Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// This file contains some templates that are useful if you are working with |
||
11 | /// the STL at all. |
||
12 | /// |
||
13 | /// No library is required when using these functions. |
||
14 | /// |
||
15 | //===----------------------------------------------------------------------===// |
||
16 | |||
17 | #ifndef LLVM_ADT_STLEXTRAS_H |
||
18 | #define LLVM_ADT_STLEXTRAS_H |
||
19 | |||
20 | #include "llvm/ADT/Hashing.h" |
||
21 | #include "llvm/ADT/STLForwardCompat.h" |
||
22 | #include "llvm/ADT/STLFunctionalExtras.h" |
||
23 | #include "llvm/ADT/identity.h" |
||
24 | #include "llvm/ADT/iterator.h" |
||
25 | #include "llvm/ADT/iterator_range.h" |
||
26 | #include "llvm/Config/abi-breaking.h" |
||
27 | #include "llvm/Support/ErrorHandling.h" |
||
28 | #include <algorithm> |
||
29 | #include <cassert> |
||
30 | #include <cstddef> |
||
31 | #include <cstdint> |
||
32 | #include <cstdlib> |
||
33 | #include <functional> |
||
34 | #include <initializer_list> |
||
35 | #include <iterator> |
||
36 | #include <limits> |
||
37 | #include <memory> |
||
38 | #include <optional> |
||
39 | #include <tuple> |
||
40 | #include <type_traits> |
||
41 | #include <utility> |
||
42 | |||
43 | #ifdef EXPENSIVE_CHECKS |
||
44 | #include <random> // for std::mt19937 |
||
45 | #endif |
||
46 | |||
47 | namespace llvm { |
||
48 | |||
49 | // Only used by compiler if both template types are the same. Useful when |
||
50 | // using SFINAE to test for the existence of member functions. |
||
51 | template <typename T, T> struct SameType; |
||
52 | |||
53 | namespace detail { |
||
54 | |||
55 | template <typename RangeT> |
||
56 | using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); |
||
57 | |||
58 | template <typename RangeT> |
||
59 | using ValueOfRange = |
||
60 | std::remove_reference_t<decltype(*std::begin(std::declval<RangeT &>()))>; |
||
61 | |||
62 | } // end namespace detail |
||
63 | |||
64 | //===----------------------------------------------------------------------===// |
||
65 | // Extra additions to <type_traits> |
||
66 | //===----------------------------------------------------------------------===// |
||
67 | |||
68 | template <typename T> struct make_const_ptr { |
||
69 | using type = std::add_pointer_t<std::add_const_t<T>>; |
||
70 | }; |
||
71 | |||
72 | template <typename T> struct make_const_ref { |
||
73 | using type = std::add_lvalue_reference_t<std::add_const_t<T>>; |
||
74 | }; |
||
75 | |||
76 | namespace detail { |
||
77 | template <class, template <class...> class Op, class... Args> struct detector { |
||
78 | using value_t = std::false_type; |
||
79 | }; |
||
80 | template <template <class...> class Op, class... Args> |
||
81 | struct detector<std::void_t<Op<Args...>>, Op, Args...> { |
||
82 | using value_t = std::true_type; |
||
83 | }; |
||
84 | } // end namespace detail |
||
85 | |||
86 | /// Detects if a given trait holds for some set of arguments 'Args'. |
||
87 | /// For example, the given trait could be used to detect if a given type |
||
88 | /// has a copy assignment operator: |
||
89 | /// template<class T> |
||
90 | /// using has_copy_assign_t = decltype(std::declval<T&>() |
||
91 | /// = std::declval<const T&>()); |
||
92 | /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; |
||
93 | template <template <class...> class Op, class... Args> |
||
94 | using is_detected = typename detail::detector<void, Op, Args...>::value_t; |
||
95 | |||
96 | /// This class provides various trait information about a callable object. |
||
97 | /// * To access the number of arguments: Traits::num_args |
||
98 | /// * To access the type of an argument: Traits::arg_t<Index> |
||
99 | /// * To access the type of the result: Traits::result_t |
||
100 | template <typename T, bool isClass = std::is_class<T>::value> |
||
101 | struct function_traits : public function_traits<decltype(&T::operator())> {}; |
||
102 | |||
103 | /// Overload for class function types. |
||
104 | template <typename ClassType, typename ReturnType, typename... Args> |
||
105 | struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { |
||
106 | /// The number of arguments to this function. |
||
107 | enum { num_args = sizeof...(Args) }; |
||
108 | |||
109 | /// The result type of this function. |
||
110 | using result_t = ReturnType; |
||
111 | |||
112 | /// The type of an argument to this function. |
||
113 | template <size_t Index> |
||
114 | using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; |
||
115 | }; |
||
116 | /// Overload for class function types. |
||
117 | template <typename ClassType, typename ReturnType, typename... Args> |
||
118 | struct function_traits<ReturnType (ClassType::*)(Args...), false> |
||
119 | : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; |
||
120 | /// Overload for non-class function types. |
||
121 | template <typename ReturnType, typename... Args> |
||
122 | struct function_traits<ReturnType (*)(Args...), false> { |
||
123 | /// The number of arguments to this function. |
||
124 | enum { num_args = sizeof...(Args) }; |
||
125 | |||
126 | /// The result type of this function. |
||
127 | using result_t = ReturnType; |
||
128 | |||
129 | /// The type of an argument to this function. |
||
130 | template <size_t i> |
||
131 | using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; |
||
132 | }; |
||
133 | template <typename ReturnType, typename... Args> |
||
134 | struct function_traits<ReturnType (*const)(Args...), false> |
||
135 | : public function_traits<ReturnType (*)(Args...)> {}; |
||
136 | /// Overload for non-class function type references. |
||
137 | template <typename ReturnType, typename... Args> |
||
138 | struct function_traits<ReturnType (&)(Args...), false> |
||
139 | : public function_traits<ReturnType (*)(Args...)> {}; |
||
140 | |||
141 | /// traits class for checking whether type T is one of any of the given |
||
142 | /// types in the variadic list. |
||
143 | template <typename T, typename... Ts> |
||
144 | using is_one_of = std::disjunction<std::is_same<T, Ts>...>; |
||
145 | |||
146 | /// traits class for checking whether type T is a base class for all |
||
147 | /// the given types in the variadic list. |
||
148 | template <typename T, typename... Ts> |
||
149 | using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; |
||
150 | |||
151 | namespace detail { |
||
152 | template <typename T, typename... Us> struct TypesAreDistinct; |
||
153 | template <typename T, typename... Us> |
||
154 | struct TypesAreDistinct |
||
155 | : std::integral_constant<bool, !is_one_of<T, Us...>::value && |
||
156 | TypesAreDistinct<Us...>::value> {}; |
||
157 | template <typename T> struct TypesAreDistinct<T> : std::true_type {}; |
||
158 | } // namespace detail |
||
159 | |||
160 | /// Determine if all types in Ts are distinct. |
||
161 | /// |
||
162 | /// Useful to statically assert when Ts is intended to describe a non-multi set |
||
163 | /// of types. |
||
164 | /// |
||
165 | /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be |
||
166 | /// asserted once per instantiation of a type which requires it. |
||
167 | template <typename... Ts> struct TypesAreDistinct; |
||
168 | template <> struct TypesAreDistinct<> : std::true_type {}; |
||
169 | template <typename... Ts> |
||
170 | struct TypesAreDistinct |
||
171 | : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; |
||
172 | |||
173 | /// Find the first index where a type appears in a list of types. |
||
174 | /// |
||
175 | /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. |
||
176 | /// |
||
177 | /// Typically only meaningful when it is otherwise statically known that the |
||
178 | /// type pack has no duplicate types. This should be guaranteed explicitly with |
||
179 | /// static_assert(TypesAreDistinct<Us...>::value). |
||
180 | /// |
||
181 | /// It is a compile-time error to instantiate when T is not present in Us, i.e. |
||
182 | /// if is_one_of<T, Us...>::value is false. |
||
183 | template <typename T, typename... Us> struct FirstIndexOfType; |
||
184 | template <typename T, typename U, typename... Us> |
||
185 | struct FirstIndexOfType<T, U, Us...> |
||
186 | : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; |
||
187 | template <typename T, typename... Us> |
||
188 | struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; |
||
189 | |||
190 | /// Find the type at a given index in a list of types. |
||
191 | /// |
||
192 | /// TypeAtIndex<I, Ts...> is the type at index I in Ts. |
||
193 | template <size_t I, typename... Ts> |
||
194 | using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; |
||
195 | |||
196 | /// Helper which adds two underlying types of enumeration type. |
||
197 | /// Implicit conversion to a common type is accepted. |
||
198 | template <typename EnumTy1, typename EnumTy2, |
||
199 | typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, |
||
200 | std::underlying_type_t<EnumTy1>>, |
||
201 | typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, |
||
202 | std::underlying_type_t<EnumTy2>>> |
||
203 | constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { |
||
204 | return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); |
||
205 | } |
||
206 | |||
207 | //===----------------------------------------------------------------------===// |
||
208 | // Extra additions to <iterator> |
||
209 | //===----------------------------------------------------------------------===// |
||
210 | |||
211 | namespace callable_detail { |
||
212 | |||
213 | /// Templated storage wrapper for a callable. |
||
214 | /// |
||
215 | /// This class is consistently default constructible, copy / move |
||
216 | /// constructible / assignable. |
||
217 | /// |
||
218 | /// Supported callable types: |
||
219 | /// - Function pointer |
||
220 | /// - Function reference |
||
221 | /// - Lambda |
||
222 | /// - Function object |
||
223 | template <typename T, |
||
224 | bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> |
||
225 | class Callable { |
||
226 | using value_type = std::remove_reference_t<T>; |
||
227 | using reference = value_type &; |
||
228 | using const_reference = value_type const &; |
||
229 | |||
230 | std::optional<value_type> Obj; |
||
231 | |||
232 | static_assert(!std::is_pointer_v<value_type>, |
||
233 | "Pointers to non-functions are not callable."); |
||
234 | |||
235 | public: |
||
236 | Callable() = default; |
||
237 | Callable(T const &O) : Obj(std::in_place, O) {} |
||
238 | |||
239 | Callable(Callable const &Other) = default; |
||
240 | Callable(Callable &&Other) = default; |
||
241 | |||
242 | Callable &operator=(Callable const &Other) { |
||
243 | Obj = std::nullopt; |
||
244 | if (Other.Obj) |
||
245 | Obj.emplace(*Other.Obj); |
||
246 | return *this; |
||
247 | } |
||
248 | |||
249 | Callable &operator=(Callable &&Other) { |
||
250 | Obj = std::nullopt; |
||
251 | if (Other.Obj) |
||
252 | Obj.emplace(std::move(*Other.Obj)); |
||
253 | return *this; |
||
254 | } |
||
255 | |||
256 | template <typename... Pn, |
||
257 | std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> |
||
258 | decltype(auto) operator()(Pn &&...Params) { |
||
259 | return (*Obj)(std::forward<Pn>(Params)...); |
||
260 | } |
||
261 | |||
262 | template <typename... Pn, |
||
263 | std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> |
||
264 | decltype(auto) operator()(Pn &&...Params) const { |
||
265 | return (*Obj)(std::forward<Pn>(Params)...); |
||
266 | } |
||
267 | |||
268 | bool valid() const { return Obj != std::nullopt; } |
||
269 | bool reset() { return Obj = std::nullopt; } |
||
270 | |||
271 | operator reference() { return *Obj; } |
||
272 | operator const_reference() const { return *Obj; } |
||
273 | }; |
||
274 | |||
275 | // Function specialization. No need to waste extra space wrapping with a |
||
276 | // std::optional. |
||
277 | template <typename T> class Callable<T, true> { |
||
278 | static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; |
||
279 | |||
280 | using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; |
||
281 | using CastT = std::conditional_t<IsPtr, T, T &>; |
||
282 | |||
283 | private: |
||
284 | StorageT Func = nullptr; |
||
285 | |||
286 | private: |
||
287 | template <typename In> static constexpr auto convertIn(In &&I) { |
||
288 | if constexpr (IsPtr) { |
||
289 | // Pointer... just echo it back. |
||
290 | return I; |
||
291 | } else { |
||
292 | // Must be a function reference. Return its address. |
||
293 | return &I; |
||
294 | } |
||
295 | } |
||
296 | |||
297 | public: |
||
298 | Callable() = default; |
||
299 | |||
300 | // Construct from a function pointer or reference. |
||
301 | // |
||
302 | // Disable this constructor for references to 'Callable' so we don't violate |
||
303 | // the rule of 0. |
||
304 | template < // clang-format off |
||
305 | typename FnPtrOrRef, |
||
306 | std::enable_if_t< |
||
307 | !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int |
||
308 | > = 0 |
||
309 | > // clang-format on |
||
310 | Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} |
||
311 | |||
312 | template <typename... Pn, |
||
313 | std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> |
||
314 | decltype(auto) operator()(Pn &&...Params) const { |
||
315 | return Func(std::forward<Pn>(Params)...); |
||
316 | } |
||
317 | |||
318 | bool valid() const { return Func != nullptr; } |
||
319 | void reset() { Func = nullptr; } |
||
320 | |||
321 | operator T const &() const { |
||
322 | if constexpr (IsPtr) { |
||
323 | // T is a pointer... just echo it back. |
||
324 | return Func; |
||
325 | } else { |
||
326 | static_assert(std::is_reference_v<T>, |
||
327 | "Expected a reference to a function."); |
||
328 | // T is a function reference... dereference the stored pointer. |
||
329 | return *Func; |
||
330 | } |
||
331 | } |
||
332 | }; |
||
333 | |||
334 | } // namespace callable_detail |
||
335 | |||
336 | namespace adl_detail { |
||
337 | |||
338 | using std::begin; |
||
339 | |||
340 | template <typename ContainerTy> |
||
341 | decltype(auto) adl_begin(ContainerTy &&container) { |
||
342 | return begin(std::forward<ContainerTy>(container)); |
||
343 | } |
||
344 | |||
345 | using std::end; |
||
346 | |||
347 | template <typename ContainerTy> |
||
348 | decltype(auto) adl_end(ContainerTy &&container) { |
||
349 | return end(std::forward<ContainerTy>(container)); |
||
350 | } |
||
351 | |||
352 | using std::swap; |
||
353 | |||
354 | template <typename T> |
||
355 | void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), |
||
356 | std::declval<T>()))) { |
||
357 | swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
||
358 | } |
||
359 | |||
360 | } // end namespace adl_detail |
||
361 | |||
362 | template <typename ContainerTy> |
||
363 | decltype(auto) adl_begin(ContainerTy &&container) { |
||
364 | return adl_detail::adl_begin(std::forward<ContainerTy>(container)); |
||
365 | } |
||
366 | |||
367 | template <typename ContainerTy> |
||
368 | decltype(auto) adl_end(ContainerTy &&container) { |
||
369 | return adl_detail::adl_end(std::forward<ContainerTy>(container)); |
||
370 | } |
||
371 | |||
372 | template <typename T> |
||
373 | void adl_swap(T &&lhs, T &&rhs) noexcept( |
||
374 | noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { |
||
375 | adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
||
376 | } |
||
377 | |||
378 | /// Returns true if the given container only contains a single element. |
||
379 | template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { |
||
380 | auto B = std::begin(C), E = std::end(C); |
||
381 | return B != E && std::next(B) == E; |
||
382 | } |
||
383 | |||
384 | /// Return a range covering \p RangeOrContainer with the first N elements |
||
385 | /// excluded. |
||
386 | template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { |
||
387 | return make_range(std::next(adl_begin(RangeOrContainer), N), |
||
388 | adl_end(RangeOrContainer)); |
||
389 | } |
||
390 | |||
391 | /// Return a range covering \p RangeOrContainer with the last N elements |
||
392 | /// excluded. |
||
393 | template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { |
||
394 | return make_range(adl_begin(RangeOrContainer), |
||
395 | std::prev(adl_end(RangeOrContainer), N)); |
||
396 | } |
||
397 | |||
398 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
||
399 | // be applied whenever operator* is invoked on the iterator. |
||
400 | |||
401 | template <typename ItTy, typename FuncTy, |
||
402 | typename ReferenceTy = |
||
403 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
||
404 | class mapped_iterator |
||
405 | : public iterator_adaptor_base< |
||
406 | mapped_iterator<ItTy, FuncTy>, ItTy, |
||
407 | typename std::iterator_traits<ItTy>::iterator_category, |
||
408 | std::remove_reference_t<ReferenceTy>, |
||
409 | typename std::iterator_traits<ItTy>::difference_type, |
||
410 | std::remove_reference_t<ReferenceTy> *, ReferenceTy> { |
||
411 | public: |
||
412 | mapped_iterator() = default; |
||
413 | mapped_iterator(ItTy U, FuncTy F) |
||
414 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
||
415 | |||
416 | ItTy getCurrent() { return this->I; } |
||
417 | |||
418 | const FuncTy &getFunction() const { return F; } |
||
419 | |||
420 | ReferenceTy operator*() const { return F(*this->I); } |
||
421 | |||
422 | private: |
||
423 | callable_detail::Callable<FuncTy> F{}; |
||
424 | }; |
||
425 | |||
426 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
||
427 | // make_pair is useful for creating pairs... |
||
428 | template <class ItTy, class FuncTy> |
||
429 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
||
430 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
||
431 | } |
||
432 | |||
433 | template <class ContainerTy, class FuncTy> |
||
434 | auto map_range(ContainerTy &&C, FuncTy F) { |
||
435 | return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); |
||
436 | } |
||
437 | |||
438 | /// A base type of mapped iterator, that is useful for building derived |
||
439 | /// iterators that do not need/want to store the map function (as in |
||
440 | /// mapped_iterator). These iterators must simply provide a `mapElement` method |
||
441 | /// that defines how to map a value of the iterator to the provided reference |
||
442 | /// type. |
||
443 | template <typename DerivedT, typename ItTy, typename ReferenceTy> |
||
444 | class mapped_iterator_base |
||
445 | : public iterator_adaptor_base< |
||
446 | DerivedT, ItTy, |
||
447 | typename std::iterator_traits<ItTy>::iterator_category, |
||
448 | std::remove_reference_t<ReferenceTy>, |
||
449 | typename std::iterator_traits<ItTy>::difference_type, |
||
450 | std::remove_reference_t<ReferenceTy> *, ReferenceTy> { |
||
451 | public: |
||
452 | using BaseT = mapped_iterator_base; |
||
453 | |||
454 | mapped_iterator_base(ItTy U) |
||
455 | : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} |
||
456 | |||
457 | ItTy getCurrent() { return this->I; } |
||
458 | |||
459 | ReferenceTy operator*() const { |
||
460 | return static_cast<const DerivedT &>(*this).mapElement(*this->I); |
||
461 | } |
||
462 | }; |
||
463 | |||
464 | /// Helper to determine if type T has a member called rbegin(). |
||
465 | template <typename Ty> class has_rbegin_impl { |
||
466 | using yes = char[1]; |
||
467 | using no = char[2]; |
||
468 | |||
469 | template <typename Inner> |
||
470 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
||
471 | |||
472 | template <typename> |
||
473 | static no& test(...); |
||
474 | |||
475 | public: |
||
476 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
||
477 | }; |
||
478 | |||
479 | /// Metafunction to determine if T& or T has a member called rbegin(). |
||
480 | template <typename Ty> |
||
481 | struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {}; |
||
482 | |||
483 | // Returns an iterator_range over the given container which iterates in reverse. |
||
484 | template <typename ContainerTy> auto reverse(ContainerTy &&C) { |
||
485 | if constexpr (has_rbegin<ContainerTy>::value) |
||
486 | return make_range(C.rbegin(), C.rend()); |
||
487 | else |
||
488 | return make_range(std::make_reverse_iterator(std::end(C)), |
||
489 | std::make_reverse_iterator(std::begin(C))); |
||
490 | } |
||
491 | |||
492 | /// An iterator adaptor that filters the elements of given inner iterators. |
||
493 | /// |
||
494 | /// The predicate parameter should be a callable object that accepts the wrapped |
||
495 | /// iterator's reference type and returns a bool. When incrementing or |
||
496 | /// decrementing the iterator, it will call the predicate on each element and |
||
497 | /// skip any where it returns false. |
||
498 | /// |
||
499 | /// \code |
||
500 | /// int A[] = { 1, 2, 3, 4 }; |
||
501 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
||
502 | /// // R contains { 1, 3 }. |
||
503 | /// \endcode |
||
504 | /// |
||
505 | /// Note: filter_iterator_base implements support for forward iteration. |
||
506 | /// filter_iterator_impl exists to provide support for bidirectional iteration, |
||
507 | /// conditional on whether the wrapped iterator supports it. |
||
508 | template <typename WrappedIteratorT, typename PredicateT, typename IterTag> |
||
509 | class filter_iterator_base |
||
510 | : public iterator_adaptor_base< |
||
511 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
||
512 | WrappedIteratorT, |
||
513 | std::common_type_t<IterTag, |
||
514 | typename std::iterator_traits< |
||
515 | WrappedIteratorT>::iterator_category>> { |
||
516 | using BaseT = typename filter_iterator_base::iterator_adaptor_base; |
||
517 | |||
518 | protected: |
||
519 | WrappedIteratorT End; |
||
520 | PredicateT Pred; |
||
521 | |||
522 | void findNextValid() { |
||
523 | while (this->I != End && !Pred(*this->I)) |
||
524 | BaseT::operator++(); |
||
525 | } |
||
526 | |||
527 | filter_iterator_base() = default; |
||
528 | |||
529 | // Construct the iterator. The begin iterator needs to know where the end |
||
530 | // is, so that it can properly stop when it gets there. The end iterator only |
||
531 | // needs the predicate to support bidirectional iteration. |
||
532 | filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, |
||
533 | PredicateT Pred) |
||
534 | : BaseT(Begin), End(End), Pred(Pred) { |
||
535 | findNextValid(); |
||
536 | } |
||
537 | |||
538 | public: |
||
539 | using BaseT::operator++; |
||
540 | |||
541 | filter_iterator_base &operator++() { |
||
542 | BaseT::operator++(); |
||
543 | findNextValid(); |
||
544 | return *this; |
||
545 | } |
||
546 | |||
547 | decltype(auto) operator*() const { |
||
548 | assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); |
||
549 | return BaseT::operator*(); |
||
550 | } |
||
551 | |||
552 | decltype(auto) operator->() const { |
||
553 | assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); |
||
554 | return BaseT::operator->(); |
||
555 | } |
||
556 | }; |
||
557 | |||
558 | /// Specialization of filter_iterator_base for forward iteration only. |
||
559 | template <typename WrappedIteratorT, typename PredicateT, |
||
560 | typename IterTag = std::forward_iterator_tag> |
||
561 | class filter_iterator_impl |
||
562 | : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { |
||
563 | public: |
||
564 | filter_iterator_impl() = default; |
||
565 | |||
566 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
||
567 | PredicateT Pred) |
||
568 | : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} |
||
569 | }; |
||
570 | |||
571 | /// Specialization of filter_iterator_base for bidirectional iteration. |
||
572 | template <typename WrappedIteratorT, typename PredicateT> |
||
573 | class filter_iterator_impl<WrappedIteratorT, PredicateT, |
||
574 | std::bidirectional_iterator_tag> |
||
575 | : public filter_iterator_base<WrappedIteratorT, PredicateT, |
||
576 | std::bidirectional_iterator_tag> { |
||
577 | using BaseT = typename filter_iterator_impl::filter_iterator_base; |
||
578 | |||
579 | void findPrevValid() { |
||
580 | while (!this->Pred(*this->I)) |
||
581 | BaseT::operator--(); |
||
582 | } |
||
583 | |||
584 | public: |
||
585 | using BaseT::operator--; |
||
586 | |||
587 | filter_iterator_impl() = default; |
||
588 | |||
589 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
||
590 | PredicateT Pred) |
||
591 | : BaseT(Begin, End, Pred) {} |
||
592 | |||
593 | filter_iterator_impl &operator--() { |
||
594 | BaseT::operator--(); |
||
595 | findPrevValid(); |
||
596 | return *this; |
||
597 | } |
||
598 | }; |
||
599 | |||
600 | namespace detail { |
||
601 | |||
602 | template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { |
||
603 | using type = std::forward_iterator_tag; |
||
604 | }; |
||
605 | |||
606 | template <> struct fwd_or_bidi_tag_impl<true> { |
||
607 | using type = std::bidirectional_iterator_tag; |
||
608 | }; |
||
609 | |||
610 | /// Helper which sets its type member to forward_iterator_tag if the category |
||
611 | /// of \p IterT does not derive from bidirectional_iterator_tag, and to |
||
612 | /// bidirectional_iterator_tag otherwise. |
||
613 | template <typename IterT> struct fwd_or_bidi_tag { |
||
614 | using type = typename fwd_or_bidi_tag_impl<std::is_base_of< |
||
615 | std::bidirectional_iterator_tag, |
||
616 | typename std::iterator_traits<IterT>::iterator_category>::value>::type; |
||
617 | }; |
||
618 | |||
619 | } // namespace detail |
||
620 | |||
621 | /// Defines filter_iterator to a suitable specialization of |
||
622 | /// filter_iterator_impl, based on the underlying iterator's category. |
||
623 | template <typename WrappedIteratorT, typename PredicateT> |
||
624 | using filter_iterator = filter_iterator_impl< |
||
625 | WrappedIteratorT, PredicateT, |
||
626 | typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; |
||
627 | |||
628 | /// Convenience function that takes a range of elements and a predicate, |
||
629 | /// and return a new filter_iterator range. |
||
630 | /// |
||
631 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
||
632 | /// lifetime of that temporary is not kept by the returned range object, and the |
||
633 | /// temporary is going to be dropped on the floor after the make_iterator_range |
||
634 | /// full expression that contains this function call. |
||
635 | template <typename RangeT, typename PredicateT> |
||
636 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
||
637 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
||
638 | using FilterIteratorT = |
||
639 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
||
640 | return make_range( |
||
641 | FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
||
642 | std::end(std::forward<RangeT>(Range)), Pred), |
||
643 | FilterIteratorT(std::end(std::forward<RangeT>(Range)), |
||
644 | std::end(std::forward<RangeT>(Range)), Pred)); |
||
645 | } |
||
646 | |||
647 | /// A pseudo-iterator adaptor that is designed to implement "early increment" |
||
648 | /// style loops. |
||
649 | /// |
||
650 | /// This is *not a normal iterator* and should almost never be used directly. It |
||
651 | /// is intended primarily to be used with range based for loops and some range |
||
652 | /// algorithms. |
||
653 | /// |
||
654 | /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but |
||
655 | /// somewhere between them. The constraints of these iterators are: |
||
656 | /// |
||
657 | /// - On construction or after being incremented, it is comparable and |
||
658 | /// dereferencable. It is *not* incrementable. |
||
659 | /// - After being dereferenced, it is neither comparable nor dereferencable, it |
||
660 | /// is only incrementable. |
||
661 | /// |
||
662 | /// This means you can only dereference the iterator once, and you can only |
||
663 | /// increment it once between dereferences. |
||
664 | template <typename WrappedIteratorT> |
||
665 | class early_inc_iterator_impl |
||
666 | : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
||
667 | WrappedIteratorT, std::input_iterator_tag> { |
||
668 | using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; |
||
669 | |||
670 | using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; |
||
671 | |||
672 | protected: |
||
673 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
674 | bool IsEarlyIncremented = false; |
||
675 | #endif |
||
676 | |||
677 | public: |
||
678 | early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} |
||
679 | |||
680 | using BaseT::operator*; |
||
681 | decltype(*std::declval<WrappedIteratorT>()) operator*() { |
||
682 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
683 | assert(!IsEarlyIncremented && "Cannot dereference twice!"); |
||
684 | IsEarlyIncremented = true; |
||
685 | #endif |
||
686 | return *(this->I)++; |
||
687 | } |
||
688 | |||
689 | using BaseT::operator++; |
||
690 | early_inc_iterator_impl &operator++() { |
||
691 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
692 | assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); |
||
693 | IsEarlyIncremented = false; |
||
694 | #endif |
||
695 | return *this; |
||
696 | } |
||
697 | |||
698 | friend bool operator==(const early_inc_iterator_impl &LHS, |
||
699 | const early_inc_iterator_impl &RHS) { |
||
700 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
701 | assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); |
||
702 | #endif |
||
703 | return (const BaseT &)LHS == (const BaseT &)RHS; |
||
704 | } |
||
705 | }; |
||
706 | |||
707 | /// Make a range that does early increment to allow mutation of the underlying |
||
708 | /// range without disrupting iteration. |
||
709 | /// |
||
710 | /// The underlying iterator will be incremented immediately after it is |
||
711 | /// dereferenced, allowing deletion of the current node or insertion of nodes to |
||
712 | /// not disrupt iteration provided they do not invalidate the *next* iterator -- |
||
713 | /// the current iterator can be invalidated. |
||
714 | /// |
||
715 | /// This requires a very exact pattern of use that is only really suitable to |
||
716 | /// range based for loops and other range algorithms that explicitly guarantee |
||
717 | /// to dereference exactly once each element, and to increment exactly once each |
||
718 | /// element. |
||
719 | template <typename RangeT> |
||
720 | iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> |
||
721 | make_early_inc_range(RangeT &&Range) { |
||
722 | using EarlyIncIteratorT = |
||
723 | early_inc_iterator_impl<detail::IterOfRange<RangeT>>; |
||
724 | return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), |
||
725 | EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); |
||
726 | } |
||
727 | |||
728 | // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest |
||
729 | template <typename R, typename UnaryPredicate> |
||
730 | bool all_of(R &&range, UnaryPredicate P); |
||
731 | |||
732 | template <typename R, typename UnaryPredicate> |
||
733 | bool any_of(R &&range, UnaryPredicate P); |
||
734 | |||
735 | template <typename T> bool all_equal(std::initializer_list<T> Values); |
||
736 | |||
737 | namespace detail { |
||
738 | |||
739 | using std::declval; |
||
740 | |||
741 | // We have to alias this since inlining the actual type at the usage site |
||
742 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
||
743 | template<typename... Iters> struct ZipTupleType { |
||
744 | using type = std::tuple<decltype(*declval<Iters>())...>; |
||
745 | }; |
||
746 | |||
747 | template <typename ZipType, typename... Iters> |
||
748 | using zip_traits = iterator_facade_base< |
||
749 | ZipType, |
||
750 | std::common_type_t< |
||
751 | std::bidirectional_iterator_tag, |
||
752 | typename std::iterator_traits<Iters>::iterator_category...>, |
||
753 | // ^ TODO: Implement random access methods. |
||
754 | typename ZipTupleType<Iters...>::type, |
||
755 | typename std::iterator_traits< |
||
756 | std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, |
||
757 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
||
758 | // inner iterators have the same difference_type. It would fail if, for |
||
759 | // instance, the second field's difference_type were non-numeric while the |
||
760 | // first is. |
||
761 | typename ZipTupleType<Iters...>::type *, |
||
762 | typename ZipTupleType<Iters...>::type>; |
||
763 | |||
764 | template <typename ZipType, typename... Iters> |
||
765 | struct zip_common : public zip_traits<ZipType, Iters...> { |
||
766 | using Base = zip_traits<ZipType, Iters...>; |
||
767 | using value_type = typename Base::value_type; |
||
768 | |||
769 | std::tuple<Iters...> iterators; |
||
770 | |||
771 | protected: |
||
772 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
||
773 | return value_type(*std::get<Ns>(iterators)...); |
||
774 | } |
||
775 | |||
776 | template <size_t... Ns> |
||
777 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
||
778 | return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); |
||
779 | } |
||
780 | |||
781 | template <size_t... Ns> |
||
782 | decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { |
||
783 | return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); |
||
784 | } |
||
785 | |||
786 | template <size_t... Ns> |
||
787 | bool test_all_equals(const zip_common &other, |
||
788 | std::index_sequence<Ns...>) const { |
||
789 | return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && |
||
790 | ...); |
||
791 | } |
||
792 | |||
793 | public: |
||
794 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
||
795 | |||
796 | value_type operator*() const { |
||
797 | return deref(std::index_sequence_for<Iters...>{}); |
||
798 | } |
||
799 | |||
800 | ZipType &operator++() { |
||
801 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
||
802 | return *reinterpret_cast<ZipType *>(this); |
||
803 | } |
||
804 | |||
805 | ZipType &operator--() { |
||
806 | static_assert(Base::IsBidirectional, |
||
807 | "All inner iterators must be at least bidirectional."); |
||
808 | iterators = tup_dec(std::index_sequence_for<Iters...>{}); |
||
809 | return *reinterpret_cast<ZipType *>(this); |
||
810 | } |
||
811 | |||
812 | /// Return true if all the iterator are matching `other`'s iterators. |
||
813 | bool all_equals(zip_common &other) { |
||
814 | return test_all_equals(other, std::index_sequence_for<Iters...>{}); |
||
815 | } |
||
816 | }; |
||
817 | |||
818 | template <typename... Iters> |
||
819 | struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { |
||
820 | using Base = zip_common<zip_first<Iters...>, Iters...>; |
||
821 | |||
822 | bool operator==(const zip_first<Iters...> &other) const { |
||
823 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
||
824 | } |
||
825 | |||
826 | zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
||
827 | }; |
||
828 | |||
829 | template <typename... Iters> |
||
830 | class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { |
||
831 | template <size_t... Ns> |
||
832 | bool test(const zip_shortest<Iters...> &other, |
||
833 | std::index_sequence<Ns...>) const { |
||
834 | return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) && |
||
835 | ...); |
||
836 | } |
||
837 | |||
838 | public: |
||
839 | using Base = zip_common<zip_shortest<Iters...>, Iters...>; |
||
840 | |||
841 | zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
||
842 | |||
843 | bool operator==(const zip_shortest<Iters...> &other) const { |
||
844 | return !test(other, std::index_sequence_for<Iters...>{}); |
||
845 | } |
||
846 | }; |
||
847 | |||
848 | template <template <typename...> class ItType, typename... Args> class zippy { |
||
849 | public: |
||
850 | using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; |
||
851 | using iterator_category = typename iterator::iterator_category; |
||
852 | using value_type = typename iterator::value_type; |
||
853 | using difference_type = typename iterator::difference_type; |
||
854 | using pointer = typename iterator::pointer; |
||
855 | using reference = typename iterator::reference; |
||
856 | |||
857 | private: |
||
858 | std::tuple<Args...> ts; |
||
859 | |||
860 | template <size_t... Ns> |
||
861 | iterator begin_impl(std::index_sequence<Ns...>) const { |
||
862 | return iterator(std::begin(std::get<Ns>(ts))...); |
||
863 | } |
||
864 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
||
865 | return iterator(std::end(std::get<Ns>(ts))...); |
||
866 | } |
||
867 | |||
868 | public: |
||
869 | zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
||
870 | |||
871 | iterator begin() const { |
||
872 | return begin_impl(std::index_sequence_for<Args...>{}); |
||
873 | } |
||
874 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
||
875 | }; |
||
876 | |||
877 | } // end namespace detail |
||
878 | |||
879 | /// zip iterator for two or more iteratable types. Iteration continues until the |
||
880 | /// end of the *shortest* iteratee is reached. |
||
881 | template <typename T, typename U, typename... Args> |
||
882 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
||
883 | Args &&...args) { |
||
884 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
||
885 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
||
886 | } |
||
887 | |||
888 | /// zip iterator that assumes that all iteratees have the same length. |
||
889 | /// In builds with assertions on, this assumption is checked before the |
||
890 | /// iteration starts. |
||
891 | template <typename T, typename U, typename... Args> |
||
892 | detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, |
||
893 | Args &&...args) { |
||
894 | assert(all_equal({std::distance(adl_begin(t), adl_end(t)), |
||
895 | std::distance(adl_begin(u), adl_end(u)), |
||
896 | std::distance(adl_begin(args), adl_end(args))...}) && |
||
897 | "Iteratees do not have equal length"); |
||
898 | return detail::zippy<detail::zip_first, T, U, Args...>( |
||
899 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
||
900 | } |
||
901 | |||
902 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
||
903 | /// be the shortest. Iteration continues until the end of the first iteratee is |
||
904 | /// reached. In builds with assertions on, we check that the assumption about |
||
905 | /// the first iteratee being the shortest holds. |
||
906 | template <typename T, typename U, typename... Args> |
||
907 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
||
908 | Args &&...args) { |
||
909 | assert(std::distance(adl_begin(t), adl_end(t)) <= |
||
910 | std::min({std::distance(adl_begin(u), adl_end(u)), |
||
911 | std::distance(adl_begin(args), adl_end(args))...}) && |
||
912 | "First iteratee is not the shortest"); |
||
913 | |||
914 | return detail::zippy<detail::zip_first, T, U, Args...>( |
||
915 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
||
916 | } |
||
917 | |||
918 | namespace detail { |
||
919 | template <typename Iter> |
||
920 | Iter next_or_end(const Iter &I, const Iter &End) { |
||
921 | if (I == End) |
||
922 | return End; |
||
923 | return std::next(I); |
||
924 | } |
||
925 | |||
926 | template <typename Iter> |
||
927 | auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< |
||
928 | std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { |
||
929 | if (I == End) |
||
930 | return std::nullopt; |
||
931 | return *I; |
||
932 | } |
||
933 | |||
934 | template <typename Iter> struct ZipLongestItemType { |
||
935 | using type = std::optional<std::remove_const_t< |
||
936 | std::remove_reference_t<decltype(*std::declval<Iter>())>>>; |
||
937 | }; |
||
938 | |||
939 | template <typename... Iters> struct ZipLongestTupleType { |
||
940 | using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; |
||
941 | }; |
||
942 | |||
943 | template <typename... Iters> |
||
944 | class zip_longest_iterator |
||
945 | : public iterator_facade_base< |
||
946 | zip_longest_iterator<Iters...>, |
||
947 | std::common_type_t< |
||
948 | std::forward_iterator_tag, |
||
949 | typename std::iterator_traits<Iters>::iterator_category...>, |
||
950 | typename ZipLongestTupleType<Iters...>::type, |
||
951 | typename std::iterator_traits< |
||
952 | std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, |
||
953 | typename ZipLongestTupleType<Iters...>::type *, |
||
954 | typename ZipLongestTupleType<Iters...>::type> { |
||
955 | public: |
||
956 | using value_type = typename ZipLongestTupleType<Iters...>::type; |
||
957 | |||
958 | private: |
||
959 | std::tuple<Iters...> iterators; |
||
960 | std::tuple<Iters...> end_iterators; |
||
961 | |||
962 | template <size_t... Ns> |
||
963 | bool test(const zip_longest_iterator<Iters...> &other, |
||
964 | std::index_sequence<Ns...>) const { |
||
965 | return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || |
||
966 | ...); |
||
967 | } |
||
968 | |||
969 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
||
970 | return value_type( |
||
971 | deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
||
972 | } |
||
973 | |||
974 | template <size_t... Ns> |
||
975 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
||
976 | return std::tuple<Iters...>( |
||
977 | next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
||
978 | } |
||
979 | |||
980 | public: |
||
981 | zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) |
||
982 | : iterators(std::forward<Iters>(ts.first)...), |
||
983 | end_iterators(std::forward<Iters>(ts.second)...) {} |
||
984 | |||
985 | value_type operator*() const { |
||
986 | return deref(std::index_sequence_for<Iters...>{}); |
||
987 | } |
||
988 | |||
989 | zip_longest_iterator<Iters...> &operator++() { |
||
990 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
||
991 | return *this; |
||
992 | } |
||
993 | |||
994 | bool operator==(const zip_longest_iterator<Iters...> &other) const { |
||
995 | return !test(other, std::index_sequence_for<Iters...>{}); |
||
996 | } |
||
997 | }; |
||
998 | |||
999 | template <typename... Args> class zip_longest_range { |
||
1000 | public: |
||
1001 | using iterator = |
||
1002 | zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; |
||
1003 | using iterator_category = typename iterator::iterator_category; |
||
1004 | using value_type = typename iterator::value_type; |
||
1005 | using difference_type = typename iterator::difference_type; |
||
1006 | using pointer = typename iterator::pointer; |
||
1007 | using reference = typename iterator::reference; |
||
1008 | |||
1009 | private: |
||
1010 | std::tuple<Args...> ts; |
||
1011 | |||
1012 | template <size_t... Ns> |
||
1013 | iterator begin_impl(std::index_sequence<Ns...>) const { |
||
1014 | return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), |
||
1015 | adl_end(std::get<Ns>(ts)))...); |
||
1016 | } |
||
1017 | |||
1018 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
||
1019 | return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), |
||
1020 | adl_end(std::get<Ns>(ts)))...); |
||
1021 | } |
||
1022 | |||
1023 | public: |
||
1024 | zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
||
1025 | |||
1026 | iterator begin() const { |
||
1027 | return begin_impl(std::index_sequence_for<Args...>{}); |
||
1028 | } |
||
1029 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
||
1030 | }; |
||
1031 | } // namespace detail |
||
1032 | |||
1033 | /// Iterate over two or more iterators at the same time. Iteration continues |
||
1034 | /// until all iterators reach the end. The std::optional only contains a value |
||
1035 | /// if the iterator has not reached the end. |
||
1036 | template <typename T, typename U, typename... Args> |
||
1037 | detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, |
||
1038 | Args &&... args) { |
||
1039 | return detail::zip_longest_range<T, U, Args...>( |
||
1040 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
||
1041 | } |
||
1042 | |||
1043 | /// Iterator wrapper that concatenates sequences together. |
||
1044 | /// |
||
1045 | /// This can concatenate different iterators, even with different types, into |
||
1046 | /// a single iterator provided the value types of all the concatenated |
||
1047 | /// iterators expose `reference` and `pointer` types that can be converted to |
||
1048 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
||
1049 | /// interesting/customized pointer or reference types. |
||
1050 | /// |
||
1051 | /// Currently this only supports forward or higher iterator categories as |
||
1052 | /// inputs and always exposes a forward iterator interface. |
||
1053 | template <typename ValueT, typename... IterTs> |
||
1054 | class concat_iterator |
||
1055 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
||
1056 | std::forward_iterator_tag, ValueT> { |
||
1057 | using BaseT = typename concat_iterator::iterator_facade_base; |
||
1058 | |||
1059 | /// We store both the current and end iterators for each concatenated |
||
1060 | /// sequence in a tuple of pairs. |
||
1061 | /// |
||
1062 | /// Note that something like iterator_range seems nice at first here, but the |
||
1063 | /// range properties are of little benefit and end up getting in the way |
||
1064 | /// because we need to do mutation on the current iterators. |
||
1065 | std::tuple<IterTs...> Begins; |
||
1066 | std::tuple<IterTs...> Ends; |
||
1067 | |||
1068 | /// Attempts to increment a specific iterator. |
||
1069 | /// |
||
1070 | /// Returns true if it was able to increment the iterator. Returns false if |
||
1071 | /// the iterator is already at the end iterator. |
||
1072 | template <size_t Index> bool incrementHelper() { |
||
1073 | auto &Begin = std::get<Index>(Begins); |
||
1074 | auto &End = std::get<Index>(Ends); |
||
1075 | if (Begin == End) |
||
1076 | return false; |
||
1077 | |||
1078 | ++Begin; |
||
1079 | return true; |
||
1080 | } |
||
1081 | |||
1082 | /// Increments the first non-end iterator. |
||
1083 | /// |
||
1084 | /// It is an error to call this with all iterators at the end. |
||
1085 | template <size_t... Ns> void increment(std::index_sequence<Ns...>) { |
||
1086 | // Build a sequence of functions to increment each iterator if possible. |
||
1087 | bool (concat_iterator::*IncrementHelperFns[])() = { |
||
1088 | &concat_iterator::incrementHelper<Ns>...}; |
||
1089 | |||
1090 | // Loop over them, and stop as soon as we succeed at incrementing one. |
||
1091 | for (auto &IncrementHelperFn : IncrementHelperFns) |
||
1092 | if ((this->*IncrementHelperFn)()) |
||
1093 | return; |
||
1094 | |||
1095 | llvm_unreachable("Attempted to increment an end concat iterator!"); |
||
1096 | } |
||
1097 | |||
1098 | /// Returns null if the specified iterator is at the end. Otherwise, |
||
1099 | /// dereferences the iterator and returns the address of the resulting |
||
1100 | /// reference. |
||
1101 | template <size_t Index> ValueT *getHelper() const { |
||
1102 | auto &Begin = std::get<Index>(Begins); |
||
1103 | auto &End = std::get<Index>(Ends); |
||
1104 | if (Begin == End) |
||
1105 | return nullptr; |
||
1106 | |||
1107 | return &*Begin; |
||
1108 | } |
||
1109 | |||
1110 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
||
1111 | /// reference. |
||
1112 | /// |
||
1113 | /// It is an error to call this with all iterators at the end. |
||
1114 | template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { |
||
1115 | // Build a sequence of functions to get from iterator if possible. |
||
1116 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
||
1117 | &concat_iterator::getHelper<Ns>...}; |
||
1118 | |||
1119 | // Loop over them, and return the first result we find. |
||
1120 | for (auto &GetHelperFn : GetHelperFns) |
||
1121 | if (ValueT *P = (this->*GetHelperFn)()) |
||
1122 | return *P; |
||
1123 | |||
1124 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); |
||
1125 | } |
||
1126 | |||
1127 | public: |
||
1128 | /// Constructs an iterator from a sequence of ranges. |
||
1129 | /// |
||
1130 | /// We need the full range to know how to switch between each of the |
||
1131 | /// iterators. |
||
1132 | template <typename... RangeTs> |
||
1133 | explicit concat_iterator(RangeTs &&... Ranges) |
||
1134 | : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} |
||
1135 | |||
1136 | using BaseT::operator++; |
||
1137 | |||
1138 | concat_iterator &operator++() { |
||
1139 | increment(std::index_sequence_for<IterTs...>()); |
||
1140 | return *this; |
||
1141 | } |
||
1142 | |||
1143 | ValueT &operator*() const { |
||
1144 | return get(std::index_sequence_for<IterTs...>()); |
||
1145 | } |
||
1146 | |||
1147 | bool operator==(const concat_iterator &RHS) const { |
||
1148 | return Begins == RHS.Begins && Ends == RHS.Ends; |
||
1149 | } |
||
1150 | }; |
||
1151 | |||
1152 | namespace detail { |
||
1153 | |||
1154 | /// Helper to store a sequence of ranges being concatenated and access them. |
||
1155 | /// |
||
1156 | /// This is designed to facilitate providing actual storage when temporaries |
||
1157 | /// are passed into the constructor such that we can use it as part of range |
||
1158 | /// based for loops. |
||
1159 | template <typename ValueT, typename... RangeTs> class concat_range { |
||
1160 | public: |
||
1161 | using iterator = |
||
1162 | concat_iterator<ValueT, |
||
1163 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
||
1164 | |||
1165 | private: |
||
1166 | std::tuple<RangeTs...> Ranges; |
||
1167 | |||
1168 | template <size_t... Ns> |
||
1169 | iterator begin_impl(std::index_sequence<Ns...>) { |
||
1170 | return iterator(std::get<Ns>(Ranges)...); |
||
1171 | } |
||
1172 | template <size_t... Ns> |
||
1173 | iterator begin_impl(std::index_sequence<Ns...>) const { |
||
1174 | return iterator(std::get<Ns>(Ranges)...); |
||
1175 | } |
||
1176 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
||
1177 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
||
1178 | std::end(std::get<Ns>(Ranges)))...); |
||
1179 | } |
||
1180 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
||
1181 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
||
1182 | std::end(std::get<Ns>(Ranges)))...); |
||
1183 | } |
||
1184 | |||
1185 | public: |
||
1186 | concat_range(RangeTs &&... Ranges) |
||
1187 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
||
1188 | |||
1189 | iterator begin() { |
||
1190 | return begin_impl(std::index_sequence_for<RangeTs...>{}); |
||
1191 | } |
||
1192 | iterator begin() const { |
||
1193 | return begin_impl(std::index_sequence_for<RangeTs...>{}); |
||
1194 | } |
||
1195 | iterator end() { |
||
1196 | return end_impl(std::index_sequence_for<RangeTs...>{}); |
||
1197 | } |
||
1198 | iterator end() const { |
||
1199 | return end_impl(std::index_sequence_for<RangeTs...>{}); |
||
1200 | } |
||
1201 | }; |
||
1202 | |||
1203 | } // end namespace detail |
||
1204 | |||
1205 | /// Concatenated range across two or more ranges. |
||
1206 | /// |
||
1207 | /// The desired value type must be explicitly specified. |
||
1208 | template <typename ValueT, typename... RangeTs> |
||
1209 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
||
1210 | static_assert(sizeof...(RangeTs) > 1, |
||
1211 | "Need more than one range to concatenate!"); |
||
1212 | return detail::concat_range<ValueT, RangeTs...>( |
||
1213 | std::forward<RangeTs>(Ranges)...); |
||
1214 | } |
||
1215 | |||
1216 | /// A utility class used to implement an iterator that contains some base object |
||
1217 | /// and an index. The iterator moves the index but keeps the base constant. |
||
1218 | template <typename DerivedT, typename BaseT, typename T, |
||
1219 | typename PointerT = T *, typename ReferenceT = T &> |
||
1220 | class indexed_accessor_iterator |
||
1221 | : public llvm::iterator_facade_base<DerivedT, |
||
1222 | std::random_access_iterator_tag, T, |
||
1223 | std::ptrdiff_t, PointerT, ReferenceT> { |
||
1224 | public: |
||
1225 | ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { |
||
1226 | assert(base == rhs.base && "incompatible iterators"); |
||
1227 | return index - rhs.index; |
||
1228 | } |
||
1229 | bool operator==(const indexed_accessor_iterator &rhs) const { |
||
1230 | return base == rhs.base && index == rhs.index; |
||
1231 | } |
||
1232 | bool operator<(const indexed_accessor_iterator &rhs) const { |
||
1233 | assert(base == rhs.base && "incompatible iterators"); |
||
1234 | return index < rhs.index; |
||
1235 | } |
||
1236 | |||
1237 | DerivedT &operator+=(ptrdiff_t offset) { |
||
1238 | this->index += offset; |
||
1239 | return static_cast<DerivedT &>(*this); |
||
1240 | } |
||
1241 | DerivedT &operator-=(ptrdiff_t offset) { |
||
1242 | this->index -= offset; |
||
1243 | return static_cast<DerivedT &>(*this); |
||
1244 | } |
||
1245 | |||
1246 | /// Returns the current index of the iterator. |
||
1247 | ptrdiff_t getIndex() const { return index; } |
||
1248 | |||
1249 | /// Returns the current base of the iterator. |
||
1250 | const BaseT &getBase() const { return base; } |
||
1251 | |||
1252 | protected: |
||
1253 | indexed_accessor_iterator(BaseT base, ptrdiff_t index) |
||
1254 | : base(base), index(index) {} |
||
1255 | BaseT base; |
||
1256 | ptrdiff_t index; |
||
1257 | }; |
||
1258 | |||
1259 | namespace detail { |
||
1260 | /// The class represents the base of a range of indexed_accessor_iterators. It |
||
1261 | /// provides support for many different range functionalities, e.g. |
||
1262 | /// drop_front/slice/etc.. Derived range classes must implement the following |
||
1263 | /// static methods: |
||
1264 | /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) |
||
1265 | /// - Dereference an iterator pointing to the base object at the given |
||
1266 | /// index. |
||
1267 | /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) |
||
1268 | /// - Return a new base that is offset from the provide base by 'index' |
||
1269 | /// elements. |
||
1270 | template <typename DerivedT, typename BaseT, typename T, |
||
1271 | typename PointerT = T *, typename ReferenceT = T &> |
||
1272 | class indexed_accessor_range_base { |
||
1273 | public: |
||
1274 | using RangeBaseT = indexed_accessor_range_base; |
||
1275 | |||
1276 | /// An iterator element of this range. |
||
1277 | class iterator : public indexed_accessor_iterator<iterator, BaseT, T, |
||
1278 | PointerT, ReferenceT> { |
||
1279 | public: |
||
1280 | // Index into this iterator, invoking a static method on the derived type. |
||
1281 | ReferenceT operator*() const { |
||
1282 | return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); |
||
1283 | } |
||
1284 | |||
1285 | private: |
||
1286 | iterator(BaseT owner, ptrdiff_t curIndex) |
||
1287 | : iterator::indexed_accessor_iterator(owner, curIndex) {} |
||
1288 | |||
1289 | /// Allow access to the constructor. |
||
1290 | friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, |
||
1291 | ReferenceT>; |
||
1292 | }; |
||
1293 | |||
1294 | indexed_accessor_range_base(iterator begin, iterator end) |
||
1295 | : base(offset_base(begin.getBase(), begin.getIndex())), |
||
1296 | count(end.getIndex() - begin.getIndex()) {} |
||
1297 | indexed_accessor_range_base(const iterator_range<iterator> &range) |
||
1298 | : indexed_accessor_range_base(range.begin(), range.end()) {} |
||
1299 | indexed_accessor_range_base(BaseT base, ptrdiff_t count) |
||
1300 | : base(base), count(count) {} |
||
1301 | |||
1302 | iterator begin() const { return iterator(base, 0); } |
||
1303 | iterator end() const { return iterator(base, count); } |
||
1304 | ReferenceT operator[](size_t Index) const { |
||
1305 | assert(Index < size() && "invalid index for value range"); |
||
1306 | return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); |
||
1307 | } |
||
1308 | ReferenceT front() const { |
||
1309 | assert(!empty() && "expected non-empty range"); |
||
1310 | return (*this)[0]; |
||
1311 | } |
||
1312 | ReferenceT back() const { |
||
1313 | assert(!empty() && "expected non-empty range"); |
||
1314 | return (*this)[size() - 1]; |
||
1315 | } |
||
1316 | |||
1317 | /// Compare this range with another. |
||
1318 | template <typename OtherT> |
||
1319 | friend bool operator==(const indexed_accessor_range_base &lhs, |
||
1320 | const OtherT &rhs) { |
||
1321 | return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
||
1322 | } |
||
1323 | template <typename OtherT> |
||
1324 | friend bool operator!=(const indexed_accessor_range_base &lhs, |
||
1325 | const OtherT &rhs) { |
||
1326 | return !(lhs == rhs); |
||
1327 | } |
||
1328 | |||
1329 | /// Return the size of this range. |
||
1330 | size_t size() const { return count; } |
||
1331 | |||
1332 | /// Return if the range is empty. |
||
1333 | bool empty() const { return size() == 0; } |
||
1334 | |||
1335 | /// Drop the first N elements, and keep M elements. |
||
1336 | DerivedT slice(size_t n, size_t m) const { |
||
1337 | assert(n + m <= size() && "invalid size specifiers"); |
||
1338 | return DerivedT(offset_base(base, n), m); |
||
1339 | } |
||
1340 | |||
1341 | /// Drop the first n elements. |
||
1342 | DerivedT drop_front(size_t n = 1) const { |
||
1343 | assert(size() >= n && "Dropping more elements than exist"); |
||
1344 | return slice(n, size() - n); |
||
1345 | } |
||
1346 | /// Drop the last n elements. |
||
1347 | DerivedT drop_back(size_t n = 1) const { |
||
1348 | assert(size() >= n && "Dropping more elements than exist"); |
||
1349 | return DerivedT(base, size() - n); |
||
1350 | } |
||
1351 | |||
1352 | /// Take the first n elements. |
||
1353 | DerivedT take_front(size_t n = 1) const { |
||
1354 | return n < size() ? drop_back(size() - n) |
||
1355 | : static_cast<const DerivedT &>(*this); |
||
1356 | } |
||
1357 | |||
1358 | /// Take the last n elements. |
||
1359 | DerivedT take_back(size_t n = 1) const { |
||
1360 | return n < size() ? drop_front(size() - n) |
||
1361 | : static_cast<const DerivedT &>(*this); |
||
1362 | } |
||
1363 | |||
1364 | /// Allow conversion to any type accepting an iterator_range. |
||
1365 | template <typename RangeT, typename = std::enable_if_t<std::is_constructible< |
||
1366 | RangeT, iterator_range<iterator>>::value>> |
||
1367 | operator RangeT() const { |
||
1368 | return RangeT(iterator_range<iterator>(*this)); |
||
1369 | } |
||
1370 | |||
1371 | /// Returns the base of this range. |
||
1372 | const BaseT &getBase() const { return base; } |
||
1373 | |||
1374 | private: |
||
1375 | /// Offset the given base by the given amount. |
||
1376 | static BaseT offset_base(const BaseT &base, size_t n) { |
||
1377 | return n == 0 ? base : DerivedT::offset_base(base, n); |
||
1378 | } |
||
1379 | |||
1380 | protected: |
||
1381 | indexed_accessor_range_base(const indexed_accessor_range_base &) = default; |
||
1382 | indexed_accessor_range_base(indexed_accessor_range_base &&) = default; |
||
1383 | indexed_accessor_range_base & |
||
1384 | operator=(const indexed_accessor_range_base &) = default; |
||
1385 | |||
1386 | /// The base that owns the provided range of values. |
||
1387 | BaseT base; |
||
1388 | /// The size from the owning range. |
||
1389 | ptrdiff_t count; |
||
1390 | }; |
||
1391 | } // end namespace detail |
||
1392 | |||
1393 | /// This class provides an implementation of a range of |
||
1394 | /// indexed_accessor_iterators where the base is not indexable. Ranges with |
||
1395 | /// bases that are offsetable should derive from indexed_accessor_range_base |
||
1396 | /// instead. Derived range classes are expected to implement the following |
||
1397 | /// static method: |
||
1398 | /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) |
||
1399 | /// - Dereference an iterator pointing to a parent base at the given index. |
||
1400 | template <typename DerivedT, typename BaseT, typename T, |
||
1401 | typename PointerT = T *, typename ReferenceT = T &> |
||
1402 | class indexed_accessor_range |
||
1403 | : public detail::indexed_accessor_range_base< |
||
1404 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { |
||
1405 | public: |
||
1406 | indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) |
||
1407 | : detail::indexed_accessor_range_base< |
||
1408 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( |
||
1409 | std::make_pair(base, startIndex), count) {} |
||
1410 | using detail::indexed_accessor_range_base< |
||
1411 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, |
||
1412 | ReferenceT>::indexed_accessor_range_base; |
||
1413 | |||
1414 | /// Returns the current base of the range. |
||
1415 | const BaseT &getBase() const { return this->base.first; } |
||
1416 | |||
1417 | /// Returns the current start index of the range. |
||
1418 | ptrdiff_t getStartIndex() const { return this->base.second; } |
||
1419 | |||
1420 | /// See `detail::indexed_accessor_range_base` for details. |
||
1421 | static std::pair<BaseT, ptrdiff_t> |
||
1422 | offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { |
||
1423 | // We encode the internal base as a pair of the derived base and a start |
||
1424 | // index into the derived base. |
||
1425 | return std::make_pair(base.first, base.second + index); |
||
1426 | } |
||
1427 | /// See `detail::indexed_accessor_range_base` for details. |
||
1428 | static ReferenceT |
||
1429 | dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, |
||
1430 | ptrdiff_t index) { |
||
1431 | return DerivedT::dereference(base.first, base.second + index); |
||
1432 | } |
||
1433 | }; |
||
1434 | |||
1435 | namespace detail { |
||
1436 | /// Return a reference to the first or second member of a reference. Otherwise, |
||
1437 | /// return a copy of the member of a temporary. |
||
1438 | /// |
||
1439 | /// When passing a range whose iterators return values instead of references, |
||
1440 | /// the reference must be dropped from `decltype((elt.first))`, which will |
||
1441 | /// always be a reference, to avoid returning a reference to a temporary. |
||
1442 | template <typename EltTy, typename FirstTy> class first_or_second_type { |
||
1443 | public: |
||
1444 | using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, |
||
1445 | std::remove_reference_t<FirstTy>>; |
||
1446 | }; |
||
1447 | } // end namespace detail |
||
1448 | |||
1449 | /// Given a container of pairs, return a range over the first elements. |
||
1450 | template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { |
||
1451 | using EltTy = decltype((*std::begin(c))); |
||
1452 | return llvm::map_range(std::forward<ContainerTy>(c), |
||
1453 | [](EltTy elt) -> typename detail::first_or_second_type< |
||
1454 | EltTy, decltype((elt.first))>::type { |
||
1455 | return elt.first; |
||
1456 | }); |
||
1457 | } |
||
1458 | |||
1459 | /// Given a container of pairs, return a range over the second elements. |
||
1460 | template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { |
||
1461 | using EltTy = decltype((*std::begin(c))); |
||
1462 | return llvm::map_range( |
||
1463 | std::forward<ContainerTy>(c), |
||
1464 | [](EltTy elt) -> |
||
1465 | typename detail::first_or_second_type<EltTy, |
||
1466 | decltype((elt.second))>::type { |
||
1467 | return elt.second; |
||
1468 | }); |
||
1469 | } |
||
1470 | |||
1471 | //===----------------------------------------------------------------------===// |
||
1472 | // Extra additions to <utility> |
||
1473 | //===----------------------------------------------------------------------===// |
||
1474 | |||
1475 | /// Function object to check whether the first component of a std::pair |
||
1476 | /// compares less than the first component of another std::pair. |
||
1477 | struct less_first { |
||
1478 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
||
1479 | return std::less<>()(lhs.first, rhs.first); |
||
1480 | } |
||
1481 | }; |
||
1482 | |||
1483 | /// Function object to check whether the second component of a std::pair |
||
1484 | /// compares less than the second component of another std::pair. |
||
1485 | struct less_second { |
||
1486 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
||
1487 | return std::less<>()(lhs.second, rhs.second); |
||
1488 | } |
||
1489 | }; |
||
1490 | |||
1491 | /// \brief Function object to apply a binary function to the first component of |
||
1492 | /// a std::pair. |
||
1493 | template<typename FuncTy> |
||
1494 | struct on_first { |
||
1495 | FuncTy func; |
||
1496 | |||
1497 | template <typename T> |
||
1498 | decltype(auto) operator()(const T &lhs, const T &rhs) const { |
||
1499 | return func(lhs.first, rhs.first); |
||
1500 | } |
||
1501 | }; |
||
1502 | |||
1503 | /// Utility type to build an inheritance chain that makes it easy to rank |
||
1504 | /// overload candidates. |
||
1505 | template <int N> struct rank : rank<N - 1> {}; |
||
1506 | template <> struct rank<0> {}; |
||
1507 | |||
1508 | /// traits class for checking whether type T is one of any of the given |
||
1509 | /// types in the variadic list. |
||
1510 | template <typename T, typename... Ts> |
||
1511 | using is_one_of = std::disjunction<std::is_same<T, Ts>...>; |
||
1512 | |||
1513 | /// traits class for checking whether type T is a base class for all |
||
1514 | /// the given types in the variadic list. |
||
1515 | template <typename T, typename... Ts> |
||
1516 | using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; |
||
1517 | |||
1518 | namespace detail { |
||
1519 | template <typename... Ts> struct Visitor; |
||
1520 | |||
1521 | template <typename HeadT, typename... TailTs> |
||
1522 | struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { |
||
1523 | explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) |
||
1524 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), |
||
1525 | Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} |
||
1526 | using remove_cvref_t<HeadT>::operator(); |
||
1527 | using Visitor<TailTs...>::operator(); |
||
1528 | }; |
||
1529 | |||
1530 | template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { |
||
1531 | explicit constexpr Visitor(HeadT &&Head) |
||
1532 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} |
||
1533 | using remove_cvref_t<HeadT>::operator(); |
||
1534 | }; |
||
1535 | } // namespace detail |
||
1536 | |||
1537 | /// Returns an opaquely-typed Callable object whose operator() overload set is |
||
1538 | /// the sum of the operator() overload sets of each CallableT in CallableTs. |
||
1539 | /// |
||
1540 | /// The type of the returned object derives from each CallableT in CallableTs. |
||
1541 | /// The returned object is constructed by invoking the appropriate copy or move |
||
1542 | /// constructor of each CallableT, as selected by overload resolution on the |
||
1543 | /// corresponding argument to makeVisitor. |
||
1544 | /// |
||
1545 | /// Example: |
||
1546 | /// |
||
1547 | /// \code |
||
1548 | /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, |
||
1549 | /// [](int i) { return "int"; }, |
||
1550 | /// [](std::string s) { return "str"; }); |
||
1551 | /// auto a = visitor(42); // `a` is now "int". |
||
1552 | /// auto b = visitor("foo"); // `b` is now "str". |
||
1553 | /// auto c = visitor(3.14f); // `c` is now "unhandled type". |
||
1554 | /// \endcode |
||
1555 | /// |
||
1556 | /// Example of making a visitor with a lambda which captures a move-only type: |
||
1557 | /// |
||
1558 | /// \code |
||
1559 | /// std::unique_ptr<FooHandler> FH = /* ... */; |
||
1560 | /// auto visitor = makeVisitor( |
||
1561 | /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, |
||
1562 | /// [](int i) { return i; }, |
||
1563 | /// [](std::string s) { return atoi(s); }); |
||
1564 | /// \endcode |
||
1565 | template <typename... CallableTs> |
||
1566 | constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { |
||
1567 | return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); |
||
1568 | } |
||
1569 | |||
1570 | //===----------------------------------------------------------------------===// |
||
1571 | // Extra additions to <algorithm> |
||
1572 | //===----------------------------------------------------------------------===// |
||
1573 | |||
1574 | // We have a copy here so that LLVM behaves the same when using different |
||
1575 | // standard libraries. |
||
1576 | template <class Iterator, class RNG> |
||
1577 | void shuffle(Iterator first, Iterator last, RNG &&g) { |
||
1578 | // It would be better to use a std::uniform_int_distribution, |
||
1579 | // but that would be stdlib dependent. |
||
1580 | typedef |
||
1581 | typename std::iterator_traits<Iterator>::difference_type difference_type; |
||
1582 | for (auto size = last - first; size > 1; ++first, (void)--size) { |
||
1583 | difference_type offset = g() % size; |
||
1584 | // Avoid self-assignment due to incorrect assertions in libstdc++ |
||
1585 | // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). |
||
1586 | if (offset != difference_type(0)) |
||
1587 | std::iter_swap(first, first + offset); |
||
1588 | } |
||
1589 | } |
||
1590 | |||
1591 | /// Adapt std::less<T> for array_pod_sort. |
||
1592 | template<typename T> |
||
1593 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
||
1594 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
||
1595 | *reinterpret_cast<const T*>(P2))) |
||
1596 | return -1; |
||
1597 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
||
1598 | *reinterpret_cast<const T*>(P1))) |
||
1599 | return 1; |
||
1600 | return 0; |
||
1601 | } |
||
1602 | |||
1603 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
||
1604 | /// get type deduction of T right. |
||
1605 | template<typename T> |
||
1606 | inline int (*get_array_pod_sort_comparator(const T &)) |
||
1607 | (const void*, const void*) { |
||
1608 | return array_pod_sort_comparator<T>; |
||
1609 | } |
||
1610 | |||
1611 | #ifdef EXPENSIVE_CHECKS |
||
1612 | namespace detail { |
||
1613 | |||
1614 | inline unsigned presortShuffleEntropy() { |
||
1615 | static unsigned Result(std::random_device{}()); |
||
1616 | return Result; |
||
1617 | } |
||
1618 | |||
1619 | template <class IteratorTy> |
||
1620 | inline void presortShuffle(IteratorTy Start, IteratorTy End) { |
||
1621 | std::mt19937 Generator(presortShuffleEntropy()); |
||
1622 | llvm::shuffle(Start, End, Generator); |
||
1623 | } |
||
1624 | |||
1625 | } // end namespace detail |
||
1626 | #endif |
||
1627 | |||
1628 | /// array_pod_sort - This sorts an array with the specified start and end |
||
1629 | /// extent. This is just like std::sort, except that it calls qsort instead of |
||
1630 | /// using an inlined template. qsort is slightly slower than std::sort, but |
||
1631 | /// most sorts are not performance critical in LLVM and std::sort has to be |
||
1632 | /// template instantiated for each type, leading to significant measured code |
||
1633 | /// bloat. This function should generally be used instead of std::sort where |
||
1634 | /// possible. |
||
1635 | /// |
||
1636 | /// This function assumes that you have simple POD-like types that can be |
||
1637 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
||
1638 | /// you should use std::sort. |
||
1639 | /// |
||
1640 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
||
1641 | /// default to std::less. |
||
1642 | template<class IteratorTy> |
||
1643 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
||
1644 | // Don't inefficiently call qsort with one element or trigger undefined |
||
1645 | // behavior with an empty sequence. |
||
1646 | auto NElts = End - Start; |
||
1647 | if (NElts <= 1) return; |
||
1648 | #ifdef EXPENSIVE_CHECKS |
||
1649 | detail::presortShuffle<IteratorTy>(Start, End); |
||
1650 | #endif |
||
1651 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
||
1652 | } |
||
1653 | |||
1654 | template <class IteratorTy> |
||
1655 | inline void array_pod_sort( |
||
1656 | IteratorTy Start, IteratorTy End, |
||
1657 | int (*Compare)( |
||
1658 | const typename std::iterator_traits<IteratorTy>::value_type *, |
||
1659 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
||
1660 | // Don't inefficiently call qsort with one element or trigger undefined |
||
1661 | // behavior with an empty sequence. |
||
1662 | auto NElts = End - Start; |
||
1663 | if (NElts <= 1) return; |
||
1664 | #ifdef EXPENSIVE_CHECKS |
||
1665 | detail::presortShuffle<IteratorTy>(Start, End); |
||
1666 | #endif |
||
1667 | qsort(&*Start, NElts, sizeof(*Start), |
||
1668 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
||
1669 | } |
||
1670 | |||
1671 | namespace detail { |
||
1672 | template <typename T> |
||
1673 | // We can use qsort if the iterator type is a pointer and the underlying value |
||
1674 | // is trivially copyable. |
||
1675 | using sort_trivially_copyable = std::conjunction< |
||
1676 | std::is_pointer<T>, |
||
1677 | std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; |
||
1678 | } // namespace detail |
||
1679 | |||
1680 | // Provide wrappers to std::sort which shuffle the elements before sorting |
||
1681 | // to help uncover non-deterministic behavior (PR35135). |
||
1682 | template <typename IteratorTy> |
||
1683 | inline void sort(IteratorTy Start, IteratorTy End) { |
||
1684 | if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { |
||
1685 | // Forward trivially copyable types to array_pod_sort. This avoids a large |
||
1686 | // amount of code bloat for a minor performance hit. |
||
1687 | array_pod_sort(Start, End); |
||
1688 | } else { |
||
1689 | #ifdef EXPENSIVE_CHECKS |
||
1690 | detail::presortShuffle<IteratorTy>(Start, End); |
||
1691 | #endif |
||
1692 | std::sort(Start, End); |
||
1693 | } |
||
1694 | } |
||
1695 | |||
1696 | template <typename Container> inline void sort(Container &&C) { |
||
1697 | llvm::sort(adl_begin(C), adl_end(C)); |
||
1698 | } |
||
1699 | |||
1700 | template <typename IteratorTy, typename Compare> |
||
1701 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
||
1702 | #ifdef EXPENSIVE_CHECKS |
||
1703 | detail::presortShuffle<IteratorTy>(Start, End); |
||
1704 | #endif |
||
1705 | std::sort(Start, End, Comp); |
||
1706 | } |
||
1707 | |||
1708 | template <typename Container, typename Compare> |
||
1709 | inline void sort(Container &&C, Compare Comp) { |
||
1710 | llvm::sort(adl_begin(C), adl_end(C), Comp); |
||
1711 | } |
||
1712 | |||
1713 | /// Get the size of a range. This is a wrapper function around std::distance |
||
1714 | /// which is only enabled when the operation is O(1). |
||
1715 | template <typename R> |
||
1716 | auto size(R &&Range, |
||
1717 | std::enable_if_t< |
||
1718 | std::is_base_of<std::random_access_iterator_tag, |
||
1719 | typename std::iterator_traits<decltype( |
||
1720 | Range.begin())>::iterator_category>::value, |
||
1721 | void> * = nullptr) { |
||
1722 | return std::distance(Range.begin(), Range.end()); |
||
1723 | } |
||
1724 | |||
1725 | /// Provide wrappers to std::for_each which take ranges instead of having to |
||
1726 | /// pass begin/end explicitly. |
||
1727 | template <typename R, typename UnaryFunction> |
||
1728 | UnaryFunction for_each(R &&Range, UnaryFunction F) { |
||
1729 | return std::for_each(adl_begin(Range), adl_end(Range), F); |
||
1730 | } |
||
1731 | |||
1732 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
||
1733 | /// begin/end explicitly. |
||
1734 | template <typename R, typename UnaryPredicate> |
||
1735 | bool all_of(R &&Range, UnaryPredicate P) { |
||
1736 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
||
1737 | } |
||
1738 | |||
1739 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
||
1740 | /// begin/end explicitly. |
||
1741 | template <typename R, typename UnaryPredicate> |
||
1742 | bool any_of(R &&Range, UnaryPredicate P) { |
||
1743 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
||
1744 | } |
||
1745 | |||
1746 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
||
1747 | /// begin/end explicitly. |
||
1748 | template <typename R, typename UnaryPredicate> |
||
1749 | bool none_of(R &&Range, UnaryPredicate P) { |
||
1750 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
||
1751 | } |
||
1752 | |||
1753 | /// Provide wrappers to std::find which take ranges instead of having to pass |
||
1754 | /// begin/end explicitly. |
||
1755 | template <typename R, typename T> auto find(R &&Range, const T &Val) { |
||
1756 | return std::find(adl_begin(Range), adl_end(Range), Val); |
||
1757 | } |
||
1758 | |||
1759 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
||
1760 | /// begin/end explicitly. |
||
1761 | template <typename R, typename UnaryPredicate> |
||
1762 | auto find_if(R &&Range, UnaryPredicate P) { |
||
1763 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
||
1764 | } |
||
1765 | |||
1766 | template <typename R, typename UnaryPredicate> |
||
1767 | auto find_if_not(R &&Range, UnaryPredicate P) { |
||
1768 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
||
1769 | } |
||
1770 | |||
1771 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
||
1772 | /// pass begin/end explicitly. |
||
1773 | template <typename R, typename UnaryPredicate> |
||
1774 | auto remove_if(R &&Range, UnaryPredicate P) { |
||
1775 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
||
1776 | } |
||
1777 | |||
1778 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
||
1779 | /// pass begin/end explicitly. |
||
1780 | template <typename R, typename OutputIt, typename UnaryPredicate> |
||
1781 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
||
1782 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
||
1783 | } |
||
1784 | |||
1785 | /// Return the single value in \p Range that satisfies |
||
1786 | /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr |
||
1787 | /// when no values or multiple values were found. |
||
1788 | /// When \p AllowRepeats is true, multiple values that compare equal |
||
1789 | /// are allowed. |
||
1790 | template <typename T, typename R, typename Predicate> |
||
1791 | T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { |
||
1792 | T *RC = nullptr; |
||
1793 | for (auto *A : Range) { |
||
1794 | if (T *PRC = P(A, AllowRepeats)) { |
||
1795 | if (RC) { |
||
1796 | if (!AllowRepeats || PRC != RC) |
||
1797 | return nullptr; |
||
1798 | } else |
||
1799 | RC = PRC; |
||
1800 | } |
||
1801 | } |
||
1802 | return RC; |
||
1803 | } |
||
1804 | |||
1805 | /// Return a pair consisting of the single value in \p Range that satisfies |
||
1806 | /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning |
||
1807 | /// nullptr when no values or multiple values were found, and a bool indicating |
||
1808 | /// whether multiple values were found to cause the nullptr. |
||
1809 | /// When \p AllowRepeats is true, multiple values that compare equal are |
||
1810 | /// allowed. The predicate \p P returns a pair<T *, bool> where T is the |
||
1811 | /// singleton while the bool indicates whether multiples have already been |
||
1812 | /// found. It is expected that first will be nullptr when second is true. |
||
1813 | /// This allows using find_singleton_nested within the predicate \P. |
||
1814 | template <typename T, typename R, typename Predicate> |
||
1815 | std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, |
||
1816 | bool AllowRepeats = false) { |
||
1817 | T *RC = nullptr; |
||
1818 | for (auto *A : Range) { |
||
1819 | std::pair<T *, bool> PRC = P(A, AllowRepeats); |
||
1820 | if (PRC.second) { |
||
1821 | assert(PRC.first == nullptr && |
||
1822 | "Inconsistent return values in find_singleton_nested."); |
||
1823 | return PRC; |
||
1824 | } |
||
1825 | if (PRC.first) { |
||
1826 | if (RC) { |
||
1827 | if (!AllowRepeats || PRC.first != RC) |
||
1828 | return {nullptr, true}; |
||
1829 | } else |
||
1830 | RC = PRC.first; |
||
1831 | } |
||
1832 | } |
||
1833 | return {RC, false}; |
||
1834 | } |
||
1835 | |||
1836 | template <typename R, typename OutputIt> |
||
1837 | OutputIt copy(R &&Range, OutputIt Out) { |
||
1838 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
||
1839 | } |
||
1840 | |||
1841 | /// Provide wrappers to std::replace_copy_if which take ranges instead of having |
||
1842 | /// to pass begin/end explicitly. |
||
1843 | template <typename R, typename OutputIt, typename UnaryPredicate, typename T> |
||
1844 | OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, |
||
1845 | const T &NewValue) { |
||
1846 | return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, |
||
1847 | NewValue); |
||
1848 | } |
||
1849 | |||
1850 | /// Provide wrappers to std::replace_copy which take ranges instead of having to |
||
1851 | /// pass begin/end explicitly. |
||
1852 | template <typename R, typename OutputIt, typename T> |
||
1853 | OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, |
||
1854 | const T &NewValue) { |
||
1855 | return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, |
||
1856 | NewValue); |
||
1857 | } |
||
1858 | |||
1859 | /// Provide wrappers to std::move which take ranges instead of having to |
||
1860 | /// pass begin/end explicitly. |
||
1861 | template <typename R, typename OutputIt> |
||
1862 | OutputIt move(R &&Range, OutputIt Out) { |
||
1863 | return std::move(adl_begin(Range), adl_end(Range), Out); |
||
1864 | } |
||
1865 | |||
1866 | /// Wrapper function around std::find to detect if an element exists |
||
1867 | /// in a container. |
||
1868 | template <typename R, typename E> |
||
1869 | bool is_contained(R &&Range, const E &Element) { |
||
1870 | return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); |
||
1871 | } |
||
1872 | |||
1873 | template <typename T> |
||
1874 | constexpr bool is_contained(std::initializer_list<T> Set, T Value) { |
||
1875 | // TODO: Use std::find when we switch to C++20. |
||
1876 | for (T V : Set) |
||
1877 | if (V == Value) |
||
1878 | return true; |
||
1879 | return false; |
||
1880 | } |
||
1881 | |||
1882 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
||
1883 | /// are sorted with respect to a comparator \p C. |
||
1884 | template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { |
||
1885 | return std::is_sorted(adl_begin(Range), adl_end(Range), C); |
||
1886 | } |
||
1887 | |||
1888 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
||
1889 | /// are sorted in non-descending order. |
||
1890 | template <typename R> bool is_sorted(R &&Range) { |
||
1891 | return std::is_sorted(adl_begin(Range), adl_end(Range)); |
||
1892 | } |
||
1893 | |||
1894 | /// Wrapper function around std::count to count the number of times an element |
||
1895 | /// \p Element occurs in the given range \p Range. |
||
1896 | template <typename R, typename E> auto count(R &&Range, const E &Element) { |
||
1897 | return std::count(adl_begin(Range), adl_end(Range), Element); |
||
1898 | } |
||
1899 | |||
1900 | /// Wrapper function around std::count_if to count the number of times an |
||
1901 | /// element satisfying a given predicate occurs in a range. |
||
1902 | template <typename R, typename UnaryPredicate> |
||
1903 | auto count_if(R &&Range, UnaryPredicate P) { |
||
1904 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
||
1905 | } |
||
1906 | |||
1907 | /// Wrapper function around std::transform to apply a function to a range and |
||
1908 | /// store the result elsewhere. |
||
1909 | template <typename R, typename OutputIt, typename UnaryFunction> |
||
1910 | OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { |
||
1911 | return std::transform(adl_begin(Range), adl_end(Range), d_first, F); |
||
1912 | } |
||
1913 | |||
1914 | /// Provide wrappers to std::partition which take ranges instead of having to |
||
1915 | /// pass begin/end explicitly. |
||
1916 | template <typename R, typename UnaryPredicate> |
||
1917 | auto partition(R &&Range, UnaryPredicate P) { |
||
1918 | return std::partition(adl_begin(Range), adl_end(Range), P); |
||
1919 | } |
||
1920 | |||
1921 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
||
1922 | /// pass begin/end explicitly. |
||
1923 | template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { |
||
1924 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
||
1925 | std::forward<T>(Value)); |
||
1926 | } |
||
1927 | |||
1928 | template <typename R, typename T, typename Compare> |
||
1929 | auto lower_bound(R &&Range, T &&Value, Compare C) { |
||
1930 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
||
1931 | std::forward<T>(Value), C); |
||
1932 | } |
||
1933 | |||
1934 | /// Provide wrappers to std::upper_bound which take ranges instead of having to |
||
1935 | /// pass begin/end explicitly. |
||
1936 | template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { |
||
1937 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
||
1938 | std::forward<T>(Value)); |
||
1939 | } |
||
1940 | |||
1941 | template <typename R, typename T, typename Compare> |
||
1942 | auto upper_bound(R &&Range, T &&Value, Compare C) { |
||
1943 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
||
1944 | std::forward<T>(Value), C); |
||
1945 | } |
||
1946 | |||
1947 | template <typename R> |
||
1948 | void stable_sort(R &&Range) { |
||
1949 | std::stable_sort(adl_begin(Range), adl_end(Range)); |
||
1950 | } |
||
1951 | |||
1952 | template <typename R, typename Compare> |
||
1953 | void stable_sort(R &&Range, Compare C) { |
||
1954 | std::stable_sort(adl_begin(Range), adl_end(Range), C); |
||
1955 | } |
||
1956 | |||
1957 | /// Binary search for the first iterator in a range where a predicate is false. |
||
1958 | /// Requires that C is always true below some limit, and always false above it. |
||
1959 | template <typename R, typename Predicate, |
||
1960 | typename Val = decltype(*adl_begin(std::declval<R>()))> |
||
1961 | auto partition_point(R &&Range, Predicate P) { |
||
1962 | return std::partition_point(adl_begin(Range), adl_end(Range), P); |
||
1963 | } |
||
1964 | |||
1965 | template<typename Range, typename Predicate> |
||
1966 | auto unique(Range &&R, Predicate P) { |
||
1967 | return std::unique(adl_begin(R), adl_end(R), P); |
||
1968 | } |
||
1969 | |||
1970 | /// Wrapper function around std::equal to detect if pair-wise elements between |
||
1971 | /// two ranges are the same. |
||
1972 | template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { |
||
1973 | return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), |
||
1974 | adl_end(RRange)); |
||
1975 | } |
||
1976 | |||
1977 | /// Returns true if all elements in Range are equal or when the Range is empty. |
||
1978 | template <typename R> bool all_equal(R &&Range) { |
||
1979 | auto Begin = adl_begin(Range); |
||
1980 | auto End = adl_end(Range); |
||
1981 | return Begin == End || std::equal(Begin + 1, End, Begin); |
||
1982 | } |
||
1983 | |||
1984 | /// Returns true if all Values in the initializer lists are equal or the list |
||
1985 | // is empty. |
||
1986 | template <typename T> bool all_equal(std::initializer_list<T> Values) { |
||
1987 | return all_equal<std::initializer_list<T>>(std::move(Values)); |
||
1988 | } |
||
1989 | |||
1990 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
||
1991 | /// `erase_if` which is equivalent to: |
||
1992 | /// |
||
1993 | /// C.erase(remove_if(C, pred), C.end()); |
||
1994 | /// |
||
1995 | /// This version works for any container with an erase method call accepting |
||
1996 | /// two iterators. |
||
1997 | template <typename Container, typename UnaryPredicate> |
||
1998 | void erase_if(Container &C, UnaryPredicate P) { |
||
1999 | C.erase(remove_if(C, P), C.end()); |
||
2000 | } |
||
2001 | |||
2002 | /// Wrapper function to remove a value from a container: |
||
2003 | /// |
||
2004 | /// C.erase(remove(C.begin(), C.end(), V), C.end()); |
||
2005 | template <typename Container, typename ValueType> |
||
2006 | void erase_value(Container &C, ValueType V) { |
||
2007 | C.erase(std::remove(C.begin(), C.end(), V), C.end()); |
||
2008 | } |
||
2009 | |||
2010 | /// Wrapper function to append a range to a container. |
||
2011 | /// |
||
2012 | /// C.insert(C.end(), R.begin(), R.end()); |
||
2013 | template <typename Container, typename Range> |
||
2014 | inline void append_range(Container &C, Range &&R) { |
||
2015 | C.insert(C.end(), R.begin(), R.end()); |
||
2016 | } |
||
2017 | |||
2018 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
||
2019 | /// the range [ValIt, ValEnd) (which is not from the same container). |
||
2020 | template<typename Container, typename RandomAccessIterator> |
||
2021 | void replace(Container &Cont, typename Container::iterator ContIt, |
||
2022 | typename Container::iterator ContEnd, RandomAccessIterator ValIt, |
||
2023 | RandomAccessIterator ValEnd) { |
||
2024 | while (true) { |
||
2025 | if (ValIt == ValEnd) { |
||
2026 | Cont.erase(ContIt, ContEnd); |
||
2027 | return; |
||
2028 | } else if (ContIt == ContEnd) { |
||
2029 | Cont.insert(ContIt, ValIt, ValEnd); |
||
2030 | return; |
||
2031 | } |
||
2032 | *ContIt++ = *ValIt++; |
||
2033 | } |
||
2034 | } |
||
2035 | |||
2036 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
||
2037 | /// the range R. |
||
2038 | template<typename Container, typename Range = std::initializer_list< |
||
2039 | typename Container::value_type>> |
||
2040 | void replace(Container &Cont, typename Container::iterator ContIt, |
||
2041 | typename Container::iterator ContEnd, Range R) { |
||
2042 | replace(Cont, ContIt, ContEnd, R.begin(), R.end()); |
||
2043 | } |
||
2044 | |||
2045 | /// An STL-style algorithm similar to std::for_each that applies a second |
||
2046 | /// functor between every pair of elements. |
||
2047 | /// |
||
2048 | /// This provides the control flow logic to, for example, print a |
||
2049 | /// comma-separated list: |
||
2050 | /// \code |
||
2051 | /// interleave(names.begin(), names.end(), |
||
2052 | /// [&](StringRef name) { os << name; }, |
||
2053 | /// [&] { os << ", "; }); |
||
2054 | /// \endcode |
||
2055 | template <typename ForwardIterator, typename UnaryFunctor, |
||
2056 | typename NullaryFunctor, |
||
2057 | typename = std::enable_if_t< |
||
2058 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
||
2059 | !std::is_constructible<StringRef, NullaryFunctor>::value>> |
||
2060 | inline void interleave(ForwardIterator begin, ForwardIterator end, |
||
2061 | UnaryFunctor each_fn, NullaryFunctor between_fn) { |
||
2062 | if (begin == end) |
||
2063 | return; |
||
2064 | each_fn(*begin); |
||
2065 | ++begin; |
||
2066 | for (; begin != end; ++begin) { |
||
2067 | between_fn(); |
||
2068 | each_fn(*begin); |
||
2069 | } |
||
2070 | } |
||
2071 | |||
2072 | template <typename Container, typename UnaryFunctor, typename NullaryFunctor, |
||
2073 | typename = std::enable_if_t< |
||
2074 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
||
2075 | !std::is_constructible<StringRef, NullaryFunctor>::value>> |
||
2076 | inline void interleave(const Container &c, UnaryFunctor each_fn, |
||
2077 | NullaryFunctor between_fn) { |
||
2078 | interleave(c.begin(), c.end(), each_fn, between_fn); |
||
2079 | } |
||
2080 | |||
2081 | /// Overload of interleave for the common case of string separator. |
||
2082 | template <typename Container, typename UnaryFunctor, typename StreamT, |
||
2083 | typename T = detail::ValueOfRange<Container>> |
||
2084 | inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, |
||
2085 | const StringRef &separator) { |
||
2086 | interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); |
||
2087 | } |
||
2088 | template <typename Container, typename StreamT, |
||
2089 | typename T = detail::ValueOfRange<Container>> |
||
2090 | inline void interleave(const Container &c, StreamT &os, |
||
2091 | const StringRef &separator) { |
||
2092 | interleave( |
||
2093 | c, os, [&](const T &a) { os << a; }, separator); |
||
2094 | } |
||
2095 | |||
2096 | template <typename Container, typename UnaryFunctor, typename StreamT, |
||
2097 | typename T = detail::ValueOfRange<Container>> |
||
2098 | inline void interleaveComma(const Container &c, StreamT &os, |
||
2099 | UnaryFunctor each_fn) { |
||
2100 | interleave(c, os, each_fn, ", "); |
||
2101 | } |
||
2102 | template <typename Container, typename StreamT, |
||
2103 | typename T = detail::ValueOfRange<Container>> |
||
2104 | inline void interleaveComma(const Container &c, StreamT &os) { |
||
2105 | interleaveComma(c, os, [&](const T &a) { os << a; }); |
||
2106 | } |
||
2107 | |||
2108 | //===----------------------------------------------------------------------===// |
||
2109 | // Extra additions to <memory> |
||
2110 | //===----------------------------------------------------------------------===// |
||
2111 | |||
2112 | struct FreeDeleter { |
||
2113 | void operator()(void* v) { |
||
2114 | ::free(v); |
||
2115 | } |
||
2116 | }; |
||
2117 | |||
2118 | template<typename First, typename Second> |
||
2119 | struct pair_hash { |
||
2120 | size_t operator()(const std::pair<First, Second> &P) const { |
||
2121 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
||
2122 | } |
||
2123 | }; |
||
2124 | |||
2125 | /// Binary functor that adapts to any other binary functor after dereferencing |
||
2126 | /// operands. |
||
2127 | template <typename T> struct deref { |
||
2128 | T func; |
||
2129 | |||
2130 | // Could be further improved to cope with non-derivable functors and |
||
2131 | // non-binary functors (should be a variadic template member function |
||
2132 | // operator()). |
||
2133 | template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { |
||
2134 | assert(lhs); |
||
2135 | assert(rhs); |
||
2136 | return func(*lhs, *rhs); |
||
2137 | } |
||
2138 | }; |
||
2139 | |||
2140 | namespace detail { |
||
2141 | |||
2142 | template <typename R> class enumerator_iter; |
||
2143 | |||
2144 | template <typename R> struct result_pair { |
||
2145 | using value_reference = |
||
2146 | typename std::iterator_traits<IterOfRange<R>>::reference; |
||
2147 | |||
2148 | friend class enumerator_iter<R>; |
||
2149 | |||
2150 | result_pair() = default; |
||
2151 | result_pair(std::size_t Index, IterOfRange<R> Iter) |
||
2152 | : Index(Index), Iter(Iter) {} |
||
2153 | |||
2154 | result_pair(const result_pair<R> &Other) |
||
2155 | : Index(Other.Index), Iter(Other.Iter) {} |
||
2156 | result_pair &operator=(const result_pair &Other) { |
||
2157 | Index = Other.Index; |
||
2158 | Iter = Other.Iter; |
||
2159 | return *this; |
||
2160 | } |
||
2161 | |||
2162 | std::size_t index() const { return Index; } |
||
2163 | value_reference value() const { return *Iter; } |
||
2164 | |||
2165 | private: |
||
2166 | std::size_t Index = std::numeric_limits<std::size_t>::max(); |
||
2167 | IterOfRange<R> Iter; |
||
2168 | }; |
||
2169 | |||
2170 | template <std::size_t i, typename R> |
||
2171 | decltype(auto) get(const result_pair<R> &Pair) { |
||
2172 | static_assert(i < 2); |
||
2173 | if constexpr (i == 0) { |
||
2174 | return Pair.index(); |
||
2175 | } else { |
||
2176 | return Pair.value(); |
||
2177 | } |
||
2178 | } |
||
2179 | |||
2180 | template <typename R> |
||
2181 | class enumerator_iter |
||
2182 | : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag, |
||
2183 | const result_pair<R>> { |
||
2184 | using result_type = result_pair<R>; |
||
2185 | |||
2186 | public: |
||
2187 | explicit enumerator_iter(IterOfRange<R> EndIter) |
||
2188 | : Result(std::numeric_limits<size_t>::max(), EndIter) {} |
||
2189 | |||
2190 | enumerator_iter(std::size_t Index, IterOfRange<R> Iter) |
||
2191 | : Result(Index, Iter) {} |
||
2192 | |||
2193 | const result_type &operator*() const { return Result; } |
||
2194 | |||
2195 | enumerator_iter &operator++() { |
||
2196 | assert(Result.Index != std::numeric_limits<size_t>::max()); |
||
2197 | ++Result.Iter; |
||
2198 | ++Result.Index; |
||
2199 | return *this; |
||
2200 | } |
||
2201 | |||
2202 | bool operator==(const enumerator_iter &RHS) const { |
||
2203 | // Don't compare indices here, only iterators. It's possible for an end |
||
2204 | // iterator to have different indices depending on whether it was created |
||
2205 | // by calling std::end() versus incrementing a valid iterator. |
||
2206 | return Result.Iter == RHS.Result.Iter; |
||
2207 | } |
||
2208 | |||
2209 | enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {} |
||
2210 | enumerator_iter &operator=(const enumerator_iter &Other) { |
||
2211 | Result = Other.Result; |
||
2212 | return *this; |
||
2213 | } |
||
2214 | |||
2215 | private: |
||
2216 | result_type Result; |
||
2217 | }; |
||
2218 | |||
2219 | template <typename R> class enumerator { |
||
2220 | public: |
||
2221 | explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} |
||
2222 | |||
2223 | enumerator_iter<R> begin() { |
||
2224 | return enumerator_iter<R>(0, std::begin(TheRange)); |
||
2225 | } |
||
2226 | enumerator_iter<R> begin() const { |
||
2227 | return enumerator_iter<R>(0, std::begin(TheRange)); |
||
2228 | } |
||
2229 | |||
2230 | enumerator_iter<R> end() { |
||
2231 | return enumerator_iter<R>(std::end(TheRange)); |
||
2232 | } |
||
2233 | enumerator_iter<R> end() const { |
||
2234 | return enumerator_iter<R>(std::end(TheRange)); |
||
2235 | } |
||
2236 | |||
2237 | private: |
||
2238 | R TheRange; |
||
2239 | }; |
||
2240 | |||
2241 | } // end namespace detail |
||
2242 | |||
2243 | /// Given an input range, returns a new range whose values are are pair (A,B) |
||
2244 | /// such that A is the 0-based index of the item in the sequence, and B is |
||
2245 | /// the value from the original sequence. Example: |
||
2246 | /// |
||
2247 | /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; |
||
2248 | /// for (auto X : enumerate(Items)) { |
||
2249 | /// printf("Item %d - %c\n", X.index(), X.value()); |
||
2250 | /// } |
||
2251 | /// |
||
2252 | /// or using structured bindings: |
||
2253 | /// |
||
2254 | /// for (auto [Index, Value] : enumerate(Items)) { |
||
2255 | /// printf("Item %d - %c\n", Index, Value); |
||
2256 | /// } |
||
2257 | /// |
||
2258 | /// Output: |
||
2259 | /// Item 0 - A |
||
2260 | /// Item 1 - B |
||
2261 | /// Item 2 - C |
||
2262 | /// Item 3 - D |
||
2263 | /// |
||
2264 | template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { |
||
2265 | return detail::enumerator<R>(std::forward<R>(TheRange)); |
||
2266 | } |
||
2267 | |||
2268 | namespace detail { |
||
2269 | |||
2270 | template <typename Predicate, typename... Args> |
||
2271 | bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { |
||
2272 | auto z = zip(args...); |
||
2273 | auto it = z.begin(); |
||
2274 | auto end = z.end(); |
||
2275 | while (it != end) { |
||
2276 | if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) |
||
2277 | return false; |
||
2278 | ++it; |
||
2279 | } |
||
2280 | return it.all_equals(end); |
||
2281 | } |
||
2282 | |||
2283 | // Just an adaptor to switch the order of argument and have the predicate before |
||
2284 | // the zipped inputs. |
||
2285 | template <typename... ArgsThenPredicate, size_t... InputIndexes> |
||
2286 | bool all_of_zip_predicate_last( |
||
2287 | std::tuple<ArgsThenPredicate...> argsThenPredicate, |
||
2288 | std::index_sequence<InputIndexes...>) { |
||
2289 | auto constexpr OutputIndex = |
||
2290 | std::tuple_size<decltype(argsThenPredicate)>::value - 1; |
||
2291 | return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), |
||
2292 | std::get<InputIndexes>(argsThenPredicate)...); |
||
2293 | } |
||
2294 | |||
2295 | } // end namespace detail |
||
2296 | |||
2297 | /// Compare two zipped ranges using the provided predicate (as last argument). |
||
2298 | /// Return true if all elements satisfy the predicate and false otherwise. |
||
2299 | // Return false if the zipped iterator aren't all at end (size mismatch). |
||
2300 | template <typename... ArgsAndPredicate> |
||
2301 | bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { |
||
2302 | return detail::all_of_zip_predicate_last( |
||
2303 | std::forward_as_tuple(argsAndPredicate...), |
||
2304 | std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); |
||
2305 | } |
||
2306 | |||
2307 | /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) |
||
2308 | /// time. Not meant for use with random-access iterators. |
||
2309 | /// Can optionally take a predicate to filter lazily some items. |
||
2310 | template <typename IterTy, |
||
2311 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
||
2312 | bool hasNItems( |
||
2313 | IterTy &&Begin, IterTy &&End, unsigned N, |
||
2314 | Pred &&ShouldBeCounted = |
||
2315 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
||
2316 | std::enable_if_t< |
||
2317 | !std::is_base_of<std::random_access_iterator_tag, |
||
2318 | typename std::iterator_traits<std::remove_reference_t< |
||
2319 | decltype(Begin)>>::iterator_category>::value, |
||
2320 | void> * = nullptr) { |
||
2321 | for (; N; ++Begin) { |
||
2322 | if (Begin == End) |
||
2323 | return false; // Too few. |
||
2324 | N -= ShouldBeCounted(*Begin); |
||
2325 | } |
||
2326 | for (; Begin != End; ++Begin) |
||
2327 | if (ShouldBeCounted(*Begin)) |
||
2328 | return false; // Too many. |
||
2329 | return true; |
||
2330 | } |
||
2331 | |||
2332 | /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) |
||
2333 | /// time. Not meant for use with random-access iterators. |
||
2334 | /// Can optionally take a predicate to lazily filter some items. |
||
2335 | template <typename IterTy, |
||
2336 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
||
2337 | bool hasNItemsOrMore( |
||
2338 | IterTy &&Begin, IterTy &&End, unsigned N, |
||
2339 | Pred &&ShouldBeCounted = |
||
2340 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
||
2341 | std::enable_if_t< |
||
2342 | !std::is_base_of<std::random_access_iterator_tag, |
||
2343 | typename std::iterator_traits<std::remove_reference_t< |
||
2344 | decltype(Begin)>>::iterator_category>::value, |
||
2345 | void> * = nullptr) { |
||
2346 | for (; N; ++Begin) { |
||
2347 | if (Begin == End) |
||
2348 | return false; // Too few. |
||
2349 | N -= ShouldBeCounted(*Begin); |
||
2350 | } |
||
2351 | return true; |
||
2352 | } |
||
2353 | |||
2354 | /// Returns true if the sequence [Begin, End) has N or less items. Can |
||
2355 | /// optionally take a predicate to lazily filter some items. |
||
2356 | template <typename IterTy, |
||
2357 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
||
2358 | bool hasNItemsOrLess( |
||
2359 | IterTy &&Begin, IterTy &&End, unsigned N, |
||
2360 | Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { |
||
2361 | return true; |
||
2362 | }) { |
||
2363 | assert(N != std::numeric_limits<unsigned>::max()); |
||
2364 | return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); |
||
2365 | } |
||
2366 | |||
2367 | /// Returns true if the given container has exactly N items |
||
2368 | template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { |
||
2369 | return hasNItems(std::begin(C), std::end(C), N); |
||
2370 | } |
||
2371 | |||
2372 | /// Returns true if the given container has N or more items |
||
2373 | template <typename ContainerTy> |
||
2374 | bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { |
||
2375 | return hasNItemsOrMore(std::begin(C), std::end(C), N); |
||
2376 | } |
||
2377 | |||
2378 | /// Returns true if the given container has N or less items |
||
2379 | template <typename ContainerTy> |
||
2380 | bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { |
||
2381 | return hasNItemsOrLess(std::begin(C), std::end(C), N); |
||
2382 | } |
||
2383 | |||
2384 | /// Returns a raw pointer that represents the same address as the argument. |
||
2385 | /// |
||
2386 | /// This implementation can be removed once we move to C++20 where it's defined |
||
2387 | /// as std::to_address(). |
||
2388 | /// |
||
2389 | /// The std::pointer_traits<>::to_address(p) variations of these overloads has |
||
2390 | /// not been implemented. |
||
2391 | template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } |
||
2392 | template <class T> constexpr T *to_address(T *P) { return P; } |
||
2393 | |||
2394 | } // end namespace llvm |
||
2395 | |||
2396 | namespace std { |
||
2397 | template <typename R> |
||
2398 | struct tuple_size<llvm::detail::result_pair<R>> |
||
2399 | : std::integral_constant<std::size_t, 2> {}; |
||
2400 | |||
2401 | template <std::size_t i, typename R> |
||
2402 | struct tuple_element<i, llvm::detail::result_pair<R>> |
||
2403 | : std::conditional<i == 0, std::size_t, |
||
2404 | typename llvm::detail::result_pair<R>::value_reference> { |
||
2405 | }; |
||
2406 | |||
2407 | } // namespace std |
||
2408 | |||
2409 | #endif // LLVM_ADT_STLEXTRAS_H |