Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
 
9
#ifndef LLVM_ADT_TWINE_H
10
#define LLVM_ADT_TWINE_H
11
 
12
#include "llvm/ADT/SmallVector.h"
13
#include "llvm/ADT/StringRef.h"
14
#include "llvm/Support/ErrorHandling.h"
15
#include <cassert>
16
#include <cstdint>
17
#include <string>
18
#include <string_view>
19
 
20
namespace llvm {
21
 
22
  class formatv_object_base;
23
  class raw_ostream;
24
 
25
  /// Twine - A lightweight data structure for efficiently representing the
26
  /// concatenation of temporary values as strings.
27
  ///
28
  /// A Twine is a kind of rope, it represents a concatenated string using a
29
  /// binary-tree, where the string is the preorder of the nodes. Since the
30
  /// Twine can be efficiently rendered into a buffer when its result is used,
31
  /// it avoids the cost of generating temporary values for intermediate string
32
  /// results -- particularly in cases when the Twine result is never
33
  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34
  /// the creation of temporary strings for conversions operations (such as
35
  /// appending an integer to a string).
36
  ///
37
  /// A Twine is not intended for use directly and should not be stored, its
38
  /// implementation relies on the ability to store pointers to temporary stack
39
  /// objects which may be deallocated at the end of a statement. Twines should
40
  /// only be used accepted as const references in arguments, when an API wishes
41
  /// to accept possibly-concatenated strings.
42
  ///
43
  /// Twines support a special 'null' value, which always concatenates to form
44
  /// itself, and renders as an empty string. This can be returned from APIs to
45
  /// effectively nullify any concatenations performed on the result.
46
  ///
47
  /// \b Implementation
48
  ///
49
  /// Given the nature of a Twine, it is not possible for the Twine's
50
  /// concatenation method to construct interior nodes; the result must be
51
  /// represented inside the returned value. For this reason a Twine object
52
  /// actually holds two values, the left- and right-hand sides of a
53
  /// concatenation. We also have nullary Twine objects, which are effectively
54
  /// sentinel values that represent empty strings.
55
  ///
56
  /// Thus, a Twine can effectively have zero, one, or two children. The \see
57
  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58
  /// testing the number of children.
59
  ///
60
  /// We maintain a number of invariants on Twine objects (FIXME: Why):
61
  ///  - Nullary twines are always represented with their Kind on the left-hand
62
  ///    side, and the Empty kind on the right-hand side.
63
  ///  - Unary twines are always represented with the value on the left-hand
64
  ///    side, and the Empty kind on the right-hand side.
65
  ///  - If a Twine has another Twine as a child, that child should always be
66
  ///    binary (otherwise it could have been folded into the parent).
67
  ///
68
  /// These invariants are check by \see isValid().
69
  ///
70
  /// \b Efficiency Considerations
71
  ///
72
  /// The Twine is designed to yield efficient and small code for common
73
  /// situations. For this reason, the concat() method is inlined so that
74
  /// concatenations of leaf nodes can be optimized into stores directly into a
75
  /// single stack allocated object.
76
  ///
77
  /// In practice, not all compilers can be trusted to optimize concat() fully,
78
  /// so we provide two additional methods (and accompanying operator+
79
  /// overloads) to guarantee that particularly important cases (cstring plus
80
  /// StringRef) codegen as desired.
81
  class Twine {
82
    /// NodeKind - Represent the type of an argument.
83
    enum NodeKind : unsigned char {
84
      /// An empty string; the result of concatenating anything with it is also
85
      /// empty.
86
      NullKind,
87
 
88
      /// The empty string.
89
      EmptyKind,
90
 
91
      /// A pointer to a Twine instance.
92
      TwineKind,
93
 
94
      /// A pointer to a C string instance.
95
      CStringKind,
96
 
97
      /// A pointer to an std::string instance.
98
      StdStringKind,
99
 
100
      /// A Pointer and Length representation. Used for std::string_view,
101
      /// StringRef, and SmallString.  Can't use a StringRef here
102
      /// because they are not trivally constructible.
103
      PtrAndLengthKind,
104
 
105
      /// A pointer to a formatv_object_base instance.
106
      FormatvObjectKind,
107
 
108
      /// A char value, to render as a character.
109
      CharKind,
110
 
111
      /// An unsigned int value, to render as an unsigned decimal integer.
112
      DecUIKind,
113
 
114
      /// An int value, to render as a signed decimal integer.
115
      DecIKind,
116
 
117
      /// A pointer to an unsigned long value, to render as an unsigned decimal
118
      /// integer.
119
      DecULKind,
120
 
121
      /// A pointer to a long value, to render as a signed decimal integer.
122
      DecLKind,
123
 
124
      /// A pointer to an unsigned long long value, to render as an unsigned
125
      /// decimal integer.
126
      DecULLKind,
127
 
128
      /// A pointer to a long long value, to render as a signed decimal integer.
129
      DecLLKind,
130
 
131
      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
132
      /// integer.
133
      UHexKind
134
    };
135
 
136
    union Child
137
    {
138
      const Twine *twine;
139
      const char *cString;
140
      const std::string *stdString;
141
      struct {
142
        const char *ptr;
143
        size_t length;
144
      } ptrAndLength;
145
      const formatv_object_base *formatvObject;
146
      char character;
147
      unsigned int decUI;
148
      int decI;
149
      const unsigned long *decUL;
150
      const long *decL;
151
      const unsigned long long *decULL;
152
      const long long *decLL;
153
      const uint64_t *uHex;
154
    };
155
 
156
    /// LHS - The prefix in the concatenation, which may be uninitialized for
157
    /// Null or Empty kinds.
158
    Child LHS;
159
 
160
    /// RHS - The suffix in the concatenation, which may be uninitialized for
161
    /// Null or Empty kinds.
162
    Child RHS;
163
 
164
    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
165
    NodeKind LHSKind = EmptyKind;
166
 
167
    /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
168
    NodeKind RHSKind = EmptyKind;
169
 
170
    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
171
    explicit Twine(NodeKind Kind) : LHSKind(Kind) {
172
      assert(isNullary() && "Invalid kind!");
173
    }
174
 
175
    /// Construct a binary twine.
176
    explicit Twine(const Twine &LHS, const Twine &RHS)
177
        : LHSKind(TwineKind), RHSKind(TwineKind) {
178
      this->LHS.twine = &LHS;
179
      this->RHS.twine = &RHS;
180
      assert(isValid() && "Invalid twine!");
181
    }
182
 
183
    /// Construct a twine from explicit values.
184
    explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
185
        : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
186
      assert(isValid() && "Invalid twine!");
187
    }
188
 
189
    /// Check for the null twine.
190
    bool isNull() const {
191
      return getLHSKind() == NullKind;
192
    }
193
 
194
    /// Check for the empty twine.
195
    bool isEmpty() const {
196
      return getLHSKind() == EmptyKind;
197
    }
198
 
199
    /// Check if this is a nullary twine (null or empty).
200
    bool isNullary() const {
201
      return isNull() || isEmpty();
202
    }
203
 
204
    /// Check if this is a unary twine.
205
    bool isUnary() const {
206
      return getRHSKind() == EmptyKind && !isNullary();
207
    }
208
 
209
    /// Check if this is a binary twine.
210
    bool isBinary() const {
211
      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
212
    }
213
 
214
    /// Check if this is a valid twine (satisfying the invariants on
215
    /// order and number of arguments).
216
    bool isValid() const {
217
      // Nullary twines always have Empty on the RHS.
218
      if (isNullary() && getRHSKind() != EmptyKind)
219
        return false;
220
 
221
      // Null should never appear on the RHS.
222
      if (getRHSKind() == NullKind)
223
        return false;
224
 
225
      // The RHS cannot be non-empty if the LHS is empty.
226
      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
227
        return false;
228
 
229
      // A twine child should always be binary.
230
      if (getLHSKind() == TwineKind &&
231
          !LHS.twine->isBinary())
232
        return false;
233
      if (getRHSKind() == TwineKind &&
234
          !RHS.twine->isBinary())
235
        return false;
236
 
237
      return true;
238
    }
239
 
240
    /// Get the NodeKind of the left-hand side.
241
    NodeKind getLHSKind() const { return LHSKind; }
242
 
243
    /// Get the NodeKind of the right-hand side.
244
    NodeKind getRHSKind() const { return RHSKind; }
245
 
246
    /// Print one child from a twine.
247
    void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
248
 
249
    /// Print the representation of one child from a twine.
250
    void printOneChildRepr(raw_ostream &OS, Child Ptr,
251
                           NodeKind Kind) const;
252
 
253
  public:
254
    /// @name Constructors
255
    /// @{
256
 
257
    /// Construct from an empty string.
258
    /*implicit*/ Twine() {
259
      assert(isValid() && "Invalid twine!");
260
    }
261
 
262
    Twine(const Twine &) = default;
263
 
264
    /// Construct from a C string.
265
    ///
266
    /// We take care here to optimize "" into the empty twine -- this will be
267
    /// optimized out for string constants. This allows Twine arguments have
268
    /// default "" values, without introducing unnecessary string constants.
269
    /*implicit*/ Twine(const char *Str) {
270
      if (Str[0] != '\0') {
271
        LHS.cString = Str;
272
        LHSKind = CStringKind;
273
      } else
274
        LHSKind = EmptyKind;
275
 
276
      assert(isValid() && "Invalid twine!");
277
    }
278
    /// Delete the implicit conversion from nullptr as Twine(const char *)
279
    /// cannot take nullptr.
280
    /*implicit*/ Twine(std::nullptr_t) = delete;
281
 
282
    /// Construct from an std::string.
283
    /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
284
      LHS.stdString = &Str;
285
      assert(isValid() && "Invalid twine!");
286
    }
287
 
288
    /// Construct from an std::string_view by converting it to a pointer and
289
    /// length.  This handles string_views on a pure API basis, and avoids
290
    /// storing one (or a pointer to one) inside a Twine, which avoids problems
291
    /// when mixing code compiled under various C++ standards.
292
    /*implicit*/ Twine(const std::string_view &Str)
293
        : LHSKind(PtrAndLengthKind) {
294
      LHS.ptrAndLength.ptr = Str.data();
295
      LHS.ptrAndLength.length = Str.length();
296
      assert(isValid() && "Invalid twine!");
297
    }
298
 
299
    /// Construct from a StringRef.
300
    /*implicit*/ Twine(const StringRef &Str) : LHSKind(PtrAndLengthKind) {
301
      LHS.ptrAndLength.ptr = Str.data();
302
      LHS.ptrAndLength.length = Str.size();
303
      assert(isValid() && "Invalid twine!");
304
    }
305
 
306
    /// Construct from a SmallString.
307
    /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
308
        : LHSKind(PtrAndLengthKind) {
309
      LHS.ptrAndLength.ptr = Str.data();
310
      LHS.ptrAndLength.length = Str.size();
311
      assert(isValid() && "Invalid twine!");
312
    }
313
 
314
    /// Construct from a formatv_object_base.
315
    /*implicit*/ Twine(const formatv_object_base &Fmt)
316
        : LHSKind(FormatvObjectKind) {
317
      LHS.formatvObject = &Fmt;
318
      assert(isValid() && "Invalid twine!");
319
    }
320
 
321
    /// Construct from a char.
322
    explicit Twine(char Val) : LHSKind(CharKind) {
323
      LHS.character = Val;
324
    }
325
 
326
    /// Construct from a signed char.
327
    explicit Twine(signed char Val) : LHSKind(CharKind) {
328
      LHS.character = static_cast<char>(Val);
329
    }
330
 
331
    /// Construct from an unsigned char.
332
    explicit Twine(unsigned char Val) : LHSKind(CharKind) {
333
      LHS.character = static_cast<char>(Val);
334
    }
335
 
336
    /// Construct a twine to print \p Val as an unsigned decimal integer.
337
    explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
338
      LHS.decUI = Val;
339
    }
340
 
341
    /// Construct a twine to print \p Val as a signed decimal integer.
342
    explicit Twine(int Val) : LHSKind(DecIKind) {
343
      LHS.decI = Val;
344
    }
345
 
346
    /// Construct a twine to print \p Val as an unsigned decimal integer.
347
    explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
348
      LHS.decUL = &Val;
349
    }
350
 
351
    /// Construct a twine to print \p Val as a signed decimal integer.
352
    explicit Twine(const long &Val) : LHSKind(DecLKind) {
353
      LHS.decL = &Val;
354
    }
355
 
356
    /// Construct a twine to print \p Val as an unsigned decimal integer.
357
    explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
358
      LHS.decULL = &Val;
359
    }
360
 
361
    /// Construct a twine to print \p Val as a signed decimal integer.
362
    explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
363
      LHS.decLL = &Val;
364
    }
365
 
366
    // FIXME: Unfortunately, to make sure this is as efficient as possible we
367
    // need extra binary constructors from particular types. We can't rely on
368
    // the compiler to be smart enough to fold operator+()/concat() down to the
369
    // right thing. Yet.
370
 
371
    /// Construct as the concatenation of a C string and a StringRef.
372
    /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
373
        : LHSKind(CStringKind), RHSKind(PtrAndLengthKind) {
374
      this->LHS.cString = LHS;
375
      this->RHS.ptrAndLength.ptr = RHS.data();
376
      this->RHS.ptrAndLength.length = RHS.size();
377
      assert(isValid() && "Invalid twine!");
378
    }
379
 
380
    /// Construct as the concatenation of a StringRef and a C string.
381
    /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
382
        : LHSKind(PtrAndLengthKind), RHSKind(CStringKind) {
383
      this->LHS.ptrAndLength.ptr = LHS.data();
384
      this->LHS.ptrAndLength.length = LHS.size();
385
      this->RHS.cString = RHS;
386
      assert(isValid() && "Invalid twine!");
387
    }
388
 
389
    /// Since the intended use of twines is as temporary objects, assignments
390
    /// when concatenating might cause undefined behavior or stack corruptions
391
    Twine &operator=(const Twine &) = delete;
392
 
393
    /// Create a 'null' string, which is an empty string that always
394
    /// concatenates to form another empty string.
395
    static Twine createNull() {
396
      return Twine(NullKind);
397
    }
398
 
399
    /// @}
400
    /// @name Numeric Conversions
401
    /// @{
402
 
403
    // Construct a twine to print \p Val as an unsigned hexadecimal integer.
404
    static Twine utohexstr(const uint64_t &Val) {
405
      Child LHS, RHS;
406
      LHS.uHex = &Val;
407
      RHS.twine = nullptr;
408
      return Twine(LHS, UHexKind, RHS, EmptyKind);
409
    }
410
 
411
    /// @}
412
    /// @name Predicate Operations
413
    /// @{
414
 
415
    /// Check if this twine is trivially empty; a false return value does not
416
    /// necessarily mean the twine is empty.
417
    bool isTriviallyEmpty() const {
418
      return isNullary();
419
    }
420
 
421
    /// Return true if this twine can be dynamically accessed as a single
422
    /// StringRef value with getSingleStringRef().
423
    bool isSingleStringRef() const {
424
      if (getRHSKind() != EmptyKind) return false;
425
 
426
      switch (getLHSKind()) {
427
      case EmptyKind:
428
      case CStringKind:
429
      case StdStringKind:
430
      case PtrAndLengthKind:
431
        return true;
432
      default:
433
        return false;
434
      }
435
    }
436
 
437
    /// @}
438
    /// @name String Operations
439
    /// @{
440
 
441
    Twine concat(const Twine &Suffix) const;
442
 
443
    /// @}
444
    /// @name Output & Conversion.
445
    /// @{
446
 
447
    /// Return the twine contents as a std::string.
448
    std::string str() const;
449
 
450
    /// Append the concatenated string into the given SmallString or SmallVector.
451
    void toVector(SmallVectorImpl<char> &Out) const;
452
 
453
    /// This returns the twine as a single StringRef.  This method is only valid
454
    /// if isSingleStringRef() is true.
455
    StringRef getSingleStringRef() const {
456
      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
457
      switch (getLHSKind()) {
458
      default: llvm_unreachable("Out of sync with isSingleStringRef");
459
      case EmptyKind:
460
        return StringRef();
461
      case CStringKind:
462
        return StringRef(LHS.cString);
463
      case StdStringKind:
464
        return StringRef(*LHS.stdString);
465
      case PtrAndLengthKind:
466
        return StringRef(LHS.ptrAndLength.ptr, LHS.ptrAndLength.length);
467
      }
468
    }
469
 
470
    /// This returns the twine as a single StringRef if it can be
471
    /// represented as such. Otherwise the twine is written into the given
472
    /// SmallVector and a StringRef to the SmallVector's data is returned.
473
    StringRef toStringRef(SmallVectorImpl<char> &Out) const {
474
      if (isSingleStringRef())
475
        return getSingleStringRef();
476
      toVector(Out);
477
      return StringRef(Out.data(), Out.size());
478
    }
479
 
480
    /// This returns the twine as a single null terminated StringRef if it
481
    /// can be represented as such. Otherwise the twine is written into the
482
    /// given SmallVector and a StringRef to the SmallVector's data is returned.
483
    ///
484
    /// The returned StringRef's size does not include the null terminator.
485
    StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
486
 
487
    /// Write the concatenated string represented by this twine to the
488
    /// stream \p OS.
489
    void print(raw_ostream &OS) const;
490
 
491
    /// Dump the concatenated string represented by this twine to stderr.
492
    void dump() const;
493
 
494
    /// Write the representation of this twine to the stream \p OS.
495
    void printRepr(raw_ostream &OS) const;
496
 
497
    /// Dump the representation of this twine to stderr.
498
    void dumpRepr() const;
499
 
500
    /// @}
501
  };
502
 
503
  /// @name Twine Inline Implementations
504
  /// @{
505
 
506
  inline Twine Twine::concat(const Twine &Suffix) const {
507
    // Concatenation with null is null.
508
    if (isNull() || Suffix.isNull())
509
      return Twine(NullKind);
510
 
511
    // Concatenation with empty yields the other side.
512
    if (isEmpty())
513
      return Suffix;
514
    if (Suffix.isEmpty())
515
      return *this;
516
 
517
    // Otherwise we need to create a new node, taking care to fold in unary
518
    // twines.
519
    Child NewLHS, NewRHS;
520
    NewLHS.twine = this;
521
    NewRHS.twine = &Suffix;
522
    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
523
    if (isUnary()) {
524
      NewLHS = LHS;
525
      NewLHSKind = getLHSKind();
526
    }
527
    if (Suffix.isUnary()) {
528
      NewRHS = Suffix.LHS;
529
      NewRHSKind = Suffix.getLHSKind();
530
    }
531
 
532
    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
533
  }
534
 
535
  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
536
    return LHS.concat(RHS);
537
  }
538
 
539
  /// Additional overload to guarantee simplified codegen; this is equivalent to
540
  /// concat().
541
 
542
  inline Twine operator+(const char *LHS, const StringRef &RHS) {
543
    return Twine(LHS, RHS);
544
  }
545
 
546
  /// Additional overload to guarantee simplified codegen; this is equivalent to
547
  /// concat().
548
 
549
  inline Twine operator+(const StringRef &LHS, const char *RHS) {
550
    return Twine(LHS, RHS);
551
  }
552
 
553
  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
554
    RHS.print(OS);
555
    return OS;
556
  }
557
 
558
  /// @}
559
 
560
} // end namespace llvm
561
 
562
#endif // LLVM_ADT_TWINE_H