Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the generic AliasAnalysis interface, which is used as the
10
// common interface used by all clients of alias analysis information, and
11
// implemented by all alias analysis implementations.  Mod/Ref information is
12
// also captured by this interface.
13
//
14
// Implementations of this interface must implement the various virtual methods,
15
// which automatically provides functionality for the entire suite of client
16
// APIs.
17
//
18
// This API identifies memory regions with the MemoryLocation class. The pointer
19
// component specifies the base memory address of the region. The Size specifies
20
// the maximum size (in address units) of the memory region, or
21
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22
// identifies the "type" of the memory reference; see the
23
// TypeBasedAliasAnalysis class for details.
24
//
25
// Some non-obvious details include:
26
//  - Pointers that point to two completely different objects in memory never
27
//    alias, regardless of the value of the Size component.
28
//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29
//    is two pointers to constant memory. Even if they are equal, constant
30
//    memory is never stored to, so there will never be any dependencies.
31
//    In this and other situations, the pointers may be both NoAlias and
32
//    MustAlias at the same time. The current API can only return one result,
33
//    though this is rarely a problem in practice.
34
//
35
//===----------------------------------------------------------------------===//
36
 
37
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38
#define LLVM_ANALYSIS_ALIASANALYSIS_H
39
 
40
#include "llvm/ADT/DenseMap.h"
41
#include "llvm/ADT/Sequence.h"
42
#include "llvm/ADT/SmallVector.h"
43
#include "llvm/Analysis/MemoryLocation.h"
44
#include "llvm/IR/PassManager.h"
45
#include "llvm/Pass.h"
46
#include "llvm/Support/ModRef.h"
47
#include <cstdint>
48
#include <functional>
49
#include <memory>
50
#include <optional>
51
#include <vector>
52
 
53
namespace llvm {
54
 
55
class AnalysisUsage;
56
class AtomicCmpXchgInst;
57
class BasicAAResult;
58
class BasicBlock;
59
class CatchPadInst;
60
class CatchReturnInst;
61
class DominatorTree;
62
class FenceInst;
63
class Function;
64
class LoopInfo;
65
class PreservedAnalyses;
66
class TargetLibraryInfo;
67
class Value;
68
template <typename> class SmallPtrSetImpl;
69
 
70
/// The possible results of an alias query.
71
///
72
/// These results are always computed between two MemoryLocation objects as
73
/// a query to some alias analysis.
74
///
75
/// Note that these are unscoped enumerations because we would like to support
76
/// implicitly testing a result for the existence of any possible aliasing with
77
/// a conversion to bool, but an "enum class" doesn't support this. The
78
/// canonical names from the literature are suffixed and unique anyways, and so
79
/// they serve as global constants in LLVM for these results.
80
///
81
/// See docs/AliasAnalysis.html for more information on the specific meanings
82
/// of these values.
83
class AliasResult {
84
private:
85
  static const int OffsetBits = 23;
86
  static const int AliasBits = 8;
87
  static_assert(AliasBits + 1 + OffsetBits <= 32,
88
                "AliasResult size is intended to be 4 bytes!");
89
 
90
  unsigned int Alias : AliasBits;
91
  unsigned int HasOffset : 1;
92
  signed int Offset : OffsetBits;
93
 
94
public:
95
  enum Kind : uint8_t {
96
    /// The two locations do not alias at all.
97
    ///
98
    /// This value is arranged to convert to false, while all other values
99
    /// convert to true. This allows a boolean context to convert the result to
100
    /// a binary flag indicating whether there is the possibility of aliasing.
101
    NoAlias = 0,
102
    /// The two locations may or may not alias. This is the least precise
103
    /// result.
104
    MayAlias,
105
    /// The two locations alias, but only due to a partial overlap.
106
    PartialAlias,
107
    /// The two locations precisely alias each other.
108
    MustAlias,
109
  };
110
  static_assert(MustAlias < (1 << AliasBits),
111
                "Not enough bit field size for the enum!");
112
 
113
  explicit AliasResult() = delete;
114
  constexpr AliasResult(const Kind &Alias)
115
      : Alias(Alias), HasOffset(false), Offset(0) {}
116
 
117
  operator Kind() const { return static_cast<Kind>(Alias); }
118
 
119
  bool operator==(const AliasResult &Other) const {
120
    return Alias == Other.Alias && HasOffset == Other.HasOffset &&
121
           Offset == Other.Offset;
122
  }
123
  bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
124
 
125
  bool operator==(Kind K) const { return Alias == K; }
126
  bool operator!=(Kind K) const { return !(*this == K); }
127
 
128
  constexpr bool hasOffset() const { return HasOffset; }
129
  constexpr int32_t getOffset() const {
130
    assert(HasOffset && "No offset!");
131
    return Offset;
132
  }
133
  void setOffset(int32_t NewOffset) {
134
    if (isInt<OffsetBits>(NewOffset)) {
135
      HasOffset = true;
136
      Offset = NewOffset;
137
    }
138
  }
139
 
140
  /// Helper for processing AliasResult for swapped memory location pairs.
141
  void swap(bool DoSwap = true) {
142
    if (DoSwap && hasOffset())
143
      setOffset(-getOffset());
144
  }
145
};
146
 
147
static_assert(sizeof(AliasResult) == 4,
148
              "AliasResult size is intended to be 4 bytes!");
149
 
150
/// << operator for AliasResult.
151
raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
152
 
153
/// Virtual base class for providers of capture information.
154
struct CaptureInfo {
155
  virtual ~CaptureInfo() = 0;
156
  virtual bool isNotCapturedBeforeOrAt(const Value *Object,
157
                                       const Instruction *I) = 0;
158
};
159
 
160
/// Context-free CaptureInfo provider, which computes and caches whether an
161
/// object is captured in the function at all, but does not distinguish whether
162
/// it was captured before or after the context instruction.
163
class SimpleCaptureInfo final : public CaptureInfo {
164
  SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
165
 
166
public:
167
  bool isNotCapturedBeforeOrAt(const Value *Object,
168
                               const Instruction *I) override;
169
};
170
 
171
/// Context-sensitive CaptureInfo provider, which computes and caches the
172
/// earliest common dominator closure of all captures. It provides a good
173
/// approximation to a precise "captures before" analysis.
174
class EarliestEscapeInfo final : public CaptureInfo {
175
  DominatorTree &DT;
176
  const LoopInfo &LI;
177
 
178
  /// Map from identified local object to an instruction before which it does
179
  /// not escape, or nullptr if it never escapes. The "earliest" instruction
180
  /// may be a conservative approximation, e.g. the first instruction in the
181
  /// function is always a legal choice.
182
  DenseMap<const Value *, Instruction *> EarliestEscapes;
183
 
184
  /// Reverse map from instruction to the objects it is the earliest escape for.
185
  /// This is used for cache invalidation purposes.
186
  DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
187
 
188
  const SmallPtrSetImpl<const Value *> &EphValues;
189
 
190
public:
191
  EarliestEscapeInfo(DominatorTree &DT, const LoopInfo &LI,
192
                     const SmallPtrSetImpl<const Value *> &EphValues)
193
      : DT(DT), LI(LI), EphValues(EphValues) {}
194
 
195
  bool isNotCapturedBeforeOrAt(const Value *Object,
196
                               const Instruction *I) override;
197
 
198
  void removeInstruction(Instruction *I);
199
};
200
 
201
/// Cache key for BasicAA results. It only includes the pointer and size from
202
/// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
203
/// the value of MayBeCrossIteration, which may affect BasicAA results.
204
struct AACacheLoc {
205
  using PtrTy = PointerIntPair<const Value *, 1, bool>;
206
  PtrTy Ptr;
207
  LocationSize Size;
208
 
209
  AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
210
  AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
211
      : Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
212
};
213
 
214
template <> struct DenseMapInfo<AACacheLoc> {
215
  static inline AACacheLoc getEmptyKey() {
216
    return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
217
            DenseMapInfo<LocationSize>::getEmptyKey()};
218
  }
219
  static inline AACacheLoc getTombstoneKey() {
220
    return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
221
            DenseMapInfo<LocationSize>::getTombstoneKey()};
222
  }
223
  static unsigned getHashValue(const AACacheLoc &Val) {
224
    return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
225
           DenseMapInfo<LocationSize>::getHashValue(Val.Size);
226
  }
227
  static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
228
    return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
229
  }
230
};
231
 
232
class AAResults;
233
 
234
/// This class stores info we want to provide to or retain within an alias
235
/// query. By default, the root query is stateless and starts with a freshly
236
/// constructed info object. Specific alias analyses can use this query info to
237
/// store per-query state that is important for recursive or nested queries to
238
/// avoid recomputing. To enable preserving this state across multiple queries
239
/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
240
/// The information stored in an `AAQueryInfo` is currently limitted to the
241
/// caches used by BasicAA, but can further be extended to fit other AA needs.
242
class AAQueryInfo {
243
public:
244
  using LocPair = std::pair<AACacheLoc, AACacheLoc>;
245
  struct CacheEntry {
246
    AliasResult Result;
247
    /// Number of times a NoAlias assumption has been used.
248
    /// 0 for assumptions that have not been used, -1 for definitive results.
249
    int NumAssumptionUses;
250
    /// Whether this is a definitive (non-assumption) result.
251
    bool isDefinitive() const { return NumAssumptionUses < 0; }
252
  };
253
 
254
  // Alias analysis result aggregration using which this query is performed.
255
  // Can be used to perform recursive queries.
256
  AAResults &AAR;
257
 
258
  using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
259
  AliasCacheT AliasCache;
260
 
261
  CaptureInfo *CI;
262
 
263
  /// Query depth used to distinguish recursive queries.
264
  unsigned Depth = 0;
265
 
266
  /// How many active NoAlias assumption uses there are.
267
  int NumAssumptionUses = 0;
268
 
269
  /// Location pairs for which an assumption based result is currently stored.
270
  /// Used to remove all potentially incorrect results from the cache if an
271
  /// assumption is disproven.
272
  SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
273
 
274
  /// Tracks whether the accesses may be on different cycle iterations.
275
  ///
276
  /// When interpret "Value" pointer equality as value equality we need to make
277
  /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
278
  /// come from different "iterations" of a cycle and see different values for
279
  /// the same "Value" pointer.
280
  ///
281
  /// The following example shows the problem:
282
  ///   %p = phi(%alloca1, %addr2)
283
  ///   %l = load %ptr
284
  ///   %addr1 = gep, %alloca2, 0, %l
285
  ///   %addr2 = gep  %alloca2, 0, (%l + 1)
286
  ///      alias(%p, %addr1) -> MayAlias !
287
  ///   store %l, ...
288
  bool MayBeCrossIteration = false;
289
 
290
  AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {}
291
};
292
 
293
/// AAQueryInfo that uses SimpleCaptureInfo.
294
class SimpleAAQueryInfo : public AAQueryInfo {
295
  SimpleCaptureInfo CI;
296
 
297
public:
298
  SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {}
299
};
300
 
301
class BatchAAResults;
302
 
303
class AAResults {
304
public:
305
  // Make these results default constructable and movable. We have to spell
306
  // these out because MSVC won't synthesize them.
307
  AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
308
  AAResults(AAResults &&Arg);
309
  ~AAResults();
310
 
311
  /// Register a specific AA result.
312
  template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
313
    // FIXME: We should use a much lighter weight system than the usual
314
    // polymorphic pattern because we don't own AAResult. It should
315
    // ideally involve two pointers and no separate allocation.
316
    AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
317
  }
318
 
319
  /// Register a function analysis ID that the results aggregation depends on.
320
  ///
321
  /// This is used in the new pass manager to implement the invalidation logic
322
  /// where we must invalidate the results aggregation if any of our component
323
  /// analyses become invalid.
324
  void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
325
 
326
  /// Handle invalidation events in the new pass manager.
327
  ///
328
  /// The aggregation is invalidated if any of the underlying analyses is
329
  /// invalidated.
330
  bool invalidate(Function &F, const PreservedAnalyses &PA,
331
                  FunctionAnalysisManager::Invalidator &Inv);
332
 
333
  //===--------------------------------------------------------------------===//
334
  /// \name Alias Queries
335
  /// @{
336
 
337
  /// The main low level interface to the alias analysis implementation.
338
  /// Returns an AliasResult indicating whether the two pointers are aliased to
339
  /// each other. This is the interface that must be implemented by specific
340
  /// alias analysis implementations.
341
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
342
 
343
  /// A convenience wrapper around the primary \c alias interface.
344
  AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
345
                    LocationSize V2Size) {
346
    return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
347
  }
348
 
349
  /// A convenience wrapper around the primary \c alias interface.
350
  AliasResult alias(const Value *V1, const Value *V2) {
351
    return alias(MemoryLocation::getBeforeOrAfter(V1),
352
                 MemoryLocation::getBeforeOrAfter(V2));
353
  }
354
 
355
  /// A trivial helper function to check to see if the specified pointers are
356
  /// no-alias.
357
  bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
358
    return alias(LocA, LocB) == AliasResult::NoAlias;
359
  }
360
 
361
  /// A convenience wrapper around the \c isNoAlias helper interface.
362
  bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
363
                 LocationSize V2Size) {
364
    return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
365
  }
366
 
367
  /// A convenience wrapper around the \c isNoAlias helper interface.
368
  bool isNoAlias(const Value *V1, const Value *V2) {
369
    return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
370
                     MemoryLocation::getBeforeOrAfter(V2));
371
  }
372
 
373
  /// A trivial helper function to check to see if the specified pointers are
374
  /// must-alias.
375
  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
376
    return alias(LocA, LocB) == AliasResult::MustAlias;
377
  }
378
 
379
  /// A convenience wrapper around the \c isMustAlias helper interface.
380
  bool isMustAlias(const Value *V1, const Value *V2) {
381
    return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
382
           AliasResult::MustAlias;
383
  }
384
 
385
  /// Checks whether the given location points to constant memory, or if
386
  /// \p OrLocal is true whether it points to a local alloca.
387
  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
388
    return isNoModRef(getModRefInfoMask(Loc, OrLocal));
389
  }
390
 
391
  /// A convenience wrapper around the primary \c pointsToConstantMemory
392
  /// interface.
393
  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
394
    return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
395
  }
396
 
397
  /// @}
398
  //===--------------------------------------------------------------------===//
399
  /// \name Simple mod/ref information
400
  /// @{
401
 
402
  /// Returns a bitmask that should be unconditionally applied to the ModRef
403
  /// info of a memory location. This allows us to eliminate Mod and/or Ref
404
  /// from the ModRef info based on the knowledge that the memory location
405
  /// points to constant and/or locally-invariant memory.
406
  ///
407
  /// If IgnoreLocals is true, then this method returns NoModRef for memory
408
  /// that points to a local alloca.
409
  ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
410
                               bool IgnoreLocals = false);
411
 
412
  /// A convenience wrapper around the primary \c getModRefInfoMask
413
  /// interface.
414
  ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
415
    return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
416
  }
417
 
418
  /// Get the ModRef info associated with a pointer argument of a call. The
419
  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
420
  /// that these bits do not necessarily account for the overall behavior of
421
  /// the function, but rather only provide additional per-argument
422
  /// information.
423
  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
424
 
425
  /// Return the behavior of the given call site.
426
  MemoryEffects getMemoryEffects(const CallBase *Call);
427
 
428
  /// Return the behavior when calling the given function.
429
  MemoryEffects getMemoryEffects(const Function *F);
430
 
431
  /// Checks if the specified call is known to never read or write memory.
432
  ///
433
  /// Note that if the call only reads from known-constant memory, it is also
434
  /// legal to return true. Also, calls that unwind the stack are legal for
435
  /// this predicate.
436
  ///
437
  /// Many optimizations (such as CSE and LICM) can be performed on such calls
438
  /// without worrying about aliasing properties, and many calls have this
439
  /// property (e.g. calls to 'sin' and 'cos').
440
  ///
441
  /// This property corresponds to the GCC 'const' attribute.
442
  bool doesNotAccessMemory(const CallBase *Call) {
443
    return getMemoryEffects(Call).doesNotAccessMemory();
444
  }
445
 
446
  /// Checks if the specified function is known to never read or write memory.
447
  ///
448
  /// Note that if the function only reads from known-constant memory, it is
449
  /// also legal to return true. Also, function that unwind the stack are legal
450
  /// for this predicate.
451
  ///
452
  /// Many optimizations (such as CSE and LICM) can be performed on such calls
453
  /// to such functions without worrying about aliasing properties, and many
454
  /// functions have this property (e.g. 'sin' and 'cos').
455
  ///
456
  /// This property corresponds to the GCC 'const' attribute.
457
  bool doesNotAccessMemory(const Function *F) {
458
    return getMemoryEffects(F).doesNotAccessMemory();
459
  }
460
 
461
  /// Checks if the specified call is known to only read from non-volatile
462
  /// memory (or not access memory at all).
463
  ///
464
  /// Calls that unwind the stack are legal for this predicate.
465
  ///
466
  /// This property allows many common optimizations to be performed in the
467
  /// absence of interfering store instructions, such as CSE of strlen calls.
468
  ///
469
  /// This property corresponds to the GCC 'pure' attribute.
470
  bool onlyReadsMemory(const CallBase *Call) {
471
    return getMemoryEffects(Call).onlyReadsMemory();
472
  }
473
 
474
  /// Checks if the specified function is known to only read from non-volatile
475
  /// memory (or not access memory at all).
476
  ///
477
  /// Functions that unwind the stack are legal for this predicate.
478
  ///
479
  /// This property allows many common optimizations to be performed in the
480
  /// absence of interfering store instructions, such as CSE of strlen calls.
481
  ///
482
  /// This property corresponds to the GCC 'pure' attribute.
483
  bool onlyReadsMemory(const Function *F) {
484
    return getMemoryEffects(F).onlyReadsMemory();
485
  }
486
 
487
  /// Check whether or not an instruction may read or write the optionally
488
  /// specified memory location.
489
  ///
490
  ///
491
  /// An instruction that doesn't read or write memory may be trivially LICM'd
492
  /// for example.
493
  ///
494
  /// For function calls, this delegates to the alias-analysis specific
495
  /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
496
  /// helpers above.
497
  ModRefInfo getModRefInfo(const Instruction *I,
498
                           const std::optional<MemoryLocation> &OptLoc) {
499
    SimpleAAQueryInfo AAQIP(*this);
500
    return getModRefInfo(I, OptLoc, AAQIP);
501
  }
502
 
503
  /// A convenience wrapper for constructing the memory location.
504
  ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
505
                           LocationSize Size) {
506
    return getModRefInfo(I, MemoryLocation(P, Size));
507
  }
508
 
509
  /// Return information about whether a call and an instruction may refer to
510
  /// the same memory locations.
511
  ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
512
 
513
  /// Return information about whether a particular call site modifies
514
  /// or reads the specified memory location \p MemLoc before instruction \p I
515
  /// in a BasicBlock.
516
  ModRefInfo callCapturesBefore(const Instruction *I,
517
                                const MemoryLocation &MemLoc,
518
                                DominatorTree *DT) {
519
    SimpleAAQueryInfo AAQIP(*this);
520
    return callCapturesBefore(I, MemLoc, DT, AAQIP);
521
  }
522
 
523
  /// A convenience wrapper to synthesize a memory location.
524
  ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
525
                                LocationSize Size, DominatorTree *DT) {
526
    return callCapturesBefore(I, MemoryLocation(P, Size), DT);
527
  }
528
 
529
  /// @}
530
  //===--------------------------------------------------------------------===//
531
  /// \name Higher level methods for querying mod/ref information.
532
  /// @{
533
 
534
  /// Check if it is possible for execution of the specified basic block to
535
  /// modify the location Loc.
536
  bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
537
 
538
  /// A convenience wrapper synthesizing a memory location.
539
  bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
540
                           LocationSize Size) {
541
    return canBasicBlockModify(BB, MemoryLocation(P, Size));
542
  }
543
 
544
  /// Check if it is possible for the execution of the specified instructions
545
  /// to mod\ref (according to the mode) the location Loc.
546
  ///
547
  /// The instructions to consider are all of the instructions in the range of
548
  /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
549
  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
550
                                 const MemoryLocation &Loc,
551
                                 const ModRefInfo Mode);
552
 
553
  /// A convenience wrapper synthesizing a memory location.
554
  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
555
                                 const Value *Ptr, LocationSize Size,
556
                                 const ModRefInfo Mode) {
557
    return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
558
  }
559
 
560
  // CtxI can be nullptr, in which case the query is whether or not the aliasing
561
  // relationship holds through the entire function.
562
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
563
                    AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
564
 
565
  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
566
                              bool OrLocal = false);
567
  ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
568
                               bool IgnoreLocals = false);
569
  ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
570
                           AAQueryInfo &AAQIP);
571
  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
572
                           AAQueryInfo &AAQI);
573
  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
574
                           AAQueryInfo &AAQI);
575
  ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
576
                           AAQueryInfo &AAQI);
577
  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
578
                           AAQueryInfo &AAQI);
579
  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
580
                           AAQueryInfo &AAQI);
581
  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
582
                           AAQueryInfo &AAQI);
583
  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
584
                           const MemoryLocation &Loc, AAQueryInfo &AAQI);
585
  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
586
                           AAQueryInfo &AAQI);
587
  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
588
                           AAQueryInfo &AAQI);
589
  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
590
                           AAQueryInfo &AAQI);
591
  ModRefInfo getModRefInfo(const Instruction *I,
592
                           const std::optional<MemoryLocation> &OptLoc,
593
                           AAQueryInfo &AAQIP);
594
  ModRefInfo callCapturesBefore(const Instruction *I,
595
                                const MemoryLocation &MemLoc, DominatorTree *DT,
596
                                AAQueryInfo &AAQIP);
597
  MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
598
 
599
private:
600
  class Concept;
601
 
602
  template <typename T> class Model;
603
 
604
  friend class AAResultBase;
605
 
606
  const TargetLibraryInfo &TLI;
607
 
608
  std::vector<std::unique_ptr<Concept>> AAs;
609
 
610
  std::vector<AnalysisKey *> AADeps;
611
 
612
  friend class BatchAAResults;
613
};
614
 
615
/// This class is a wrapper over an AAResults, and it is intended to be used
616
/// only when there are no IR changes inbetween queries. BatchAAResults is
617
/// reusing the same `AAQueryInfo` to preserve the state across queries,
618
/// esentially making AA work in "batch mode". The internal state cannot be
619
/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
620
/// or create a new BatchAAResults.
621
class BatchAAResults {
622
  AAResults &AA;
623
  AAQueryInfo AAQI;
624
  SimpleCaptureInfo SimpleCI;
625
 
626
public:
627
  BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {}
628
  BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
629
 
630
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
631
    return AA.alias(LocA, LocB, AAQI);
632
  }
633
  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
634
    return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
635
  }
636
  ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
637
                               bool IgnoreLocals = false) {
638
    return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
639
  }
640
  ModRefInfo getModRefInfo(const Instruction *I,
641
                           const std::optional<MemoryLocation> &OptLoc) {
642
    return AA.getModRefInfo(I, OptLoc, AAQI);
643
  }
644
  ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
645
    return AA.getModRefInfo(I, Call2, AAQI);
646
  }
647
  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
648
    return AA.getArgModRefInfo(Call, ArgIdx);
649
  }
650
  MemoryEffects getMemoryEffects(const CallBase *Call) {
651
    return AA.getMemoryEffects(Call, AAQI);
652
  }
653
  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
654
    return alias(LocA, LocB) == AliasResult::MustAlias;
655
  }
656
  bool isMustAlias(const Value *V1, const Value *V2) {
657
    return alias(MemoryLocation(V1, LocationSize::precise(1)),
658
                 MemoryLocation(V2, LocationSize::precise(1))) ==
659
           AliasResult::MustAlias;
660
  }
661
  ModRefInfo callCapturesBefore(const Instruction *I,
662
                                const MemoryLocation &MemLoc,
663
                                DominatorTree *DT) {
664
    return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
665
  }
666
 
667
  /// Assume that values may come from different cycle iterations.
668
  void enableCrossIterationMode() {
669
    AAQI.MayBeCrossIteration = true;
670
  }
671
};
672
 
673
/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
674
/// pointer or reference.
675
using AliasAnalysis = AAResults;
676
 
677
/// A private abstract base class describing the concept of an individual alias
678
/// analysis implementation.
679
///
680
/// This interface is implemented by any \c Model instantiation. It is also the
681
/// interface which a type used to instantiate the model must provide.
682
///
683
/// All of these methods model methods by the same name in the \c
684
/// AAResults class. Only differences and specifics to how the
685
/// implementations are called are documented here.
686
class AAResults::Concept {
687
public:
688
  virtual ~Concept() = 0;
689
 
690
  //===--------------------------------------------------------------------===//
691
  /// \name Alias Queries
692
  /// @{
693
 
694
  /// The main low level interface to the alias analysis implementation.
695
  /// Returns an AliasResult indicating whether the two pointers are aliased to
696
  /// each other. This is the interface that must be implemented by specific
697
  /// alias analysis implementations.
698
  virtual AliasResult alias(const MemoryLocation &LocA,
699
                            const MemoryLocation &LocB, AAQueryInfo &AAQI,
700
                            const Instruction *CtxI) = 0;
701
 
702
  /// @}
703
  //===--------------------------------------------------------------------===//
704
  /// \name Simple mod/ref information
705
  /// @{
706
 
707
  /// Returns a bitmask that should be unconditionally applied to the ModRef
708
  /// info of a memory location. This allows us to eliminate Mod and/or Ref from
709
  /// the ModRef info based on the knowledge that the memory location points to
710
  /// constant and/or locally-invariant memory.
711
  virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
712
                                       AAQueryInfo &AAQI,
713
                                       bool IgnoreLocals) = 0;
714
 
715
  /// Get the ModRef info associated with a pointer argument of a callsite. The
716
  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
717
  /// that these bits do not necessarily account for the overall behavior of
718
  /// the function, but rather only provide additional per-argument
719
  /// information.
720
  virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
721
                                      unsigned ArgIdx) = 0;
722
 
723
  /// Return the behavior of the given call site.
724
  virtual MemoryEffects getMemoryEffects(const CallBase *Call,
725
                                         AAQueryInfo &AAQI) = 0;
726
 
727
  /// Return the behavior when calling the given function.
728
  virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
729
 
730
  /// getModRefInfo (for call sites) - Return information about whether
731
  /// a particular call site modifies or reads the specified memory location.
732
  virtual ModRefInfo getModRefInfo(const CallBase *Call,
733
                                   const MemoryLocation &Loc,
734
                                   AAQueryInfo &AAQI) = 0;
735
 
736
  /// Return information about whether two call sites may refer to the same set
737
  /// of memory locations. See the AA documentation for details:
738
  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
739
  virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
740
                                   AAQueryInfo &AAQI) = 0;
741
 
742
  /// @}
743
};
744
 
745
/// A private class template which derives from \c Concept and wraps some other
746
/// type.
747
///
748
/// This models the concept by directly forwarding each interface point to the
749
/// wrapped type which must implement a compatible interface. This provides
750
/// a type erased binding.
751
template <typename AAResultT> class AAResults::Model final : public Concept {
752
  AAResultT &Result;
753
 
754
public:
755
  explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
756
  ~Model() override = default;
757
 
758
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
759
                    AAQueryInfo &AAQI, const Instruction *CtxI) override {
760
    return Result.alias(LocA, LocB, AAQI, CtxI);
761
  }
762
 
763
  ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
764
                               bool IgnoreLocals) override {
765
    return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
766
  }
767
 
768
  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
769
    return Result.getArgModRefInfo(Call, ArgIdx);
770
  }
771
 
772
  MemoryEffects getMemoryEffects(const CallBase *Call,
773
                                 AAQueryInfo &AAQI) override {
774
    return Result.getMemoryEffects(Call, AAQI);
775
  }
776
 
777
  MemoryEffects getMemoryEffects(const Function *F) override {
778
    return Result.getMemoryEffects(F);
779
  }
780
 
781
  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
782
                           AAQueryInfo &AAQI) override {
783
    return Result.getModRefInfo(Call, Loc, AAQI);
784
  }
785
 
786
  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
787
                           AAQueryInfo &AAQI) override {
788
    return Result.getModRefInfo(Call1, Call2, AAQI);
789
  }
790
};
791
 
792
/// A base class to help implement the function alias analysis results concept.
793
///
794
/// Because of the nature of many alias analysis implementations, they often
795
/// only implement a subset of the interface. This base class will attempt to
796
/// implement the remaining portions of the interface in terms of simpler forms
797
/// of the interface where possible, and otherwise provide conservatively
798
/// correct fallback implementations.
799
///
800
/// Implementors of an alias analysis should derive from this class, and then
801
/// override specific methods that they wish to customize. There is no need to
802
/// use virtual anywhere.
803
class AAResultBase {
804
protected:
805
  explicit AAResultBase() = default;
806
 
807
  // Provide all the copy and move constructors so that derived types aren't
808
  // constrained.
809
  AAResultBase(const AAResultBase &Arg) {}
810
  AAResultBase(AAResultBase &&Arg) {}
811
 
812
public:
813
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
814
                    AAQueryInfo &AAQI, const Instruction *I) {
815
    return AliasResult::MayAlias;
816
  }
817
 
818
  ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
819
                               bool IgnoreLocals) {
820
    return ModRefInfo::ModRef;
821
  }
822
 
823
  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
824
    return ModRefInfo::ModRef;
825
  }
826
 
827
  MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
828
    return MemoryEffects::unknown();
829
  }
830
 
831
  MemoryEffects getMemoryEffects(const Function *F) {
832
    return MemoryEffects::unknown();
833
  }
834
 
835
  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
836
                           AAQueryInfo &AAQI) {
837
    return ModRefInfo::ModRef;
838
  }
839
 
840
  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
841
                           AAQueryInfo &AAQI) {
842
    return ModRefInfo::ModRef;
843
  }
844
};
845
 
846
/// Return true if this pointer is returned by a noalias function.
847
bool isNoAliasCall(const Value *V);
848
 
849
/// Return true if this pointer refers to a distinct and identifiable object.
850
/// This returns true for:
851
///    Global Variables and Functions (but not Global Aliases)
852
///    Allocas
853
///    ByVal and NoAlias Arguments
854
///    NoAlias returns (e.g. calls to malloc)
855
///
856
bool isIdentifiedObject(const Value *V);
857
 
858
/// Return true if V is umabigously identified at the function-level.
859
/// Different IdentifiedFunctionLocals can't alias.
860
/// Further, an IdentifiedFunctionLocal can not alias with any function
861
/// arguments other than itself, which is not necessarily true for
862
/// IdentifiedObjects.
863
bool isIdentifiedFunctionLocal(const Value *V);
864
 
865
/// Returns true if the pointer is one which would have been considered an
866
/// escape by isNonEscapingLocalObject.
867
bool isEscapeSource(const Value *V);
868
 
869
/// Return true if Object memory is not visible after an unwind, in the sense
870
/// that program semantics cannot depend on Object containing any particular
871
/// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
872
/// to true, then the memory is only not visible if the object has not been
873
/// captured prior to the unwind. Otherwise it is not visible even if captured.
874
bool isNotVisibleOnUnwind(const Value *Object,
875
                          bool &RequiresNoCaptureBeforeUnwind);
876
 
877
/// A manager for alias analyses.
878
///
879
/// This class can have analyses registered with it and when run, it will run
880
/// all of them and aggregate their results into single AA results interface
881
/// that dispatches across all of the alias analysis results available.
882
///
883
/// Note that the order in which analyses are registered is very significant.
884
/// That is the order in which the results will be aggregated and queried.
885
///
886
/// This manager effectively wraps the AnalysisManager for registering alias
887
/// analyses. When you register your alias analysis with this manager, it will
888
/// ensure the analysis itself is registered with its AnalysisManager.
889
///
890
/// The result of this analysis is only invalidated if one of the particular
891
/// aggregated AA results end up being invalidated. This removes the need to
892
/// explicitly preserve the results of `AAManager`. Note that analyses should no
893
/// longer be registered once the `AAManager` is run.
894
class AAManager : public AnalysisInfoMixin<AAManager> {
895
public:
896
  using Result = AAResults;
897
 
898
  /// Register a specific AA result.
899
  template <typename AnalysisT> void registerFunctionAnalysis() {
900
    ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
901
  }
902
 
903
  /// Register a specific AA result.
904
  template <typename AnalysisT> void registerModuleAnalysis() {
905
    ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
906
  }
907
 
908
  Result run(Function &F, FunctionAnalysisManager &AM);
909
 
910
private:
911
  friend AnalysisInfoMixin<AAManager>;
912
 
913
  static AnalysisKey Key;
914
 
915
  SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
916
                       AAResults &AAResults),
917
              4> ResultGetters;
918
 
919
  template <typename AnalysisT>
920
  static void getFunctionAAResultImpl(Function &F,
921
                                      FunctionAnalysisManager &AM,
922
                                      AAResults &AAResults) {
923
    AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
924
    AAResults.addAADependencyID(AnalysisT::ID());
925
  }
926
 
927
  template <typename AnalysisT>
928
  static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
929
                                    AAResults &AAResults) {
930
    auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
931
    if (auto *R =
932
            MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
933
      AAResults.addAAResult(*R);
934
      MAMProxy
935
          .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
936
    }
937
  }
938
};
939
 
940
/// A wrapper pass to provide the legacy pass manager access to a suitably
941
/// prepared AAResults object.
942
class AAResultsWrapperPass : public FunctionPass {
943
  std::unique_ptr<AAResults> AAR;
944
 
945
public:
946
  static char ID;
947
 
948
  AAResultsWrapperPass();
949
 
950
  AAResults &getAAResults() { return *AAR; }
951
  const AAResults &getAAResults() const { return *AAR; }
952
 
953
  bool runOnFunction(Function &F) override;
954
 
955
  void getAnalysisUsage(AnalysisUsage &AU) const override;
956
};
957
 
958
/// A wrapper pass for external alias analyses. This just squirrels away the
959
/// callback used to run any analyses and register their results.
960
struct ExternalAAWrapperPass : ImmutablePass {
961
  using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
962
 
963
  CallbackT CB;
964
 
965
  static char ID;
966
 
967
  ExternalAAWrapperPass();
968
 
969
  explicit ExternalAAWrapperPass(CallbackT CB);
970
 
971
  void getAnalysisUsage(AnalysisUsage &AU) const override {
972
    AU.setPreservesAll();
973
  }
974
};
975
 
976
FunctionPass *createAAResultsWrapperPass();
977
 
978
/// A wrapper pass around a callback which can be used to populate the
979
/// AAResults in the AAResultsWrapperPass from an external AA.
980
///
981
/// The callback provided here will be used each time we prepare an AAResults
982
/// object, and will receive a reference to the function wrapper pass, the
983
/// function, and the AAResults object to populate. This should be used when
984
/// setting up a custom pass pipeline to inject a hook into the AA results.
985
ImmutablePass *createExternalAAWrapperPass(
986
    std::function<void(Pass &, Function &, AAResults &)> Callback);
987
 
988
/// A helper for the legacy pass manager to create a \c AAResults
989
/// object populated to the best of our ability for a particular function when
990
/// inside of a \c ModulePass or a \c CallGraphSCCPass.
991
///
992
/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
993
/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
994
/// getAnalysisUsage.
995
AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
996
 
997
/// A helper for the legacy pass manager to populate \p AU to add uses to make
998
/// sure the analyses required by \p createLegacyPMAAResults are available.
999
void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1000
 
1001
} // end namespace llvm
1002
 
1003
#endif // LLVM_ANALYSIS_ALIASANALYSIS_H