
354 | /// Returns floating-point induction operator that does not allow |
||
355 | /// reassociation (transforming the induction requires an override of normal |
||
356 | /// floating-point rules). |
||
357 | Instruction *getExactFPMathInst() { |
||
358 | if (IK == IK_FpInduction && InductionBinOp && |
||
359 | !InductionBinOp->hasAllowReassoc()) |
||
360 | return InductionBinOp; |
||
361 | return nullptr; |
||
362 | } |
||
363 | |||
364 | /// Returns binary opcode of the induction operator. |
||
365 | Instruction::BinaryOps getInductionOpcode() const { |
||
366 | return InductionBinOp ? InductionBinOp->getOpcode() |
||
367 | : Instruction::BinaryOpsEnd; |
||
368 | } |
||
369 | |||
370 | Type *getElementType() const { |
||
371 | assert(IK == IK_PtrInduction && "Only pointer induction has element type"); |
||
372 | return ElementType; |
||
373 | } |
||
374 | |||
375 | /// Returns a reference to the type cast instructions in the induction |
||
376 | /// update chain, that are redundant when guarded with a runtime |
||
377 | /// SCEV overflow check. |
||
378 | const SmallVectorImpl<Instruction *> &getCastInsts() const { |
||
379 | return RedundantCasts; |
||
380 | } |
||
381 | |||
382 | private: |
||
383 | /// Private constructor - used by \c isInductionPHI. |
||
384 | InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step, |
||
385 | BinaryOperator *InductionBinOp = nullptr, |
||
386 | Type *ElementType = nullptr, |
||
387 | SmallVectorImpl<Instruction *> *Casts = nullptr); |
||
388 | |||
389 | /// Start value. |
||
390 | TrackingVH<Value> StartValue; |
||
391 | /// Induction kind. |
||
392 | InductionKind IK = IK_NoInduction; |
||
393 | /// Step value. |
||
394 | const SCEV *Step = nullptr; |
||
395 | // Instruction that advances induction variable. |
||
396 | BinaryOperator *InductionBinOp = nullptr; |
||
397 | // Element type for pointer induction variables. |
||
398 | // TODO: This can be dropped once support for typed pointers is removed. |
||
399 | Type *ElementType = nullptr; |
||
400 | // Instructions used for type-casts of the induction variable, |
||
401 | // that are redundant when guarded with a runtime SCEV overflow check. |
||
402 | SmallVector<Instruction *, 2> RedundantCasts; |
||
403 | }; |
||
404 | |||
405 | } // end namespace llvm |
||
406 | |||
407 | #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H |