Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // Shared implementation of BlockFrequency for IR and Machine Instructions. |
||
| 10 | // See the documentation below for BlockFrequencyInfoImpl for details. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
||
| 15 | #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/BitVector.h" |
||
| 18 | #include "llvm/ADT/DenseMap.h" |
||
| 19 | #include "llvm/ADT/DenseSet.h" |
||
| 20 | #include "llvm/ADT/GraphTraits.h" |
||
| 21 | #include "llvm/ADT/PostOrderIterator.h" |
||
| 22 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 23 | #include "llvm/ADT/SmallVector.h" |
||
| 24 | #include "llvm/ADT/SparseBitVector.h" |
||
| 25 | #include "llvm/ADT/Twine.h" |
||
| 26 | #include "llvm/ADT/iterator_range.h" |
||
| 27 | #include "llvm/IR/BasicBlock.h" |
||
| 28 | #include "llvm/IR/ValueHandle.h" |
||
| 29 | #include "llvm/Support/BlockFrequency.h" |
||
| 30 | #include "llvm/Support/BranchProbability.h" |
||
| 31 | #include "llvm/Support/CommandLine.h" |
||
| 32 | #include "llvm/Support/DOTGraphTraits.h" |
||
| 33 | #include "llvm/Support/Debug.h" |
||
| 34 | #include "llvm/Support/Format.h" |
||
| 35 | #include "llvm/Support/ScaledNumber.h" |
||
| 36 | #include "llvm/Support/raw_ostream.h" |
||
| 37 | #include <algorithm> |
||
| 38 | #include <cassert> |
||
| 39 | #include <cstddef> |
||
| 40 | #include <cstdint> |
||
| 41 | #include <deque> |
||
| 42 | #include <iterator> |
||
| 43 | #include <limits> |
||
| 44 | #include <list> |
||
| 45 | #include <optional> |
||
| 46 | #include <queue> |
||
| 47 | #include <string> |
||
| 48 | #include <utility> |
||
| 49 | #include <vector> |
||
| 50 | |||
| 51 | #define DEBUG_TYPE "block-freq" |
||
| 52 | |||
| 53 | namespace llvm { |
||
| 54 | extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries; |
||
| 55 | |||
| 56 | extern llvm::cl::opt<bool> UseIterativeBFIInference; |
||
| 57 | extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock; |
||
| 58 | extern llvm::cl::opt<double> IterativeBFIPrecision; |
||
| 59 | |||
| 60 | class BranchProbabilityInfo; |
||
| 61 | class Function; |
||
| 62 | class Loop; |
||
| 63 | class LoopInfo; |
||
| 64 | class MachineBasicBlock; |
||
| 65 | class MachineBranchProbabilityInfo; |
||
| 66 | class MachineFunction; |
||
| 67 | class MachineLoop; |
||
| 68 | class MachineLoopInfo; |
||
| 69 | |||
| 70 | namespace bfi_detail { |
||
| 71 | |||
| 72 | struct IrreducibleGraph; |
||
| 73 | |||
| 74 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
||
| 75 | template <class BT> struct BlockEdgesAdder; |
||
| 76 | |||
| 77 | /// Mass of a block. |
||
| 78 | /// |
||
| 79 | /// This class implements a sort of fixed-point fraction always between 0.0 and |
||
| 80 | /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of |
||
| 81 | /// 1.0. |
||
| 82 | /// |
||
| 83 | /// Masses can be added and subtracted. Simple saturation arithmetic is used, |
||
| 84 | /// so arithmetic operations never overflow or underflow. |
||
| 85 | /// |
||
| 86 | /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses |
||
| 87 | /// an inexpensive floating-point algorithm that's off-by-one (almost, but not |
||
| 88 | /// quite, maximum precision). |
||
| 89 | /// |
||
| 90 | /// Masses can be scaled by \a BranchProbability at maximum precision. |
||
| 91 | class BlockMass { |
||
| 92 | uint64_t Mass = 0; |
||
| 93 | |||
| 94 | public: |
||
| 95 | BlockMass() = default; |
||
| 96 | explicit BlockMass(uint64_t Mass) : Mass(Mass) {} |
||
| 97 | |||
| 98 | static BlockMass getEmpty() { return BlockMass(); } |
||
| 99 | |||
| 100 | static BlockMass getFull() { |
||
| 101 | return BlockMass(std::numeric_limits<uint64_t>::max()); |
||
| 102 | } |
||
| 103 | |||
| 104 | uint64_t getMass() const { return Mass; } |
||
| 105 | |||
| 106 | bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); } |
||
| 107 | bool isEmpty() const { return !Mass; } |
||
| 108 | |||
| 109 | bool operator!() const { return isEmpty(); } |
||
| 110 | |||
| 111 | /// Add another mass. |
||
| 112 | /// |
||
| 113 | /// Adds another mass, saturating at \a isFull() rather than overflowing. |
||
| 114 | BlockMass &operator+=(BlockMass X) { |
||
| 115 | uint64_t Sum = Mass + X.Mass; |
||
| 116 | Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum; |
||
| 117 | return *this; |
||
| 118 | } |
||
| 119 | |||
| 120 | /// Subtract another mass. |
||
| 121 | /// |
||
| 122 | /// Subtracts another mass, saturating at \a isEmpty() rather than |
||
| 123 | /// undeflowing. |
||
| 124 | BlockMass &operator-=(BlockMass X) { |
||
| 125 | uint64_t Diff = Mass - X.Mass; |
||
| 126 | Mass = Diff > Mass ? 0 : Diff; |
||
| 127 | return *this; |
||
| 128 | } |
||
| 129 | |||
| 130 | BlockMass &operator*=(BranchProbability P) { |
||
| 131 | Mass = P.scale(Mass); |
||
| 132 | return *this; |
||
| 133 | } |
||
| 134 | |||
| 135 | bool operator==(BlockMass X) const { return Mass == X.Mass; } |
||
| 136 | bool operator!=(BlockMass X) const { return Mass != X.Mass; } |
||
| 137 | bool operator<=(BlockMass X) const { return Mass <= X.Mass; } |
||
| 138 | bool operator>=(BlockMass X) const { return Mass >= X.Mass; } |
||
| 139 | bool operator<(BlockMass X) const { return Mass < X.Mass; } |
||
| 140 | bool operator>(BlockMass X) const { return Mass > X.Mass; } |
||
| 141 | |||
| 142 | /// Convert to scaled number. |
||
| 143 | /// |
||
| 144 | /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() |
||
| 145 | /// gives slightly above 0.0. |
||
| 146 | ScaledNumber<uint64_t> toScaled() const; |
||
| 147 | |||
| 148 | void dump() const; |
||
| 149 | raw_ostream &print(raw_ostream &OS) const; |
||
| 150 | }; |
||
| 151 | |||
| 152 | inline BlockMass operator+(BlockMass L, BlockMass R) { |
||
| 153 | return BlockMass(L) += R; |
||
| 154 | } |
||
| 155 | inline BlockMass operator-(BlockMass L, BlockMass R) { |
||
| 156 | return BlockMass(L) -= R; |
||
| 157 | } |
||
| 158 | inline BlockMass operator*(BlockMass L, BranchProbability R) { |
||
| 159 | return BlockMass(L) *= R; |
||
| 160 | } |
||
| 161 | inline BlockMass operator*(BranchProbability L, BlockMass R) { |
||
| 162 | return BlockMass(R) *= L; |
||
| 163 | } |
||
| 164 | |||
| 165 | inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { |
||
| 166 | return X.print(OS); |
||
| 167 | } |
||
| 168 | |||
| 169 | } // end namespace bfi_detail |
||
| 170 | |||
| 171 | /// Base class for BlockFrequencyInfoImpl |
||
| 172 | /// |
||
| 173 | /// BlockFrequencyInfoImplBase has supporting data structures and some |
||
| 174 | /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on |
||
| 175 | /// the block type (or that call such algorithms) are skipped here. |
||
| 176 | /// |
||
| 177 | /// Nevertheless, the majority of the overall algorithm documentation lives with |
||
| 178 | /// BlockFrequencyInfoImpl. See there for details. |
||
| 179 | class BlockFrequencyInfoImplBase { |
||
| 180 | public: |
||
| 181 | using Scaled64 = ScaledNumber<uint64_t>; |
||
| 182 | using BlockMass = bfi_detail::BlockMass; |
||
| 183 | |||
| 184 | /// Representative of a block. |
||
| 185 | /// |
||
| 186 | /// This is a simple wrapper around an index into the reverse-post-order |
||
| 187 | /// traversal of the blocks. |
||
| 188 | /// |
||
| 189 | /// Unlike a block pointer, its order has meaning (location in the |
||
| 190 | /// topological sort) and it's class is the same regardless of block type. |
||
| 191 | struct BlockNode { |
||
| 192 | using IndexType = uint32_t; |
||
| 193 | |||
| 194 | IndexType Index; |
||
| 195 | |||
| 196 | BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {} |
||
| 197 | BlockNode(IndexType Index) : Index(Index) {} |
||
| 198 | |||
| 199 | bool operator==(const BlockNode &X) const { return Index == X.Index; } |
||
| 200 | bool operator!=(const BlockNode &X) const { return Index != X.Index; } |
||
| 201 | bool operator<=(const BlockNode &X) const { return Index <= X.Index; } |
||
| 202 | bool operator>=(const BlockNode &X) const { return Index >= X.Index; } |
||
| 203 | bool operator<(const BlockNode &X) const { return Index < X.Index; } |
||
| 204 | bool operator>(const BlockNode &X) const { return Index > X.Index; } |
||
| 205 | |||
| 206 | bool isValid() const { return Index <= getMaxIndex(); } |
||
| 207 | |||
| 208 | static size_t getMaxIndex() { |
||
| 209 | return std::numeric_limits<uint32_t>::max() - 1; |
||
| 210 | } |
||
| 211 | }; |
||
| 212 | |||
| 213 | /// Stats about a block itself. |
||
| 214 | struct FrequencyData { |
||
| 215 | Scaled64 Scaled; |
||
| 216 | uint64_t Integer; |
||
| 217 | }; |
||
| 218 | |||
| 219 | /// Data about a loop. |
||
| 220 | /// |
||
| 221 | /// Contains the data necessary to represent a loop as a pseudo-node once it's |
||
| 222 | /// packaged. |
||
| 223 | struct LoopData { |
||
| 224 | using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>; |
||
| 225 | using NodeList = SmallVector<BlockNode, 4>; |
||
| 226 | using HeaderMassList = SmallVector<BlockMass, 1>; |
||
| 227 | |||
| 228 | LoopData *Parent; ///< The parent loop. |
||
| 229 | bool IsPackaged = false; ///< Whether this has been packaged. |
||
| 230 | uint32_t NumHeaders = 1; ///< Number of headers. |
||
| 231 | ExitMap Exits; ///< Successor edges (and weights). |
||
| 232 | NodeList Nodes; ///< Header and the members of the loop. |
||
| 233 | HeaderMassList BackedgeMass; ///< Mass returned to each loop header. |
||
| 234 | BlockMass Mass; |
||
| 235 | Scaled64 Scale; |
||
| 236 | |||
| 237 | LoopData(LoopData *Parent, const BlockNode &Header) |
||
| 238 | : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} |
||
| 239 | |||
| 240 | template <class It1, class It2> |
||
| 241 | LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, |
||
| 242 | It2 LastOther) |
||
| 243 | : Parent(Parent), Nodes(FirstHeader, LastHeader) { |
||
| 244 | NumHeaders = Nodes.size(); |
||
| 245 | Nodes.insert(Nodes.end(), FirstOther, LastOther); |
||
| 246 | BackedgeMass.resize(NumHeaders); |
||
| 247 | } |
||
| 248 | |||
| 249 | bool isHeader(const BlockNode &Node) const { |
||
| 250 | if (isIrreducible()) |
||
| 251 | return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, |
||
| 252 | Node); |
||
| 253 | return Node == Nodes[0]; |
||
| 254 | } |
||
| 255 | |||
| 256 | BlockNode getHeader() const { return Nodes[0]; } |
||
| 257 | bool isIrreducible() const { return NumHeaders > 1; } |
||
| 258 | |||
| 259 | HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { |
||
| 260 | assert(isHeader(B) && "this is only valid on loop header blocks"); |
||
| 261 | if (isIrreducible()) |
||
| 262 | return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - |
||
| 263 | Nodes.begin(); |
||
| 264 | return 0; |
||
| 265 | } |
||
| 266 | |||
| 267 | NodeList::const_iterator members_begin() const { |
||
| 268 | return Nodes.begin() + NumHeaders; |
||
| 269 | } |
||
| 270 | |||
| 271 | NodeList::const_iterator members_end() const { return Nodes.end(); } |
||
| 272 | iterator_range<NodeList::const_iterator> members() const { |
||
| 273 | return make_range(members_begin(), members_end()); |
||
| 274 | } |
||
| 275 | }; |
||
| 276 | |||
| 277 | /// Index of loop information. |
||
| 278 | struct WorkingData { |
||
| 279 | BlockNode Node; ///< This node. |
||
| 280 | LoopData *Loop = nullptr; ///< The loop this block is inside. |
||
| 281 | BlockMass Mass; ///< Mass distribution from the entry block. |
||
| 282 | |||
| 283 | WorkingData(const BlockNode &Node) : Node(Node) {} |
||
| 284 | |||
| 285 | bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } |
||
| 286 | |||
| 287 | bool isDoubleLoopHeader() const { |
||
| 288 | return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && |
||
| 289 | Loop->Parent->isHeader(Node); |
||
| 290 | } |
||
| 291 | |||
| 292 | LoopData *getContainingLoop() const { |
||
| 293 | if (!isLoopHeader()) |
||
| 294 | return Loop; |
||
| 295 | if (!isDoubleLoopHeader()) |
||
| 296 | return Loop->Parent; |
||
| 297 | return Loop->Parent->Parent; |
||
| 298 | } |
||
| 299 | |||
| 300 | /// Resolve a node to its representative. |
||
| 301 | /// |
||
| 302 | /// Get the node currently representing Node, which could be a containing |
||
| 303 | /// loop. |
||
| 304 | /// |
||
| 305 | /// This function should only be called when distributing mass. As long as |
||
| 306 | /// there are no irreducible edges to Node, then it will have complexity |
||
| 307 | /// O(1) in this context. |
||
| 308 | /// |
||
| 309 | /// In general, the complexity is O(L), where L is the number of loop |
||
| 310 | /// headers Node has been packaged into. Since this method is called in |
||
| 311 | /// the context of distributing mass, L will be the number of loop headers |
||
| 312 | /// an early exit edge jumps out of. |
||
| 313 | BlockNode getResolvedNode() const { |
||
| 314 | auto L = getPackagedLoop(); |
||
| 315 | return L ? L->getHeader() : Node; |
||
| 316 | } |
||
| 317 | |||
| 318 | LoopData *getPackagedLoop() const { |
||
| 319 | if (!Loop || !Loop->IsPackaged) |
||
| 320 | return nullptr; |
||
| 321 | auto L = Loop; |
||
| 322 | while (L->Parent && L->Parent->IsPackaged) |
||
| 323 | L = L->Parent; |
||
| 324 | return L; |
||
| 325 | } |
||
| 326 | |||
| 327 | /// Get the appropriate mass for a node. |
||
| 328 | /// |
||
| 329 | /// Get appropriate mass for Node. If Node is a loop-header (whose loop |
||
| 330 | /// has been packaged), returns the mass of its pseudo-node. If it's a |
||
| 331 | /// node inside a packaged loop, it returns the loop's mass. |
||
| 332 | BlockMass &getMass() { |
||
| 333 | if (!isAPackage()) |
||
| 334 | return Mass; |
||
| 335 | if (!isADoublePackage()) |
||
| 336 | return Loop->Mass; |
||
| 337 | return Loop->Parent->Mass; |
||
| 338 | } |
||
| 339 | |||
| 340 | /// Has ContainingLoop been packaged up? |
||
| 341 | bool isPackaged() const { return getResolvedNode() != Node; } |
||
| 342 | |||
| 343 | /// Has Loop been packaged up? |
||
| 344 | bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } |
||
| 345 | |||
| 346 | /// Has Loop been packaged up twice? |
||
| 347 | bool isADoublePackage() const { |
||
| 348 | return isDoubleLoopHeader() && Loop->Parent->IsPackaged; |
||
| 349 | } |
||
| 350 | }; |
||
| 351 | |||
| 352 | /// Unscaled probability weight. |
||
| 353 | /// |
||
| 354 | /// Probability weight for an edge in the graph (including the |
||
| 355 | /// successor/target node). |
||
| 356 | /// |
||
| 357 | /// All edges in the original function are 32-bit. However, exit edges from |
||
| 358 | /// loop packages are taken from 64-bit exit masses, so we need 64-bits of |
||
| 359 | /// space in general. |
||
| 360 | /// |
||
| 361 | /// In addition to the raw weight amount, Weight stores the type of the edge |
||
| 362 | /// in the current context (i.e., the context of the loop being processed). |
||
| 363 | /// Is this a local edge within the loop, an exit from the loop, or a |
||
| 364 | /// backedge to the loop header? |
||
| 365 | struct Weight { |
||
| 366 | enum DistType { Local, Exit, Backedge }; |
||
| 367 | DistType Type = Local; |
||
| 368 | BlockNode TargetNode; |
||
| 369 | uint64_t Amount = 0; |
||
| 370 | |||
| 371 | Weight() = default; |
||
| 372 | Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) |
||
| 373 | : Type(Type), TargetNode(TargetNode), Amount(Amount) {} |
||
| 374 | }; |
||
| 375 | |||
| 376 | /// Distribution of unscaled probability weight. |
||
| 377 | /// |
||
| 378 | /// Distribution of unscaled probability weight to a set of successors. |
||
| 379 | /// |
||
| 380 | /// This class collates the successor edge weights for later processing. |
||
| 381 | /// |
||
| 382 | /// \a DidOverflow indicates whether \a Total did overflow while adding to |
||
| 383 | /// the distribution. It should never overflow twice. |
||
| 384 | struct Distribution { |
||
| 385 | using WeightList = SmallVector<Weight, 4>; |
||
| 386 | |||
| 387 | WeightList Weights; ///< Individual successor weights. |
||
| 388 | uint64_t Total = 0; ///< Sum of all weights. |
||
| 389 | bool DidOverflow = false; ///< Whether \a Total did overflow. |
||
| 390 | |||
| 391 | Distribution() = default; |
||
| 392 | |||
| 393 | void addLocal(const BlockNode &Node, uint64_t Amount) { |
||
| 394 | add(Node, Amount, Weight::Local); |
||
| 395 | } |
||
| 396 | |||
| 397 | void addExit(const BlockNode &Node, uint64_t Amount) { |
||
| 398 | add(Node, Amount, Weight::Exit); |
||
| 399 | } |
||
| 400 | |||
| 401 | void addBackedge(const BlockNode &Node, uint64_t Amount) { |
||
| 402 | add(Node, Amount, Weight::Backedge); |
||
| 403 | } |
||
| 404 | |||
| 405 | /// Normalize the distribution. |
||
| 406 | /// |
||
| 407 | /// Combines multiple edges to the same \a Weight::TargetNode and scales |
||
| 408 | /// down so that \a Total fits into 32-bits. |
||
| 409 | /// |
||
| 410 | /// This is linear in the size of \a Weights. For the vast majority of |
||
| 411 | /// cases, adjacent edge weights are combined by sorting WeightList and |
||
| 412 | /// combining adjacent weights. However, for very large edge lists an |
||
| 413 | /// auxiliary hash table is used. |
||
| 414 | void normalize(); |
||
| 415 | |||
| 416 | private: |
||
| 417 | void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); |
||
| 418 | }; |
||
| 419 | |||
| 420 | /// Data about each block. This is used downstream. |
||
| 421 | std::vector<FrequencyData> Freqs; |
||
| 422 | |||
| 423 | /// Whether each block is an irreducible loop header. |
||
| 424 | /// This is used downstream. |
||
| 425 | SparseBitVector<> IsIrrLoopHeader; |
||
| 426 | |||
| 427 | /// Loop data: see initializeLoops(). |
||
| 428 | std::vector<WorkingData> Working; |
||
| 429 | |||
| 430 | /// Indexed information about loops. |
||
| 431 | std::list<LoopData> Loops; |
||
| 432 | |||
| 433 | /// Virtual destructor. |
||
| 434 | /// |
||
| 435 | /// Need a virtual destructor to mask the compiler warning about |
||
| 436 | /// getBlockName(). |
||
| 437 | virtual ~BlockFrequencyInfoImplBase() = default; |
||
| 438 | |||
| 439 | /// Add all edges out of a packaged loop to the distribution. |
||
| 440 | /// |
||
| 441 | /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each |
||
| 442 | /// successor edge. |
||
| 443 | /// |
||
| 444 | /// \return \c true unless there's an irreducible backedge. |
||
| 445 | bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, |
||
| 446 | Distribution &Dist); |
||
| 447 | |||
| 448 | /// Add an edge to the distribution. |
||
| 449 | /// |
||
| 450 | /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the |
||
| 451 | /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, |
||
| 452 | /// every edge should be a local edge (since all the loops are packaged up). |
||
| 453 | /// |
||
| 454 | /// \return \c true unless aborted due to an irreducible backedge. |
||
| 455 | bool addToDist(Distribution &Dist, const LoopData *OuterLoop, |
||
| 456 | const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); |
||
| 457 | |||
| 458 | /// Analyze irreducible SCCs. |
||
| 459 | /// |
||
| 460 | /// Separate irreducible SCCs from \c G, which is an explicit graph of \c |
||
| 461 | /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). |
||
| 462 | /// Insert them into \a Loops before \c Insert. |
||
| 463 | /// |
||
| 464 | /// \return the \c LoopData nodes representing the irreducible SCCs. |
||
| 465 | iterator_range<std::list<LoopData>::iterator> |
||
| 466 | analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, |
||
| 467 | std::list<LoopData>::iterator Insert); |
||
| 468 | |||
| 469 | /// Update a loop after packaging irreducible SCCs inside of it. |
||
| 470 | /// |
||
| 471 | /// Update \c OuterLoop. Before finding irreducible control flow, it was |
||
| 472 | /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a |
||
| 473 | /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged |
||
| 474 | /// up need to be removed from \a OuterLoop::Nodes. |
||
| 475 | void updateLoopWithIrreducible(LoopData &OuterLoop); |
||
| 476 | |||
| 477 | /// Distribute mass according to a distribution. |
||
| 478 | /// |
||
| 479 | /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), |
||
| 480 | /// backedges and exits are stored in its entry in Loops. |
||
| 481 | /// |
||
| 482 | /// Mass is distributed in parallel from two copies of the source mass. |
||
| 483 | void distributeMass(const BlockNode &Source, LoopData *OuterLoop, |
||
| 484 | Distribution &Dist); |
||
| 485 | |||
| 486 | /// Compute the loop scale for a loop. |
||
| 487 | void computeLoopScale(LoopData &Loop); |
||
| 488 | |||
| 489 | /// Adjust the mass of all headers in an irreducible loop. |
||
| 490 | /// |
||
| 491 | /// Initially, irreducible loops are assumed to distribute their mass |
||
| 492 | /// equally among its headers. This can lead to wrong frequency estimates |
||
| 493 | /// since some headers may be executed more frequently than others. |
||
| 494 | /// |
||
| 495 | /// This adjusts header mass distribution so it matches the weights of |
||
| 496 | /// the backedges going into each of the loop headers. |
||
| 497 | void adjustLoopHeaderMass(LoopData &Loop); |
||
| 498 | |||
| 499 | void distributeIrrLoopHeaderMass(Distribution &Dist); |
||
| 500 | |||
| 501 | /// Package up a loop. |
||
| 502 | void packageLoop(LoopData &Loop); |
||
| 503 | |||
| 504 | /// Unwrap loops. |
||
| 505 | void unwrapLoops(); |
||
| 506 | |||
| 507 | /// Finalize frequency metrics. |
||
| 508 | /// |
||
| 509 | /// Calculates final frequencies and cleans up no-longer-needed data |
||
| 510 | /// structures. |
||
| 511 | void finalizeMetrics(); |
||
| 512 | |||
| 513 | /// Clear all memory. |
||
| 514 | void clear(); |
||
| 515 | |||
| 516 | virtual std::string getBlockName(const BlockNode &Node) const; |
||
| 517 | std::string getLoopName(const LoopData &Loop) const; |
||
| 518 | |||
| 519 | virtual raw_ostream &print(raw_ostream &OS) const { return OS; } |
||
| 520 | void dump() const { print(dbgs()); } |
||
| 521 | |||
| 522 | Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; |
||
| 523 | |||
| 524 | BlockFrequency getBlockFreq(const BlockNode &Node) const; |
||
| 525 | std::optional<uint64_t> |
||
| 526 | getBlockProfileCount(const Function &F, const BlockNode &Node, |
||
| 527 | bool AllowSynthetic = false) const; |
||
| 528 | std::optional<uint64_t> |
||
| 529 | getProfileCountFromFreq(const Function &F, uint64_t Freq, |
||
| 530 | bool AllowSynthetic = false) const; |
||
| 531 | bool isIrrLoopHeader(const BlockNode &Node); |
||
| 532 | |||
| 533 | void setBlockFreq(const BlockNode &Node, uint64_t Freq); |
||
| 534 | |||
| 535 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; |
||
| 536 | raw_ostream &printBlockFreq(raw_ostream &OS, |
||
| 537 | const BlockFrequency &Freq) const; |
||
| 538 | |||
| 539 | uint64_t getEntryFreq() const { |
||
| 540 | assert(!Freqs.empty()); |
||
| 541 | return Freqs[0].Integer; |
||
| 542 | } |
||
| 543 | }; |
||
| 544 | |||
| 545 | namespace bfi_detail { |
||
| 546 | |||
| 547 | template <class BlockT> struct TypeMap {}; |
||
| 548 | template <> struct TypeMap<BasicBlock> { |
||
| 549 | using BlockT = BasicBlock; |
||
| 550 | using BlockKeyT = AssertingVH<const BasicBlock>; |
||
| 551 | using FunctionT = Function; |
||
| 552 | using BranchProbabilityInfoT = BranchProbabilityInfo; |
||
| 553 | using LoopT = Loop; |
||
| 554 | using LoopInfoT = LoopInfo; |
||
| 555 | }; |
||
| 556 | template <> struct TypeMap<MachineBasicBlock> { |
||
| 557 | using BlockT = MachineBasicBlock; |
||
| 558 | using BlockKeyT = const MachineBasicBlock *; |
||
| 559 | using FunctionT = MachineFunction; |
||
| 560 | using BranchProbabilityInfoT = MachineBranchProbabilityInfo; |
||
| 561 | using LoopT = MachineLoop; |
||
| 562 | using LoopInfoT = MachineLoopInfo; |
||
| 563 | }; |
||
| 564 | |||
| 565 | template <class BlockT, class BFIImplT> |
||
| 566 | class BFICallbackVH; |
||
| 567 | |||
| 568 | /// Get the name of a MachineBasicBlock. |
||
| 569 | /// |
||
| 570 | /// Get the name of a MachineBasicBlock. It's templated so that including from |
||
| 571 | /// CodeGen is unnecessary (that would be a layering issue). |
||
| 572 | /// |
||
| 573 | /// This is used mainly for debug output. The name is similar to |
||
| 574 | /// MachineBasicBlock::getFullName(), but skips the name of the function. |
||
| 575 | template <class BlockT> std::string getBlockName(const BlockT *BB) { |
||
| 576 | assert(BB && "Unexpected nullptr"); |
||
| 577 | auto MachineName = "BB" + Twine(BB->getNumber()); |
||
| 578 | if (BB->getBasicBlock()) |
||
| 579 | return (MachineName + "[" + BB->getName() + "]").str(); |
||
| 580 | return MachineName.str(); |
||
| 581 | } |
||
| 582 | /// Get the name of a BasicBlock. |
||
| 583 | template <> inline std::string getBlockName(const BasicBlock *BB) { |
||
| 584 | assert(BB && "Unexpected nullptr"); |
||
| 585 | return BB->getName().str(); |
||
| 586 | } |
||
| 587 | |||
| 588 | /// Graph of irreducible control flow. |
||
| 589 | /// |
||
| 590 | /// This graph is used for determining the SCCs in a loop (or top-level |
||
| 591 | /// function) that has irreducible control flow. |
||
| 592 | /// |
||
| 593 | /// During the block frequency algorithm, the local graphs are defined in a |
||
| 594 | /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock |
||
| 595 | /// graphs for most edges, but getting others from \a LoopData::ExitMap. The |
||
| 596 | /// latter only has successor information. |
||
| 597 | /// |
||
| 598 | /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use |
||
| 599 | /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), |
||
| 600 | /// and it explicitly lists predecessors and successors. The initialization |
||
| 601 | /// that relies on \c MachineBasicBlock is defined in the header. |
||
| 602 | struct IrreducibleGraph { |
||
| 603 | using BFIBase = BlockFrequencyInfoImplBase; |
||
| 604 | |||
| 605 | BFIBase &BFI; |
||
| 606 | |||
| 607 | using BlockNode = BFIBase::BlockNode; |
||
| 608 | struct IrrNode { |
||
| 609 | BlockNode Node; |
||
| 610 | unsigned NumIn = 0; |
||
| 611 | std::deque<const IrrNode *> Edges; |
||
| 612 | |||
| 613 | IrrNode(const BlockNode &Node) : Node(Node) {} |
||
| 614 | |||
| 615 | using iterator = std::deque<const IrrNode *>::const_iterator; |
||
| 616 | |||
| 617 | iterator pred_begin() const { return Edges.begin(); } |
||
| 618 | iterator succ_begin() const { return Edges.begin() + NumIn; } |
||
| 619 | iterator pred_end() const { return succ_begin(); } |
||
| 620 | iterator succ_end() const { return Edges.end(); } |
||
| 621 | }; |
||
| 622 | BlockNode Start; |
||
| 623 | const IrrNode *StartIrr = nullptr; |
||
| 624 | std::vector<IrrNode> Nodes; |
||
| 625 | SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; |
||
| 626 | |||
| 627 | /// Construct an explicit graph containing irreducible control flow. |
||
| 628 | /// |
||
| 629 | /// Construct an explicit graph of the control flow in \c OuterLoop (or the |
||
| 630 | /// top-level function, if \c OuterLoop is \c nullptr). Uses \c |
||
| 631 | /// addBlockEdges to add block successors that have not been packaged into |
||
| 632 | /// loops. |
||
| 633 | /// |
||
| 634 | /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected |
||
| 635 | /// user of this. |
||
| 636 | template <class BlockEdgesAdder> |
||
| 637 | IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, |
||
| 638 | BlockEdgesAdder addBlockEdges) : BFI(BFI) { |
||
| 639 | initialize(OuterLoop, addBlockEdges); |
||
| 640 | } |
||
| 641 | |||
| 642 | template <class BlockEdgesAdder> |
||
| 643 | void initialize(const BFIBase::LoopData *OuterLoop, |
||
| 644 | BlockEdgesAdder addBlockEdges); |
||
| 645 | void addNodesInLoop(const BFIBase::LoopData &OuterLoop); |
||
| 646 | void addNodesInFunction(); |
||
| 647 | |||
| 648 | void addNode(const BlockNode &Node) { |
||
| 649 | Nodes.emplace_back(Node); |
||
| 650 | BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); |
||
| 651 | } |
||
| 652 | |||
| 653 | void indexNodes(); |
||
| 654 | template <class BlockEdgesAdder> |
||
| 655 | void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, |
||
| 656 | BlockEdgesAdder addBlockEdges); |
||
| 657 | void addEdge(IrrNode &Irr, const BlockNode &Succ, |
||
| 658 | const BFIBase::LoopData *OuterLoop); |
||
| 659 | }; |
||
| 660 | |||
| 661 | template <class BlockEdgesAdder> |
||
| 662 | void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, |
||
| 663 | BlockEdgesAdder addBlockEdges) { |
||
| 664 | if (OuterLoop) { |
||
| 665 | addNodesInLoop(*OuterLoop); |
||
| 666 | for (auto N : OuterLoop->Nodes) |
||
| 667 | addEdges(N, OuterLoop, addBlockEdges); |
||
| 668 | } else { |
||
| 669 | addNodesInFunction(); |
||
| 670 | for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) |
||
| 671 | addEdges(Index, OuterLoop, addBlockEdges); |
||
| 672 | } |
||
| 673 | StartIrr = Lookup[Start.Index]; |
||
| 674 | } |
||
| 675 | |||
| 676 | template <class BlockEdgesAdder> |
||
| 677 | void IrreducibleGraph::addEdges(const BlockNode &Node, |
||
| 678 | const BFIBase::LoopData *OuterLoop, |
||
| 679 | BlockEdgesAdder addBlockEdges) { |
||
| 680 | auto L = Lookup.find(Node.Index); |
||
| 681 | if (L == Lookup.end()) |
||
| 682 | return; |
||
| 683 | IrrNode &Irr = *L->second; |
||
| 684 | const auto &Working = BFI.Working[Node.Index]; |
||
| 685 | |||
| 686 | if (Working.isAPackage()) |
||
| 687 | for (const auto &I : Working.Loop->Exits) |
||
| 688 | addEdge(Irr, I.first, OuterLoop); |
||
| 689 | else |
||
| 690 | addBlockEdges(*this, Irr, OuterLoop); |
||
| 691 | } |
||
| 692 | |||
| 693 | } // end namespace bfi_detail |
||
| 694 | |||
| 695 | /// Shared implementation for block frequency analysis. |
||
| 696 | /// |
||
| 697 | /// This is a shared implementation of BlockFrequencyInfo and |
||
| 698 | /// MachineBlockFrequencyInfo, and calculates the relative frequencies of |
||
| 699 | /// blocks. |
||
| 700 | /// |
||
| 701 | /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, |
||
| 702 | /// which is called the header. A given loop, L, can have sub-loops, which are |
||
| 703 | /// loops within the subgraph of L that exclude its header. (A "trivial" SCC |
||
| 704 | /// consists of a single block that does not have a self-edge.) |
||
| 705 | /// |
||
| 706 | /// In addition to loops, this algorithm has limited support for irreducible |
||
| 707 | /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are |
||
| 708 | /// discovered on the fly, and modelled as loops with multiple headers. |
||
| 709 | /// |
||
| 710 | /// The headers of irreducible sub-SCCs consist of its entry blocks and all |
||
| 711 | /// nodes that are targets of a backedge within it (excluding backedges within |
||
| 712 | /// true sub-loops). Block frequency calculations act as if a block is |
||
| 713 | /// inserted that intercepts all the edges to the headers. All backedges and |
||
| 714 | /// entries point to this block. Its successors are the headers, which split |
||
| 715 | /// the frequency evenly. |
||
| 716 | /// |
||
| 717 | /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, |
||
| 718 | /// separates mass distribution from loop scaling, and dithers to eliminate |
||
| 719 | /// probability mass loss. |
||
| 720 | /// |
||
| 721 | /// The implementation is split between BlockFrequencyInfoImpl, which knows the |
||
| 722 | /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and |
||
| 723 | /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a |
||
| 724 | /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in |
||
| 725 | /// reverse-post order. This gives two advantages: it's easy to compare the |
||
| 726 | /// relative ordering of two nodes, and maps keyed on BlockT can be represented |
||
| 727 | /// by vectors. |
||
| 728 | /// |
||
| 729 | /// This algorithm is O(V+E), unless there is irreducible control flow, in |
||
| 730 | /// which case it's O(V*E) in the worst case. |
||
| 731 | /// |
||
| 732 | /// These are the main stages: |
||
| 733 | /// |
||
| 734 | /// 0. Reverse post-order traversal (\a initializeRPOT()). |
||
| 735 | /// |
||
| 736 | /// Run a single post-order traversal and save it (in reverse) in RPOT. |
||
| 737 | /// All other stages make use of this ordering. Save a lookup from BlockT |
||
| 738 | /// to BlockNode (the index into RPOT) in Nodes. |
||
| 739 | /// |
||
| 740 | /// 1. Loop initialization (\a initializeLoops()). |
||
| 741 | /// |
||
| 742 | /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of |
||
| 743 | /// the algorithm. In particular, store the immediate members of each loop |
||
| 744 | /// in reverse post-order. |
||
| 745 | /// |
||
| 746 | /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). |
||
| 747 | /// |
||
| 748 | /// For each loop (bottom-up), distribute mass through the DAG resulting |
||
| 749 | /// from ignoring backedges and treating sub-loops as a single pseudo-node. |
||
| 750 | /// Track the backedge mass distributed to the loop header, and use it to |
||
| 751 | /// calculate the loop scale (number of loop iterations). Immediate |
||
| 752 | /// members that represent sub-loops will already have been visited and |
||
| 753 | /// packaged into a pseudo-node. |
||
| 754 | /// |
||
| 755 | /// Distributing mass in a loop is a reverse-post-order traversal through |
||
| 756 | /// the loop. Start by assigning full mass to the Loop header. For each |
||
| 757 | /// node in the loop: |
||
| 758 | /// |
||
| 759 | /// - Fetch and categorize the weight distribution for its successors. |
||
| 760 | /// If this is a packaged-subloop, the weight distribution is stored |
||
| 761 | /// in \a LoopData::Exits. Otherwise, fetch it from |
||
| 762 | /// BranchProbabilityInfo. |
||
| 763 | /// |
||
| 764 | /// - Each successor is categorized as \a Weight::Local, a local edge |
||
| 765 | /// within the current loop, \a Weight::Backedge, a backedge to the |
||
| 766 | /// loop header, or \a Weight::Exit, any successor outside the loop. |
||
| 767 | /// The weight, the successor, and its category are stored in \a |
||
| 768 | /// Distribution. There can be multiple edges to each successor. |
||
| 769 | /// |
||
| 770 | /// - If there's a backedge to a non-header, there's an irreducible SCC. |
||
| 771 | /// The usual flow is temporarily aborted. \a |
||
| 772 | /// computeIrreducibleMass() finds the irreducible SCCs within the |
||
| 773 | /// loop, packages them up, and restarts the flow. |
||
| 774 | /// |
||
| 775 | /// - Normalize the distribution: scale weights down so that their sum |
||
| 776 | /// is 32-bits, and coalesce multiple edges to the same node. |
||
| 777 | /// |
||
| 778 | /// - Distribute the mass accordingly, dithering to minimize mass loss, |
||
| 779 | /// as described in \a distributeMass(). |
||
| 780 | /// |
||
| 781 | /// In the case of irreducible loops, instead of a single loop header, |
||
| 782 | /// there will be several. The computation of backedge masses is similar |
||
| 783 | /// but instead of having a single backedge mass, there will be one |
||
| 784 | /// backedge per loop header. In these cases, each backedge will carry |
||
| 785 | /// a mass proportional to the edge weights along the corresponding |
||
| 786 | /// path. |
||
| 787 | /// |
||
| 788 | /// At the end of propagation, the full mass assigned to the loop will be |
||
| 789 | /// distributed among the loop headers proportionally according to the |
||
| 790 | /// mass flowing through their backedges. |
||
| 791 | /// |
||
| 792 | /// Finally, calculate the loop scale from the accumulated backedge mass. |
||
| 793 | /// |
||
| 794 | /// 3. Distribute mass in the function (\a computeMassInFunction()). |
||
| 795 | /// |
||
| 796 | /// Finally, distribute mass through the DAG resulting from packaging all |
||
| 797 | /// loops in the function. This uses the same algorithm as distributing |
||
| 798 | /// mass in a loop, except that there are no exit or backedge edges. |
||
| 799 | /// |
||
| 800 | /// 4. Unpackage loops (\a unwrapLoops()). |
||
| 801 | /// |
||
| 802 | /// Initialize each block's frequency to a floating point representation of |
||
| 803 | /// its mass. |
||
| 804 | /// |
||
| 805 | /// Visit loops top-down, scaling the frequencies of its immediate members |
||
| 806 | /// by the loop's pseudo-node's frequency. |
||
| 807 | /// |
||
| 808 | /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). |
||
| 809 | /// |
||
| 810 | /// Using the min and max frequencies as a guide, translate floating point |
||
| 811 | /// frequencies to an appropriate range in uint64_t. |
||
| 812 | /// |
||
| 813 | /// It has some known flaws. |
||
| 814 | /// |
||
| 815 | /// - The model of irreducible control flow is a rough approximation. |
||
| 816 | /// |
||
| 817 | /// Modelling irreducible control flow exactly involves setting up and |
||
| 818 | /// solving a group of infinite geometric series. Such precision is |
||
| 819 | /// unlikely to be worthwhile, since most of our algorithms give up on |
||
| 820 | /// irreducible control flow anyway. |
||
| 821 | /// |
||
| 822 | /// Nevertheless, we might find that we need to get closer. Here's a sort |
||
| 823 | /// of TODO list for the model with diminishing returns, to be completed as |
||
| 824 | /// necessary. |
||
| 825 | /// |
||
| 826 | /// - The headers for the \a LoopData representing an irreducible SCC |
||
| 827 | /// include non-entry blocks. When these extra blocks exist, they |
||
| 828 | /// indicate a self-contained irreducible sub-SCC. We could treat them |
||
| 829 | /// as sub-loops, rather than arbitrarily shoving the problematic |
||
| 830 | /// blocks into the headers of the main irreducible SCC. |
||
| 831 | /// |
||
| 832 | /// - Entry frequencies are assumed to be evenly split between the |
||
| 833 | /// headers of a given irreducible SCC, which is the only option if we |
||
| 834 | /// need to compute mass in the SCC before its parent loop. Instead, |
||
| 835 | /// we could partially compute mass in the parent loop, and stop when |
||
| 836 | /// we get to the SCC. Here, we have the correct ratio of entry |
||
| 837 | /// masses, which we can use to adjust their relative frequencies. |
||
| 838 | /// Compute mass in the SCC, and then continue propagation in the |
||
| 839 | /// parent. |
||
| 840 | /// |
||
| 841 | /// - We can propagate mass iteratively through the SCC, for some fixed |
||
| 842 | /// number of iterations. Each iteration starts by assigning the entry |
||
| 843 | /// blocks their backedge mass from the prior iteration. The final |
||
| 844 | /// mass for each block (and each exit, and the total backedge mass |
||
| 845 | /// used for computing loop scale) is the sum of all iterations. |
||
| 846 | /// (Running this until fixed point would "solve" the geometric |
||
| 847 | /// series by simulation.) |
||
| 848 | template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { |
||
| 849 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
||
| 850 | friend struct bfi_detail::BlockEdgesAdder<BT>; |
||
| 851 | |||
| 852 | using BlockT = typename bfi_detail::TypeMap<BT>::BlockT; |
||
| 853 | using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT; |
||
| 854 | using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT; |
||
| 855 | using BranchProbabilityInfoT = |
||
| 856 | typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT; |
||
| 857 | using LoopT = typename bfi_detail::TypeMap<BT>::LoopT; |
||
| 858 | using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT; |
||
| 859 | using Successor = GraphTraits<const BlockT *>; |
||
| 860 | using Predecessor = GraphTraits<Inverse<const BlockT *>>; |
||
| 861 | using BFICallbackVH = |
||
| 862 | bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>; |
||
| 863 | |||
| 864 | const BranchProbabilityInfoT *BPI = nullptr; |
||
| 865 | const LoopInfoT *LI = nullptr; |
||
| 866 | const FunctionT *F = nullptr; |
||
| 867 | |||
| 868 | // All blocks in reverse postorder. |
||
| 869 | std::vector<const BlockT *> RPOT; |
||
| 870 | DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes; |
||
| 871 | |||
| 872 | using rpot_iterator = typename std::vector<const BlockT *>::const_iterator; |
||
| 873 | |||
| 874 | rpot_iterator rpot_begin() const { return RPOT.begin(); } |
||
| 875 | rpot_iterator rpot_end() const { return RPOT.end(); } |
||
| 876 | |||
| 877 | size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } |
||
| 878 | |||
| 879 | BlockNode getNode(const rpot_iterator &I) const { |
||
| 880 | return BlockNode(getIndex(I)); |
||
| 881 | } |
||
| 882 | |||
| 883 | BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; } |
||
| 884 | |||
| 885 | const BlockT *getBlock(const BlockNode &Node) const { |
||
| 886 | assert(Node.Index < RPOT.size()); |
||
| 887 | return RPOT[Node.Index]; |
||
| 888 | } |
||
| 889 | |||
| 890 | /// Run (and save) a post-order traversal. |
||
| 891 | /// |
||
| 892 | /// Saves a reverse post-order traversal of all the nodes in \a F. |
||
| 893 | void initializeRPOT(); |
||
| 894 | |||
| 895 | /// Initialize loop data. |
||
| 896 | /// |
||
| 897 | /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from |
||
| 898 | /// each block to the deepest loop it's in, but we need the inverse. For each |
||
| 899 | /// loop, we store in reverse post-order its "immediate" members, defined as |
||
| 900 | /// the header, the headers of immediate sub-loops, and all other blocks in |
||
| 901 | /// the loop that are not in sub-loops. |
||
| 902 | void initializeLoops(); |
||
| 903 | |||
| 904 | /// Propagate to a block's successors. |
||
| 905 | /// |
||
| 906 | /// In the context of distributing mass through \c OuterLoop, divide the mass |
||
| 907 | /// currently assigned to \c Node between its successors. |
||
| 908 | /// |
||
| 909 | /// \return \c true unless there's an irreducible backedge. |
||
| 910 | bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); |
||
| 911 | |||
| 912 | /// Compute mass in a particular loop. |
||
| 913 | /// |
||
| 914 | /// Assign mass to \c Loop's header, and then for each block in \c Loop in |
||
| 915 | /// reverse post-order, distribute mass to its successors. Only visits nodes |
||
| 916 | /// that have not been packaged into sub-loops. |
||
| 917 | /// |
||
| 918 | /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. |
||
| 919 | /// \return \c true unless there's an irreducible backedge. |
||
| 920 | bool computeMassInLoop(LoopData &Loop); |
||
| 921 | |||
| 922 | /// Try to compute mass in the top-level function. |
||
| 923 | /// |
||
| 924 | /// Assign mass to the entry block, and then for each block in reverse |
||
| 925 | /// post-order, distribute mass to its successors. Skips nodes that have |
||
| 926 | /// been packaged into loops. |
||
| 927 | /// |
||
| 928 | /// \pre \a computeMassInLoops() has been called. |
||
| 929 | /// \return \c true unless there's an irreducible backedge. |
||
| 930 | bool tryToComputeMassInFunction(); |
||
| 931 | |||
| 932 | /// Compute mass in (and package up) irreducible SCCs. |
||
| 933 | /// |
||
| 934 | /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front |
||
| 935 | /// of \c Insert), and call \a computeMassInLoop() on each of them. |
||
| 936 | /// |
||
| 937 | /// If \c OuterLoop is \c nullptr, it refers to the top-level function. |
||
| 938 | /// |
||
| 939 | /// \pre \a computeMassInLoop() has been called for each subloop of \c |
||
| 940 | /// OuterLoop. |
||
| 941 | /// \pre \c Insert points at the last loop successfully processed by \a |
||
| 942 | /// computeMassInLoop(). |
||
| 943 | /// \pre \c OuterLoop has irreducible SCCs. |
||
| 944 | void computeIrreducibleMass(LoopData *OuterLoop, |
||
| 945 | std::list<LoopData>::iterator Insert); |
||
| 946 | |||
| 947 | /// Compute mass in all loops. |
||
| 948 | /// |
||
| 949 | /// For each loop bottom-up, call \a computeMassInLoop(). |
||
| 950 | /// |
||
| 951 | /// \a computeMassInLoop() aborts (and returns \c false) on loops that |
||
| 952 | /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then |
||
| 953 | /// re-enter \a computeMassInLoop(). |
||
| 954 | /// |
||
| 955 | /// \post \a computeMassInLoop() has returned \c true for every loop. |
||
| 956 | void computeMassInLoops(); |
||
| 957 | |||
| 958 | /// Compute mass in the top-level function. |
||
| 959 | /// |
||
| 960 | /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to |
||
| 961 | /// compute mass in the top-level function. |
||
| 962 | /// |
||
| 963 | /// \post \a tryToComputeMassInFunction() has returned \c true. |
||
| 964 | void computeMassInFunction(); |
||
| 965 | |||
| 966 | std::string getBlockName(const BlockNode &Node) const override { |
||
| 967 | return bfi_detail::getBlockName(getBlock(Node)); |
||
| 968 | } |
||
| 969 | |||
| 970 | /// The current implementation for computing relative block frequencies does |
||
| 971 | /// not handle correctly control-flow graphs containing irreducible loops. To |
||
| 972 | /// resolve the problem, we apply a post-processing step, which iteratively |
||
| 973 | /// updates block frequencies based on the frequencies of their predesessors. |
||
| 974 | /// This corresponds to finding the stationary point of the Markov chain by |
||
| 975 | /// an iterative method aka "PageRank computation". |
||
| 976 | /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but |
||
| 977 | /// typically converges faster. |
||
| 978 | /// |
||
| 979 | /// Decide whether we want to apply iterative inference for a given function. |
||
| 980 | bool needIterativeInference() const; |
||
| 981 | |||
| 982 | /// Apply an iterative post-processing to infer correct counts for irr loops. |
||
| 983 | void applyIterativeInference(); |
||
| 984 | |||
| 985 | using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>; |
||
| 986 | |||
| 987 | /// Run iterative inference for a probability matrix and initial frequencies. |
||
| 988 | void iterativeInference(const ProbMatrixType &ProbMatrix, |
||
| 989 | std::vector<Scaled64> &Freq) const; |
||
| 990 | |||
| 991 | /// Find all blocks to apply inference on, that is, reachable from the entry |
||
| 992 | /// and backward reachable from exists along edges with positive probability. |
||
| 993 | void findReachableBlocks(std::vector<const BlockT *> &Blocks) const; |
||
| 994 | |||
| 995 | /// Build a matrix of probabilities with transitions (edges) between the |
||
| 996 | /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P |
||
| 997 | void initTransitionProbabilities( |
||
| 998 | const std::vector<const BlockT *> &Blocks, |
||
| 999 | const DenseMap<const BlockT *, size_t> &BlockIndex, |
||
| 1000 | ProbMatrixType &ProbMatrix) const; |
||
| 1001 | |||
| 1002 | #ifndef NDEBUG |
||
| 1003 | /// Compute the discrepancy between current block frequencies and the |
||
| 1004 | /// probability matrix. |
||
| 1005 | Scaled64 discrepancy(const ProbMatrixType &ProbMatrix, |
||
| 1006 | const std::vector<Scaled64> &Freq) const; |
||
| 1007 | #endif |
||
| 1008 | |||
| 1009 | public: |
||
| 1010 | BlockFrequencyInfoImpl() = default; |
||
| 1011 | |||
| 1012 | const FunctionT *getFunction() const { return F; } |
||
| 1013 | |||
| 1014 | void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, |
||
| 1015 | const LoopInfoT &LI); |
||
| 1016 | |||
| 1017 | using BlockFrequencyInfoImplBase::getEntryFreq; |
||
| 1018 | |||
| 1019 | BlockFrequency getBlockFreq(const BlockT *BB) const { |
||
| 1020 | return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); |
||
| 1021 | } |
||
| 1022 | |||
| 1023 | std::optional<uint64_t> |
||
| 1024 | getBlockProfileCount(const Function &F, const BlockT *BB, |
||
| 1025 | bool AllowSynthetic = false) const { |
||
| 1026 | return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB), |
||
| 1027 | AllowSynthetic); |
||
| 1028 | } |
||
| 1029 | |||
| 1030 | std::optional<uint64_t> |
||
| 1031 | getProfileCountFromFreq(const Function &F, uint64_t Freq, |
||
| 1032 | bool AllowSynthetic = false) const { |
||
| 1033 | return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq, |
||
| 1034 | AllowSynthetic); |
||
| 1035 | } |
||
| 1036 | |||
| 1037 | bool isIrrLoopHeader(const BlockT *BB) { |
||
| 1038 | return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); |
||
| 1039 | } |
||
| 1040 | |||
| 1041 | void setBlockFreq(const BlockT *BB, uint64_t Freq); |
||
| 1042 | |||
| 1043 | void forgetBlock(const BlockT *BB) { |
||
| 1044 | // We don't erase corresponding items from `Freqs`, `RPOT` and other to |
||
| 1045 | // avoid invalidating indices. Doing so would have saved some memory, but |
||
| 1046 | // it's not worth it. |
||
| 1047 | Nodes.erase(BB); |
||
| 1048 | } |
||
| 1049 | |||
| 1050 | Scaled64 getFloatingBlockFreq(const BlockT *BB) const { |
||
| 1051 | return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); |
||
| 1052 | } |
||
| 1053 | |||
| 1054 | const BranchProbabilityInfoT &getBPI() const { return *BPI; } |
||
| 1055 | |||
| 1056 | /// Print the frequencies for the current function. |
||
| 1057 | /// |
||
| 1058 | /// Prints the frequencies for the blocks in the current function. |
||
| 1059 | /// |
||
| 1060 | /// Blocks are printed in the natural iteration order of the function, rather |
||
| 1061 | /// than reverse post-order. This provides two advantages: writing -analyze |
||
| 1062 | /// tests is easier (since blocks come out in source order), and even |
||
| 1063 | /// unreachable blocks are printed. |
||
| 1064 | /// |
||
| 1065 | /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so |
||
| 1066 | /// we need to override it here. |
||
| 1067 | raw_ostream &print(raw_ostream &OS) const override; |
||
| 1068 | |||
| 1069 | using BlockFrequencyInfoImplBase::dump; |
||
| 1070 | using BlockFrequencyInfoImplBase::printBlockFreq; |
||
| 1071 | |||
| 1072 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { |
||
| 1073 | return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); |
||
| 1074 | } |
||
| 1075 | |||
| 1076 | void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const; |
||
| 1077 | }; |
||
| 1078 | |||
| 1079 | namespace bfi_detail { |
||
| 1080 | |||
| 1081 | template <class BFIImplT> |
||
| 1082 | class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH { |
||
| 1083 | BFIImplT *BFIImpl; |
||
| 1084 | |||
| 1085 | public: |
||
| 1086 | BFICallbackVH() = default; |
||
| 1087 | |||
| 1088 | BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl) |
||
| 1089 | : CallbackVH(BB), BFIImpl(BFIImpl) {} |
||
| 1090 | |||
| 1091 | virtual ~BFICallbackVH() = default; |
||
| 1092 | |||
| 1093 | void deleted() override { |
||
| 1094 | BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr())); |
||
| 1095 | } |
||
| 1096 | }; |
||
| 1097 | |||
| 1098 | /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles |
||
| 1099 | /// don't apply to them. |
||
| 1100 | template <class BFIImplT> |
||
| 1101 | class BFICallbackVH<MachineBasicBlock, BFIImplT> { |
||
| 1102 | public: |
||
| 1103 | BFICallbackVH() = default; |
||
| 1104 | BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {} |
||
| 1105 | }; |
||
| 1106 | |||
| 1107 | } // end namespace bfi_detail |
||
| 1108 | |||
| 1109 | template <class BT> |
||
| 1110 | void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, |
||
| 1111 | const BranchProbabilityInfoT &BPI, |
||
| 1112 | const LoopInfoT &LI) { |
||
| 1113 | // Save the parameters. |
||
| 1114 | this->BPI = &BPI; |
||
| 1115 | this->LI = &LI; |
||
| 1116 | this->F = &F; |
||
| 1117 | |||
| 1118 | // Clean up left-over data structures. |
||
| 1119 | BlockFrequencyInfoImplBase::clear(); |
||
| 1120 | RPOT.clear(); |
||
| 1121 | Nodes.clear(); |
||
| 1122 | |||
| 1123 | // Initialize. |
||
| 1124 | LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName() |
||
| 1125 | << "\n=================" |
||
| 1126 | << std::string(F.getName().size(), '=') << "\n"); |
||
| 1127 | initializeRPOT(); |
||
| 1128 | initializeLoops(); |
||
| 1129 | |||
| 1130 | // Visit loops in post-order to find the local mass distribution, and then do |
||
| 1131 | // the full function. |
||
| 1132 | computeMassInLoops(); |
||
| 1133 | computeMassInFunction(); |
||
| 1134 | unwrapLoops(); |
||
| 1135 | // Apply a post-processing step improving computed frequencies for functions |
||
| 1136 | // with irreducible loops. |
||
| 1137 | if (needIterativeInference()) |
||
| 1138 | applyIterativeInference(); |
||
| 1139 | finalizeMetrics(); |
||
| 1140 | |||
| 1141 | if (CheckBFIUnknownBlockQueries) { |
||
| 1142 | // To detect BFI queries for unknown blocks, add entries for unreachable |
||
| 1143 | // blocks, if any. This is to distinguish between known/existing unreachable |
||
| 1144 | // blocks and unknown blocks. |
||
| 1145 | for (const BlockT &BB : F) |
||
| 1146 | if (!Nodes.count(&BB)) |
||
| 1147 | setBlockFreq(&BB, 0); |
||
| 1148 | } |
||
| 1149 | } |
||
| 1150 | |||
| 1151 | template <class BT> |
||
| 1152 | void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { |
||
| 1153 | if (Nodes.count(BB)) |
||
| 1154 | BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); |
||
| 1155 | else { |
||
| 1156 | // If BB is a newly added block after BFI is done, we need to create a new |
||
| 1157 | // BlockNode for it assigned with a new index. The index can be determined |
||
| 1158 | // by the size of Freqs. |
||
| 1159 | BlockNode NewNode(Freqs.size()); |
||
| 1160 | Nodes[BB] = {NewNode, BFICallbackVH(BB, this)}; |
||
| 1161 | Freqs.emplace_back(); |
||
| 1162 | BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); |
||
| 1163 | } |
||
| 1164 | } |
||
| 1165 | |||
| 1166 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { |
||
| 1167 | const BlockT *Entry = &F->front(); |
||
| 1168 | RPOT.reserve(F->size()); |
||
| 1169 | std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); |
||
| 1170 | std::reverse(RPOT.begin(), RPOT.end()); |
||
| 1171 | |||
| 1172 | assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && |
||
| 1173 | "More nodes in function than Block Frequency Info supports"); |
||
| 1174 | |||
| 1175 | LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n"); |
||
| 1176 | for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { |
||
| 1177 | BlockNode Node = getNode(I); |
||
| 1178 | LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) |
||
| 1179 | << "\n"); |
||
| 1180 | Nodes[*I] = {Node, BFICallbackVH(*I, this)}; |
||
| 1181 | } |
||
| 1182 | |||
| 1183 | Working.reserve(RPOT.size()); |
||
| 1184 | for (size_t Index = 0; Index < RPOT.size(); ++Index) |
||
| 1185 | Working.emplace_back(Index); |
||
| 1186 | Freqs.resize(RPOT.size()); |
||
| 1187 | } |
||
| 1188 | |||
| 1189 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { |
||
| 1190 | LLVM_DEBUG(dbgs() << "loop-detection\n"); |
||
| 1191 | if (LI->empty()) |
||
| 1192 | return; |
||
| 1193 | |||
| 1194 | // Visit loops top down and assign them an index. |
||
| 1195 | std::deque<std::pair<const LoopT *, LoopData *>> Q; |
||
| 1196 | for (const LoopT *L : *LI) |
||
| 1197 | Q.emplace_back(L, nullptr); |
||
| 1198 | while (!Q.empty()) { |
||
| 1199 | const LoopT *Loop = Q.front().first; |
||
| 1200 | LoopData *Parent = Q.front().second; |
||
| 1201 | Q.pop_front(); |
||
| 1202 | |||
| 1203 | BlockNode Header = getNode(Loop->getHeader()); |
||
| 1204 | assert(Header.isValid()); |
||
| 1205 | |||
| 1206 | Loops.emplace_back(Parent, Header); |
||
| 1207 | Working[Header.Index].Loop = &Loops.back(); |
||
| 1208 | LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); |
||
| 1209 | |||
| 1210 | for (const LoopT *L : *Loop) |
||
| 1211 | Q.emplace_back(L, &Loops.back()); |
||
| 1212 | } |
||
| 1213 | |||
| 1214 | // Visit nodes in reverse post-order and add them to their deepest containing |
||
| 1215 | // loop. |
||
| 1216 | for (size_t Index = 0; Index < RPOT.size(); ++Index) { |
||
| 1217 | // Loop headers have already been mostly mapped. |
||
| 1218 | if (Working[Index].isLoopHeader()) { |
||
| 1219 | LoopData *ContainingLoop = Working[Index].getContainingLoop(); |
||
| 1220 | if (ContainingLoop) |
||
| 1221 | ContainingLoop->Nodes.push_back(Index); |
||
| 1222 | continue; |
||
| 1223 | } |
||
| 1224 | |||
| 1225 | const LoopT *Loop = LI->getLoopFor(RPOT[Index]); |
||
| 1226 | if (!Loop) |
||
| 1227 | continue; |
||
| 1228 | |||
| 1229 | // Add this node to its containing loop's member list. |
||
| 1230 | BlockNode Header = getNode(Loop->getHeader()); |
||
| 1231 | assert(Header.isValid()); |
||
| 1232 | const auto &HeaderData = Working[Header.Index]; |
||
| 1233 | assert(HeaderData.isLoopHeader()); |
||
| 1234 | |||
| 1235 | Working[Index].Loop = HeaderData.Loop; |
||
| 1236 | HeaderData.Loop->Nodes.push_back(Index); |
||
| 1237 | LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) |
||
| 1238 | << ": member = " << getBlockName(Index) << "\n"); |
||
| 1239 | } |
||
| 1240 | } |
||
| 1241 | |||
| 1242 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { |
||
| 1243 | // Visit loops with the deepest first, and the top-level loops last. |
||
| 1244 | for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { |
||
| 1245 | if (computeMassInLoop(*L)) |
||
| 1246 | continue; |
||
| 1247 | auto Next = std::next(L); |
||
| 1248 | computeIrreducibleMass(&*L, L.base()); |
||
| 1249 | L = std::prev(Next); |
||
| 1250 | if (computeMassInLoop(*L)) |
||
| 1251 | continue; |
||
| 1252 | llvm_unreachable("unhandled irreducible control flow"); |
||
| 1253 | } |
||
| 1254 | } |
||
| 1255 | |||
| 1256 | template <class BT> |
||
| 1257 | bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { |
||
| 1258 | // Compute mass in loop. |
||
| 1259 | LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); |
||
| 1260 | |||
| 1261 | if (Loop.isIrreducible()) { |
||
| 1262 | LLVM_DEBUG(dbgs() << "isIrreducible = true\n"); |
||
| 1263 | Distribution Dist; |
||
| 1264 | unsigned NumHeadersWithWeight = 0; |
||
| 1265 | std::optional<uint64_t> MinHeaderWeight; |
||
| 1266 | DenseSet<uint32_t> HeadersWithoutWeight; |
||
| 1267 | HeadersWithoutWeight.reserve(Loop.NumHeaders); |
||
| 1268 | for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { |
||
| 1269 | auto &HeaderNode = Loop.Nodes[H]; |
||
| 1270 | const BlockT *Block = getBlock(HeaderNode); |
||
| 1271 | IsIrrLoopHeader.set(Loop.Nodes[H].Index); |
||
| 1272 | std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight(); |
||
| 1273 | if (!HeaderWeight) { |
||
| 1274 | LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on " |
||
| 1275 | << getBlockName(HeaderNode) << "\n"); |
||
| 1276 | HeadersWithoutWeight.insert(H); |
||
| 1277 | continue; |
||
| 1278 | } |
||
| 1279 | LLVM_DEBUG(dbgs() << getBlockName(HeaderNode) |
||
| 1280 | << " has irr loop header weight " << *HeaderWeight |
||
| 1281 | << "\n"); |
||
| 1282 | NumHeadersWithWeight++; |
||
| 1283 | uint64_t HeaderWeightValue = *HeaderWeight; |
||
| 1284 | if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) |
||
| 1285 | MinHeaderWeight = HeaderWeightValue; |
||
| 1286 | if (HeaderWeightValue) { |
||
| 1287 | Dist.addLocal(HeaderNode, HeaderWeightValue); |
||
| 1288 | } |
||
| 1289 | } |
||
| 1290 | // As a heuristic, if some headers don't have a weight, give them the |
||
| 1291 | // minimum weight seen (not to disrupt the existing trends too much by |
||
| 1292 | // using a weight that's in the general range of the other headers' weights, |
||
| 1293 | // and the minimum seems to perform better than the average.) |
||
| 1294 | // FIXME: better update in the passes that drop the header weight. |
||
| 1295 | // If no headers have a weight, give them even weight (use weight 1). |
||
| 1296 | if (!MinHeaderWeight) |
||
| 1297 | MinHeaderWeight = 1; |
||
| 1298 | for (uint32_t H : HeadersWithoutWeight) { |
||
| 1299 | auto &HeaderNode = Loop.Nodes[H]; |
||
| 1300 | assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && |
||
| 1301 | "Shouldn't have a weight metadata"); |
||
| 1302 | uint64_t MinWeight = *MinHeaderWeight; |
||
| 1303 | LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to " |
||
| 1304 | << getBlockName(HeaderNode) << "\n"); |
||
| 1305 | if (MinWeight) |
||
| 1306 | Dist.addLocal(HeaderNode, MinWeight); |
||
| 1307 | } |
||
| 1308 | distributeIrrLoopHeaderMass(Dist); |
||
| 1309 | for (const BlockNode &M : Loop.Nodes) |
||
| 1310 | if (!propagateMassToSuccessors(&Loop, M)) |
||
| 1311 | llvm_unreachable("unhandled irreducible control flow"); |
||
| 1312 | if (NumHeadersWithWeight == 0) |
||
| 1313 | // No headers have a metadata. Adjust header mass. |
||
| 1314 | adjustLoopHeaderMass(Loop); |
||
| 1315 | } else { |
||
| 1316 | Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); |
||
| 1317 | if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) |
||
| 1318 | llvm_unreachable("irreducible control flow to loop header!?"); |
||
| 1319 | for (const BlockNode &M : Loop.members()) |
||
| 1320 | if (!propagateMassToSuccessors(&Loop, M)) |
||
| 1321 | // Irreducible backedge. |
||
| 1322 | return false; |
||
| 1323 | } |
||
| 1324 | |||
| 1325 | computeLoopScale(Loop); |
||
| 1326 | packageLoop(Loop); |
||
| 1327 | return true; |
||
| 1328 | } |
||
| 1329 | |||
| 1330 | template <class BT> |
||
| 1331 | bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { |
||
| 1332 | // Compute mass in function. |
||
| 1333 | LLVM_DEBUG(dbgs() << "compute-mass-in-function\n"); |
||
| 1334 | assert(!Working.empty() && "no blocks in function"); |
||
| 1335 | assert(!Working[0].isLoopHeader() && "entry block is a loop header"); |
||
| 1336 | |||
| 1337 | Working[0].getMass() = BlockMass::getFull(); |
||
| 1338 | for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { |
||
| 1339 | // Check for nodes that have been packaged. |
||
| 1340 | BlockNode Node = getNode(I); |
||
| 1341 | if (Working[Node.Index].isPackaged()) |
||
| 1342 | continue; |
||
| 1343 | |||
| 1344 | if (!propagateMassToSuccessors(nullptr, Node)) |
||
| 1345 | return false; |
||
| 1346 | } |
||
| 1347 | return true; |
||
| 1348 | } |
||
| 1349 | |||
| 1350 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { |
||
| 1351 | if (tryToComputeMassInFunction()) |
||
| 1352 | return; |
||
| 1353 | computeIrreducibleMass(nullptr, Loops.begin()); |
||
| 1354 | if (tryToComputeMassInFunction()) |
||
| 1355 | return; |
||
| 1356 | llvm_unreachable("unhandled irreducible control flow"); |
||
| 1357 | } |
||
| 1358 | |||
| 1359 | template <class BT> |
||
| 1360 | bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const { |
||
| 1361 | if (!UseIterativeBFIInference) |
||
| 1362 | return false; |
||
| 1363 | if (!F->getFunction().hasProfileData()) |
||
| 1364 | return false; |
||
| 1365 | // Apply iterative inference only if the function contains irreducible loops; |
||
| 1366 | // otherwise, computed block frequencies are reasonably correct. |
||
| 1367 | for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { |
||
| 1368 | if (L->isIrreducible()) |
||
| 1369 | return true; |
||
| 1370 | } |
||
| 1371 | return false; |
||
| 1372 | } |
||
| 1373 | |||
| 1374 | template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() { |
||
| 1375 | // Extract blocks for processing: a block is considered for inference iff it |
||
| 1376 | // can be reached from the entry by edges with a positive probability. |
||
| 1377 | // Non-processed blocks are assigned with the zero frequency and are ignored |
||
| 1378 | // in the computation |
||
| 1379 | std::vector<const BlockT *> ReachableBlocks; |
||
| 1380 | findReachableBlocks(ReachableBlocks); |
||
| 1381 | if (ReachableBlocks.empty()) |
||
| 1382 | return; |
||
| 1383 | |||
| 1384 | // The map is used to to index successors/predecessors of reachable blocks in |
||
| 1385 | // the ReachableBlocks vector |
||
| 1386 | DenseMap<const BlockT *, size_t> BlockIndex; |
||
| 1387 | // Extract initial frequencies for the reachable blocks |
||
| 1388 | auto Freq = std::vector<Scaled64>(ReachableBlocks.size()); |
||
| 1389 | Scaled64 SumFreq; |
||
| 1390 | for (size_t I = 0; I < ReachableBlocks.size(); I++) { |
||
| 1391 | const BlockT *BB = ReachableBlocks[I]; |
||
| 1392 | BlockIndex[BB] = I; |
||
| 1393 | Freq[I] = getFloatingBlockFreq(BB); |
||
| 1394 | SumFreq += Freq[I]; |
||
| 1395 | } |
||
| 1396 | assert(!SumFreq.isZero() && "empty initial block frequencies"); |
||
| 1397 | |||
| 1398 | LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName() |
||
| 1399 | << " with " << ReachableBlocks.size() << " blocks\n"); |
||
| 1400 | |||
| 1401 | // Normalizing frequencies so they sum up to 1.0 |
||
| 1402 | for (auto &Value : Freq) { |
||
| 1403 | Value /= SumFreq; |
||
| 1404 | } |
||
| 1405 | |||
| 1406 | // Setting up edge probabilities using sparse matrix representation: |
||
| 1407 | // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P |
||
| 1408 | ProbMatrixType ProbMatrix; |
||
| 1409 | initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix); |
||
| 1410 | |||
| 1411 | // Run the propagation |
||
| 1412 | iterativeInference(ProbMatrix, Freq); |
||
| 1413 | |||
| 1414 | // Assign computed frequency values |
||
| 1415 | for (const BlockT &BB : *F) { |
||
| 1416 | auto Node = getNode(&BB); |
||
| 1417 | if (!Node.isValid()) |
||
| 1418 | continue; |
||
| 1419 | if (BlockIndex.count(&BB)) { |
||
| 1420 | Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]]; |
||
| 1421 | } else { |
||
| 1422 | Freqs[Node.Index].Scaled = Scaled64::getZero(); |
||
| 1423 | } |
||
| 1424 | } |
||
| 1425 | } |
||
| 1426 | |||
| 1427 | template <class BT> |
||
| 1428 | void BlockFrequencyInfoImpl<BT>::iterativeInference( |
||
| 1429 | const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const { |
||
| 1430 | assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 && |
||
| 1431 | "incorrectly specified precision"); |
||
| 1432 | // Convert double precision to Scaled64 |
||
| 1433 | const auto Precision = |
||
| 1434 | Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision)); |
||
| 1435 | const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size(); |
||
| 1436 | |||
| 1437 | #ifndef NDEBUG |
||
| 1438 | LLVM_DEBUG(dbgs() << " Initial discrepancy = " |
||
| 1439 | << discrepancy(ProbMatrix, Freq).toString() << "\n"); |
||
| 1440 | #endif |
||
| 1441 | |||
| 1442 | // Successors[I] holds unique sucessors of the I-th block |
||
| 1443 | auto Successors = std::vector<std::vector<size_t>>(Freq.size()); |
||
| 1444 | for (size_t I = 0; I < Freq.size(); I++) { |
||
| 1445 | for (const auto &Jump : ProbMatrix[I]) { |
||
| 1446 | Successors[Jump.first].push_back(I); |
||
| 1447 | } |
||
| 1448 | } |
||
| 1449 | |||
| 1450 | // To speedup computation, we maintain a set of "active" blocks whose |
||
| 1451 | // frequencies need to be updated based on the incoming edges. |
||
| 1452 | // The set is dynamic and changes after every update. Initially all blocks |
||
| 1453 | // with a positive frequency are active |
||
| 1454 | auto IsActive = BitVector(Freq.size(), false); |
||
| 1455 | std::queue<size_t> ActiveSet; |
||
| 1456 | for (size_t I = 0; I < Freq.size(); I++) { |
||
| 1457 | if (Freq[I] > 0) { |
||
| 1458 | ActiveSet.push(I); |
||
| 1459 | IsActive[I] = true; |
||
| 1460 | } |
||
| 1461 | } |
||
| 1462 | |||
| 1463 | // Iterate over the blocks propagating frequencies |
||
| 1464 | size_t It = 0; |
||
| 1465 | while (It++ < MaxIterations && !ActiveSet.empty()) { |
||
| 1466 | size_t I = ActiveSet.front(); |
||
| 1467 | ActiveSet.pop(); |
||
| 1468 | IsActive[I] = false; |
||
| 1469 | |||
| 1470 | // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix. |
||
| 1471 | // A special care is taken for self-edges that needs to be scaled by |
||
| 1472 | // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges |
||
| 1473 | Scaled64 NewFreq; |
||
| 1474 | Scaled64 OneMinusSelfProb = Scaled64::getOne(); |
||
| 1475 | for (const auto &Jump : ProbMatrix[I]) { |
||
| 1476 | if (Jump.first == I) { |
||
| 1477 | OneMinusSelfProb -= Jump.second; |
||
| 1478 | } else { |
||
| 1479 | NewFreq += Freq[Jump.first] * Jump.second; |
||
| 1480 | } |
||
| 1481 | } |
||
| 1482 | if (OneMinusSelfProb != Scaled64::getOne()) |
||
| 1483 | NewFreq /= OneMinusSelfProb; |
||
| 1484 | |||
| 1485 | // If the block's frequency has changed enough, then |
||
| 1486 | // make sure the block and its successors are in the active set |
||
| 1487 | auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I]; |
||
| 1488 | if (Change > Precision) { |
||
| 1489 | ActiveSet.push(I); |
||
| 1490 | IsActive[I] = true; |
||
| 1491 | for (size_t Succ : Successors[I]) { |
||
| 1492 | if (!IsActive[Succ]) { |
||
| 1493 | ActiveSet.push(Succ); |
||
| 1494 | IsActive[Succ] = true; |
||
| 1495 | } |
||
| 1496 | } |
||
| 1497 | } |
||
| 1498 | |||
| 1499 | // Update the frequency for the block |
||
| 1500 | Freq[I] = NewFreq; |
||
| 1501 | } |
||
| 1502 | |||
| 1503 | LLVM_DEBUG(dbgs() << " Completed " << It << " inference iterations" |
||
| 1504 | << format(" (%0.0f per block)", double(It) / Freq.size()) |
||
| 1505 | << "\n"); |
||
| 1506 | #ifndef NDEBUG |
||
| 1507 | LLVM_DEBUG(dbgs() << " Final discrepancy = " |
||
| 1508 | << discrepancy(ProbMatrix, Freq).toString() << "\n"); |
||
| 1509 | #endif |
||
| 1510 | } |
||
| 1511 | |||
| 1512 | template <class BT> |
||
| 1513 | void BlockFrequencyInfoImpl<BT>::findReachableBlocks( |
||
| 1514 | std::vector<const BlockT *> &Blocks) const { |
||
| 1515 | // Find all blocks to apply inference on, that is, reachable from the entry |
||
| 1516 | // along edges with non-zero probablities |
||
| 1517 | std::queue<const BlockT *> Queue; |
||
| 1518 | SmallPtrSet<const BlockT *, 8> Reachable; |
||
| 1519 | const BlockT *Entry = &F->front(); |
||
| 1520 | Queue.push(Entry); |
||
| 1521 | Reachable.insert(Entry); |
||
| 1522 | while (!Queue.empty()) { |
||
| 1523 | const BlockT *SrcBB = Queue.front(); |
||
| 1524 | Queue.pop(); |
||
| 1525 | for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) { |
||
| 1526 | auto EP = BPI->getEdgeProbability(SrcBB, DstBB); |
||
| 1527 | if (EP.isZero()) |
||
| 1528 | continue; |
||
| 1529 | if (Reachable.insert(DstBB).second) |
||
| 1530 | Queue.push(DstBB); |
||
| 1531 | } |
||
| 1532 | } |
||
| 1533 | |||
| 1534 | // Find all blocks to apply inference on, that is, backward reachable from |
||
| 1535 | // the entry along (backward) edges with non-zero probablities |
||
| 1536 | SmallPtrSet<const BlockT *, 8> InverseReachable; |
||
| 1537 | for (const BlockT &BB : *F) { |
||
| 1538 | // An exit block is a block without any successors |
||
| 1539 | bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) != |
||
| 1540 | GraphTraits<const BlockT *>::child_end(&BB); |
||
| 1541 | if (!HasSucc && Reachable.count(&BB)) { |
||
| 1542 | Queue.push(&BB); |
||
| 1543 | InverseReachable.insert(&BB); |
||
| 1544 | } |
||
| 1545 | } |
||
| 1546 | while (!Queue.empty()) { |
||
| 1547 | const BlockT *SrcBB = Queue.front(); |
||
| 1548 | Queue.pop(); |
||
| 1549 | for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) { |
||
| 1550 | auto EP = BPI->getEdgeProbability(DstBB, SrcBB); |
||
| 1551 | if (EP.isZero()) |
||
| 1552 | continue; |
||
| 1553 | if (InverseReachable.insert(DstBB).second) |
||
| 1554 | Queue.push(DstBB); |
||
| 1555 | } |
||
| 1556 | } |
||
| 1557 | |||
| 1558 | // Collect the result |
||
| 1559 | Blocks.reserve(F->size()); |
||
| 1560 | for (const BlockT &BB : *F) { |
||
| 1561 | if (Reachable.count(&BB) && InverseReachable.count(&BB)) { |
||
| 1562 | Blocks.push_back(&BB); |
||
| 1563 | } |
||
| 1564 | } |
||
| 1565 | } |
||
| 1566 | |||
| 1567 | template <class BT> |
||
| 1568 | void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities( |
||
| 1569 | const std::vector<const BlockT *> &Blocks, |
||
| 1570 | const DenseMap<const BlockT *, size_t> &BlockIndex, |
||
| 1571 | ProbMatrixType &ProbMatrix) const { |
||
| 1572 | const size_t NumBlocks = Blocks.size(); |
||
| 1573 | auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks); |
||
| 1574 | auto SumProb = std::vector<Scaled64>(NumBlocks); |
||
| 1575 | |||
| 1576 | // Find unique successors and corresponding probabilities for every block |
||
| 1577 | for (size_t Src = 0; Src < NumBlocks; Src++) { |
||
| 1578 | const BlockT *BB = Blocks[Src]; |
||
| 1579 | SmallPtrSet<const BlockT *, 2> UniqueSuccs; |
||
| 1580 | for (const auto SI : children<const BlockT *>(BB)) { |
||
| 1581 | // Ignore cold blocks |
||
| 1582 | if (BlockIndex.find(SI) == BlockIndex.end()) |
||
| 1583 | continue; |
||
| 1584 | // Ignore parallel edges between BB and SI blocks |
||
| 1585 | if (!UniqueSuccs.insert(SI).second) |
||
| 1586 | continue; |
||
| 1587 | // Ignore jumps with zero probability |
||
| 1588 | auto EP = BPI->getEdgeProbability(BB, SI); |
||
| 1589 | if (EP.isZero()) |
||
| 1590 | continue; |
||
| 1591 | |||
| 1592 | auto EdgeProb = |
||
| 1593 | Scaled64::getFraction(EP.getNumerator(), EP.getDenominator()); |
||
| 1594 | size_t Dst = BlockIndex.find(SI)->second; |
||
| 1595 | Succs[Src].push_back(std::make_pair(Dst, EdgeProb)); |
||
| 1596 | SumProb[Src] += EdgeProb; |
||
| 1597 | } |
||
| 1598 | } |
||
| 1599 | |||
| 1600 | // Add transitions for every jump with positive branch probability |
||
| 1601 | ProbMatrix = ProbMatrixType(NumBlocks); |
||
| 1602 | for (size_t Src = 0; Src < NumBlocks; Src++) { |
||
| 1603 | // Ignore blocks w/o successors |
||
| 1604 | if (Succs[Src].empty()) |
||
| 1605 | continue; |
||
| 1606 | |||
| 1607 | assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block"); |
||
| 1608 | for (auto &Jump : Succs[Src]) { |
||
| 1609 | size_t Dst = Jump.first; |
||
| 1610 | Scaled64 Prob = Jump.second; |
||
| 1611 | ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src])); |
||
| 1612 | } |
||
| 1613 | } |
||
| 1614 | |||
| 1615 | // Add transitions from sinks to the source |
||
| 1616 | size_t EntryIdx = BlockIndex.find(&F->front())->second; |
||
| 1617 | for (size_t Src = 0; Src < NumBlocks; Src++) { |
||
| 1618 | if (Succs[Src].empty()) { |
||
| 1619 | ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne())); |
||
| 1620 | } |
||
| 1621 | } |
||
| 1622 | } |
||
| 1623 | |||
| 1624 | #ifndef NDEBUG |
||
| 1625 | template <class BT> |
||
| 1626 | BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy( |
||
| 1627 | const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const { |
||
| 1628 | assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block"); |
||
| 1629 | Scaled64 Discrepancy; |
||
| 1630 | for (size_t I = 0; I < ProbMatrix.size(); I++) { |
||
| 1631 | Scaled64 Sum; |
||
| 1632 | for (const auto &Jump : ProbMatrix[I]) { |
||
| 1633 | Sum += Freq[Jump.first] * Jump.second; |
||
| 1634 | } |
||
| 1635 | Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I]; |
||
| 1636 | } |
||
| 1637 | // Normalizing by the frequency of the entry block |
||
| 1638 | return Discrepancy / Freq[0]; |
||
| 1639 | } |
||
| 1640 | #endif |
||
| 1641 | |||
| 1642 | /// \note This should be a lambda, but that crashes GCC 4.7. |
||
| 1643 | namespace bfi_detail { |
||
| 1644 | |||
| 1645 | template <class BT> struct BlockEdgesAdder { |
||
| 1646 | using BlockT = BT; |
||
| 1647 | using LoopData = BlockFrequencyInfoImplBase::LoopData; |
||
| 1648 | using Successor = GraphTraits<const BlockT *>; |
||
| 1649 | |||
| 1650 | const BlockFrequencyInfoImpl<BT> &BFI; |
||
| 1651 | |||
| 1652 | explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) |
||
| 1653 | : BFI(BFI) {} |
||
| 1654 | |||
| 1655 | void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, |
||
| 1656 | const LoopData *OuterLoop) { |
||
| 1657 | const BlockT *BB = BFI.RPOT[Irr.Node.Index]; |
||
| 1658 | for (const auto Succ : children<const BlockT *>(BB)) |
||
| 1659 | G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); |
||
| 1660 | } |
||
| 1661 | }; |
||
| 1662 | |||
| 1663 | } // end namespace bfi_detail |
||
| 1664 | |||
| 1665 | template <class BT> |
||
| 1666 | void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( |
||
| 1667 | LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { |
||
| 1668 | LLVM_DEBUG(dbgs() << "analyze-irreducible-in-"; |
||
| 1669 | if (OuterLoop) dbgs() |
||
| 1670 | << "loop: " << getLoopName(*OuterLoop) << "\n"; |
||
| 1671 | else dbgs() << "function\n"); |
||
| 1672 | |||
| 1673 | using namespace bfi_detail; |
||
| 1674 | |||
| 1675 | // Ideally, addBlockEdges() would be declared here as a lambda, but that |
||
| 1676 | // crashes GCC 4.7. |
||
| 1677 | BlockEdgesAdder<BT> addBlockEdges(*this); |
||
| 1678 | IrreducibleGraph G(*this, OuterLoop, addBlockEdges); |
||
| 1679 | |||
| 1680 | for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) |
||
| 1681 | computeMassInLoop(L); |
||
| 1682 | |||
| 1683 | if (!OuterLoop) |
||
| 1684 | return; |
||
| 1685 | updateLoopWithIrreducible(*OuterLoop); |
||
| 1686 | } |
||
| 1687 | |||
| 1688 | // A helper function that converts a branch probability into weight. |
||
| 1689 | inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { |
||
| 1690 | return Prob.getNumerator(); |
||
| 1691 | } |
||
| 1692 | |||
| 1693 | template <class BT> |
||
| 1694 | bool |
||
| 1695 | BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, |
||
| 1696 | const BlockNode &Node) { |
||
| 1697 | LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); |
||
| 1698 | // Calculate probability for successors. |
||
| 1699 | Distribution Dist; |
||
| 1700 | if (auto *Loop = Working[Node.Index].getPackagedLoop()) { |
||
| 1701 | assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); |
||
| 1702 | if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) |
||
| 1703 | // Irreducible backedge. |
||
| 1704 | return false; |
||
| 1705 | } else { |
||
| 1706 | const BlockT *BB = getBlock(Node); |
||
| 1707 | for (auto SI = GraphTraits<const BlockT *>::child_begin(BB), |
||
| 1708 | SE = GraphTraits<const BlockT *>::child_end(BB); |
||
| 1709 | SI != SE; ++SI) |
||
| 1710 | if (!addToDist( |
||
| 1711 | Dist, OuterLoop, Node, getNode(*SI), |
||
| 1712 | getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) |
||
| 1713 | // Irreducible backedge. |
||
| 1714 | return false; |
||
| 1715 | } |
||
| 1716 | |||
| 1717 | // Distribute mass to successors, saving exit and backedge data in the |
||
| 1718 | // loop header. |
||
| 1719 | distributeMass(Node, OuterLoop, Dist); |
||
| 1720 | return true; |
||
| 1721 | } |
||
| 1722 | |||
| 1723 | template <class BT> |
||
| 1724 | raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { |
||
| 1725 | if (!F) |
||
| 1726 | return OS; |
||
| 1727 | OS << "block-frequency-info: " << F->getName() << "\n"; |
||
| 1728 | for (const BlockT &BB : *F) { |
||
| 1729 | OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; |
||
| 1730 | getFloatingBlockFreq(&BB).print(OS, 5) |
||
| 1731 | << ", int = " << getBlockFreq(&BB).getFrequency(); |
||
| 1732 | if (std::optional<uint64_t> ProfileCount = |
||
| 1733 | BlockFrequencyInfoImplBase::getBlockProfileCount( |
||
| 1734 | F->getFunction(), getNode(&BB))) |
||
| 1735 | OS << ", count = " << *ProfileCount; |
||
| 1736 | if (std::optional<uint64_t> IrrLoopHeaderWeight = |
||
| 1737 | BB.getIrrLoopHeaderWeight()) |
||
| 1738 | OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight; |
||
| 1739 | OS << "\n"; |
||
| 1740 | } |
||
| 1741 | |||
| 1742 | // Add an extra newline for readability. |
||
| 1743 | OS << "\n"; |
||
| 1744 | return OS; |
||
| 1745 | } |
||
| 1746 | |||
| 1747 | template <class BT> |
||
| 1748 | void BlockFrequencyInfoImpl<BT>::verifyMatch( |
||
| 1749 | BlockFrequencyInfoImpl<BT> &Other) const { |
||
| 1750 | bool Match = true; |
||
| 1751 | DenseMap<const BlockT *, BlockNode> ValidNodes; |
||
| 1752 | DenseMap<const BlockT *, BlockNode> OtherValidNodes; |
||
| 1753 | for (auto &Entry : Nodes) { |
||
| 1754 | const BlockT *BB = Entry.first; |
||
| 1755 | if (BB) { |
||
| 1756 | ValidNodes[BB] = Entry.second.first; |
||
| 1757 | } |
||
| 1758 | } |
||
| 1759 | for (auto &Entry : Other.Nodes) { |
||
| 1760 | const BlockT *BB = Entry.first; |
||
| 1761 | if (BB) { |
||
| 1762 | OtherValidNodes[BB] = Entry.second.first; |
||
| 1763 | } |
||
| 1764 | } |
||
| 1765 | unsigned NumValidNodes = ValidNodes.size(); |
||
| 1766 | unsigned NumOtherValidNodes = OtherValidNodes.size(); |
||
| 1767 | if (NumValidNodes != NumOtherValidNodes) { |
||
| 1768 | Match = false; |
||
| 1769 | dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs " |
||
| 1770 | << NumOtherValidNodes << "\n"; |
||
| 1771 | } else { |
||
| 1772 | for (auto &Entry : ValidNodes) { |
||
| 1773 | const BlockT *BB = Entry.first; |
||
| 1774 | BlockNode Node = Entry.second; |
||
| 1775 | if (OtherValidNodes.count(BB)) { |
||
| 1776 | BlockNode OtherNode = OtherValidNodes[BB]; |
||
| 1777 | const auto &Freq = Freqs[Node.Index]; |
||
| 1778 | const auto &OtherFreq = Other.Freqs[OtherNode.Index]; |
||
| 1779 | if (Freq.Integer != OtherFreq.Integer) { |
||
| 1780 | Match = false; |
||
| 1781 | dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " " |
||
| 1782 | << Freq.Integer << " vs " << OtherFreq.Integer << "\n"; |
||
| 1783 | } |
||
| 1784 | } else { |
||
| 1785 | Match = false; |
||
| 1786 | dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index " |
||
| 1787 | << Node.Index << " does not exist in Other.\n"; |
||
| 1788 | } |
||
| 1789 | } |
||
| 1790 | // If there's a valid node in OtherValidNodes that's not in ValidNodes, |
||
| 1791 | // either the above num check or the check on OtherValidNodes will fail. |
||
| 1792 | } |
||
| 1793 | if (!Match) { |
||
| 1794 | dbgs() << "This\n"; |
||
| 1795 | print(dbgs()); |
||
| 1796 | dbgs() << "Other\n"; |
||
| 1797 | Other.print(dbgs()); |
||
| 1798 | } |
||
| 1799 | assert(Match && "BFI mismatch"); |
||
| 1800 | } |
||
| 1801 | |||
| 1802 | // Graph trait base class for block frequency information graph |
||
| 1803 | // viewer. |
||
| 1804 | |||
| 1805 | enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; |
||
| 1806 | |||
| 1807 | template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> |
||
| 1808 | struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { |
||
| 1809 | using GTraits = GraphTraits<BlockFrequencyInfoT *>; |
||
| 1810 | using NodeRef = typename GTraits::NodeRef; |
||
| 1811 | using EdgeIter = typename GTraits::ChildIteratorType; |
||
| 1812 | using NodeIter = typename GTraits::nodes_iterator; |
||
| 1813 | |||
| 1814 | uint64_t MaxFrequency = 0; |
||
| 1815 | |||
| 1816 | explicit BFIDOTGraphTraitsBase(bool isSimple = false) |
||
| 1817 | : DefaultDOTGraphTraits(isSimple) {} |
||
| 1818 | |||
| 1819 | static StringRef getGraphName(const BlockFrequencyInfoT *G) { |
||
| 1820 | return G->getFunction()->getName(); |
||
| 1821 | } |
||
| 1822 | |||
| 1823 | std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, |
||
| 1824 | unsigned HotPercentThreshold = 0) { |
||
| 1825 | std::string Result; |
||
| 1826 | if (!HotPercentThreshold) |
||
| 1827 | return Result; |
||
| 1828 | |||
| 1829 | // Compute MaxFrequency on the fly: |
||
| 1830 | if (!MaxFrequency) { |
||
| 1831 | for (NodeIter I = GTraits::nodes_begin(Graph), |
||
| 1832 | E = GTraits::nodes_end(Graph); |
||
| 1833 | I != E; ++I) { |
||
| 1834 | NodeRef N = *I; |
||
| 1835 | MaxFrequency = |
||
| 1836 | std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); |
||
| 1837 | } |
||
| 1838 | } |
||
| 1839 | BlockFrequency Freq = Graph->getBlockFreq(Node); |
||
| 1840 | BlockFrequency HotFreq = |
||
| 1841 | (BlockFrequency(MaxFrequency) * |
||
| 1842 | BranchProbability::getBranchProbability(HotPercentThreshold, 100)); |
||
| 1843 | |||
| 1844 | if (Freq < HotFreq) |
||
| 1845 | return Result; |
||
| 1846 | |||
| 1847 | raw_string_ostream OS(Result); |
||
| 1848 | OS << "color=\"red\""; |
||
| 1849 | OS.flush(); |
||
| 1850 | return Result; |
||
| 1851 | } |
||
| 1852 | |||
| 1853 | std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, |
||
| 1854 | GVDAGType GType, int layout_order = -1) { |
||
| 1855 | std::string Result; |
||
| 1856 | raw_string_ostream OS(Result); |
||
| 1857 | |||
| 1858 | if (layout_order != -1) |
||
| 1859 | OS << Node->getName() << "[" << layout_order << "] : "; |
||
| 1860 | else |
||
| 1861 | OS << Node->getName() << " : "; |
||
| 1862 | switch (GType) { |
||
| 1863 | case GVDT_Fraction: |
||
| 1864 | Graph->printBlockFreq(OS, Node); |
||
| 1865 | break; |
||
| 1866 | case GVDT_Integer: |
||
| 1867 | OS << Graph->getBlockFreq(Node).getFrequency(); |
||
| 1868 | break; |
||
| 1869 | case GVDT_Count: { |
||
| 1870 | auto Count = Graph->getBlockProfileCount(Node); |
||
| 1871 | if (Count) |
||
| 1872 | OS << *Count; |
||
| 1873 | else |
||
| 1874 | OS << "Unknown"; |
||
| 1875 | break; |
||
| 1876 | } |
||
| 1877 | case GVDT_None: |
||
| 1878 | llvm_unreachable("If we are not supposed to render a graph we should " |
||
| 1879 | "never reach this point."); |
||
| 1880 | } |
||
| 1881 | return Result; |
||
| 1882 | } |
||
| 1883 | |||
| 1884 | std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, |
||
| 1885 | const BlockFrequencyInfoT *BFI, |
||
| 1886 | const BranchProbabilityInfoT *BPI, |
||
| 1887 | unsigned HotPercentThreshold = 0) { |
||
| 1888 | std::string Str; |
||
| 1889 | if (!BPI) |
||
| 1890 | return Str; |
||
| 1891 | |||
| 1892 | BranchProbability BP = BPI->getEdgeProbability(Node, EI); |
||
| 1893 | uint32_t N = BP.getNumerator(); |
||
| 1894 | uint32_t D = BP.getDenominator(); |
||
| 1895 | double Percent = 100.0 * N / D; |
||
| 1896 | raw_string_ostream OS(Str); |
||
| 1897 | OS << format("label=\"%.1f%%\"", Percent); |
||
| 1898 | |||
| 1899 | if (HotPercentThreshold) { |
||
| 1900 | BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; |
||
| 1901 | BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * |
||
| 1902 | BranchProbability(HotPercentThreshold, 100); |
||
| 1903 | |||
| 1904 | if (EFreq >= HotFreq) { |
||
| 1905 | OS << ",color=\"red\""; |
||
| 1906 | } |
||
| 1907 | } |
||
| 1908 | |||
| 1909 | OS.flush(); |
||
| 1910 | return Str; |
||
| 1911 | } |
||
| 1912 | }; |
||
| 1913 | |||
| 1914 | } // end namespace llvm |
||
| 1915 | |||
| 1916 | #undef DEBUG_TYPE |
||
| 1917 | |||
| 1918 | #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |