Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// This file defines the SparseBitVector class. See the doxygen comment for |
||
11 | /// SparseBitVector for more details on the algorithm used. |
||
12 | /// |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_ADT_SPARSEBITVECTOR_H |
||
16 | #define LLVM_ADT_SPARSEBITVECTOR_H |
||
17 | |||
18 | #include "llvm/Support/ErrorHandling.h" |
||
19 | #include "llvm/Support/MathExtras.h" |
||
20 | #include "llvm/Support/raw_ostream.h" |
||
21 | #include <cassert> |
||
22 | #include <climits> |
||
23 | #include <cstring> |
||
24 | #include <iterator> |
||
25 | #include <list> |
||
26 | |||
27 | namespace llvm { |
||
28 | |||
29 | /// SparseBitVector is an implementation of a bitvector that is sparse by only |
||
30 | /// storing the elements that have non-zero bits set. In order to make this |
||
31 | /// fast for the most common cases, SparseBitVector is implemented as a linked |
||
32 | /// list of SparseBitVectorElements. We maintain a pointer to the last |
||
33 | /// SparseBitVectorElement accessed (in the form of a list iterator), in order |
||
34 | /// to make multiple in-order test/set constant time after the first one is |
||
35 | /// executed. Note that using vectors to store SparseBitVectorElement's does |
||
36 | /// not work out very well because it causes insertion in the middle to take |
||
37 | /// enormous amounts of time with a large amount of bits. Other structures that |
||
38 | /// have better worst cases for insertion in the middle (various balanced trees, |
||
39 | /// etc) do not perform as well in practice as a linked list with this iterator |
||
40 | /// kept up to date. They are also significantly more memory intensive. |
||
41 | |||
42 | template <unsigned ElementSize = 128> struct SparseBitVectorElement { |
||
43 | public: |
||
44 | using BitWord = unsigned long; |
||
45 | using size_type = unsigned; |
||
46 | enum { |
||
47 | BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT, |
||
48 | BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, |
||
49 | BITS_PER_ELEMENT = ElementSize |
||
50 | }; |
||
51 | |||
52 | private: |
||
53 | // Index of Element in terms of where first bit starts. |
||
54 | unsigned ElementIndex; |
||
55 | BitWord Bits[BITWORDS_PER_ELEMENT]; |
||
56 | |||
57 | SparseBitVectorElement() { |
||
58 | ElementIndex = ~0U; |
||
59 | memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); |
||
60 | } |
||
61 | |||
62 | public: |
||
63 | explicit SparseBitVectorElement(unsigned Idx) { |
||
64 | ElementIndex = Idx; |
||
65 | memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); |
||
66 | } |
||
67 | |||
68 | // Comparison. |
||
69 | bool operator==(const SparseBitVectorElement &RHS) const { |
||
70 | if (ElementIndex != RHS.ElementIndex) |
||
71 | return false; |
||
72 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
||
73 | if (Bits[i] != RHS.Bits[i]) |
||
74 | return false; |
||
75 | return true; |
||
76 | } |
||
77 | |||
78 | bool operator!=(const SparseBitVectorElement &RHS) const { |
||
79 | return !(*this == RHS); |
||
80 | } |
||
81 | |||
82 | // Return the bits that make up word Idx in our element. |
||
83 | BitWord word(unsigned Idx) const { |
||
84 | assert(Idx < BITWORDS_PER_ELEMENT); |
||
85 | return Bits[Idx]; |
||
86 | } |
||
87 | |||
88 | unsigned index() const { |
||
89 | return ElementIndex; |
||
90 | } |
||
91 | |||
92 | bool empty() const { |
||
93 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
||
94 | if (Bits[i]) |
||
95 | return false; |
||
96 | return true; |
||
97 | } |
||
98 | |||
99 | void set(unsigned Idx) { |
||
100 | Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); |
||
101 | } |
||
102 | |||
103 | bool test_and_set(unsigned Idx) { |
||
104 | bool old = test(Idx); |
||
105 | if (!old) { |
||
106 | set(Idx); |
||
107 | return true; |
||
108 | } |
||
109 | return false; |
||
110 | } |
||
111 | |||
112 | void reset(unsigned Idx) { |
||
113 | Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); |
||
114 | } |
||
115 | |||
116 | bool test(unsigned Idx) const { |
||
117 | return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); |
||
118 | } |
||
119 | |||
120 | size_type count() const { |
||
121 | unsigned NumBits = 0; |
||
122 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
||
123 | NumBits += llvm::popcount(Bits[i]); |
||
124 | return NumBits; |
||
125 | } |
||
126 | |||
127 | /// find_first - Returns the index of the first set bit. |
||
128 | int find_first() const { |
||
129 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
||
130 | if (Bits[i] != 0) |
||
131 | return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); |
||
132 | llvm_unreachable("Illegal empty element"); |
||
133 | } |
||
134 | |||
135 | /// find_last - Returns the index of the last set bit. |
||
136 | int find_last() const { |
||
137 | for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) { |
||
138 | unsigned Idx = BITWORDS_PER_ELEMENT - I - 1; |
||
139 | if (Bits[Idx] != 0) |
||
140 | return Idx * BITWORD_SIZE + BITWORD_SIZE - |
||
141 | countLeadingZeros(Bits[Idx]) - 1; |
||
142 | } |
||
143 | llvm_unreachable("Illegal empty element"); |
||
144 | } |
||
145 | |||
146 | /// find_next - Returns the index of the next set bit starting from the |
||
147 | /// "Curr" bit. Returns -1 if the next set bit is not found. |
||
148 | int find_next(unsigned Curr) const { |
||
149 | if (Curr >= BITS_PER_ELEMENT) |
||
150 | return -1; |
||
151 | |||
152 | unsigned WordPos = Curr / BITWORD_SIZE; |
||
153 | unsigned BitPos = Curr % BITWORD_SIZE; |
||
154 | BitWord Copy = Bits[WordPos]; |
||
155 | assert(WordPos <= BITWORDS_PER_ELEMENT |
||
156 | && "Word Position outside of element"); |
||
157 | |||
158 | // Mask off previous bits. |
||
159 | Copy &= ~0UL << BitPos; |
||
160 | |||
161 | if (Copy != 0) |
||
162 | return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); |
||
163 | |||
164 | // Check subsequent words. |
||
165 | for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) |
||
166 | if (Bits[i] != 0) |
||
167 | return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); |
||
168 | return -1; |
||
169 | } |
||
170 | |||
171 | // Union this element with RHS and return true if this one changed. |
||
172 | bool unionWith(const SparseBitVectorElement &RHS) { |
||
173 | bool changed = false; |
||
174 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
||
175 | BitWord old = changed ? 0 : Bits[i]; |
||
176 | |||
177 | Bits[i] |= RHS.Bits[i]; |
||
178 | if (!changed && old != Bits[i]) |
||
179 | changed = true; |
||
180 | } |
||
181 | return changed; |
||
182 | } |
||
183 | |||
184 | // Return true if we have any bits in common with RHS |
||
185 | bool intersects(const SparseBitVectorElement &RHS) const { |
||
186 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
||
187 | if (RHS.Bits[i] & Bits[i]) |
||
188 | return true; |
||
189 | } |
||
190 | return false; |
||
191 | } |
||
192 | |||
193 | // Intersect this Element with RHS and return true if this one changed. |
||
194 | // BecameZero is set to true if this element became all-zero bits. |
||
195 | bool intersectWith(const SparseBitVectorElement &RHS, |
||
196 | bool &BecameZero) { |
||
197 | bool changed = false; |
||
198 | bool allzero = true; |
||
199 | |||
200 | BecameZero = false; |
||
201 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
||
202 | BitWord old = changed ? 0 : Bits[i]; |
||
203 | |||
204 | Bits[i] &= RHS.Bits[i]; |
||
205 | if (Bits[i] != 0) |
||
206 | allzero = false; |
||
207 | |||
208 | if (!changed && old != Bits[i]) |
||
209 | changed = true; |
||
210 | } |
||
211 | BecameZero = allzero; |
||
212 | return changed; |
||
213 | } |
||
214 | |||
215 | // Intersect this Element with the complement of RHS and return true if this |
||
216 | // one changed. BecameZero is set to true if this element became all-zero |
||
217 | // bits. |
||
218 | bool intersectWithComplement(const SparseBitVectorElement &RHS, |
||
219 | bool &BecameZero) { |
||
220 | bool changed = false; |
||
221 | bool allzero = true; |
||
222 | |||
223 | BecameZero = false; |
||
224 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
||
225 | BitWord old = changed ? 0 : Bits[i]; |
||
226 | |||
227 | Bits[i] &= ~RHS.Bits[i]; |
||
228 | if (Bits[i] != 0) |
||
229 | allzero = false; |
||
230 | |||
231 | if (!changed && old != Bits[i]) |
||
232 | changed = true; |
||
233 | } |
||
234 | BecameZero = allzero; |
||
235 | return changed; |
||
236 | } |
||
237 | |||
238 | // Three argument version of intersectWithComplement that intersects |
||
239 | // RHS1 & ~RHS2 into this element |
||
240 | void intersectWithComplement(const SparseBitVectorElement &RHS1, |
||
241 | const SparseBitVectorElement &RHS2, |
||
242 | bool &BecameZero) { |
||
243 | bool allzero = true; |
||
244 | |||
245 | BecameZero = false; |
||
246 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
||
247 | Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i]; |
||
248 | if (Bits[i] != 0) |
||
249 | allzero = false; |
||
250 | } |
||
251 | BecameZero = allzero; |
||
252 | } |
||
253 | }; |
||
254 | |||
255 | template <unsigned ElementSize = 128> |
||
256 | class SparseBitVector { |
||
257 | using ElementList = std::list<SparseBitVectorElement<ElementSize>>; |
||
258 | using ElementListIter = typename ElementList::iterator; |
||
259 | using ElementListConstIter = typename ElementList::const_iterator; |
||
260 | enum { |
||
261 | BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE |
||
262 | }; |
||
263 | |||
264 | ElementList Elements; |
||
265 | // Pointer to our current Element. This has no visible effect on the external |
||
266 | // state of a SparseBitVector, it's just used to improve performance in the |
||
267 | // common case of testing/modifying bits with similar indices. |
||
268 | mutable ElementListIter CurrElementIter; |
||
269 | |||
270 | // This is like std::lower_bound, except we do linear searching from the |
||
271 | // current position. |
||
272 | ElementListIter FindLowerBoundImpl(unsigned ElementIndex) const { |
||
273 | |||
274 | // We cache a non-const iterator so we're forced to resort to const_cast to |
||
275 | // get the begin/end in the case where 'this' is const. To avoid duplication |
||
276 | // of code with the only difference being whether the const cast is present |
||
277 | // 'this' is always const in this particular function and we sort out the |
||
278 | // difference in FindLowerBound and FindLowerBoundConst. |
||
279 | ElementListIter Begin = |
||
280 | const_cast<SparseBitVector<ElementSize> *>(this)->Elements.begin(); |
||
281 | ElementListIter End = |
||
282 | const_cast<SparseBitVector<ElementSize> *>(this)->Elements.end(); |
||
283 | |||
284 | if (Elements.empty()) { |
||
285 | CurrElementIter = Begin; |
||
286 | return CurrElementIter; |
||
287 | } |
||
288 | |||
289 | // Make sure our current iterator is valid. |
||
290 | if (CurrElementIter == End) |
||
291 | --CurrElementIter; |
||
292 | |||
293 | // Search from our current iterator, either backwards or forwards, |
||
294 | // depending on what element we are looking for. |
||
295 | ElementListIter ElementIter = CurrElementIter; |
||
296 | if (CurrElementIter->index() == ElementIndex) { |
||
297 | return ElementIter; |
||
298 | } else if (CurrElementIter->index() > ElementIndex) { |
||
299 | while (ElementIter != Begin |
||
300 | && ElementIter->index() > ElementIndex) |
||
301 | --ElementIter; |
||
302 | } else { |
||
303 | while (ElementIter != End && |
||
304 | ElementIter->index() < ElementIndex) |
||
305 | ++ElementIter; |
||
306 | } |
||
307 | CurrElementIter = ElementIter; |
||
308 | return ElementIter; |
||
309 | } |
||
310 | ElementListConstIter FindLowerBoundConst(unsigned ElementIndex) const { |
||
311 | return FindLowerBoundImpl(ElementIndex); |
||
312 | } |
||
313 | ElementListIter FindLowerBound(unsigned ElementIndex) { |
||
314 | return FindLowerBoundImpl(ElementIndex); |
||
315 | } |
||
316 | |||
317 | // Iterator to walk set bits in the bitmap. This iterator is a lot uglier |
||
318 | // than it would be, in order to be efficient. |
||
319 | class SparseBitVectorIterator { |
||
320 | private: |
||
321 | bool AtEnd; |
||
322 | |||
323 | const SparseBitVector<ElementSize> *BitVector = nullptr; |
||
324 | |||
325 | // Current element inside of bitmap. |
||
326 | ElementListConstIter Iter; |
||
327 | |||
328 | // Current bit number inside of our bitmap. |
||
329 | unsigned BitNumber; |
||
330 | |||
331 | // Current word number inside of our element. |
||
332 | unsigned WordNumber; |
||
333 | |||
334 | // Current bits from the element. |
||
335 | typename SparseBitVectorElement<ElementSize>::BitWord Bits; |
||
336 | |||
337 | // Move our iterator to the first non-zero bit in the bitmap. |
||
338 | void AdvanceToFirstNonZero() { |
||
339 | if (AtEnd) |
||
340 | return; |
||
341 | if (BitVector->Elements.empty()) { |
||
342 | AtEnd = true; |
||
343 | return; |
||
344 | } |
||
345 | Iter = BitVector->Elements.begin(); |
||
346 | BitNumber = Iter->index() * ElementSize; |
||
347 | unsigned BitPos = Iter->find_first(); |
||
348 | BitNumber += BitPos; |
||
349 | WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; |
||
350 | Bits = Iter->word(WordNumber); |
||
351 | Bits >>= BitPos % BITWORD_SIZE; |
||
352 | } |
||
353 | |||
354 | // Move our iterator to the next non-zero bit. |
||
355 | void AdvanceToNextNonZero() { |
||
356 | if (AtEnd) |
||
357 | return; |
||
358 | |||
359 | while (Bits && !(Bits & 1)) { |
||
360 | Bits >>= 1; |
||
361 | BitNumber += 1; |
||
362 | } |
||
363 | |||
364 | // See if we ran out of Bits in this word. |
||
365 | if (!Bits) { |
||
366 | int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ; |
||
367 | // If we ran out of set bits in this element, move to next element. |
||
368 | if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { |
||
369 | ++Iter; |
||
370 | WordNumber = 0; |
||
371 | |||
372 | // We may run out of elements in the bitmap. |
||
373 | if (Iter == BitVector->Elements.end()) { |
||
374 | AtEnd = true; |
||
375 | return; |
||
376 | } |
||
377 | // Set up for next non-zero word in bitmap. |
||
378 | BitNumber = Iter->index() * ElementSize; |
||
379 | NextSetBitNumber = Iter->find_first(); |
||
380 | BitNumber += NextSetBitNumber; |
||
381 | WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; |
||
382 | Bits = Iter->word(WordNumber); |
||
383 | Bits >>= NextSetBitNumber % BITWORD_SIZE; |
||
384 | } else { |
||
385 | WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; |
||
386 | Bits = Iter->word(WordNumber); |
||
387 | Bits >>= NextSetBitNumber % BITWORD_SIZE; |
||
388 | BitNumber = Iter->index() * ElementSize; |
||
389 | BitNumber += NextSetBitNumber; |
||
390 | } |
||
391 | } |
||
392 | } |
||
393 | |||
394 | public: |
||
395 | SparseBitVectorIterator() = default; |
||
396 | |||
397 | SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS, |
||
398 | bool end = false):BitVector(RHS) { |
||
399 | Iter = BitVector->Elements.begin(); |
||
400 | BitNumber = 0; |
||
401 | Bits = 0; |
||
402 | WordNumber = ~0; |
||
403 | AtEnd = end; |
||
404 | AdvanceToFirstNonZero(); |
||
405 | } |
||
406 | |||
407 | // Preincrement. |
||
408 | inline SparseBitVectorIterator& operator++() { |
||
409 | ++BitNumber; |
||
410 | Bits >>= 1; |
||
411 | AdvanceToNextNonZero(); |
||
412 | return *this; |
||
413 | } |
||
414 | |||
415 | // Postincrement. |
||
416 | inline SparseBitVectorIterator operator++(int) { |
||
417 | SparseBitVectorIterator tmp = *this; |
||
418 | ++*this; |
||
419 | return tmp; |
||
420 | } |
||
421 | |||
422 | // Return the current set bit number. |
||
423 | unsigned operator*() const { |
||
424 | return BitNumber; |
||
425 | } |
||
426 | |||
427 | bool operator==(const SparseBitVectorIterator &RHS) const { |
||
428 | // If they are both at the end, ignore the rest of the fields. |
||
429 | if (AtEnd && RHS.AtEnd) |
||
430 | return true; |
||
431 | // Otherwise they are the same if they have the same bit number and |
||
432 | // bitmap. |
||
433 | return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; |
||
434 | } |
||
435 | |||
436 | bool operator!=(const SparseBitVectorIterator &RHS) const { |
||
437 | return !(*this == RHS); |
||
438 | } |
||
439 | }; |
||
440 | |||
441 | public: |
||
442 | using iterator = SparseBitVectorIterator; |
||
443 | |||
444 | SparseBitVector() : Elements(), CurrElementIter(Elements.begin()) {} |
||
445 | |||
446 | SparseBitVector(const SparseBitVector &RHS) |
||
447 | : Elements(RHS.Elements), CurrElementIter(Elements.begin()) {} |
||
448 | SparseBitVector(SparseBitVector &&RHS) |
||
449 | : Elements(std::move(RHS.Elements)), CurrElementIter(Elements.begin()) {} |
||
450 | |||
451 | // Clear. |
||
452 | void clear() { |
||
453 | Elements.clear(); |
||
454 | } |
||
455 | |||
456 | // Assignment |
||
457 | SparseBitVector& operator=(const SparseBitVector& RHS) { |
||
458 | if (this == &RHS) |
||
459 | return *this; |
||
460 | |||
461 | Elements = RHS.Elements; |
||
462 | CurrElementIter = Elements.begin(); |
||
463 | return *this; |
||
464 | } |
||
465 | SparseBitVector &operator=(SparseBitVector &&RHS) { |
||
466 | Elements = std::move(RHS.Elements); |
||
467 | CurrElementIter = Elements.begin(); |
||
468 | return *this; |
||
469 | } |
||
470 | |||
471 | // Test, Reset, and Set a bit in the bitmap. |
||
472 | bool test(unsigned Idx) const { |
||
473 | if (Elements.empty()) |
||
474 | return false; |
||
475 | |||
476 | unsigned ElementIndex = Idx / ElementSize; |
||
477 | ElementListConstIter ElementIter = FindLowerBoundConst(ElementIndex); |
||
478 | |||
479 | // If we can't find an element that is supposed to contain this bit, there |
||
480 | // is nothing more to do. |
||
481 | if (ElementIter == Elements.end() || |
||
482 | ElementIter->index() != ElementIndex) |
||
483 | return false; |
||
484 | return ElementIter->test(Idx % ElementSize); |
||
485 | } |
||
486 | |||
487 | void reset(unsigned Idx) { |
||
488 | if (Elements.empty()) |
||
489 | return; |
||
490 | |||
491 | unsigned ElementIndex = Idx / ElementSize; |
||
492 | ElementListIter ElementIter = FindLowerBound(ElementIndex); |
||
493 | |||
494 | // If we can't find an element that is supposed to contain this bit, there |
||
495 | // is nothing more to do. |
||
496 | if (ElementIter == Elements.end() || |
||
497 | ElementIter->index() != ElementIndex) |
||
498 | return; |
||
499 | ElementIter->reset(Idx % ElementSize); |
||
500 | |||
501 | // When the element is zeroed out, delete it. |
||
502 | if (ElementIter->empty()) { |
||
503 | ++CurrElementIter; |
||
504 | Elements.erase(ElementIter); |
||
505 | } |
||
506 | } |
||
507 | |||
508 | void set(unsigned Idx) { |
||
509 | unsigned ElementIndex = Idx / ElementSize; |
||
510 | ElementListIter ElementIter; |
||
511 | if (Elements.empty()) { |
||
512 | ElementIter = Elements.emplace(Elements.end(), ElementIndex); |
||
513 | } else { |
||
514 | ElementIter = FindLowerBound(ElementIndex); |
||
515 | |||
516 | if (ElementIter == Elements.end() || |
||
517 | ElementIter->index() != ElementIndex) { |
||
518 | // We may have hit the beginning of our SparseBitVector, in which case, |
||
519 | // we may need to insert right after this element, which requires moving |
||
520 | // the current iterator forward one, because insert does insert before. |
||
521 | if (ElementIter != Elements.end() && |
||
522 | ElementIter->index() < ElementIndex) |
||
523 | ++ElementIter; |
||
524 | ElementIter = Elements.emplace(ElementIter, ElementIndex); |
||
525 | } |
||
526 | } |
||
527 | CurrElementIter = ElementIter; |
||
528 | |||
529 | ElementIter->set(Idx % ElementSize); |
||
530 | } |
||
531 | |||
532 | bool test_and_set(unsigned Idx) { |
||
533 | bool old = test(Idx); |
||
534 | if (!old) { |
||
535 | set(Idx); |
||
536 | return true; |
||
537 | } |
||
538 | return false; |
||
539 | } |
||
540 | |||
541 | bool operator!=(const SparseBitVector &RHS) const { |
||
542 | return !(*this == RHS); |
||
543 | } |
||
544 | |||
545 | bool operator==(const SparseBitVector &RHS) const { |
||
546 | ElementListConstIter Iter1 = Elements.begin(); |
||
547 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
||
548 | |||
549 | for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end(); |
||
550 | ++Iter1, ++Iter2) { |
||
551 | if (*Iter1 != *Iter2) |
||
552 | return false; |
||
553 | } |
||
554 | return Iter1 == Elements.end() && Iter2 == RHS.Elements.end(); |
||
555 | } |
||
556 | |||
557 | // Union our bitmap with the RHS and return true if we changed. |
||
558 | bool operator|=(const SparseBitVector &RHS) { |
||
559 | if (this == &RHS) |
||
560 | return false; |
||
561 | |||
562 | bool changed = false; |
||
563 | ElementListIter Iter1 = Elements.begin(); |
||
564 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
||
565 | |||
566 | // If RHS is empty, we are done |
||
567 | if (RHS.Elements.empty()) |
||
568 | return false; |
||
569 | |||
570 | while (Iter2 != RHS.Elements.end()) { |
||
571 | if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) { |
||
572 | Elements.insert(Iter1, *Iter2); |
||
573 | ++Iter2; |
||
574 | changed = true; |
||
575 | } else if (Iter1->index() == Iter2->index()) { |
||
576 | changed |= Iter1->unionWith(*Iter2); |
||
577 | ++Iter1; |
||
578 | ++Iter2; |
||
579 | } else { |
||
580 | ++Iter1; |
||
581 | } |
||
582 | } |
||
583 | CurrElementIter = Elements.begin(); |
||
584 | return changed; |
||
585 | } |
||
586 | |||
587 | // Intersect our bitmap with the RHS and return true if ours changed. |
||
588 | bool operator&=(const SparseBitVector &RHS) { |
||
589 | if (this == &RHS) |
||
590 | return false; |
||
591 | |||
592 | bool changed = false; |
||
593 | ElementListIter Iter1 = Elements.begin(); |
||
594 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
||
595 | |||
596 | // Check if both bitmaps are empty. |
||
597 | if (Elements.empty() && RHS.Elements.empty()) |
||
598 | return false; |
||
599 | |||
600 | // Loop through, intersecting as we go, erasing elements when necessary. |
||
601 | while (Iter2 != RHS.Elements.end()) { |
||
602 | if (Iter1 == Elements.end()) { |
||
603 | CurrElementIter = Elements.begin(); |
||
604 | return changed; |
||
605 | } |
||
606 | |||
607 | if (Iter1->index() > Iter2->index()) { |
||
608 | ++Iter2; |
||
609 | } else if (Iter1->index() == Iter2->index()) { |
||
610 | bool BecameZero; |
||
611 | changed |= Iter1->intersectWith(*Iter2, BecameZero); |
||
612 | if (BecameZero) { |
||
613 | ElementListIter IterTmp = Iter1; |
||
614 | ++Iter1; |
||
615 | Elements.erase(IterTmp); |
||
616 | } else { |
||
617 | ++Iter1; |
||
618 | } |
||
619 | ++Iter2; |
||
620 | } else { |
||
621 | ElementListIter IterTmp = Iter1; |
||
622 | ++Iter1; |
||
623 | Elements.erase(IterTmp); |
||
624 | changed = true; |
||
625 | } |
||
626 | } |
||
627 | if (Iter1 != Elements.end()) { |
||
628 | Elements.erase(Iter1, Elements.end()); |
||
629 | changed = true; |
||
630 | } |
||
631 | CurrElementIter = Elements.begin(); |
||
632 | return changed; |
||
633 | } |
||
634 | |||
635 | // Intersect our bitmap with the complement of the RHS and return true |
||
636 | // if ours changed. |
||
637 | bool intersectWithComplement(const SparseBitVector &RHS) { |
||
638 | if (this == &RHS) { |
||
639 | if (!empty()) { |
||
640 | clear(); |
||
641 | return true; |
||
642 | } |
||
643 | return false; |
||
644 | } |
||
645 | |||
646 | bool changed = false; |
||
647 | ElementListIter Iter1 = Elements.begin(); |
||
648 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
||
649 | |||
650 | // If either our bitmap or RHS is empty, we are done |
||
651 | if (Elements.empty() || RHS.Elements.empty()) |
||
652 | return false; |
||
653 | |||
654 | // Loop through, intersecting as we go, erasing elements when necessary. |
||
655 | while (Iter2 != RHS.Elements.end()) { |
||
656 | if (Iter1 == Elements.end()) { |
||
657 | CurrElementIter = Elements.begin(); |
||
658 | return changed; |
||
659 | } |
||
660 | |||
661 | if (Iter1->index() > Iter2->index()) { |
||
662 | ++Iter2; |
||
663 | } else if (Iter1->index() == Iter2->index()) { |
||
664 | bool BecameZero; |
||
665 | changed |= Iter1->intersectWithComplement(*Iter2, BecameZero); |
||
666 | if (BecameZero) { |
||
667 | ElementListIter IterTmp = Iter1; |
||
668 | ++Iter1; |
||
669 | Elements.erase(IterTmp); |
||
670 | } else { |
||
671 | ++Iter1; |
||
672 | } |
||
673 | ++Iter2; |
||
674 | } else { |
||
675 | ++Iter1; |
||
676 | } |
||
677 | } |
||
678 | CurrElementIter = Elements.begin(); |
||
679 | return changed; |
||
680 | } |
||
681 | |||
682 | bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const { |
||
683 | return intersectWithComplement(*RHS); |
||
684 | } |
||
685 | |||
686 | // Three argument version of intersectWithComplement. |
||
687 | // Result of RHS1 & ~RHS2 is stored into this bitmap. |
||
688 | void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1, |
||
689 | const SparseBitVector<ElementSize> &RHS2) |
||
690 | { |
||
691 | if (this == &RHS1) { |
||
692 | intersectWithComplement(RHS2); |
||
693 | return; |
||
694 | } else if (this == &RHS2) { |
||
695 | SparseBitVector RHS2Copy(RHS2); |
||
696 | intersectWithComplement(RHS1, RHS2Copy); |
||
697 | return; |
||
698 | } |
||
699 | |||
700 | Elements.clear(); |
||
701 | CurrElementIter = Elements.begin(); |
||
702 | ElementListConstIter Iter1 = RHS1.Elements.begin(); |
||
703 | ElementListConstIter Iter2 = RHS2.Elements.begin(); |
||
704 | |||
705 | // If RHS1 is empty, we are done |
||
706 | // If RHS2 is empty, we still have to copy RHS1 |
||
707 | if (RHS1.Elements.empty()) |
||
708 | return; |
||
709 | |||
710 | // Loop through, intersecting as we go, erasing elements when necessary. |
||
711 | while (Iter2 != RHS2.Elements.end()) { |
||
712 | if (Iter1 == RHS1.Elements.end()) |
||
713 | return; |
||
714 | |||
715 | if (Iter1->index() > Iter2->index()) { |
||
716 | ++Iter2; |
||
717 | } else if (Iter1->index() == Iter2->index()) { |
||
718 | bool BecameZero = false; |
||
719 | Elements.emplace_back(Iter1->index()); |
||
720 | Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero); |
||
721 | if (BecameZero) |
||
722 | Elements.pop_back(); |
||
723 | ++Iter1; |
||
724 | ++Iter2; |
||
725 | } else { |
||
726 | Elements.push_back(*Iter1++); |
||
727 | } |
||
728 | } |
||
729 | |||
730 | // copy the remaining elements |
||
731 | std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements)); |
||
732 | } |
||
733 | |||
734 | void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1, |
||
735 | const SparseBitVector<ElementSize> *RHS2) { |
||
736 | intersectWithComplement(*RHS1, *RHS2); |
||
737 | } |
||
738 | |||
739 | bool intersects(const SparseBitVector<ElementSize> *RHS) const { |
||
740 | return intersects(*RHS); |
||
741 | } |
||
742 | |||
743 | // Return true if we share any bits in common with RHS |
||
744 | bool intersects(const SparseBitVector<ElementSize> &RHS) const { |
||
745 | ElementListConstIter Iter1 = Elements.begin(); |
||
746 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
||
747 | |||
748 | // Check if both bitmaps are empty. |
||
749 | if (Elements.empty() && RHS.Elements.empty()) |
||
750 | return false; |
||
751 | |||
752 | // Loop through, intersecting stopping when we hit bits in common. |
||
753 | while (Iter2 != RHS.Elements.end()) { |
||
754 | if (Iter1 == Elements.end()) |
||
755 | return false; |
||
756 | |||
757 | if (Iter1->index() > Iter2->index()) { |
||
758 | ++Iter2; |
||
759 | } else if (Iter1->index() == Iter2->index()) { |
||
760 | if (Iter1->intersects(*Iter2)) |
||
761 | return true; |
||
762 | ++Iter1; |
||
763 | ++Iter2; |
||
764 | } else { |
||
765 | ++Iter1; |
||
766 | } |
||
767 | } |
||
768 | return false; |
||
769 | } |
||
770 | |||
771 | // Return true iff all bits set in this SparseBitVector are |
||
772 | // also set in RHS. |
||
773 | bool contains(const SparseBitVector<ElementSize> &RHS) const { |
||
774 | SparseBitVector<ElementSize> Result(*this); |
||
775 | Result &= RHS; |
||
776 | return (Result == RHS); |
||
777 | } |
||
778 | |||
779 | // Return the first set bit in the bitmap. Return -1 if no bits are set. |
||
780 | int find_first() const { |
||
781 | if (Elements.empty()) |
||
782 | return -1; |
||
783 | const SparseBitVectorElement<ElementSize> &First = *(Elements.begin()); |
||
784 | return (First.index() * ElementSize) + First.find_first(); |
||
785 | } |
||
786 | |||
787 | // Return the last set bit in the bitmap. Return -1 if no bits are set. |
||
788 | int find_last() const { |
||
789 | if (Elements.empty()) |
||
790 | return -1; |
||
791 | const SparseBitVectorElement<ElementSize> &Last = *(Elements.rbegin()); |
||
792 | return (Last.index() * ElementSize) + Last.find_last(); |
||
793 | } |
||
794 | |||
795 | // Return true if the SparseBitVector is empty |
||
796 | bool empty() const { |
||
797 | return Elements.empty(); |
||
798 | } |
||
799 | |||
800 | unsigned count() const { |
||
801 | unsigned BitCount = 0; |
||
802 | for (ElementListConstIter Iter = Elements.begin(); |
||
803 | Iter != Elements.end(); |
||
804 | ++Iter) |
||
805 | BitCount += Iter->count(); |
||
806 | |||
807 | return BitCount; |
||
808 | } |
||
809 | |||
810 | iterator begin() const { |
||
811 | return iterator(this); |
||
812 | } |
||
813 | |||
814 | iterator end() const { |
||
815 | return iterator(this, true); |
||
816 | } |
||
817 | }; |
||
818 | |||
819 | // Convenience functions to allow Or and And without dereferencing in the user |
||
820 | // code. |
||
821 | |||
822 | template <unsigned ElementSize> |
||
823 | inline bool operator |=(SparseBitVector<ElementSize> &LHS, |
||
824 | const SparseBitVector<ElementSize> *RHS) { |
||
825 | return LHS |= *RHS; |
||
826 | } |
||
827 | |||
828 | template <unsigned ElementSize> |
||
829 | inline bool operator |=(SparseBitVector<ElementSize> *LHS, |
||
830 | const SparseBitVector<ElementSize> &RHS) { |
||
831 | return LHS->operator|=(RHS); |
||
832 | } |
||
833 | |||
834 | template <unsigned ElementSize> |
||
835 | inline bool operator &=(SparseBitVector<ElementSize> *LHS, |
||
836 | const SparseBitVector<ElementSize> &RHS) { |
||
837 | return LHS->operator&=(RHS); |
||
838 | } |
||
839 | |||
840 | template <unsigned ElementSize> |
||
841 | inline bool operator &=(SparseBitVector<ElementSize> &LHS, |
||
842 | const SparseBitVector<ElementSize> *RHS) { |
||
843 | return LHS &= *RHS; |
||
844 | } |
||
845 | |||
846 | // Convenience functions for infix union, intersection, difference operators. |
||
847 | |||
848 | template <unsigned ElementSize> |
||
849 | inline SparseBitVector<ElementSize> |
||
850 | operator|(const SparseBitVector<ElementSize> &LHS, |
||
851 | const SparseBitVector<ElementSize> &RHS) { |
||
852 | SparseBitVector<ElementSize> Result(LHS); |
||
853 | Result |= RHS; |
||
854 | return Result; |
||
855 | } |
||
856 | |||
857 | template <unsigned ElementSize> |
||
858 | inline SparseBitVector<ElementSize> |
||
859 | operator&(const SparseBitVector<ElementSize> &LHS, |
||
860 | const SparseBitVector<ElementSize> &RHS) { |
||
861 | SparseBitVector<ElementSize> Result(LHS); |
||
862 | Result &= RHS; |
||
863 | return Result; |
||
864 | } |
||
865 | |||
866 | template <unsigned ElementSize> |
||
867 | inline SparseBitVector<ElementSize> |
||
868 | operator-(const SparseBitVector<ElementSize> &LHS, |
||
869 | const SparseBitVector<ElementSize> &RHS) { |
||
870 | SparseBitVector<ElementSize> Result; |
||
871 | Result.intersectWithComplement(LHS, RHS); |
||
872 | return Result; |
||
873 | } |
||
874 | |||
875 | // Dump a SparseBitVector to a stream |
||
876 | template <unsigned ElementSize> |
||
877 | void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) { |
||
878 | out << "["; |
||
879 | |||
880 | typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(), |
||
881 | be = LHS.end(); |
||
882 | if (bi != be) { |
||
883 | out << *bi; |
||
884 | for (++bi; bi != be; ++bi) { |
||
885 | out << " " << *bi; |
||
886 | } |
||
887 | } |
||
888 | out << "]\n"; |
||
889 | } |
||
890 | |||
891 | } // end namespace llvm |
||
892 | |||
893 | #endif // LLVM_ADT_SPARSEBITVECTOR_H |