Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// This file defines the SparseMultiSet class, which adds multiset behavior to |
||
11 | /// the SparseSet. |
||
12 | /// |
||
13 | /// A sparse multiset holds a small number of objects identified by integer keys |
||
14 | /// from a moderately sized universe. The sparse multiset uses more memory than |
||
15 | /// other containers in order to provide faster operations. Any key can map to |
||
16 | /// multiple values. A SparseMultiSetNode class is provided, which serves as a |
||
17 | /// convenient base class for the contents of a SparseMultiSet. |
||
18 | /// |
||
19 | //===----------------------------------------------------------------------===// |
||
20 | |||
21 | #ifndef LLVM_ADT_SPARSEMULTISET_H |
||
22 | #define LLVM_ADT_SPARSEMULTISET_H |
||
23 | |||
24 | #include "llvm/ADT/identity.h" |
||
25 | #include "llvm/ADT/SmallVector.h" |
||
26 | #include "llvm/ADT/SparseSet.h" |
||
27 | #include <cassert> |
||
28 | #include <cstdint> |
||
29 | #include <cstdlib> |
||
30 | #include <iterator> |
||
31 | #include <limits> |
||
32 | #include <utility> |
||
33 | |||
34 | namespace llvm { |
||
35 | |||
36 | /// Fast multiset implementation for objects that can be identified by small |
||
37 | /// unsigned keys. |
||
38 | /// |
||
39 | /// SparseMultiSet allocates memory proportional to the size of the key |
||
40 | /// universe, so it is not recommended for building composite data structures. |
||
41 | /// It is useful for algorithms that require a single set with fast operations. |
||
42 | /// |
||
43 | /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time |
||
44 | /// fast clear() as fast as a vector. The find(), insert(), and erase() |
||
45 | /// operations are all constant time, and typically faster than a hash table. |
||
46 | /// The iteration order doesn't depend on numerical key values, it only depends |
||
47 | /// on the order of insert() and erase() operations. Iteration order is the |
||
48 | /// insertion order. Iteration is only provided over elements of equivalent |
||
49 | /// keys, but iterators are bidirectional. |
||
50 | /// |
||
51 | /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but |
||
52 | /// offers constant-time clear() and size() operations as well as fast iteration |
||
53 | /// independent on the size of the universe. |
||
54 | /// |
||
55 | /// SparseMultiSet contains a dense vector holding all the objects and a sparse |
||
56 | /// array holding indexes into the dense vector. Most of the memory is used by |
||
57 | /// the sparse array which is the size of the key universe. The SparseT template |
||
58 | /// parameter provides a space/speed tradeoff for sets holding many elements. |
||
59 | /// |
||
60 | /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the |
||
61 | /// sparse array uses 4 x Universe bytes. |
||
62 | /// |
||
63 | /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache |
||
64 | /// lines, but the sparse array is 4x smaller. N is the number of elements in |
||
65 | /// the set. |
||
66 | /// |
||
67 | /// For sets that may grow to thousands of elements, SparseT should be set to |
||
68 | /// uint16_t or uint32_t. |
||
69 | /// |
||
70 | /// Multiset behavior is provided by providing doubly linked lists for values |
||
71 | /// that are inlined in the dense vector. SparseMultiSet is a good choice when |
||
72 | /// one desires a growable number of entries per key, as it will retain the |
||
73 | /// SparseSet algorithmic properties despite being growable. Thus, it is often a |
||
74 | /// better choice than a SparseSet of growable containers or a vector of |
||
75 | /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided |
||
76 | /// the iterators don't point to the element erased), allowing for more |
||
77 | /// intuitive and fast removal. |
||
78 | /// |
||
79 | /// @tparam ValueT The type of objects in the set. |
||
80 | /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. |
||
81 | /// @tparam SparseT An unsigned integer type. See above. |
||
82 | /// |
||
83 | template<typename ValueT, |
||
84 | typename KeyFunctorT = identity<unsigned>, |
||
85 | typename SparseT = uint8_t> |
||
86 | class SparseMultiSet { |
||
87 | static_assert(std::is_unsigned_v<SparseT>, |
||
88 | "SparseT must be an unsigned integer type"); |
||
89 | |||
90 | /// The actual data that's stored, as a doubly-linked list implemented via |
||
91 | /// indices into the DenseVector. The doubly linked list is implemented |
||
92 | /// circular in Prev indices, and INVALID-terminated in Next indices. This |
||
93 | /// provides efficient access to list tails. These nodes can also be |
||
94 | /// tombstones, in which case they are actually nodes in a single-linked |
||
95 | /// freelist of recyclable slots. |
||
96 | struct SMSNode { |
||
97 | static constexpr unsigned INVALID = ~0U; |
||
98 | |||
99 | ValueT Data; |
||
100 | unsigned Prev; |
||
101 | unsigned Next; |
||
102 | |||
103 | SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {} |
||
104 | |||
105 | /// List tails have invalid Nexts. |
||
106 | bool isTail() const { |
||
107 | return Next == INVALID; |
||
108 | } |
||
109 | |||
110 | /// Whether this node is a tombstone node, and thus is in our freelist. |
||
111 | bool isTombstone() const { |
||
112 | return Prev == INVALID; |
||
113 | } |
||
114 | |||
115 | /// Since the list is circular in Prev, all non-tombstone nodes have a valid |
||
116 | /// Prev. |
||
117 | bool isValid() const { return Prev != INVALID; } |
||
118 | }; |
||
119 | |||
120 | using KeyT = typename KeyFunctorT::argument_type; |
||
121 | using DenseT = SmallVector<SMSNode, 8>; |
||
122 | DenseT Dense; |
||
123 | SparseT *Sparse = nullptr; |
||
124 | unsigned Universe = 0; |
||
125 | KeyFunctorT KeyIndexOf; |
||
126 | SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; |
||
127 | |||
128 | /// We have a built-in recycler for reusing tombstone slots. This recycler |
||
129 | /// puts a singly-linked free list into tombstone slots, allowing us quick |
||
130 | /// erasure, iterator preservation, and dense size. |
||
131 | unsigned FreelistIdx = SMSNode::INVALID; |
||
132 | unsigned NumFree = 0; |
||
133 | |||
134 | unsigned sparseIndex(const ValueT &Val) const { |
||
135 | assert(ValIndexOf(Val) < Universe && |
||
136 | "Invalid key in set. Did object mutate?"); |
||
137 | return ValIndexOf(Val); |
||
138 | } |
||
139 | unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } |
||
140 | |||
141 | /// Whether the given entry is the head of the list. List heads's previous |
||
142 | /// pointers are to the tail of the list, allowing for efficient access to the |
||
143 | /// list tail. D must be a valid entry node. |
||
144 | bool isHead(const SMSNode &D) const { |
||
145 | assert(D.isValid() && "Invalid node for head"); |
||
146 | return Dense[D.Prev].isTail(); |
||
147 | } |
||
148 | |||
149 | /// Whether the given entry is a singleton entry, i.e. the only entry with |
||
150 | /// that key. |
||
151 | bool isSingleton(const SMSNode &N) const { |
||
152 | assert(N.isValid() && "Invalid node for singleton"); |
||
153 | // Is N its own predecessor? |
||
154 | return &Dense[N.Prev] == &N; |
||
155 | } |
||
156 | |||
157 | /// Add in the given SMSNode. Uses a free entry in our freelist if |
||
158 | /// available. Returns the index of the added node. |
||
159 | unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { |
||
160 | if (NumFree == 0) { |
||
161 | Dense.push_back(SMSNode(V, Prev, Next)); |
||
162 | return Dense.size() - 1; |
||
163 | } |
||
164 | |||
165 | // Peel off a free slot |
||
166 | unsigned Idx = FreelistIdx; |
||
167 | unsigned NextFree = Dense[Idx].Next; |
||
168 | assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); |
||
169 | |||
170 | Dense[Idx] = SMSNode(V, Prev, Next); |
||
171 | FreelistIdx = NextFree; |
||
172 | --NumFree; |
||
173 | return Idx; |
||
174 | } |
||
175 | |||
176 | /// Make the current index a new tombstone. Pushes it onto the freelist. |
||
177 | void makeTombstone(unsigned Idx) { |
||
178 | Dense[Idx].Prev = SMSNode::INVALID; |
||
179 | Dense[Idx].Next = FreelistIdx; |
||
180 | FreelistIdx = Idx; |
||
181 | ++NumFree; |
||
182 | } |
||
183 | |||
184 | public: |
||
185 | using value_type = ValueT; |
||
186 | using reference = ValueT &; |
||
187 | using const_reference = const ValueT &; |
||
188 | using pointer = ValueT *; |
||
189 | using const_pointer = const ValueT *; |
||
190 | using size_type = unsigned; |
||
191 | |||
192 | SparseMultiSet() = default; |
||
193 | SparseMultiSet(const SparseMultiSet &) = delete; |
||
194 | SparseMultiSet &operator=(const SparseMultiSet &) = delete; |
||
195 | ~SparseMultiSet() { free(Sparse); } |
||
196 | |||
197 | /// Set the universe size which determines the largest key the set can hold. |
||
198 | /// The universe must be sized before any elements can be added. |
||
199 | /// |
||
200 | /// @param U Universe size. All object keys must be less than U. |
||
201 | /// |
||
202 | void setUniverse(unsigned U) { |
||
203 | // It's not hard to resize the universe on a non-empty set, but it doesn't |
||
204 | // seem like a likely use case, so we can add that code when we need it. |
||
205 | assert(empty() && "Can only resize universe on an empty map"); |
||
206 | // Hysteresis prevents needless reallocations. |
||
207 | if (U >= Universe/4 && U <= Universe) |
||
208 | return; |
||
209 | free(Sparse); |
||
210 | // The Sparse array doesn't actually need to be initialized, so malloc |
||
211 | // would be enough here, but that will cause tools like valgrind to |
||
212 | // complain about branching on uninitialized data. |
||
213 | Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); |
||
214 | Universe = U; |
||
215 | } |
||
216 | |||
217 | /// Our iterators are iterators over the collection of objects that share a |
||
218 | /// key. |
||
219 | template <typename SMSPtrTy> class iterator_base { |
||
220 | friend class SparseMultiSet; |
||
221 | |||
222 | public: |
||
223 | using iterator_category = std::bidirectional_iterator_tag; |
||
224 | using value_type = ValueT; |
||
225 | using difference_type = std::ptrdiff_t; |
||
226 | using pointer = value_type *; |
||
227 | using reference = value_type &; |
||
228 | |||
229 | private: |
||
230 | SMSPtrTy SMS; |
||
231 | unsigned Idx; |
||
232 | unsigned SparseIdx; |
||
233 | |||
234 | iterator_base(SMSPtrTy P, unsigned I, unsigned SI) |
||
235 | : SMS(P), Idx(I), SparseIdx(SI) {} |
||
236 | |||
237 | /// Whether our iterator has fallen outside our dense vector. |
||
238 | bool isEnd() const { |
||
239 | if (Idx == SMSNode::INVALID) |
||
240 | return true; |
||
241 | |||
242 | assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); |
||
243 | return false; |
||
244 | } |
||
245 | |||
246 | /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid |
||
247 | bool isKeyed() const { return SparseIdx < SMS->Universe; } |
||
248 | |||
249 | unsigned Prev() const { return SMS->Dense[Idx].Prev; } |
||
250 | unsigned Next() const { return SMS->Dense[Idx].Next; } |
||
251 | |||
252 | void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } |
||
253 | void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } |
||
254 | |||
255 | public: |
||
256 | reference operator*() const { |
||
257 | assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && |
||
258 | "Dereferencing iterator of invalid key or index"); |
||
259 | |||
260 | return SMS->Dense[Idx].Data; |
||
261 | } |
||
262 | pointer operator->() const { return &operator*(); } |
||
263 | |||
264 | /// Comparison operators |
||
265 | bool operator==(const iterator_base &RHS) const { |
||
266 | // end compares equal |
||
267 | if (SMS == RHS.SMS && Idx == RHS.Idx) { |
||
268 | assert((isEnd() || SparseIdx == RHS.SparseIdx) && |
||
269 | "Same dense entry, but different keys?"); |
||
270 | return true; |
||
271 | } |
||
272 | |||
273 | return false; |
||
274 | } |
||
275 | |||
276 | bool operator!=(const iterator_base &RHS) const { |
||
277 | return !operator==(RHS); |
||
278 | } |
||
279 | |||
280 | /// Increment and decrement operators |
||
281 | iterator_base &operator--() { // predecrement - Back up |
||
282 | assert(isKeyed() && "Decrementing an invalid iterator"); |
||
283 | assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && |
||
284 | "Decrementing head of list"); |
||
285 | |||
286 | // If we're at the end, then issue a new find() |
||
287 | if (isEnd()) |
||
288 | Idx = SMS->findIndex(SparseIdx).Prev(); |
||
289 | else |
||
290 | Idx = Prev(); |
||
291 | |||
292 | return *this; |
||
293 | } |
||
294 | iterator_base &operator++() { // preincrement - Advance |
||
295 | assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); |
||
296 | Idx = Next(); |
||
297 | return *this; |
||
298 | } |
||
299 | iterator_base operator--(int) { // postdecrement |
||
300 | iterator_base I(*this); |
||
301 | --*this; |
||
302 | return I; |
||
303 | } |
||
304 | iterator_base operator++(int) { // postincrement |
||
305 | iterator_base I(*this); |
||
306 | ++*this; |
||
307 | return I; |
||
308 | } |
||
309 | }; |
||
310 | |||
311 | using iterator = iterator_base<SparseMultiSet *>; |
||
312 | using const_iterator = iterator_base<const SparseMultiSet *>; |
||
313 | |||
314 | // Convenience types |
||
315 | using RangePair = std::pair<iterator, iterator>; |
||
316 | |||
317 | /// Returns an iterator past this container. Note that such an iterator cannot |
||
318 | /// be decremented, but will compare equal to other end iterators. |
||
319 | iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } |
||
320 | const_iterator end() const { |
||
321 | return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); |
||
322 | } |
||
323 | |||
324 | /// Returns true if the set is empty. |
||
325 | /// |
||
326 | /// This is not the same as BitVector::empty(). |
||
327 | /// |
||
328 | bool empty() const { return size() == 0; } |
||
329 | |||
330 | /// Returns the number of elements in the set. |
||
331 | /// |
||
332 | /// This is not the same as BitVector::size() which returns the size of the |
||
333 | /// universe. |
||
334 | /// |
||
335 | size_type size() const { |
||
336 | assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); |
||
337 | return Dense.size() - NumFree; |
||
338 | } |
||
339 | |||
340 | /// Clears the set. This is a very fast constant time operation. |
||
341 | /// |
||
342 | void clear() { |
||
343 | // Sparse does not need to be cleared, see find(). |
||
344 | Dense.clear(); |
||
345 | NumFree = 0; |
||
346 | FreelistIdx = SMSNode::INVALID; |
||
347 | } |
||
348 | |||
349 | /// Find an element by its index. |
||
350 | /// |
||
351 | /// @param Idx A valid index to find. |
||
352 | /// @returns An iterator to the element identified by key, or end(). |
||
353 | /// |
||
354 | iterator findIndex(unsigned Idx) { |
||
355 | assert(Idx < Universe && "Key out of range"); |
||
356 | const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; |
||
357 | for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { |
||
358 | const unsigned FoundIdx = sparseIndex(Dense[i]); |
||
359 | // Check that we're pointing at the correct entry and that it is the head |
||
360 | // of a valid list. |
||
361 | if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) |
||
362 | return iterator(this, i, Idx); |
||
363 | // Stride is 0 when SparseT >= unsigned. We don't need to loop. |
||
364 | if (!Stride) |
||
365 | break; |
||
366 | } |
||
367 | return end(); |
||
368 | } |
||
369 | |||
370 | /// Find an element by its key. |
||
371 | /// |
||
372 | /// @param Key A valid key to find. |
||
373 | /// @returns An iterator to the element identified by key, or end(). |
||
374 | /// |
||
375 | iterator find(const KeyT &Key) { |
||
376 | return findIndex(KeyIndexOf(Key)); |
||
377 | } |
||
378 | |||
379 | const_iterator find(const KeyT &Key) const { |
||
380 | iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); |
||
381 | return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); |
||
382 | } |
||
383 | |||
384 | /// Returns the number of elements identified by Key. This will be linear in |
||
385 | /// the number of elements of that key. |
||
386 | size_type count(const KeyT &Key) const { |
||
387 | unsigned Ret = 0; |
||
388 | for (const_iterator It = find(Key); It != end(); ++It) |
||
389 | ++Ret; |
||
390 | |||
391 | return Ret; |
||
392 | } |
||
393 | |||
394 | /// Returns true if this set contains an element identified by Key. |
||
395 | bool contains(const KeyT &Key) const { |
||
396 | return find(Key) != end(); |
||
397 | } |
||
398 | |||
399 | /// Return the head and tail of the subset's list, otherwise returns end(). |
||
400 | iterator getHead(const KeyT &Key) { return find(Key); } |
||
401 | iterator getTail(const KeyT &Key) { |
||
402 | iterator I = find(Key); |
||
403 | if (I != end()) |
||
404 | I = iterator(this, I.Prev(), KeyIndexOf(Key)); |
||
405 | return I; |
||
406 | } |
||
407 | |||
408 | /// The bounds of the range of items sharing Key K. First member is the head |
||
409 | /// of the list, and the second member is a decrementable end iterator for |
||
410 | /// that key. |
||
411 | RangePair equal_range(const KeyT &K) { |
||
412 | iterator B = find(K); |
||
413 | iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); |
||
414 | return std::make_pair(B, E); |
||
415 | } |
||
416 | |||
417 | /// Insert a new element at the tail of the subset list. Returns an iterator |
||
418 | /// to the newly added entry. |
||
419 | iterator insert(const ValueT &Val) { |
||
420 | unsigned Idx = sparseIndex(Val); |
||
421 | iterator I = findIndex(Idx); |
||
422 | |||
423 | unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); |
||
424 | |||
425 | if (I == end()) { |
||
426 | // Make a singleton list |
||
427 | Sparse[Idx] = NodeIdx; |
||
428 | Dense[NodeIdx].Prev = NodeIdx; |
||
429 | return iterator(this, NodeIdx, Idx); |
||
430 | } |
||
431 | |||
432 | // Stick it at the end. |
||
433 | unsigned HeadIdx = I.Idx; |
||
434 | unsigned TailIdx = I.Prev(); |
||
435 | Dense[TailIdx].Next = NodeIdx; |
||
436 | Dense[HeadIdx].Prev = NodeIdx; |
||
437 | Dense[NodeIdx].Prev = TailIdx; |
||
438 | |||
439 | return iterator(this, NodeIdx, Idx); |
||
440 | } |
||
441 | |||
442 | /// Erases an existing element identified by a valid iterator. |
||
443 | /// |
||
444 | /// This invalidates iterators pointing at the same entry, but erase() returns |
||
445 | /// an iterator pointing to the next element in the subset's list. This makes |
||
446 | /// it possible to erase selected elements while iterating over the subset: |
||
447 | /// |
||
448 | /// tie(I, E) = Set.equal_range(Key); |
||
449 | /// while (I != E) |
||
450 | /// if (test(*I)) |
||
451 | /// I = Set.erase(I); |
||
452 | /// else |
||
453 | /// ++I; |
||
454 | /// |
||
455 | /// Note that if the last element in the subset list is erased, this will |
||
456 | /// return an end iterator which can be decremented to get the new tail (if it |
||
457 | /// exists): |
||
458 | /// |
||
459 | /// tie(B, I) = Set.equal_range(Key); |
||
460 | /// for (bool isBegin = B == I; !isBegin; /* empty */) { |
||
461 | /// isBegin = (--I) == B; |
||
462 | /// if (test(I)) |
||
463 | /// break; |
||
464 | /// I = erase(I); |
||
465 | /// } |
||
466 | iterator erase(iterator I) { |
||
467 | assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && |
||
468 | "erasing invalid/end/tombstone iterator"); |
||
469 | |||
470 | // First, unlink the node from its list. Then swap the node out with the |
||
471 | // dense vector's last entry |
||
472 | iterator NextI = unlink(Dense[I.Idx]); |
||
473 | |||
474 | // Put in a tombstone. |
||
475 | makeTombstone(I.Idx); |
||
476 | |||
477 | return NextI; |
||
478 | } |
||
479 | |||
480 | /// Erase all elements with the given key. This invalidates all |
||
481 | /// iterators of that key. |
||
482 | void eraseAll(const KeyT &K) { |
||
483 | for (iterator I = find(K); I != end(); /* empty */) |
||
484 | I = erase(I); |
||
485 | } |
||
486 | |||
487 | private: |
||
488 | /// Unlink the node from its list. Returns the next node in the list. |
||
489 | iterator unlink(const SMSNode &N) { |
||
490 | if (isSingleton(N)) { |
||
491 | // Singleton is already unlinked |
||
492 | assert(N.Next == SMSNode::INVALID && "Singleton has next?"); |
||
493 | return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); |
||
494 | } |
||
495 | |||
496 | if (isHead(N)) { |
||
497 | // If we're the head, then update the sparse array and our next. |
||
498 | Sparse[sparseIndex(N)] = N.Next; |
||
499 | Dense[N.Next].Prev = N.Prev; |
||
500 | return iterator(this, N.Next, ValIndexOf(N.Data)); |
||
501 | } |
||
502 | |||
503 | if (N.isTail()) { |
||
504 | // If we're the tail, then update our head and our previous. |
||
505 | findIndex(sparseIndex(N)).setPrev(N.Prev); |
||
506 | Dense[N.Prev].Next = N.Next; |
||
507 | |||
508 | // Give back an end iterator that can be decremented |
||
509 | iterator I(this, N.Prev, ValIndexOf(N.Data)); |
||
510 | return ++I; |
||
511 | } |
||
512 | |||
513 | // Otherwise, just drop us |
||
514 | Dense[N.Next].Prev = N.Prev; |
||
515 | Dense[N.Prev].Next = N.Next; |
||
516 | return iterator(this, N.Next, ValIndexOf(N.Data)); |
||
517 | } |
||
518 | }; |
||
519 | |||
520 | } // end namespace llvm |
||
521 | |||
522 | #endif // LLVM_ADT_SPARSEMULTISET_H |