Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions performs analyses on basic blocks, and instructions
10
// contained within basic blocks.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ANALYSIS_CFG_H
15
#define LLVM_ANALYSIS_CFG_H
16
 
17
#include "llvm/ADT/GraphTraits.h"
18
#include "llvm/ADT/SmallPtrSet.h"
19
#include <utility>
20
 
21
namespace llvm {
22
 
23
class BasicBlock;
24
class DominatorTree;
25
class Function;
26
class Instruction;
27
class LoopInfo;
28
template <typename T> class SmallVectorImpl;
29
 
30
/// Analyze the specified function to find all of the loop backedges in the
31
/// function and return them.  This is a relatively cheap (compared to
32
/// computing dominators and loop info) analysis.
33
///
34
/// The output is added to Result, as pairs of <from,to> edge info.
35
void FindFunctionBackedges(
36
    const Function &F,
37
    SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
38
        Result);
39
 
40
/// Search for the specified successor of basic block BB and return its position
41
/// in the terminator instruction's list of successors.  It is an error to call
42
/// this with a block that is not a successor.
43
unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ);
44
 
45
/// Return true if the specified edge is a critical edge. Critical edges are
46
/// edges from a block with multiple successors to a block with multiple
47
/// predecessors.
48
///
49
bool isCriticalEdge(const Instruction *TI, unsigned SuccNum,
50
                    bool AllowIdenticalEdges = false);
51
bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ,
52
                    bool AllowIdenticalEdges = false);
53
 
54
/// Determine whether instruction 'To' is reachable from 'From', without passing
55
/// through any blocks in ExclusionSet, returning true if uncertain.
56
///
57
/// Determine whether there is a path from From to To within a single function.
58
/// Returns false only if we can prove that once 'From' has been executed then
59
/// 'To' can not be executed. Conservatively returns true.
60
///
61
/// This function is linear with respect to the number of blocks in the CFG,
62
/// walking down successors from From to reach To, with a fixed threshold.
63
/// Using DT or LI allows us to answer more quickly. LI reduces the cost of
64
/// an entire loop of any number of blocks to be the same as the cost of a
65
/// single block. DT reduces the cost by allowing the search to terminate when
66
/// we find a block that dominates the block containing 'To'. DT is most useful
67
/// on branchy code but not loops, and LI is most useful on code with loops but
68
/// does not help on branchy code outside loops.
69
bool isPotentiallyReachable(
70
    const Instruction *From, const Instruction *To,
71
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
72
    const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
73
 
74
/// Determine whether block 'To' is reachable from 'From', returning
75
/// true if uncertain.
76
///
77
/// Determine whether there is a path from From to To within a single function.
78
/// Returns false only if we can prove that once 'From' has been reached then
79
/// 'To' can not be executed. Conservatively returns true.
80
bool isPotentiallyReachable(
81
    const BasicBlock *From, const BasicBlock *To,
82
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
83
    const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
84
 
85
/// Determine whether there is at least one path from a block in
86
/// 'Worklist' to 'StopBB' without passing through any blocks in
87
/// 'ExclusionSet', returning true if uncertain.
88
///
89
/// Determine whether there is a path from at least one block in Worklist to
90
/// StopBB within a single function without passing through any of the blocks
91
/// in 'ExclusionSet'. Returns false only if we can prove that once any block
92
/// in 'Worklist' has been reached then 'StopBB' can not be executed.
93
/// Conservatively returns true.
94
bool isPotentiallyReachableFromMany(
95
    SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
96
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
97
    const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
98
 
99
/// Return true if the control flow in \p RPOTraversal is irreducible.
100
///
101
/// This is a generic implementation to detect CFG irreducibility based on loop
102
/// info analysis. It can be used for any kind of CFG (Loop, MachineLoop,
103
/// Function, MachineFunction, etc.) by providing an RPO traversal (\p
104
/// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility
105
/// function is only recommended when loop info analysis is available. If loop
106
/// info analysis isn't available, please, don't compute it explicitly for this
107
/// purpose. There are more efficient ways to detect CFG irreducibility that
108
/// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's
109
/// algorithm).
110
///
111
/// Requirements:
112
///   1) GraphTraits must be implemented for NodeT type. It is used to access
113
///      NodeT successors.
114
//    2) \p RPOTraversal must be a valid reverse post-order traversal of the
115
///      target CFG with begin()/end() iterator interfaces.
116
///   3) \p LI must be a valid LoopInfoBase that contains up-to-date loop
117
///      analysis information of the CFG.
118
///
119
/// This algorithm uses the information about reducible loop back-edges already
120
/// computed in \p LI. When a back-edge is found during the RPO traversal, the
121
/// algorithm checks whether the back-edge is one of the reducible back-edges in
122
/// loop info. If it isn't, the CFG is irreducible. For example, for the CFG
123
/// below (canonical irreducible graph) loop info won't contain any loop, so the
124
/// algorithm will return that the CFG is irreducible when checking the B <-
125
/// -> C back-edge.
126
///
127
/// (A->B, A->C, B->C, C->B, C->D)
128
///    A
129
///  /   \
130
/// B<- ->C
131
///       |
132
///       D
133
///
134
template <class NodeT, class RPOTraversalT, class LoopInfoT,
135
          class GT = GraphTraits<NodeT>>
136
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) {
137
  /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge
138
  /// according to LI. I.e., check if there exists a loop that contains Src and
139
  /// where Dst is the loop header.
140
  auto isProperBackedge = [&](NodeT Src, NodeT Dst) {
141
    for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) {
142
      if (Lp->getHeader() == Dst)
143
        return true;
144
    }
145
    return false;
146
  };
147
 
148
  SmallPtrSet<NodeT, 32> Visited;
149
  for (NodeT Node : RPOTraversal) {
150
    Visited.insert(Node);
151
    for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) {
152
      // Succ hasn't been visited yet
153
      if (!Visited.count(Succ))
154
        continue;
155
      // We already visited Succ, thus Node->Succ must be a backedge. Check that
156
      // the head matches what we have in the loop information. Otherwise, we
157
      // have an irreducible graph.
158
      if (!isProperBackedge(Node, Succ))
159
        return true;
160
    }
161
  }
162
 
163
  return false;
164
}
165
} // End llvm namespace
166
 
167
#endif