Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
 
9
#ifndef LLVM_ADT_TINYPTRVECTOR_H
10
#define LLVM_ADT_TINYPTRVECTOR_H
11
 
12
#include "llvm/ADT/ArrayRef.h"
13
#include "llvm/ADT/PointerUnion.h"
14
#include "llvm/ADT/SmallVector.h"
15
#include <cassert>
16
#include <cstddef>
17
#include <iterator>
18
#include <type_traits>
19
 
20
namespace llvm {
21
 
22
/// TinyPtrVector - This class is specialized for cases where there are
23
/// normally 0 or 1 element in a vector, but is general enough to go beyond that
24
/// when required.
25
///
26
/// NOTE: This container doesn't allow you to store a null pointer into it.
27
///
28
template <typename EltTy>
29
class TinyPtrVector {
30
public:
31
  using VecTy = SmallVector<EltTy, 4>;
32
  using value_type = typename VecTy::value_type;
33
  // EltTy must be the first pointer type so that is<EltTy> is true for the
34
  // default-constructed PtrUnion. This allows an empty TinyPtrVector to
35
  // naturally vend a begin/end iterator of type EltTy* without an additional
36
  // check for the empty state.
37
  using PtrUnion = PointerUnion<EltTy, VecTy *>;
38
 
39
private:
40
  PtrUnion Val;
41
 
42
public:
43
  TinyPtrVector() = default;
44
 
45
  ~TinyPtrVector() {
46
    if (VecTy *V = Val.template dyn_cast<VecTy*>())
47
      delete V;
48
  }
49
 
50
  TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
51
    if (VecTy *V = Val.template dyn_cast<VecTy*>())
52
      Val = new VecTy(*V);
53
  }
54
 
55
  TinyPtrVector &operator=(const TinyPtrVector &RHS) {
56
    if (this == &RHS)
57
      return *this;
58
    if (RHS.empty()) {
59
      this->clear();
60
      return *this;
61
    }
62
 
63
    // Try to squeeze into the single slot. If it won't fit, allocate a copied
64
    // vector.
65
    if (Val.template is<EltTy>()) {
66
      if (RHS.size() == 1)
67
        Val = RHS.front();
68
      else
69
        Val = new VecTy(*RHS.Val.template get<VecTy*>());
70
      return *this;
71
    }
72
 
73
    // If we have a full vector allocated, try to re-use it.
74
    if (RHS.Val.template is<EltTy>()) {
75
      Val.template get<VecTy*>()->clear();
76
      Val.template get<VecTy*>()->push_back(RHS.front());
77
    } else {
78
      *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
79
    }
80
    return *this;
81
  }
82
 
83
  TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
84
    RHS.Val = (EltTy)nullptr;
85
  }
86
 
87
  TinyPtrVector &operator=(TinyPtrVector &&RHS) {
88
    if (this == &RHS)
89
      return *this;
90
    if (RHS.empty()) {
91
      this->clear();
92
      return *this;
93
    }
94
 
95
    // If this vector has been allocated on the heap, re-use it if cheap. If it
96
    // would require more copying, just delete it and we'll steal the other
97
    // side.
98
    if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
99
      if (RHS.Val.template is<EltTy>()) {
100
        V->clear();
101
        V->push_back(RHS.front());
102
        RHS.Val = EltTy();
103
        return *this;
104
      }
105
      delete V;
106
    }
107
 
108
    Val = RHS.Val;
109
    RHS.Val = EltTy();
110
    return *this;
111
  }
112
 
113
  TinyPtrVector(std::initializer_list<EltTy> IL)
114
      : Val(IL.size() == 0
115
                ? PtrUnion()
116
                : IL.size() == 1 ? PtrUnion(*IL.begin())
117
                                 : PtrUnion(new VecTy(IL.begin(), IL.end()))) {}
118
 
119
  /// Constructor from an ArrayRef.
120
  ///
121
  /// This also is a constructor for individual array elements due to the single
122
  /// element constructor for ArrayRef.
123
  explicit TinyPtrVector(ArrayRef<EltTy> Elts)
124
      : Val(Elts.empty()
125
                ? PtrUnion()
126
                : Elts.size() == 1
127
                      ? PtrUnion(Elts[0])
128
                      : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
129
 
130
  TinyPtrVector(size_t Count, EltTy Value)
131
      : Val(Count == 0 ? PtrUnion()
132
                       : Count == 1 ? PtrUnion(Value)
133
                                    : PtrUnion(new VecTy(Count, Value))) {}
134
 
135
  // implicit conversion operator to ArrayRef.
136
  operator ArrayRef<EltTy>() const {
137
    if (Val.isNull())
138
      return std::nullopt;
139
    if (Val.template is<EltTy>())
140
      return *Val.getAddrOfPtr1();
141
    return *Val.template get<VecTy*>();
142
  }
143
 
144
  // implicit conversion operator to MutableArrayRef.
145
  operator MutableArrayRef<EltTy>() {
146
    if (Val.isNull())
147
      return std::nullopt;
148
    if (Val.template is<EltTy>())
149
      return *Val.getAddrOfPtr1();
150
    return *Val.template get<VecTy*>();
151
  }
152
 
153
  // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
154
  template <
155
      typename U,
156
      std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
157
                       bool> = false>
158
  operator ArrayRef<U>() const {
159
    return operator ArrayRef<EltTy>();
160
  }
161
 
162
  bool empty() const {
163
    // This vector can be empty if it contains no element, or if it
164
    // contains a pointer to an empty vector.
165
    if (Val.isNull()) return true;
166
    if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
167
      return Vec->empty();
168
    return false;
169
  }
170
 
171
  unsigned size() const {
172
    if (empty())
173
      return 0;
174
    if (Val.template is<EltTy>())
175
      return 1;
176
    return Val.template get<VecTy*>()->size();
177
  }
178
 
179
  using iterator = EltTy *;
180
  using const_iterator = const EltTy *;
181
  using reverse_iterator = std::reverse_iterator<iterator>;
182
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
183
 
184
  iterator begin() {
185
    if (Val.template is<EltTy>())
186
      return Val.getAddrOfPtr1();
187
 
188
    return Val.template get<VecTy *>()->begin();
189
  }
190
 
191
  iterator end() {
192
    if (Val.template is<EltTy>())
193
      return begin() + (Val.isNull() ? 0 : 1);
194
 
195
    return Val.template get<VecTy *>()->end();
196
  }
197
 
198
  const_iterator begin() const {
199
    return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
200
  }
201
 
202
  const_iterator end() const {
203
    return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
204
  }
205
 
206
  reverse_iterator rbegin() { return reverse_iterator(end()); }
207
  reverse_iterator rend() { return reverse_iterator(begin()); }
208
 
209
  const_reverse_iterator rbegin() const {
210
    return const_reverse_iterator(end());
211
  }
212
 
213
  const_reverse_iterator rend() const {
214
    return const_reverse_iterator(begin());
215
  }
216
 
217
  EltTy operator[](unsigned i) const {
218
    assert(!Val.isNull() && "can't index into an empty vector");
219
    if (Val.template is<EltTy>()) {
220
      assert(i == 0 && "tinyvector index out of range");
221
      return Val.template get<EltTy>();
222
    }
223
 
224
    assert(i < Val.template get<VecTy*>()->size() &&
225
           "tinyvector index out of range");
226
    return (*Val.template get<VecTy*>())[i];
227
  }
228
 
229
  EltTy front() const {
230
    assert(!empty() && "vector empty");
231
    if (Val.template is<EltTy>())
232
      return Val.template get<EltTy>();
233
    return Val.template get<VecTy*>()->front();
234
  }
235
 
236
  EltTy back() const {
237
    assert(!empty() && "vector empty");
238
    if (Val.template is<EltTy>())
239
      return Val.template get<EltTy>();
240
    return Val.template get<VecTy*>()->back();
241
  }
242
 
243
  void push_back(EltTy NewVal) {
244
    // If we have nothing, add something.
245
    if (Val.isNull()) {
246
      Val = NewVal;
247
      assert(!Val.isNull() && "Can't add a null value");
248
      return;
249
    }
250
 
251
    // If we have a single value, convert to a vector.
252
    if (Val.template is<EltTy>()) {
253
      EltTy V = Val.template get<EltTy>();
254
      Val = new VecTy();
255
      Val.template get<VecTy*>()->push_back(V);
256
    }
257
 
258
    // Add the new value, we know we have a vector.
259
    Val.template get<VecTy*>()->push_back(NewVal);
260
  }
261
 
262
  void pop_back() {
263
    // If we have a single value, convert to empty.
264
    if (Val.template is<EltTy>())
265
      Val = (EltTy)nullptr;
266
    else if (VecTy *Vec = Val.template get<VecTy*>())
267
      Vec->pop_back();
268
  }
269
 
270
  void clear() {
271
    // If we have a single value, convert to empty.
272
    if (Val.template is<EltTy>()) {
273
      Val = EltTy();
274
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
275
      // If we have a vector form, just clear it.
276
      Vec->clear();
277
    }
278
    // Otherwise, we're already empty.
279
  }
280
 
281
  iterator erase(iterator I) {
282
    assert(I >= begin() && "Iterator to erase is out of bounds.");
283
    assert(I < end() && "Erasing at past-the-end iterator.");
284
 
285
    // If we have a single value, convert to empty.
286
    if (Val.template is<EltTy>()) {
287
      if (I == begin())
288
        Val = EltTy();
289
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
290
      // multiple items in a vector; just do the erase, there is no
291
      // benefit to collapsing back to a pointer
292
      return Vec->erase(I);
293
    }
294
    return end();
295
  }
296
 
297
  iterator erase(iterator S, iterator E) {
298
    assert(S >= begin() && "Range to erase is out of bounds.");
299
    assert(S <= E && "Trying to erase invalid range.");
300
    assert(E <= end() && "Trying to erase past the end.");
301
 
302
    if (Val.template is<EltTy>()) {
303
      if (S == begin() && S != E)
304
        Val = EltTy();
305
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
306
      return Vec->erase(S, E);
307
    }
308
    return end();
309
  }
310
 
311
  iterator insert(iterator I, const EltTy &Elt) {
312
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
313
    assert(I <= this->end() && "Inserting past the end of the vector.");
314
    if (I == end()) {
315
      push_back(Elt);
316
      return std::prev(end());
317
    }
318
    assert(!Val.isNull() && "Null value with non-end insert iterator.");
319
    if (Val.template is<EltTy>()) {
320
      EltTy V = Val.template get<EltTy>();
321
      assert(I == begin());
322
      Val = Elt;
323
      push_back(V);
324
      return begin();
325
    }
326
 
327
    return Val.template get<VecTy*>()->insert(I, Elt);
328
  }
329
 
330
  template<typename ItTy>
331
  iterator insert(iterator I, ItTy From, ItTy To) {
332
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
333
    assert(I <= this->end() && "Inserting past the end of the vector.");
334
    if (From == To)
335
      return I;
336
 
337
    // If we have a single value, convert to a vector.
338
    ptrdiff_t Offset = I - begin();
339
    if (Val.isNull()) {
340
      if (std::next(From) == To) {
341
        Val = *From;
342
        return begin();
343
      }
344
 
345
      Val = new VecTy();
346
    } else if (Val.template is<EltTy>()) {
347
      EltTy V = Val.template get<EltTy>();
348
      Val = new VecTy();
349
      Val.template get<VecTy*>()->push_back(V);
350
    }
351
    return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
352
  }
353
};
354
 
355
} // end namespace llvm
356
 
357
#endif // LLVM_ADT_TINYPTRVECTOR_H