Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file "describes" induction and recurrence variables.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14
#define LLVM_ANALYSIS_IVDESCRIPTORS_H
15
 
16
#include "llvm/ADT/MapVector.h"
17
#include "llvm/ADT/SmallPtrSet.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/IR/IntrinsicInst.h"
20
#include "llvm/IR/ValueHandle.h"
21
 
22
namespace llvm {
23
 
24
class AssumptionCache;
25
class DemandedBits;
26
class DominatorTree;
27
class Instruction;
28
class Loop;
29
class PredicatedScalarEvolution;
30
class ScalarEvolution;
31
class SCEV;
32
class StoreInst;
33
 
34
/// These are the kinds of recurrences that we support.
35
enum class RecurKind {
36
  None,       ///< Not a recurrence.
37
  Add,        ///< Sum of integers.
38
  Mul,        ///< Product of integers.
39
  Or,         ///< Bitwise or logical OR of integers.
40
  And,        ///< Bitwise or logical AND of integers.
41
  Xor,        ///< Bitwise or logical XOR of integers.
42
  SMin,       ///< Signed integer min implemented in terms of select(cmp()).
43
  SMax,       ///< Signed integer max implemented in terms of select(cmp()).
44
  UMin,       ///< Unisgned integer min implemented in terms of select(cmp()).
45
  UMax,       ///< Unsigned integer max implemented in terms of select(cmp()).
46
  FAdd,       ///< Sum of floats.
47
  FMul,       ///< Product of floats.
48
  FMin,       ///< FP min implemented in terms of select(cmp()).
49
  FMax,       ///< FP max implemented in terms of select(cmp()).
50
  FMulAdd,    ///< Fused multiply-add of floats (a * b + c).
51
  SelectICmp, ///< Integer select(icmp(),x,y) where one of (x,y) is loop
52
              ///< invariant
53
  SelectFCmp  ///< Integer select(fcmp(),x,y) where one of (x,y) is loop
54
              ///< invariant
55
};
56
 
57
/// The RecurrenceDescriptor is used to identify recurrences variables in a
58
/// loop. Reduction is a special case of recurrence that has uses of the
59
/// recurrence variable outside the loop. The method isReductionPHI identifies
60
/// reductions that are basic recurrences.
61
///
62
/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
63
/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
64
/// array[i]; } is a summation of array elements. Basic recurrences are a
65
/// special case of chains of recurrences (CR). See ScalarEvolution for CR
66
/// references.
67
 
68
/// This struct holds information about recurrence variables.
69
class RecurrenceDescriptor {
70
public:
71
  RecurrenceDescriptor() = default;
72
 
73
  RecurrenceDescriptor(Value *Start, Instruction *Exit, StoreInst *Store,
74
                       RecurKind K, FastMathFlags FMF, Instruction *ExactFP,
75
                       Type *RT, bool Signed, bool Ordered,
76
                       SmallPtrSetImpl<Instruction *> &CI,
77
                       unsigned MinWidthCastToRecurTy)
78
      : IntermediateStore(Store), StartValue(Start), LoopExitInstr(Exit),
79
        Kind(K), FMF(FMF), ExactFPMathInst(ExactFP), RecurrenceType(RT),
80
        IsSigned(Signed), IsOrdered(Ordered),
81
        MinWidthCastToRecurrenceType(MinWidthCastToRecurTy) {
82
    CastInsts.insert(CI.begin(), CI.end());
83
  }
84
 
85
  /// This POD struct holds information about a potential recurrence operation.
86
  class InstDesc {
87
  public:
88
    InstDesc(bool IsRecur, Instruction *I, Instruction *ExactFP = nullptr)
89
        : IsRecurrence(IsRecur), PatternLastInst(I),
90
          RecKind(RecurKind::None), ExactFPMathInst(ExactFP) {}
91
 
92
    InstDesc(Instruction *I, RecurKind K, Instruction *ExactFP = nullptr)
93
        : IsRecurrence(true), PatternLastInst(I), RecKind(K),
94
          ExactFPMathInst(ExactFP) {}
95
 
96
    bool isRecurrence() const { return IsRecurrence; }
97
 
98
    bool needsExactFPMath() const { return ExactFPMathInst != nullptr; }
99
 
100
    Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
101
 
102
    RecurKind getRecKind() const { return RecKind; }
103
 
104
    Instruction *getPatternInst() const { return PatternLastInst; }
105
 
106
  private:
107
    // Is this instruction a recurrence candidate.
108
    bool IsRecurrence;
109
    // The last instruction in a min/max pattern (select of the select(icmp())
110
    // pattern), or the current recurrence instruction otherwise.
111
    Instruction *PatternLastInst;
112
    // If this is a min/max pattern.
113
    RecurKind RecKind;
114
    // Recurrence does not allow floating-point reassociation.
115
    Instruction *ExactFPMathInst;
116
  };
117
 
118
  /// Returns a struct describing if the instruction 'I' can be a recurrence
119
  /// variable of type 'Kind' for a Loop \p L and reduction PHI \p Phi.
120
  /// If the recurrence is a min/max pattern of select(icmp()) this function
121
  /// advances the instruction pointer 'I' from the compare instruction to the
122
  /// select instruction and stores this pointer in 'PatternLastInst' member of
123
  /// the returned struct.
124
  static InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I,
125
                                    RecurKind Kind, InstDesc &Prev,
126
                                    FastMathFlags FuncFMF);
127
 
128
  /// Returns true if instruction I has multiple uses in Insts
129
  static bool hasMultipleUsesOf(Instruction *I,
130
                                SmallPtrSetImpl<Instruction *> &Insts,
131
                                unsigned MaxNumUses);
132
 
133
  /// Returns true if all uses of the instruction I is within the Set.
134
  static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
135
 
136
  /// Returns a struct describing if the instruction is a llvm.(s/u)(min/max),
137
  /// llvm.minnum/maxnum or a Select(ICmp(X, Y), X, Y) pair of instructions
138
  /// corresponding to a min(X, Y) or max(X, Y), matching the recurrence kind \p
139
  /// Kind. \p Prev specifies the description of an already processed select
140
  /// instruction, so its corresponding cmp can be matched to it.
141
  static InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind,
142
                                  const InstDesc &Prev);
143
 
144
  /// Returns a struct describing whether the instruction is either a
145
  ///   Select(ICmp(A, B), X, Y), or
146
  ///   Select(FCmp(A, B), X, Y)
147
  /// where one of (X, Y) is a loop invariant integer and the other is a PHI
148
  /// value. \p Prev specifies the description of an already processed select
149
  /// instruction, so its corresponding cmp can be matched to it.
150
  static InstDesc isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
151
                                     Instruction *I, InstDesc &Prev);
152
 
153
  /// Returns a struct describing if the instruction is a
154
  /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
155
  static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I);
156
 
157
  /// Returns identity corresponding to the RecurrenceKind.
158
  Value *getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) const;
159
 
160
  /// Returns the opcode corresponding to the RecurrenceKind.
161
  static unsigned getOpcode(RecurKind Kind);
162
 
163
  /// Returns true if Phi is a reduction of type Kind and adds it to the
164
  /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
165
  /// non-null, the minimal bit width needed to compute the reduction will be
166
  /// computed.
167
  static bool
168
  AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop,
169
                  FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes,
170
                  DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr,
171
                  DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr);
172
 
173
  /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
174
  /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
175
  /// non-null, the minimal bit width needed to compute the reduction will be
176
  /// computed. If \p SE is non-null, store instructions to loop invariant
177
  /// addresses are processed.
178
  static bool
179
  isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes,
180
                 DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr,
181
                 DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr);
182
 
183
  /// Returns true if Phi is a fixed-order recurrence. A fixed-order recurrence
184
  /// is a non-reduction recurrence relation in which the value of the
185
  /// recurrence in the current loop iteration equals a value defined in a
186
  /// previous iteration (e.g. if the value is defined in the previous
187
  /// iteration, we refer to it as first-order recurrence, if it is defined in
188
  /// the iteration before the previous, we refer to it as second-order
189
  /// recurrence and so on). \p SinkAfter includes pairs of instructions where
190
  /// the first will be rescheduled to appear after the second if/when the loop
191
  /// is vectorized. It may be augmented with additional pairs if needed in
192
  /// order to handle Phi as a first-order recurrence.
193
  static bool
194
  isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
195
                         MapVector<Instruction *, Instruction *> &SinkAfter,
196
                         DominatorTree *DT);
197
 
198
  RecurKind getRecurrenceKind() const { return Kind; }
199
 
200
  unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); }
201
 
202
  FastMathFlags getFastMathFlags() const { return FMF; }
203
 
204
  TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; }
205
 
206
  Instruction *getLoopExitInstr() const { return LoopExitInstr; }
207
 
208
  /// Returns true if the recurrence has floating-point math that requires
209
  /// precise (ordered) operations.
210
  bool hasExactFPMath() const { return ExactFPMathInst != nullptr; }
211
 
212
  /// Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
213
  Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
214
 
215
  /// Returns true if the recurrence kind is an integer kind.
216
  static bool isIntegerRecurrenceKind(RecurKind Kind);
217
 
218
  /// Returns true if the recurrence kind is a floating point kind.
219
  static bool isFloatingPointRecurrenceKind(RecurKind Kind);
220
 
221
  /// Returns true if the recurrence kind is an integer min/max kind.
222
  static bool isIntMinMaxRecurrenceKind(RecurKind Kind) {
223
    return Kind == RecurKind::UMin || Kind == RecurKind::UMax ||
224
           Kind == RecurKind::SMin || Kind == RecurKind::SMax;
225
  }
226
 
227
  /// Returns true if the recurrence kind is a floating-point min/max kind.
228
  static bool isFPMinMaxRecurrenceKind(RecurKind Kind) {
229
    return Kind == RecurKind::FMin || Kind == RecurKind::FMax;
230
  }
231
 
232
  /// Returns true if the recurrence kind is any min/max kind.
233
  static bool isMinMaxRecurrenceKind(RecurKind Kind) {
234
    return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind);
235
  }
236
 
237
  /// Returns true if the recurrence kind is of the form
238
  ///   select(cmp(),x,y) where one of (x,y) is loop invariant.
239
  static bool isSelectCmpRecurrenceKind(RecurKind Kind) {
240
    return Kind == RecurKind::SelectICmp || Kind == RecurKind::SelectFCmp;
241
  }
242
 
243
  /// Returns the type of the recurrence. This type can be narrower than the
244
  /// actual type of the Phi if the recurrence has been type-promoted.
245
  Type *getRecurrenceType() const { return RecurrenceType; }
246
 
247
  /// Returns a reference to the instructions used for type-promoting the
248
  /// recurrence.
249
  const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; }
250
 
251
  /// Returns the minimum width used by the recurrence in bits.
252
  unsigned getMinWidthCastToRecurrenceTypeInBits() const {
253
    return MinWidthCastToRecurrenceType;
254
  }
255
 
256
  /// Returns true if all source operands of the recurrence are SExtInsts.
257
  bool isSigned() const { return IsSigned; }
258
 
259
  /// Expose an ordered FP reduction to the instance users.
260
  bool isOrdered() const { return IsOrdered; }
261
 
262
  /// Attempts to find a chain of operations from Phi to LoopExitInst that can
263
  /// be treated as a set of reductions instructions for in-loop reductions.
264
  SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi,
265
                                                    Loop *L) const;
266
 
267
  /// Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
268
  static bool isFMulAddIntrinsic(Instruction *I) {
269
    return isa<IntrinsicInst>(I) &&
270
           cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fmuladd;
271
  }
272
 
273
  /// Reductions may store temporary or final result to an invariant address.
274
  /// If there is such a store in the loop then, after successfull run of
275
  /// AddReductionVar method, this field will be assigned the last met store.
276
  StoreInst *IntermediateStore = nullptr;
277
 
278
private:
279
  // The starting value of the recurrence.
280
  // It does not have to be zero!
281
  TrackingVH<Value> StartValue;
282
  // The instruction who's value is used outside the loop.
283
  Instruction *LoopExitInstr = nullptr;
284
  // The kind of the recurrence.
285
  RecurKind Kind = RecurKind::None;
286
  // The fast-math flags on the recurrent instructions.  We propagate these
287
  // fast-math flags into the vectorized FP instructions we generate.
288
  FastMathFlags FMF;
289
  // First instance of non-reassociative floating-point in the PHI's use-chain.
290
  Instruction *ExactFPMathInst = nullptr;
291
  // The type of the recurrence.
292
  Type *RecurrenceType = nullptr;
293
  // True if all source operands of the recurrence are SExtInsts.
294
  bool IsSigned = false;
295
  // True if this recurrence can be treated as an in-order reduction.
296
  // Currently only a non-reassociative FAdd can be considered in-order,
297
  // if it is also the only FAdd in the PHI's use chain.
298
  bool IsOrdered = false;
299
  // Instructions used for type-promoting the recurrence.
300
  SmallPtrSet<Instruction *, 8> CastInsts;
301
  // The minimum width used by the recurrence.
302
  unsigned MinWidthCastToRecurrenceType;
303
};
304
 
305
/// A struct for saving information about induction variables.
306
class InductionDescriptor {
307
public:
308
  /// This enum represents the kinds of inductions that we support.
309
  enum InductionKind {
310
    IK_NoInduction,  ///< Not an induction variable.
311
    IK_IntInduction, ///< Integer induction variable. Step = C.
312
    IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
313
    IK_FpInduction   ///< Floating point induction variable.
314
  };
315
 
316
public:
317
  /// Default constructor - creates an invalid induction.
318
  InductionDescriptor() = default;
319
 
320
  Value *getStartValue() const { return StartValue; }
321
  InductionKind getKind() const { return IK; }
322
  const SCEV *getStep() const { return Step; }
323
  BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
324
  ConstantInt *getConstIntStepValue() const;
325
 
326
  /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
327
  /// induction, the induction descriptor \p D will contain the data describing
328
  /// this induction. If by some other means the caller has a better SCEV
329
  /// expression for \p Phi than the one returned by the ScalarEvolution
330
  /// analysis, it can be passed through \p Expr. If the def-use chain
331
  /// associated with the phi includes casts (that we know we can ignore
332
  /// under proper runtime checks), they are passed through \p CastsToIgnore.
333
  static bool
334
  isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
335
                 InductionDescriptor &D, const SCEV *Expr = nullptr,
336
                 SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
337
 
338
  /// Returns true if \p Phi is a floating point induction in the loop \p L.
339
  /// If \p Phi is an induction, the induction descriptor \p D will contain
340
  /// the data describing this induction.
341
  static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
342
                               InductionDescriptor &D);
343
 
344
  /// Returns true if \p Phi is a loop \p L induction, in the context associated
345
  /// with the run-time predicate of PSE. If \p Assume is true, this can add
346
  /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
347
  /// induction.
348
  /// If \p Phi is an induction, \p D will contain the data describing this
349
  /// induction.
350
  static bool isInductionPHI(PHINode *Phi, const Loop *L,
351
                             PredicatedScalarEvolution &PSE,
352
                             InductionDescriptor &D, bool Assume = false);
353
 
354
  /// Returns floating-point induction operator that does not allow
355
  /// reassociation (transforming the induction requires an override of normal
356
  /// floating-point rules).
357
  Instruction *getExactFPMathInst() {
358
    if (IK == IK_FpInduction && InductionBinOp &&
359
        !InductionBinOp->hasAllowReassoc())
360
      return InductionBinOp;
361
    return nullptr;
362
  }
363
 
364
  /// Returns binary opcode of the induction operator.
365
  Instruction::BinaryOps getInductionOpcode() const {
366
    return InductionBinOp ? InductionBinOp->getOpcode()
367
                          : Instruction::BinaryOpsEnd;
368
  }
369
 
370
  Type *getElementType() const {
371
    assert(IK == IK_PtrInduction && "Only pointer induction has element type");
372
    return ElementType;
373
  }
374
 
375
  /// Returns a reference to the type cast instructions in the induction
376
  /// update chain, that are redundant when guarded with a runtime
377
  /// SCEV overflow check.
378
  const SmallVectorImpl<Instruction *> &getCastInsts() const {
379
    return RedundantCasts;
380
  }
381
 
382
private:
383
  /// Private constructor - used by \c isInductionPHI.
384
  InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
385
                      BinaryOperator *InductionBinOp = nullptr,
386
                      Type *ElementType = nullptr,
387
                      SmallVectorImpl<Instruction *> *Casts = nullptr);
388
 
389
  /// Start value.
390
  TrackingVH<Value> StartValue;
391
  /// Induction kind.
392
  InductionKind IK = IK_NoInduction;
393
  /// Step value.
394
  const SCEV *Step = nullptr;
395
  // Instruction that advances induction variable.
396
  BinaryOperator *InductionBinOp = nullptr;
397
  // Element type for pointer induction variables.
398
  // TODO: This can be dropped once support for typed pointers is removed.
399
  Type *ElementType = nullptr;
400
  // Instructions used for type-casts of the induction variable,
401
  // that are redundant when guarded with a runtime SCEV overflow check.
402
  SmallVector<Instruction *, 2> RedundantCasts;
403
};
404
 
405
} // end namespace llvm
406
 
407
#endif // LLVM_ANALYSIS_IVDESCRIPTORS_H