Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This family of functions performs analyses on basic blocks, and instructions |
||
10 | // contained within basic blocks. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_ANALYSIS_CFG_H |
||
15 | #define LLVM_ANALYSIS_CFG_H |
||
16 | |||
17 | #include "llvm/ADT/GraphTraits.h" |
||
18 | #include "llvm/ADT/SmallPtrSet.h" |
||
19 | #include <utility> |
||
20 | |||
21 | namespace llvm { |
||
22 | |||
23 | class BasicBlock; |
||
24 | class DominatorTree; |
||
25 | class Function; |
||
26 | class Instruction; |
||
27 | class LoopInfo; |
||
28 | template <typename T> class SmallVectorImpl; |
||
29 | |||
30 | /// Analyze the specified function to find all of the loop backedges in the |
||
31 | /// function and return them. This is a relatively cheap (compared to |
||
32 | /// computing dominators and loop info) analysis. |
||
33 | /// |
||
34 | /// The output is added to Result, as pairs of <from,to> edge info. |
||
35 | void FindFunctionBackedges( |
||
36 | const Function &F, |
||
37 | SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > & |
||
38 | Result); |
||
39 | |||
40 | /// Search for the specified successor of basic block BB and return its position |
||
41 | /// in the terminator instruction's list of successors. It is an error to call |
||
42 | /// this with a block that is not a successor. |
||
43 | unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ); |
||
44 | |||
45 | /// Return true if the specified edge is a critical edge. Critical edges are |
||
46 | /// edges from a block with multiple successors to a block with multiple |
||
47 | /// predecessors. |
||
48 | /// |
||
49 | bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, |
||
50 | bool AllowIdenticalEdges = false); |
||
51 | bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ, |
||
52 | bool AllowIdenticalEdges = false); |
||
53 | |||
54 | /// Determine whether instruction 'To' is reachable from 'From', without passing |
||
55 | /// through any blocks in ExclusionSet, returning true if uncertain. |
||
56 | /// |
||
57 | /// Determine whether there is a path from From to To within a single function. |
||
58 | /// Returns false only if we can prove that once 'From' has been executed then |
||
59 | /// 'To' can not be executed. Conservatively returns true. |
||
60 | /// |
||
61 | /// This function is linear with respect to the number of blocks in the CFG, |
||
62 | /// walking down successors from From to reach To, with a fixed threshold. |
||
63 | /// Using DT or LI allows us to answer more quickly. LI reduces the cost of |
||
64 | /// an entire loop of any number of blocks to be the same as the cost of a |
||
65 | /// single block. DT reduces the cost by allowing the search to terminate when |
||
66 | /// we find a block that dominates the block containing 'To'. DT is most useful |
||
67 | /// on branchy code but not loops, and LI is most useful on code with loops but |
||
68 | /// does not help on branchy code outside loops. |
||
69 | bool isPotentiallyReachable( |
||
70 | const Instruction *From, const Instruction *To, |
||
71 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr, |
||
72 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
||
73 | |||
74 | /// Determine whether block 'To' is reachable from 'From', returning |
||
75 | /// true if uncertain. |
||
76 | /// |
||
77 | /// Determine whether there is a path from From to To within a single function. |
||
78 | /// Returns false only if we can prove that once 'From' has been reached then |
||
79 | /// 'To' can not be executed. Conservatively returns true. |
||
80 | bool isPotentiallyReachable( |
||
81 | const BasicBlock *From, const BasicBlock *To, |
||
82 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr, |
||
83 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
||
84 | |||
85 | /// Determine whether there is at least one path from a block in |
||
86 | /// 'Worklist' to 'StopBB' without passing through any blocks in |
||
87 | /// 'ExclusionSet', returning true if uncertain. |
||
88 | /// |
||
89 | /// Determine whether there is a path from at least one block in Worklist to |
||
90 | /// StopBB within a single function without passing through any of the blocks |
||
91 | /// in 'ExclusionSet'. Returns false only if we can prove that once any block |
||
92 | /// in 'Worklist' has been reached then 'StopBB' can not be executed. |
||
93 | /// Conservatively returns true. |
||
94 | bool isPotentiallyReachableFromMany( |
||
95 | SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB, |
||
96 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, |
||
97 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
||
98 | |||
99 | /// Return true if the control flow in \p RPOTraversal is irreducible. |
||
100 | /// |
||
101 | /// This is a generic implementation to detect CFG irreducibility based on loop |
||
102 | /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop, |
||
103 | /// Function, MachineFunction, etc.) by providing an RPO traversal (\p |
||
104 | /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility |
||
105 | /// function is only recommended when loop info analysis is available. If loop |
||
106 | /// info analysis isn't available, please, don't compute it explicitly for this |
||
107 | /// purpose. There are more efficient ways to detect CFG irreducibility that |
||
108 | /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's |
||
109 | /// algorithm). |
||
110 | /// |
||
111 | /// Requirements: |
||
112 | /// 1) GraphTraits must be implemented for NodeT type. It is used to access |
||
113 | /// NodeT successors. |
||
114 | // 2) \p RPOTraversal must be a valid reverse post-order traversal of the |
||
115 | /// target CFG with begin()/end() iterator interfaces. |
||
116 | /// 3) \p LI must be a valid LoopInfoBase that contains up-to-date loop |
||
117 | /// analysis information of the CFG. |
||
118 | /// |
||
119 | /// This algorithm uses the information about reducible loop back-edges already |
||
120 | /// computed in \p LI. When a back-edge is found during the RPO traversal, the |
||
121 | /// algorithm checks whether the back-edge is one of the reducible back-edges in |
||
122 | /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG |
||
123 | /// below (canonical irreducible graph) loop info won't contain any loop, so the |
||
124 | /// algorithm will return that the CFG is irreducible when checking the B <- |
||
125 | /// -> C back-edge. |
||
126 | /// |
||
127 | /// (A->B, A->C, B->C, C->B, C->D) |
||
128 | /// A |
||
129 | /// / \ |
||
130 | /// B<- ->C |
||
131 | /// | |
||
132 | /// D |
||
133 | /// |
||
134 | template <class NodeT, class RPOTraversalT, class LoopInfoT, |
||
135 | class GT = GraphTraits<NodeT>> |
||
136 | bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) { |
||
137 | /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge |
||
138 | /// according to LI. I.e., check if there exists a loop that contains Src and |
||
139 | /// where Dst is the loop header. |
||
140 | auto isProperBackedge = [&](NodeT Src, NodeT Dst) { |
||
141 | for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) { |
||
142 | if (Lp->getHeader() == Dst) |
||
143 | return true; |
||
144 | } |
||
145 | return false; |
||
146 | }; |
||
147 | |||
148 | SmallPtrSet<NodeT, 32> Visited; |
||
149 | for (NodeT Node : RPOTraversal) { |
||
150 | Visited.insert(Node); |
||
151 | for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) { |
||
152 | // Succ hasn't been visited yet |
||
153 | if (!Visited.count(Succ)) |
||
154 | continue; |
||
155 | // We already visited Succ, thus Node->Succ must be a backedge. Check that |
||
156 | // the head matches what we have in the loop information. Otherwise, we |
||
157 | // have an irreducible graph. |
||
158 | if (!isProperBackedge(Node, Succ)) |
||
159 | return true; |
||
160 | } |
||
161 | } |
||
162 | |||
163 | return false; |
||
164 | } |
||
165 | } // End llvm namespace |
||
166 | |||
167 | #endif |