Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file contains some templates that are useful if you are working with
11
/// the STL at all.
12
///
13
/// No library is required when using these functions.
14
///
15
//===----------------------------------------------------------------------===//
16
 
17
#ifndef LLVM_ADT_STLEXTRAS_H
18
#define LLVM_ADT_STLEXTRAS_H
19
 
20
#include "llvm/ADT/Hashing.h"
21
#include "llvm/ADT/STLForwardCompat.h"
22
#include "llvm/ADT/STLFunctionalExtras.h"
23
#include "llvm/ADT/identity.h"
24
#include "llvm/ADT/iterator.h"
25
#include "llvm/ADT/iterator_range.h"
26
#include "llvm/Config/abi-breaking.h"
27
#include "llvm/Support/ErrorHandling.h"
28
#include <algorithm>
29
#include <cassert>
30
#include <cstddef>
31
#include <cstdint>
32
#include <cstdlib>
33
#include <functional>
34
#include <initializer_list>
35
#include <iterator>
36
#include <limits>
37
#include <memory>
38
#include <optional>
39
#include <tuple>
40
#include <type_traits>
41
#include <utility>
42
 
43
#ifdef EXPENSIVE_CHECKS
44
#include <random> // for std::mt19937
45
#endif
46
 
47
namespace llvm {
48
 
49
// Only used by compiler if both template types are the same.  Useful when
50
// using SFINAE to test for the existence of member functions.
51
template <typename T, T> struct SameType;
52
 
53
namespace detail {
54
 
55
template <typename RangeT>
56
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
57
 
58
template <typename RangeT>
59
using ValueOfRange =
60
    std::remove_reference_t<decltype(*std::begin(std::declval<RangeT &>()))>;
61
 
62
} // end namespace detail
63
 
64
//===----------------------------------------------------------------------===//
65
//     Extra additions to <type_traits>
66
//===----------------------------------------------------------------------===//
67
 
68
template <typename T> struct make_const_ptr {
69
  using type = std::add_pointer_t<std::add_const_t<T>>;
70
};
71
 
72
template <typename T> struct make_const_ref {
73
  using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
74
};
75
 
76
namespace detail {
77
template <class, template <class...> class Op, class... Args> struct detector {
78
  using value_t = std::false_type;
79
};
80
template <template <class...> class Op, class... Args>
81
struct detector<std::void_t<Op<Args...>>, Op, Args...> {
82
  using value_t = std::true_type;
83
};
84
} // end namespace detail
85
 
86
/// Detects if a given trait holds for some set of arguments 'Args'.
87
/// For example, the given trait could be used to detect if a given type
88
/// has a copy assignment operator:
89
///   template<class T>
90
///   using has_copy_assign_t = decltype(std::declval<T&>()
91
///                                                 = std::declval<const T&>());
92
///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
93
template <template <class...> class Op, class... Args>
94
using is_detected = typename detail::detector<void, Op, Args...>::value_t;
95
 
96
/// This class provides various trait information about a callable object.
97
///   * To access the number of arguments: Traits::num_args
98
///   * To access the type of an argument: Traits::arg_t<Index>
99
///   * To access the type of the result:  Traits::result_t
100
template <typename T, bool isClass = std::is_class<T>::value>
101
struct function_traits : public function_traits<decltype(&T::operator())> {};
102
 
103
/// Overload for class function types.
104
template <typename ClassType, typename ReturnType, typename... Args>
105
struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
106
  /// The number of arguments to this function.
107
  enum { num_args = sizeof...(Args) };
108
 
109
  /// The result type of this function.
110
  using result_t = ReturnType;
111
 
112
  /// The type of an argument to this function.
113
  template <size_t Index>
114
  using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
115
};
116
/// Overload for class function types.
117
template <typename ClassType, typename ReturnType, typename... Args>
118
struct function_traits<ReturnType (ClassType::*)(Args...), false>
119
    : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
120
/// Overload for non-class function types.
121
template <typename ReturnType, typename... Args>
122
struct function_traits<ReturnType (*)(Args...), false> {
123
  /// The number of arguments to this function.
124
  enum { num_args = sizeof...(Args) };
125
 
126
  /// The result type of this function.
127
  using result_t = ReturnType;
128
 
129
  /// The type of an argument to this function.
130
  template <size_t i>
131
  using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
132
};
133
template <typename ReturnType, typename... Args>
134
struct function_traits<ReturnType (*const)(Args...), false>
135
    : public function_traits<ReturnType (*)(Args...)> {};
136
/// Overload for non-class function type references.
137
template <typename ReturnType, typename... Args>
138
struct function_traits<ReturnType (&)(Args...), false>
139
    : public function_traits<ReturnType (*)(Args...)> {};
140
 
141
/// traits class for checking whether type T is one of any of the given
142
/// types in the variadic list.
143
template <typename T, typename... Ts>
144
using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
145
 
146
/// traits class for checking whether type T is a base class for all
147
///  the given types in the variadic list.
148
template <typename T, typename... Ts>
149
using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
150
 
151
namespace detail {
152
template <typename T, typename... Us> struct TypesAreDistinct;
153
template <typename T, typename... Us>
154
struct TypesAreDistinct
155
    : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
156
                                       TypesAreDistinct<Us...>::value> {};
157
template <typename T> struct TypesAreDistinct<T> : std::true_type {};
158
} // namespace detail
159
 
160
/// Determine if all types in Ts are distinct.
161
///
162
/// Useful to statically assert when Ts is intended to describe a non-multi set
163
/// of types.
164
///
165
/// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
166
/// asserted once per instantiation of a type which requires it.
167
template <typename... Ts> struct TypesAreDistinct;
168
template <> struct TypesAreDistinct<> : std::true_type {};
169
template <typename... Ts>
170
struct TypesAreDistinct
171
    : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
172
 
173
/// Find the first index where a type appears in a list of types.
174
///
175
/// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
176
///
177
/// Typically only meaningful when it is otherwise statically known that the
178
/// type pack has no duplicate types. This should be guaranteed explicitly with
179
/// static_assert(TypesAreDistinct<Us...>::value).
180
///
181
/// It is a compile-time error to instantiate when T is not present in Us, i.e.
182
/// if is_one_of<T, Us...>::value is false.
183
template <typename T, typename... Us> struct FirstIndexOfType;
184
template <typename T, typename U, typename... Us>
185
struct FirstIndexOfType<T, U, Us...>
186
    : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
187
template <typename T, typename... Us>
188
struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
189
 
190
/// Find the type at a given index in a list of types.
191
///
192
/// TypeAtIndex<I, Ts...> is the type at index I in Ts.
193
template <size_t I, typename... Ts>
194
using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
195
 
196
/// Helper which adds two underlying types of enumeration type.
197
/// Implicit conversion to a common type is accepted.
198
template <typename EnumTy1, typename EnumTy2,
199
          typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
200
                                          std::underlying_type_t<EnumTy1>>,
201
          typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
202
                                          std::underlying_type_t<EnumTy2>>>
203
constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
204
  return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
205
}
206
 
207
//===----------------------------------------------------------------------===//
208
//     Extra additions to <iterator>
209
//===----------------------------------------------------------------------===//
210
 
211
namespace callable_detail {
212
 
213
/// Templated storage wrapper for a callable.
214
///
215
/// This class is consistently default constructible, copy / move
216
/// constructible / assignable.
217
///
218
/// Supported callable types:
219
///  - Function pointer
220
///  - Function reference
221
///  - Lambda
222
///  - Function object
223
template <typename T,
224
          bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
225
class Callable {
226
  using value_type = std::remove_reference_t<T>;
227
  using reference = value_type &;
228
  using const_reference = value_type const &;
229
 
230
  std::optional<value_type> Obj;
231
 
232
  static_assert(!std::is_pointer_v<value_type>,
233
                "Pointers to non-functions are not callable.");
234
 
235
public:
236
  Callable() = default;
237
  Callable(T const &O) : Obj(std::in_place, O) {}
238
 
239
  Callable(Callable const &Other) = default;
240
  Callable(Callable &&Other) = default;
241
 
242
  Callable &operator=(Callable const &Other) {
243
    Obj = std::nullopt;
244
    if (Other.Obj)
245
      Obj.emplace(*Other.Obj);
246
    return *this;
247
  }
248
 
249
  Callable &operator=(Callable &&Other) {
250
    Obj = std::nullopt;
251
    if (Other.Obj)
252
      Obj.emplace(std::move(*Other.Obj));
253
    return *this;
254
  }
255
 
256
  template <typename... Pn,
257
            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
258
  decltype(auto) operator()(Pn &&...Params) {
259
    return (*Obj)(std::forward<Pn>(Params)...);
260
  }
261
 
262
  template <typename... Pn,
263
            std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
264
  decltype(auto) operator()(Pn &&...Params) const {
265
    return (*Obj)(std::forward<Pn>(Params)...);
266
  }
267
 
268
  bool valid() const { return Obj != std::nullopt; }
269
  bool reset() { return Obj = std::nullopt; }
270
 
271
  operator reference() { return *Obj; }
272
  operator const_reference() const { return *Obj; }
273
};
274
 
275
// Function specialization.  No need to waste extra space wrapping with a
276
// std::optional.
277
template <typename T> class Callable<T, true> {
278
  static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
279
 
280
  using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
281
  using CastT = std::conditional_t<IsPtr, T, T &>;
282
 
283
private:
284
  StorageT Func = nullptr;
285
 
286
private:
287
  template <typename In> static constexpr auto convertIn(In &&I) {
288
    if constexpr (IsPtr) {
289
      // Pointer... just echo it back.
290
      return I;
291
    } else {
292
      // Must be a function reference.  Return its address.
293
      return &I;
294
    }
295
  }
296
 
297
public:
298
  Callable() = default;
299
 
300
  // Construct from a function pointer or reference.
301
  //
302
  // Disable this constructor for references to 'Callable' so we don't violate
303
  // the rule of 0.
304
  template < // clang-format off
305
    typename FnPtrOrRef,
306
    std::enable_if_t<
307
      !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
308
    > = 0
309
  > // clang-format on
310
  Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
311
 
312
  template <typename... Pn,
313
            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
314
  decltype(auto) operator()(Pn &&...Params) const {
315
    return Func(std::forward<Pn>(Params)...);
316
  }
317
 
318
  bool valid() const { return Func != nullptr; }
319
  void reset() { Func = nullptr; }
320
 
321
  operator T const &() const {
322
    if constexpr (IsPtr) {
323
      // T is a pointer... just echo it back.
324
      return Func;
325
    } else {
326
      static_assert(std::is_reference_v<T>,
327
                    "Expected a reference to a function.");
328
      // T is a function reference... dereference the stored pointer.
329
      return *Func;
330
    }
331
  }
332
};
333
 
334
} // namespace callable_detail
335
 
336
namespace adl_detail {
337
 
338
using std::begin;
339
 
340
template <typename ContainerTy>
341
decltype(auto) adl_begin(ContainerTy &&container) {
342
  return begin(std::forward<ContainerTy>(container));
343
}
344
 
345
using std::end;
346
 
347
template <typename ContainerTy>
348
decltype(auto) adl_end(ContainerTy &&container) {
349
  return end(std::forward<ContainerTy>(container));
350
}
351
 
352
using std::swap;
353
 
354
template <typename T>
355
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
356
                                                       std::declval<T>()))) {
357
  swap(std::forward<T>(lhs), std::forward<T>(rhs));
358
}
359
 
360
} // end namespace adl_detail
361
 
362
template <typename ContainerTy>
363
decltype(auto) adl_begin(ContainerTy &&container) {
364
  return adl_detail::adl_begin(std::forward<ContainerTy>(container));
365
}
366
 
367
template <typename ContainerTy>
368
decltype(auto) adl_end(ContainerTy &&container) {
369
  return adl_detail::adl_end(std::forward<ContainerTy>(container));
370
}
371
 
372
template <typename T>
373
void adl_swap(T &&lhs, T &&rhs) noexcept(
374
    noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
375
  adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
376
}
377
 
378
/// Returns true if the given container only contains a single element.
379
template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
380
  auto B = std::begin(C), E = std::end(C);
381
  return B != E && std::next(B) == E;
382
}
383
 
384
/// Return a range covering \p RangeOrContainer with the first N elements
385
/// excluded.
386
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
387
  return make_range(std::next(adl_begin(RangeOrContainer), N),
388
                    adl_end(RangeOrContainer));
389
}
390
 
391
/// Return a range covering \p RangeOrContainer with the last N elements
392
/// excluded.
393
template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
394
  return make_range(adl_begin(RangeOrContainer),
395
                    std::prev(adl_end(RangeOrContainer), N));
396
}
397
 
398
// mapped_iterator - This is a simple iterator adapter that causes a function to
399
// be applied whenever operator* is invoked on the iterator.
400
 
401
template <typename ItTy, typename FuncTy,
402
          typename ReferenceTy =
403
              decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
404
class mapped_iterator
405
    : public iterator_adaptor_base<
406
          mapped_iterator<ItTy, FuncTy>, ItTy,
407
          typename std::iterator_traits<ItTy>::iterator_category,
408
          std::remove_reference_t<ReferenceTy>,
409
          typename std::iterator_traits<ItTy>::difference_type,
410
          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
411
public:
412
  mapped_iterator() = default;
413
  mapped_iterator(ItTy U, FuncTy F)
414
    : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
415
 
416
  ItTy getCurrent() { return this->I; }
417
 
418
  const FuncTy &getFunction() const { return F; }
419
 
420
  ReferenceTy operator*() const { return F(*this->I); }
421
 
422
private:
423
  callable_detail::Callable<FuncTy> F{};
424
};
425
 
426
// map_iterator - Provide a convenient way to create mapped_iterators, just like
427
// make_pair is useful for creating pairs...
428
template <class ItTy, class FuncTy>
429
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
430
  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
431
}
432
 
433
template <class ContainerTy, class FuncTy>
434
auto map_range(ContainerTy &&C, FuncTy F) {
435
  return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
436
}
437
 
438
/// A base type of mapped iterator, that is useful for building derived
439
/// iterators that do not need/want to store the map function (as in
440
/// mapped_iterator). These iterators must simply provide a `mapElement` method
441
/// that defines how to map a value of the iterator to the provided reference
442
/// type.
443
template <typename DerivedT, typename ItTy, typename ReferenceTy>
444
class mapped_iterator_base
445
    : public iterator_adaptor_base<
446
          DerivedT, ItTy,
447
          typename std::iterator_traits<ItTy>::iterator_category,
448
          std::remove_reference_t<ReferenceTy>,
449
          typename std::iterator_traits<ItTy>::difference_type,
450
          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
451
public:
452
  using BaseT = mapped_iterator_base;
453
 
454
  mapped_iterator_base(ItTy U)
455
      : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
456
 
457
  ItTy getCurrent() { return this->I; }
458
 
459
  ReferenceTy operator*() const {
460
    return static_cast<const DerivedT &>(*this).mapElement(*this->I);
461
  }
462
};
463
 
464
/// Helper to determine if type T has a member called rbegin().
465
template <typename Ty> class has_rbegin_impl {
466
  using yes = char[1];
467
  using no = char[2];
468
 
469
  template <typename Inner>
470
  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
471
 
472
  template <typename>
473
  static no& test(...);
474
 
475
public:
476
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
477
};
478
 
479
/// Metafunction to determine if T& or T has a member called rbegin().
480
template <typename Ty>
481
struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
482
 
483
// Returns an iterator_range over the given container which iterates in reverse.
484
template <typename ContainerTy> auto reverse(ContainerTy &&C) {
485
  if constexpr (has_rbegin<ContainerTy>::value)
486
    return make_range(C.rbegin(), C.rend());
487
  else
488
    return make_range(std::make_reverse_iterator(std::end(C)),
489
                      std::make_reverse_iterator(std::begin(C)));
490
}
491
 
492
/// An iterator adaptor that filters the elements of given inner iterators.
493
///
494
/// The predicate parameter should be a callable object that accepts the wrapped
495
/// iterator's reference type and returns a bool. When incrementing or
496
/// decrementing the iterator, it will call the predicate on each element and
497
/// skip any where it returns false.
498
///
499
/// \code
500
///   int A[] = { 1, 2, 3, 4 };
501
///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
502
///   // R contains { 1, 3 }.
503
/// \endcode
504
///
505
/// Note: filter_iterator_base implements support for forward iteration.
506
/// filter_iterator_impl exists to provide support for bidirectional iteration,
507
/// conditional on whether the wrapped iterator supports it.
508
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
509
class filter_iterator_base
510
    : public iterator_adaptor_base<
511
          filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
512
          WrappedIteratorT,
513
          std::common_type_t<IterTag,
514
                             typename std::iterator_traits<
515
                                 WrappedIteratorT>::iterator_category>> {
516
  using BaseT = typename filter_iterator_base::iterator_adaptor_base;
517
 
518
protected:
519
  WrappedIteratorT End;
520
  PredicateT Pred;
521
 
522
  void findNextValid() {
523
    while (this->I != End && !Pred(*this->I))
524
      BaseT::operator++();
525
  }
526
 
527
  filter_iterator_base() = default;
528
 
529
  // Construct the iterator. The begin iterator needs to know where the end
530
  // is, so that it can properly stop when it gets there. The end iterator only
531
  // needs the predicate to support bidirectional iteration.
532
  filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
533
                       PredicateT Pred)
534
      : BaseT(Begin), End(End), Pred(Pred) {
535
    findNextValid();
536
  }
537
 
538
public:
539
  using BaseT::operator++;
540
 
541
  filter_iterator_base &operator++() {
542
    BaseT::operator++();
543
    findNextValid();
544
    return *this;
545
  }
546
 
547
  decltype(auto) operator*() const {
548
    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
549
    return BaseT::operator*();
550
  }
551
 
552
  decltype(auto) operator->() const {
553
    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
554
    return BaseT::operator->();
555
  }
556
};
557
 
558
/// Specialization of filter_iterator_base for forward iteration only.
559
template <typename WrappedIteratorT, typename PredicateT,
560
          typename IterTag = std::forward_iterator_tag>
561
class filter_iterator_impl
562
    : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
563
public:
564
  filter_iterator_impl() = default;
565
 
566
  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
567
                       PredicateT Pred)
568
      : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
569
};
570
 
571
/// Specialization of filter_iterator_base for bidirectional iteration.
572
template <typename WrappedIteratorT, typename PredicateT>
573
class filter_iterator_impl<WrappedIteratorT, PredicateT,
574
                           std::bidirectional_iterator_tag>
575
    : public filter_iterator_base<WrappedIteratorT, PredicateT,
576
                                  std::bidirectional_iterator_tag> {
577
  using BaseT = typename filter_iterator_impl::filter_iterator_base;
578
 
579
  void findPrevValid() {
580
    while (!this->Pred(*this->I))
581
      BaseT::operator--();
582
  }
583
 
584
public:
585
  using BaseT::operator--;
586
 
587
  filter_iterator_impl() = default;
588
 
589
  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
590
                       PredicateT Pred)
591
      : BaseT(Begin, End, Pred) {}
592
 
593
  filter_iterator_impl &operator--() {
594
    BaseT::operator--();
595
    findPrevValid();
596
    return *this;
597
  }
598
};
599
 
600
namespace detail {
601
 
602
template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
603
  using type = std::forward_iterator_tag;
604
};
605
 
606
template <> struct fwd_or_bidi_tag_impl<true> {
607
  using type = std::bidirectional_iterator_tag;
608
};
609
 
610
/// Helper which sets its type member to forward_iterator_tag if the category
611
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
612
/// bidirectional_iterator_tag otherwise.
613
template <typename IterT> struct fwd_or_bidi_tag {
614
  using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
615
      std::bidirectional_iterator_tag,
616
      typename std::iterator_traits<IterT>::iterator_category>::value>::type;
617
};
618
 
619
} // namespace detail
620
 
621
/// Defines filter_iterator to a suitable specialization of
622
/// filter_iterator_impl, based on the underlying iterator's category.
623
template <typename WrappedIteratorT, typename PredicateT>
624
using filter_iterator = filter_iterator_impl<
625
    WrappedIteratorT, PredicateT,
626
    typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
627
 
628
/// Convenience function that takes a range of elements and a predicate,
629
/// and return a new filter_iterator range.
630
///
631
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
632
/// lifetime of that temporary is not kept by the returned range object, and the
633
/// temporary is going to be dropped on the floor after the make_iterator_range
634
/// full expression that contains this function call.
635
template <typename RangeT, typename PredicateT>
636
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
637
make_filter_range(RangeT &&Range, PredicateT Pred) {
638
  using FilterIteratorT =
639
      filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
640
  return make_range(
641
      FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
642
                      std::end(std::forward<RangeT>(Range)), Pred),
643
      FilterIteratorT(std::end(std::forward<RangeT>(Range)),
644
                      std::end(std::forward<RangeT>(Range)), Pred));
645
}
646
 
647
/// A pseudo-iterator adaptor that is designed to implement "early increment"
648
/// style loops.
649
///
650
/// This is *not a normal iterator* and should almost never be used directly. It
651
/// is intended primarily to be used with range based for loops and some range
652
/// algorithms.
653
///
654
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
655
/// somewhere between them. The constraints of these iterators are:
656
///
657
/// - On construction or after being incremented, it is comparable and
658
///   dereferencable. It is *not* incrementable.
659
/// - After being dereferenced, it is neither comparable nor dereferencable, it
660
///   is only incrementable.
661
///
662
/// This means you can only dereference the iterator once, and you can only
663
/// increment it once between dereferences.
664
template <typename WrappedIteratorT>
665
class early_inc_iterator_impl
666
    : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
667
                                   WrappedIteratorT, std::input_iterator_tag> {
668
  using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
669
 
670
  using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
671
 
672
protected:
673
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
674
  bool IsEarlyIncremented = false;
675
#endif
676
 
677
public:
678
  early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
679
 
680
  using BaseT::operator*;
681
  decltype(*std::declval<WrappedIteratorT>()) operator*() {
682
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
683
    assert(!IsEarlyIncremented && "Cannot dereference twice!");
684
    IsEarlyIncremented = true;
685
#endif
686
    return *(this->I)++;
687
  }
688
 
689
  using BaseT::operator++;
690
  early_inc_iterator_impl &operator++() {
691
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
692
    assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
693
    IsEarlyIncremented = false;
694
#endif
695
    return *this;
696
  }
697
 
698
  friend bool operator==(const early_inc_iterator_impl &LHS,
699
                         const early_inc_iterator_impl &RHS) {
700
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
701
    assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
702
#endif
703
    return (const BaseT &)LHS == (const BaseT &)RHS;
704
  }
705
};
706
 
707
/// Make a range that does early increment to allow mutation of the underlying
708
/// range without disrupting iteration.
709
///
710
/// The underlying iterator will be incremented immediately after it is
711
/// dereferenced, allowing deletion of the current node or insertion of nodes to
712
/// not disrupt iteration provided they do not invalidate the *next* iterator --
713
/// the current iterator can be invalidated.
714
///
715
/// This requires a very exact pattern of use that is only really suitable to
716
/// range based for loops and other range algorithms that explicitly guarantee
717
/// to dereference exactly once each element, and to increment exactly once each
718
/// element.
719
template <typename RangeT>
720
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
721
make_early_inc_range(RangeT &&Range) {
722
  using EarlyIncIteratorT =
723
      early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
724
  return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
725
                    EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
726
}
727
 
728
// Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
729
template <typename R, typename UnaryPredicate>
730
bool all_of(R &&range, UnaryPredicate P);
731
 
732
template <typename R, typename UnaryPredicate>
733
bool any_of(R &&range, UnaryPredicate P);
734
 
735
template <typename T> bool all_equal(std::initializer_list<T> Values);
736
 
737
namespace detail {
738
 
739
using std::declval;
740
 
741
// We have to alias this since inlining the actual type at the usage site
742
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
743
template<typename... Iters> struct ZipTupleType {
744
  using type = std::tuple<decltype(*declval<Iters>())...>;
745
};
746
 
747
template <typename ZipType, typename... Iters>
748
using zip_traits = iterator_facade_base<
749
    ZipType,
750
    std::common_type_t<
751
        std::bidirectional_iterator_tag,
752
        typename std::iterator_traits<Iters>::iterator_category...>,
753
    // ^ TODO: Implement random access methods.
754
    typename ZipTupleType<Iters...>::type,
755
    typename std::iterator_traits<
756
        std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
757
    // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
758
    // inner iterators have the same difference_type. It would fail if, for
759
    // instance, the second field's difference_type were non-numeric while the
760
    // first is.
761
    typename ZipTupleType<Iters...>::type *,
762
    typename ZipTupleType<Iters...>::type>;
763
 
764
template <typename ZipType, typename... Iters>
765
struct zip_common : public zip_traits<ZipType, Iters...> {
766
  using Base = zip_traits<ZipType, Iters...>;
767
  using value_type = typename Base::value_type;
768
 
769
  std::tuple<Iters...> iterators;
770
 
771
protected:
772
  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
773
    return value_type(*std::get<Ns>(iterators)...);
774
  }
775
 
776
  template <size_t... Ns>
777
  decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
778
    return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
779
  }
780
 
781
  template <size_t... Ns>
782
  decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
783
    return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
784
  }
785
 
786
  template <size_t... Ns>
787
  bool test_all_equals(const zip_common &other,
788
            std::index_sequence<Ns...>) const {
789
    return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
790
            ...);
791
  }
792
 
793
public:
794
  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
795
 
796
  value_type operator*() const {
797
    return deref(std::index_sequence_for<Iters...>{});
798
  }
799
 
800
  ZipType &operator++() {
801
    iterators = tup_inc(std::index_sequence_for<Iters...>{});
802
    return *reinterpret_cast<ZipType *>(this);
803
  }
804
 
805
  ZipType &operator--() {
806
    static_assert(Base::IsBidirectional,
807
                  "All inner iterators must be at least bidirectional.");
808
    iterators = tup_dec(std::index_sequence_for<Iters...>{});
809
    return *reinterpret_cast<ZipType *>(this);
810
  }
811
 
812
  /// Return true if all the iterator are matching `other`'s iterators.
813
  bool all_equals(zip_common &other) {
814
    return test_all_equals(other, std::index_sequence_for<Iters...>{});
815
  }
816
};
817
 
818
template <typename... Iters>
819
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
820
  using Base = zip_common<zip_first<Iters...>, Iters...>;
821
 
822
  bool operator==(const zip_first<Iters...> &other) const {
823
    return std::get<0>(this->iterators) == std::get<0>(other.iterators);
824
  }
825
 
826
  zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
827
};
828
 
829
template <typename... Iters>
830
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
831
  template <size_t... Ns>
832
  bool test(const zip_shortest<Iters...> &other,
833
            std::index_sequence<Ns...>) const {
834
    return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) &&
835
            ...);
836
  }
837
 
838
public:
839
  using Base = zip_common<zip_shortest<Iters...>, Iters...>;
840
 
841
  zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
842
 
843
  bool operator==(const zip_shortest<Iters...> &other) const {
844
    return !test(other, std::index_sequence_for<Iters...>{});
845
  }
846
};
847
 
848
template <template <typename...> class ItType, typename... Args> class zippy {
849
public:
850
  using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
851
  using iterator_category = typename iterator::iterator_category;
852
  using value_type = typename iterator::value_type;
853
  using difference_type = typename iterator::difference_type;
854
  using pointer = typename iterator::pointer;
855
  using reference = typename iterator::reference;
856
 
857
private:
858
  std::tuple<Args...> ts;
859
 
860
  template <size_t... Ns>
861
  iterator begin_impl(std::index_sequence<Ns...>) const {
862
    return iterator(std::begin(std::get<Ns>(ts))...);
863
  }
864
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
865
    return iterator(std::end(std::get<Ns>(ts))...);
866
  }
867
 
868
public:
869
  zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
870
 
871
  iterator begin() const {
872
    return begin_impl(std::index_sequence_for<Args...>{});
873
  }
874
  iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
875
};
876
 
877
} // end namespace detail
878
 
879
/// zip iterator for two or more iteratable types. Iteration continues until the
880
/// end of the *shortest* iteratee is reached.
881
template <typename T, typename U, typename... Args>
882
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
883
                                                       Args &&...args) {
884
  return detail::zippy<detail::zip_shortest, T, U, Args...>(
885
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
886
}
887
 
888
/// zip iterator that assumes that all iteratees have the same length.
889
/// In builds with assertions on, this assumption is checked before the
890
/// iteration starts.
891
template <typename T, typename U, typename... Args>
892
detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
893
                                                          Args &&...args) {
894
  assert(all_equal({std::distance(adl_begin(t), adl_end(t)),
895
                    std::distance(adl_begin(u), adl_end(u)),
896
                    std::distance(adl_begin(args), adl_end(args))...}) &&
897
         "Iteratees do not have equal length");
898
  return detail::zippy<detail::zip_first, T, U, Args...>(
899
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
900
}
901
 
902
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
903
/// be the shortest. Iteration continues until the end of the first iteratee is
904
/// reached. In builds with assertions on, we check that the assumption about
905
/// the first iteratee being the shortest holds.
906
template <typename T, typename U, typename... Args>
907
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
908
                                                          Args &&...args) {
909
  assert(std::distance(adl_begin(t), adl_end(t)) <=
910
             std::min({std::distance(adl_begin(u), adl_end(u)),
911
                       std::distance(adl_begin(args), adl_end(args))...}) &&
912
         "First iteratee is not the shortest");
913
 
914
  return detail::zippy<detail::zip_first, T, U, Args...>(
915
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
916
}
917
 
918
namespace detail {
919
template <typename Iter>
920
Iter next_or_end(const Iter &I, const Iter &End) {
921
  if (I == End)
922
    return End;
923
  return std::next(I);
924
}
925
 
926
template <typename Iter>
927
auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
928
    std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
929
  if (I == End)
930
    return std::nullopt;
931
  return *I;
932
}
933
 
934
template <typename Iter> struct ZipLongestItemType {
935
  using type = std::optional<std::remove_const_t<
936
      std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
937
};
938
 
939
template <typename... Iters> struct ZipLongestTupleType {
940
  using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
941
};
942
 
943
template <typename... Iters>
944
class zip_longest_iterator
945
    : public iterator_facade_base<
946
          zip_longest_iterator<Iters...>,
947
          std::common_type_t<
948
              std::forward_iterator_tag,
949
              typename std::iterator_traits<Iters>::iterator_category...>,
950
          typename ZipLongestTupleType<Iters...>::type,
951
          typename std::iterator_traits<
952
              std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
953
          typename ZipLongestTupleType<Iters...>::type *,
954
          typename ZipLongestTupleType<Iters...>::type> {
955
public:
956
  using value_type = typename ZipLongestTupleType<Iters...>::type;
957
 
958
private:
959
  std::tuple<Iters...> iterators;
960
  std::tuple<Iters...> end_iterators;
961
 
962
  template <size_t... Ns>
963
  bool test(const zip_longest_iterator<Iters...> &other,
964
            std::index_sequence<Ns...>) const {
965
    return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
966
            ...);
967
  }
968
 
969
  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
970
    return value_type(
971
        deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
972
  }
973
 
974
  template <size_t... Ns>
975
  decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
976
    return std::tuple<Iters...>(
977
        next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
978
  }
979
 
980
public:
981
  zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
982
      : iterators(std::forward<Iters>(ts.first)...),
983
        end_iterators(std::forward<Iters>(ts.second)...) {}
984
 
985
  value_type operator*() const {
986
    return deref(std::index_sequence_for<Iters...>{});
987
  }
988
 
989
  zip_longest_iterator<Iters...> &operator++() {
990
    iterators = tup_inc(std::index_sequence_for<Iters...>{});
991
    return *this;
992
  }
993
 
994
  bool operator==(const zip_longest_iterator<Iters...> &other) const {
995
    return !test(other, std::index_sequence_for<Iters...>{});
996
  }
997
};
998
 
999
template <typename... Args> class zip_longest_range {
1000
public:
1001
  using iterator =
1002
      zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
1003
  using iterator_category = typename iterator::iterator_category;
1004
  using value_type = typename iterator::value_type;
1005
  using difference_type = typename iterator::difference_type;
1006
  using pointer = typename iterator::pointer;
1007
  using reference = typename iterator::reference;
1008
 
1009
private:
1010
  std::tuple<Args...> ts;
1011
 
1012
  template <size_t... Ns>
1013
  iterator begin_impl(std::index_sequence<Ns...>) const {
1014
    return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
1015
                                   adl_end(std::get<Ns>(ts)))...);
1016
  }
1017
 
1018
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1019
    return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
1020
                                   adl_end(std::get<Ns>(ts)))...);
1021
  }
1022
 
1023
public:
1024
  zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
1025
 
1026
  iterator begin() const {
1027
    return begin_impl(std::index_sequence_for<Args...>{});
1028
  }
1029
  iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
1030
};
1031
} // namespace detail
1032
 
1033
/// Iterate over two or more iterators at the same time. Iteration continues
1034
/// until all iterators reach the end. The std::optional only contains a value
1035
/// if the iterator has not reached the end.
1036
template <typename T, typename U, typename... Args>
1037
detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1038
                                                     Args &&... args) {
1039
  return detail::zip_longest_range<T, U, Args...>(
1040
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1041
}
1042
 
1043
/// Iterator wrapper that concatenates sequences together.
1044
///
1045
/// This can concatenate different iterators, even with different types, into
1046
/// a single iterator provided the value types of all the concatenated
1047
/// iterators expose `reference` and `pointer` types that can be converted to
1048
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
1049
/// interesting/customized pointer or reference types.
1050
///
1051
/// Currently this only supports forward or higher iterator categories as
1052
/// inputs and always exposes a forward iterator interface.
1053
template <typename ValueT, typename... IterTs>
1054
class concat_iterator
1055
    : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1056
                                  std::forward_iterator_tag, ValueT> {
1057
  using BaseT = typename concat_iterator::iterator_facade_base;
1058
 
1059
  /// We store both the current and end iterators for each concatenated
1060
  /// sequence in a tuple of pairs.
1061
  ///
1062
  /// Note that something like iterator_range seems nice at first here, but the
1063
  /// range properties are of little benefit and end up getting in the way
1064
  /// because we need to do mutation on the current iterators.
1065
  std::tuple<IterTs...> Begins;
1066
  std::tuple<IterTs...> Ends;
1067
 
1068
  /// Attempts to increment a specific iterator.
1069
  ///
1070
  /// Returns true if it was able to increment the iterator. Returns false if
1071
  /// the iterator is already at the end iterator.
1072
  template <size_t Index> bool incrementHelper() {
1073
    auto &Begin = std::get<Index>(Begins);
1074
    auto &End = std::get<Index>(Ends);
1075
    if (Begin == End)
1076
      return false;
1077
 
1078
    ++Begin;
1079
    return true;
1080
  }
1081
 
1082
  /// Increments the first non-end iterator.
1083
  ///
1084
  /// It is an error to call this with all iterators at the end.
1085
  template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1086
    // Build a sequence of functions to increment each iterator if possible.
1087
    bool (concat_iterator::*IncrementHelperFns[])() = {
1088
        &concat_iterator::incrementHelper<Ns>...};
1089
 
1090
    // Loop over them, and stop as soon as we succeed at incrementing one.
1091
    for (auto &IncrementHelperFn : IncrementHelperFns)
1092
      if ((this->*IncrementHelperFn)())
1093
        return;
1094
 
1095
    llvm_unreachable("Attempted to increment an end concat iterator!");
1096
  }
1097
 
1098
  /// Returns null if the specified iterator is at the end. Otherwise,
1099
  /// dereferences the iterator and returns the address of the resulting
1100
  /// reference.
1101
  template <size_t Index> ValueT *getHelper() const {
1102
    auto &Begin = std::get<Index>(Begins);
1103
    auto &End = std::get<Index>(Ends);
1104
    if (Begin == End)
1105
      return nullptr;
1106
 
1107
    return &*Begin;
1108
  }
1109
 
1110
  /// Finds the first non-end iterator, dereferences, and returns the resulting
1111
  /// reference.
1112
  ///
1113
  /// It is an error to call this with all iterators at the end.
1114
  template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1115
    // Build a sequence of functions to get from iterator if possible.
1116
    ValueT *(concat_iterator::*GetHelperFns[])() const = {
1117
        &concat_iterator::getHelper<Ns>...};
1118
 
1119
    // Loop over them, and return the first result we find.
1120
    for (auto &GetHelperFn : GetHelperFns)
1121
      if (ValueT *P = (this->*GetHelperFn)())
1122
        return *P;
1123
 
1124
    llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1125
  }
1126
 
1127
public:
1128
  /// Constructs an iterator from a sequence of ranges.
1129
  ///
1130
  /// We need the full range to know how to switch between each of the
1131
  /// iterators.
1132
  template <typename... RangeTs>
1133
  explicit concat_iterator(RangeTs &&... Ranges)
1134
      : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1135
 
1136
  using BaseT::operator++;
1137
 
1138
  concat_iterator &operator++() {
1139
    increment(std::index_sequence_for<IterTs...>());
1140
    return *this;
1141
  }
1142
 
1143
  ValueT &operator*() const {
1144
    return get(std::index_sequence_for<IterTs...>());
1145
  }
1146
 
1147
  bool operator==(const concat_iterator &RHS) const {
1148
    return Begins == RHS.Begins && Ends == RHS.Ends;
1149
  }
1150
};
1151
 
1152
namespace detail {
1153
 
1154
/// Helper to store a sequence of ranges being concatenated and access them.
1155
///
1156
/// This is designed to facilitate providing actual storage when temporaries
1157
/// are passed into the constructor such that we can use it as part of range
1158
/// based for loops.
1159
template <typename ValueT, typename... RangeTs> class concat_range {
1160
public:
1161
  using iterator =
1162
      concat_iterator<ValueT,
1163
                      decltype(std::begin(std::declval<RangeTs &>()))...>;
1164
 
1165
private:
1166
  std::tuple<RangeTs...> Ranges;
1167
 
1168
  template <size_t... Ns>
1169
  iterator begin_impl(std::index_sequence<Ns...>) {
1170
    return iterator(std::get<Ns>(Ranges)...);
1171
  }
1172
  template <size_t... Ns>
1173
  iterator begin_impl(std::index_sequence<Ns...>) const {
1174
    return iterator(std::get<Ns>(Ranges)...);
1175
  }
1176
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1177
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1178
                               std::end(std::get<Ns>(Ranges)))...);
1179
  }
1180
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1181
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1182
                               std::end(std::get<Ns>(Ranges)))...);
1183
  }
1184
 
1185
public:
1186
  concat_range(RangeTs &&... Ranges)
1187
      : Ranges(std::forward<RangeTs>(Ranges)...) {}
1188
 
1189
  iterator begin() {
1190
    return begin_impl(std::index_sequence_for<RangeTs...>{});
1191
  }
1192
  iterator begin() const {
1193
    return begin_impl(std::index_sequence_for<RangeTs...>{});
1194
  }
1195
  iterator end() {
1196
    return end_impl(std::index_sequence_for<RangeTs...>{});
1197
  }
1198
  iterator end() const {
1199
    return end_impl(std::index_sequence_for<RangeTs...>{});
1200
  }
1201
};
1202
 
1203
} // end namespace detail
1204
 
1205
/// Concatenated range across two or more ranges.
1206
///
1207
/// The desired value type must be explicitly specified.
1208
template <typename ValueT, typename... RangeTs>
1209
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1210
  static_assert(sizeof...(RangeTs) > 1,
1211
                "Need more than one range to concatenate!");
1212
  return detail::concat_range<ValueT, RangeTs...>(
1213
      std::forward<RangeTs>(Ranges)...);
1214
}
1215
 
1216
/// A utility class used to implement an iterator that contains some base object
1217
/// and an index. The iterator moves the index but keeps the base constant.
1218
template <typename DerivedT, typename BaseT, typename T,
1219
          typename PointerT = T *, typename ReferenceT = T &>
1220
class indexed_accessor_iterator
1221
    : public llvm::iterator_facade_base<DerivedT,
1222
                                        std::random_access_iterator_tag, T,
1223
                                        std::ptrdiff_t, PointerT, ReferenceT> {
1224
public:
1225
  ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1226
    assert(base == rhs.base && "incompatible iterators");
1227
    return index - rhs.index;
1228
  }
1229
  bool operator==(const indexed_accessor_iterator &rhs) const {
1230
    return base == rhs.base && index == rhs.index;
1231
  }
1232
  bool operator<(const indexed_accessor_iterator &rhs) const {
1233
    assert(base == rhs.base && "incompatible iterators");
1234
    return index < rhs.index;
1235
  }
1236
 
1237
  DerivedT &operator+=(ptrdiff_t offset) {
1238
    this->index += offset;
1239
    return static_cast<DerivedT &>(*this);
1240
  }
1241
  DerivedT &operator-=(ptrdiff_t offset) {
1242
    this->index -= offset;
1243
    return static_cast<DerivedT &>(*this);
1244
  }
1245
 
1246
  /// Returns the current index of the iterator.
1247
  ptrdiff_t getIndex() const { return index; }
1248
 
1249
  /// Returns the current base of the iterator.
1250
  const BaseT &getBase() const { return base; }
1251
 
1252
protected:
1253
  indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1254
      : base(base), index(index) {}
1255
  BaseT base;
1256
  ptrdiff_t index;
1257
};
1258
 
1259
namespace detail {
1260
/// The class represents the base of a range of indexed_accessor_iterators. It
1261
/// provides support for many different range functionalities, e.g.
1262
/// drop_front/slice/etc.. Derived range classes must implement the following
1263
/// static methods:
1264
///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1265
///     - Dereference an iterator pointing to the base object at the given
1266
///       index.
1267
///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1268
///     - Return a new base that is offset from the provide base by 'index'
1269
///       elements.
1270
template <typename DerivedT, typename BaseT, typename T,
1271
          typename PointerT = T *, typename ReferenceT = T &>
1272
class indexed_accessor_range_base {
1273
public:
1274
  using RangeBaseT = indexed_accessor_range_base;
1275
 
1276
  /// An iterator element of this range.
1277
  class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1278
                                                    PointerT, ReferenceT> {
1279
  public:
1280
    // Index into this iterator, invoking a static method on the derived type.
1281
    ReferenceT operator*() const {
1282
      return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1283
    }
1284
 
1285
  private:
1286
    iterator(BaseT owner, ptrdiff_t curIndex)
1287
        : iterator::indexed_accessor_iterator(owner, curIndex) {}
1288
 
1289
    /// Allow access to the constructor.
1290
    friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1291
                                       ReferenceT>;
1292
  };
1293
 
1294
  indexed_accessor_range_base(iterator begin, iterator end)
1295
      : base(offset_base(begin.getBase(), begin.getIndex())),
1296
        count(end.getIndex() - begin.getIndex()) {}
1297
  indexed_accessor_range_base(const iterator_range<iterator> &range)
1298
      : indexed_accessor_range_base(range.begin(), range.end()) {}
1299
  indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1300
      : base(base), count(count) {}
1301
 
1302
  iterator begin() const { return iterator(base, 0); }
1303
  iterator end() const { return iterator(base, count); }
1304
  ReferenceT operator[](size_t Index) const {
1305
    assert(Index < size() && "invalid index for value range");
1306
    return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1307
  }
1308
  ReferenceT front() const {
1309
    assert(!empty() && "expected non-empty range");
1310
    return (*this)[0];
1311
  }
1312
  ReferenceT back() const {
1313
    assert(!empty() && "expected non-empty range");
1314
    return (*this)[size() - 1];
1315
  }
1316
 
1317
  /// Compare this range with another.
1318
  template <typename OtherT>
1319
  friend bool operator==(const indexed_accessor_range_base &lhs,
1320
                         const OtherT &rhs) {
1321
    return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1322
  }
1323
  template <typename OtherT>
1324
  friend bool operator!=(const indexed_accessor_range_base &lhs,
1325
                         const OtherT &rhs) {
1326
    return !(lhs == rhs);
1327
  }
1328
 
1329
  /// Return the size of this range.
1330
  size_t size() const { return count; }
1331
 
1332
  /// Return if the range is empty.
1333
  bool empty() const { return size() == 0; }
1334
 
1335
  /// Drop the first N elements, and keep M elements.
1336
  DerivedT slice(size_t n, size_t m) const {
1337
    assert(n + m <= size() && "invalid size specifiers");
1338
    return DerivedT(offset_base(base, n), m);
1339
  }
1340
 
1341
  /// Drop the first n elements.
1342
  DerivedT drop_front(size_t n = 1) const {
1343
    assert(size() >= n && "Dropping more elements than exist");
1344
    return slice(n, size() - n);
1345
  }
1346
  /// Drop the last n elements.
1347
  DerivedT drop_back(size_t n = 1) const {
1348
    assert(size() >= n && "Dropping more elements than exist");
1349
    return DerivedT(base, size() - n);
1350
  }
1351
 
1352
  /// Take the first n elements.
1353
  DerivedT take_front(size_t n = 1) const {
1354
    return n < size() ? drop_back(size() - n)
1355
                      : static_cast<const DerivedT &>(*this);
1356
  }
1357
 
1358
  /// Take the last n elements.
1359
  DerivedT take_back(size_t n = 1) const {
1360
    return n < size() ? drop_front(size() - n)
1361
                      : static_cast<const DerivedT &>(*this);
1362
  }
1363
 
1364
  /// Allow conversion to any type accepting an iterator_range.
1365
  template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1366
                                 RangeT, iterator_range<iterator>>::value>>
1367
  operator RangeT() const {
1368
    return RangeT(iterator_range<iterator>(*this));
1369
  }
1370
 
1371
  /// Returns the base of this range.
1372
  const BaseT &getBase() const { return base; }
1373
 
1374
private:
1375
  /// Offset the given base by the given amount.
1376
  static BaseT offset_base(const BaseT &base, size_t n) {
1377
    return n == 0 ? base : DerivedT::offset_base(base, n);
1378
  }
1379
 
1380
protected:
1381
  indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1382
  indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1383
  indexed_accessor_range_base &
1384
  operator=(const indexed_accessor_range_base &) = default;
1385
 
1386
  /// The base that owns the provided range of values.
1387
  BaseT base;
1388
  /// The size from the owning range.
1389
  ptrdiff_t count;
1390
};
1391
} // end namespace detail
1392
 
1393
/// This class provides an implementation of a range of
1394
/// indexed_accessor_iterators where the base is not indexable. Ranges with
1395
/// bases that are offsetable should derive from indexed_accessor_range_base
1396
/// instead. Derived range classes are expected to implement the following
1397
/// static method:
1398
///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1399
///     - Dereference an iterator pointing to a parent base at the given index.
1400
template <typename DerivedT, typename BaseT, typename T,
1401
          typename PointerT = T *, typename ReferenceT = T &>
1402
class indexed_accessor_range
1403
    : public detail::indexed_accessor_range_base<
1404
          DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1405
public:
1406
  indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1407
      : detail::indexed_accessor_range_base<
1408
            DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1409
            std::make_pair(base, startIndex), count) {}
1410
  using detail::indexed_accessor_range_base<
1411
      DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1412
      ReferenceT>::indexed_accessor_range_base;
1413
 
1414
  /// Returns the current base of the range.
1415
  const BaseT &getBase() const { return this->base.first; }
1416
 
1417
  /// Returns the current start index of the range.
1418
  ptrdiff_t getStartIndex() const { return this->base.second; }
1419
 
1420
  /// See `detail::indexed_accessor_range_base` for details.
1421
  static std::pair<BaseT, ptrdiff_t>
1422
  offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1423
    // We encode the internal base as a pair of the derived base and a start
1424
    // index into the derived base.
1425
    return std::make_pair(base.first, base.second + index);
1426
  }
1427
  /// See `detail::indexed_accessor_range_base` for details.
1428
  static ReferenceT
1429
  dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1430
                       ptrdiff_t index) {
1431
    return DerivedT::dereference(base.first, base.second + index);
1432
  }
1433
};
1434
 
1435
namespace detail {
1436
/// Return a reference to the first or second member of a reference. Otherwise,
1437
/// return a copy of the member of a temporary.
1438
///
1439
/// When passing a range whose iterators return values instead of references,
1440
/// the reference must be dropped from `decltype((elt.first))`, which will
1441
/// always be a reference, to avoid returning a reference to a temporary.
1442
template <typename EltTy, typename FirstTy> class first_or_second_type {
1443
public:
1444
  using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1445
                                  std::remove_reference_t<FirstTy>>;
1446
};
1447
} // end namespace detail
1448
 
1449
/// Given a container of pairs, return a range over the first elements.
1450
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1451
  using EltTy = decltype((*std::begin(c)));
1452
  return llvm::map_range(std::forward<ContainerTy>(c),
1453
                         [](EltTy elt) -> typename detail::first_or_second_type<
1454
                                           EltTy, decltype((elt.first))>::type {
1455
                           return elt.first;
1456
                         });
1457
}
1458
 
1459
/// Given a container of pairs, return a range over the second elements.
1460
template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1461
  using EltTy = decltype((*std::begin(c)));
1462
  return llvm::map_range(
1463
      std::forward<ContainerTy>(c),
1464
      [](EltTy elt) ->
1465
      typename detail::first_or_second_type<EltTy,
1466
                                            decltype((elt.second))>::type {
1467
        return elt.second;
1468
      });
1469
}
1470
 
1471
//===----------------------------------------------------------------------===//
1472
//     Extra additions to <utility>
1473
//===----------------------------------------------------------------------===//
1474
 
1475
/// Function object to check whether the first component of a std::pair
1476
/// compares less than the first component of another std::pair.
1477
struct less_first {
1478
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1479
    return std::less<>()(lhs.first, rhs.first);
1480
  }
1481
};
1482
 
1483
/// Function object to check whether the second component of a std::pair
1484
/// compares less than the second component of another std::pair.
1485
struct less_second {
1486
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1487
    return std::less<>()(lhs.second, rhs.second);
1488
  }
1489
};
1490
 
1491
/// \brief Function object to apply a binary function to the first component of
1492
/// a std::pair.
1493
template<typename FuncTy>
1494
struct on_first {
1495
  FuncTy func;
1496
 
1497
  template <typename T>
1498
  decltype(auto) operator()(const T &lhs, const T &rhs) const {
1499
    return func(lhs.first, rhs.first);
1500
  }
1501
};
1502
 
1503
/// Utility type to build an inheritance chain that makes it easy to rank
1504
/// overload candidates.
1505
template <int N> struct rank : rank<N - 1> {};
1506
template <> struct rank<0> {};
1507
 
1508
/// traits class for checking whether type T is one of any of the given
1509
/// types in the variadic list.
1510
template <typename T, typename... Ts>
1511
using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
1512
 
1513
/// traits class for checking whether type T is a base class for all
1514
///  the given types in the variadic list.
1515
template <typename T, typename... Ts>
1516
using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
1517
 
1518
namespace detail {
1519
template <typename... Ts> struct Visitor;
1520
 
1521
template <typename HeadT, typename... TailTs>
1522
struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1523
  explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1524
      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1525
        Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1526
  using remove_cvref_t<HeadT>::operator();
1527
  using Visitor<TailTs...>::operator();
1528
};
1529
 
1530
template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1531
  explicit constexpr Visitor(HeadT &&Head)
1532
      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1533
  using remove_cvref_t<HeadT>::operator();
1534
};
1535
} // namespace detail
1536
 
1537
/// Returns an opaquely-typed Callable object whose operator() overload set is
1538
/// the sum of the operator() overload sets of each CallableT in CallableTs.
1539
///
1540
/// The type of the returned object derives from each CallableT in CallableTs.
1541
/// The returned object is constructed by invoking the appropriate copy or move
1542
/// constructor of each CallableT, as selected by overload resolution on the
1543
/// corresponding argument to makeVisitor.
1544
///
1545
/// Example:
1546
///
1547
/// \code
1548
/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1549
///                            [](int i) { return "int"; },
1550
///                            [](std::string s) { return "str"; });
1551
/// auto a = visitor(42);    // `a` is now "int".
1552
/// auto b = visitor("foo"); // `b` is now "str".
1553
/// auto c = visitor(3.14f); // `c` is now "unhandled type".
1554
/// \endcode
1555
///
1556
/// Example of making a visitor with a lambda which captures a move-only type:
1557
///
1558
/// \code
1559
/// std::unique_ptr<FooHandler> FH = /* ... */;
1560
/// auto visitor = makeVisitor(
1561
///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1562
///     [](int i) { return i; },
1563
///     [](std::string s) { return atoi(s); });
1564
/// \endcode
1565
template <typename... CallableTs>
1566
constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1567
  return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1568
}
1569
 
1570
//===----------------------------------------------------------------------===//
1571
//     Extra additions to <algorithm>
1572
//===----------------------------------------------------------------------===//
1573
 
1574
// We have a copy here so that LLVM behaves the same when using different
1575
// standard libraries.
1576
template <class Iterator, class RNG>
1577
void shuffle(Iterator first, Iterator last, RNG &&g) {
1578
  // It would be better to use a std::uniform_int_distribution,
1579
  // but that would be stdlib dependent.
1580
  typedef
1581
      typename std::iterator_traits<Iterator>::difference_type difference_type;
1582
  for (auto size = last - first; size > 1; ++first, (void)--size) {
1583
    difference_type offset = g() % size;
1584
    // Avoid self-assignment due to incorrect assertions in libstdc++
1585
    // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1586
    if (offset != difference_type(0))
1587
      std::iter_swap(first, first + offset);
1588
  }
1589
}
1590
 
1591
/// Adapt std::less<T> for array_pod_sort.
1592
template<typename T>
1593
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1594
  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1595
                     *reinterpret_cast<const T*>(P2)))
1596
    return -1;
1597
  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1598
                     *reinterpret_cast<const T*>(P1)))
1599
    return 1;
1600
  return 0;
1601
}
1602
 
1603
/// get_array_pod_sort_comparator - This is an internal helper function used to
1604
/// get type deduction of T right.
1605
template<typename T>
1606
inline int (*get_array_pod_sort_comparator(const T &))
1607
             (const void*, const void*) {
1608
  return array_pod_sort_comparator<T>;
1609
}
1610
 
1611
#ifdef EXPENSIVE_CHECKS
1612
namespace detail {
1613
 
1614
inline unsigned presortShuffleEntropy() {
1615
  static unsigned Result(std::random_device{}());
1616
  return Result;
1617
}
1618
 
1619
template <class IteratorTy>
1620
inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1621
  std::mt19937 Generator(presortShuffleEntropy());
1622
  llvm::shuffle(Start, End, Generator);
1623
}
1624
 
1625
} // end namespace detail
1626
#endif
1627
 
1628
/// array_pod_sort - This sorts an array with the specified start and end
1629
/// extent.  This is just like std::sort, except that it calls qsort instead of
1630
/// using an inlined template.  qsort is slightly slower than std::sort, but
1631
/// most sorts are not performance critical in LLVM and std::sort has to be
1632
/// template instantiated for each type, leading to significant measured code
1633
/// bloat.  This function should generally be used instead of std::sort where
1634
/// possible.
1635
///
1636
/// This function assumes that you have simple POD-like types that can be
1637
/// compared with std::less and can be moved with memcpy.  If this isn't true,
1638
/// you should use std::sort.
1639
///
1640
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1641
/// default to std::less.
1642
template<class IteratorTy>
1643
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1644
  // Don't inefficiently call qsort with one element or trigger undefined
1645
  // behavior with an empty sequence.
1646
  auto NElts = End - Start;
1647
  if (NElts <= 1) return;
1648
#ifdef EXPENSIVE_CHECKS
1649
  detail::presortShuffle<IteratorTy>(Start, End);
1650
#endif
1651
  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1652
}
1653
 
1654
template <class IteratorTy>
1655
inline void array_pod_sort(
1656
    IteratorTy Start, IteratorTy End,
1657
    int (*Compare)(
1658
        const typename std::iterator_traits<IteratorTy>::value_type *,
1659
        const typename std::iterator_traits<IteratorTy>::value_type *)) {
1660
  // Don't inefficiently call qsort with one element or trigger undefined
1661
  // behavior with an empty sequence.
1662
  auto NElts = End - Start;
1663
  if (NElts <= 1) return;
1664
#ifdef EXPENSIVE_CHECKS
1665
  detail::presortShuffle<IteratorTy>(Start, End);
1666
#endif
1667
  qsort(&*Start, NElts, sizeof(*Start),
1668
        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1669
}
1670
 
1671
namespace detail {
1672
template <typename T>
1673
// We can use qsort if the iterator type is a pointer and the underlying value
1674
// is trivially copyable.
1675
using sort_trivially_copyable = std::conjunction<
1676
    std::is_pointer<T>,
1677
    std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1678
} // namespace detail
1679
 
1680
// Provide wrappers to std::sort which shuffle the elements before sorting
1681
// to help uncover non-deterministic behavior (PR35135).
1682
template <typename IteratorTy>
1683
inline void sort(IteratorTy Start, IteratorTy End) {
1684
  if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1685
    // Forward trivially copyable types to array_pod_sort. This avoids a large
1686
    // amount of code bloat for a minor performance hit.
1687
    array_pod_sort(Start, End);
1688
  } else {
1689
#ifdef EXPENSIVE_CHECKS
1690
    detail::presortShuffle<IteratorTy>(Start, End);
1691
#endif
1692
    std::sort(Start, End);
1693
  }
1694
}
1695
 
1696
template <typename Container> inline void sort(Container &&C) {
1697
  llvm::sort(adl_begin(C), adl_end(C));
1698
}
1699
 
1700
template <typename IteratorTy, typename Compare>
1701
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1702
#ifdef EXPENSIVE_CHECKS
1703
  detail::presortShuffle<IteratorTy>(Start, End);
1704
#endif
1705
  std::sort(Start, End, Comp);
1706
}
1707
 
1708
template <typename Container, typename Compare>
1709
inline void sort(Container &&C, Compare Comp) {
1710
  llvm::sort(adl_begin(C), adl_end(C), Comp);
1711
}
1712
 
1713
/// Get the size of a range. This is a wrapper function around std::distance
1714
/// which is only enabled when the operation is O(1).
1715
template <typename R>
1716
auto size(R &&Range,
1717
          std::enable_if_t<
1718
              std::is_base_of<std::random_access_iterator_tag,
1719
                              typename std::iterator_traits<decltype(
1720
                                  Range.begin())>::iterator_category>::value,
1721
              void> * = nullptr) {
1722
  return std::distance(Range.begin(), Range.end());
1723
}
1724
 
1725
/// Provide wrappers to std::for_each which take ranges instead of having to
1726
/// pass begin/end explicitly.
1727
template <typename R, typename UnaryFunction>
1728
UnaryFunction for_each(R &&Range, UnaryFunction F) {
1729
  return std::for_each(adl_begin(Range), adl_end(Range), F);
1730
}
1731
 
1732
/// Provide wrappers to std::all_of which take ranges instead of having to pass
1733
/// begin/end explicitly.
1734
template <typename R, typename UnaryPredicate>
1735
bool all_of(R &&Range, UnaryPredicate P) {
1736
  return std::all_of(adl_begin(Range), adl_end(Range), P);
1737
}
1738
 
1739
/// Provide wrappers to std::any_of which take ranges instead of having to pass
1740
/// begin/end explicitly.
1741
template <typename R, typename UnaryPredicate>
1742
bool any_of(R &&Range, UnaryPredicate P) {
1743
  return std::any_of(adl_begin(Range), adl_end(Range), P);
1744
}
1745
 
1746
/// Provide wrappers to std::none_of which take ranges instead of having to pass
1747
/// begin/end explicitly.
1748
template <typename R, typename UnaryPredicate>
1749
bool none_of(R &&Range, UnaryPredicate P) {
1750
  return std::none_of(adl_begin(Range), adl_end(Range), P);
1751
}
1752
 
1753
/// Provide wrappers to std::find which take ranges instead of having to pass
1754
/// begin/end explicitly.
1755
template <typename R, typename T> auto find(R &&Range, const T &Val) {
1756
  return std::find(adl_begin(Range), adl_end(Range), Val);
1757
}
1758
 
1759
/// Provide wrappers to std::find_if which take ranges instead of having to pass
1760
/// begin/end explicitly.
1761
template <typename R, typename UnaryPredicate>
1762
auto find_if(R &&Range, UnaryPredicate P) {
1763
  return std::find_if(adl_begin(Range), adl_end(Range), P);
1764
}
1765
 
1766
template <typename R, typename UnaryPredicate>
1767
auto find_if_not(R &&Range, UnaryPredicate P) {
1768
  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1769
}
1770
 
1771
/// Provide wrappers to std::remove_if which take ranges instead of having to
1772
/// pass begin/end explicitly.
1773
template <typename R, typename UnaryPredicate>
1774
auto remove_if(R &&Range, UnaryPredicate P) {
1775
  return std::remove_if(adl_begin(Range), adl_end(Range), P);
1776
}
1777
 
1778
/// Provide wrappers to std::copy_if which take ranges instead of having to
1779
/// pass begin/end explicitly.
1780
template <typename R, typename OutputIt, typename UnaryPredicate>
1781
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1782
  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1783
}
1784
 
1785
/// Return the single value in \p Range that satisfies
1786
/// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1787
/// when no values or multiple values were found.
1788
/// When \p AllowRepeats is true, multiple values that compare equal
1789
/// are allowed.
1790
template <typename T, typename R, typename Predicate>
1791
T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1792
  T *RC = nullptr;
1793
  for (auto *A : Range) {
1794
    if (T *PRC = P(A, AllowRepeats)) {
1795
      if (RC) {
1796
        if (!AllowRepeats || PRC != RC)
1797
          return nullptr;
1798
      } else
1799
        RC = PRC;
1800
    }
1801
  }
1802
  return RC;
1803
}
1804
 
1805
/// Return a pair consisting of the single value in \p Range that satisfies
1806
/// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1807
/// nullptr when no values or multiple values were found, and a bool indicating
1808
/// whether multiple values were found to cause the nullptr.
1809
/// When \p AllowRepeats is true, multiple values that compare equal are
1810
/// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1811
/// singleton while the bool indicates whether multiples have already been
1812
/// found.  It is expected that first will be nullptr when second is true.
1813
/// This allows using find_singleton_nested within the predicate \P.
1814
template <typename T, typename R, typename Predicate>
1815
std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1816
                                           bool AllowRepeats = false) {
1817
  T *RC = nullptr;
1818
  for (auto *A : Range) {
1819
    std::pair<T *, bool> PRC = P(A, AllowRepeats);
1820
    if (PRC.second) {
1821
      assert(PRC.first == nullptr &&
1822
             "Inconsistent return values in find_singleton_nested.");
1823
      return PRC;
1824
    }
1825
    if (PRC.first) {
1826
      if (RC) {
1827
        if (!AllowRepeats || PRC.first != RC)
1828
          return {nullptr, true};
1829
      } else
1830
        RC = PRC.first;
1831
    }
1832
  }
1833
  return {RC, false};
1834
}
1835
 
1836
template <typename R, typename OutputIt>
1837
OutputIt copy(R &&Range, OutputIt Out) {
1838
  return std::copy(adl_begin(Range), adl_end(Range), Out);
1839
}
1840
 
1841
/// Provide wrappers to std::replace_copy_if which take ranges instead of having
1842
/// to pass begin/end explicitly.
1843
template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1844
OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1845
                         const T &NewValue) {
1846
  return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1847
                              NewValue);
1848
}
1849
 
1850
/// Provide wrappers to std::replace_copy which take ranges instead of having to
1851
/// pass begin/end explicitly.
1852
template <typename R, typename OutputIt, typename T>
1853
OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1854
                      const T &NewValue) {
1855
  return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1856
                           NewValue);
1857
}
1858
 
1859
/// Provide wrappers to std::move which take ranges instead of having to
1860
/// pass begin/end explicitly.
1861
template <typename R, typename OutputIt>
1862
OutputIt move(R &&Range, OutputIt Out) {
1863
  return std::move(adl_begin(Range), adl_end(Range), Out);
1864
}
1865
 
1866
/// Wrapper function around std::find to detect if an element exists
1867
/// in a container.
1868
template <typename R, typename E>
1869
bool is_contained(R &&Range, const E &Element) {
1870
  return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1871
}
1872
 
1873
template <typename T>
1874
constexpr bool is_contained(std::initializer_list<T> Set, T Value) {
1875
  // TODO: Use std::find when we switch to C++20.
1876
  for (T V : Set)
1877
    if (V == Value)
1878
      return true;
1879
  return false;
1880
}
1881
 
1882
/// Wrapper function around std::is_sorted to check if elements in a range \p R
1883
/// are sorted with respect to a comparator \p C.
1884
template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1885
  return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1886
}
1887
 
1888
/// Wrapper function around std::is_sorted to check if elements in a range \p R
1889
/// are sorted in non-descending order.
1890
template <typename R> bool is_sorted(R &&Range) {
1891
  return std::is_sorted(adl_begin(Range), adl_end(Range));
1892
}
1893
 
1894
/// Wrapper function around std::count to count the number of times an element
1895
/// \p Element occurs in the given range \p Range.
1896
template <typename R, typename E> auto count(R &&Range, const E &Element) {
1897
  return std::count(adl_begin(Range), adl_end(Range), Element);
1898
}
1899
 
1900
/// Wrapper function around std::count_if to count the number of times an
1901
/// element satisfying a given predicate occurs in a range.
1902
template <typename R, typename UnaryPredicate>
1903
auto count_if(R &&Range, UnaryPredicate P) {
1904
  return std::count_if(adl_begin(Range), adl_end(Range), P);
1905
}
1906
 
1907
/// Wrapper function around std::transform to apply a function to a range and
1908
/// store the result elsewhere.
1909
template <typename R, typename OutputIt, typename UnaryFunction>
1910
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1911
  return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1912
}
1913
 
1914
/// Provide wrappers to std::partition which take ranges instead of having to
1915
/// pass begin/end explicitly.
1916
template <typename R, typename UnaryPredicate>
1917
auto partition(R &&Range, UnaryPredicate P) {
1918
  return std::partition(adl_begin(Range), adl_end(Range), P);
1919
}
1920
 
1921
/// Provide wrappers to std::lower_bound which take ranges instead of having to
1922
/// pass begin/end explicitly.
1923
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1924
  return std::lower_bound(adl_begin(Range), adl_end(Range),
1925
                          std::forward<T>(Value));
1926
}
1927
 
1928
template <typename R, typename T, typename Compare>
1929
auto lower_bound(R &&Range, T &&Value, Compare C) {
1930
  return std::lower_bound(adl_begin(Range), adl_end(Range),
1931
                          std::forward<T>(Value), C);
1932
}
1933
 
1934
/// Provide wrappers to std::upper_bound which take ranges instead of having to
1935
/// pass begin/end explicitly.
1936
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1937
  return std::upper_bound(adl_begin(Range), adl_end(Range),
1938
                          std::forward<T>(Value));
1939
}
1940
 
1941
template <typename R, typename T, typename Compare>
1942
auto upper_bound(R &&Range, T &&Value, Compare C) {
1943
  return std::upper_bound(adl_begin(Range), adl_end(Range),
1944
                          std::forward<T>(Value), C);
1945
}
1946
 
1947
template <typename R>
1948
void stable_sort(R &&Range) {
1949
  std::stable_sort(adl_begin(Range), adl_end(Range));
1950
}
1951
 
1952
template <typename R, typename Compare>
1953
void stable_sort(R &&Range, Compare C) {
1954
  std::stable_sort(adl_begin(Range), adl_end(Range), C);
1955
}
1956
 
1957
/// Binary search for the first iterator in a range where a predicate is false.
1958
/// Requires that C is always true below some limit, and always false above it.
1959
template <typename R, typename Predicate,
1960
          typename Val = decltype(*adl_begin(std::declval<R>()))>
1961
auto partition_point(R &&Range, Predicate P) {
1962
  return std::partition_point(adl_begin(Range), adl_end(Range), P);
1963
}
1964
 
1965
template<typename Range, typename Predicate>
1966
auto unique(Range &&R, Predicate P) {
1967
  return std::unique(adl_begin(R), adl_end(R), P);
1968
}
1969
 
1970
/// Wrapper function around std::equal to detect if pair-wise elements between
1971
/// two ranges are the same.
1972
template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
1973
  return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
1974
                    adl_end(RRange));
1975
}
1976
 
1977
/// Returns true if all elements in Range are equal or when the Range is empty.
1978
template <typename R> bool all_equal(R &&Range) {
1979
  auto Begin = adl_begin(Range);
1980
  auto End = adl_end(Range);
1981
  return Begin == End || std::equal(Begin + 1, End, Begin);
1982
}
1983
 
1984
/// Returns true if all Values in the initializer lists are equal or the list
1985
// is empty.
1986
template <typename T> bool all_equal(std::initializer_list<T> Values) {
1987
  return all_equal<std::initializer_list<T>>(std::move(Values));
1988
}
1989
 
1990
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1991
/// `erase_if` which is equivalent to:
1992
///
1993
///   C.erase(remove_if(C, pred), C.end());
1994
///
1995
/// This version works for any container with an erase method call accepting
1996
/// two iterators.
1997
template <typename Container, typename UnaryPredicate>
1998
void erase_if(Container &C, UnaryPredicate P) {
1999
  C.erase(remove_if(C, P), C.end());
2000
}
2001
 
2002
/// Wrapper function to remove a value from a container:
2003
///
2004
/// C.erase(remove(C.begin(), C.end(), V), C.end());
2005
template <typename Container, typename ValueType>
2006
void erase_value(Container &C, ValueType V) {
2007
  C.erase(std::remove(C.begin(), C.end(), V), C.end());
2008
}
2009
 
2010
/// Wrapper function to append a range to a container.
2011
///
2012
/// C.insert(C.end(), R.begin(), R.end());
2013
template <typename Container, typename Range>
2014
inline void append_range(Container &C, Range &&R) {
2015
  C.insert(C.end(), R.begin(), R.end());
2016
}
2017
 
2018
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2019
/// the range [ValIt, ValEnd) (which is not from the same container).
2020
template<typename Container, typename RandomAccessIterator>
2021
void replace(Container &Cont, typename Container::iterator ContIt,
2022
             typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2023
             RandomAccessIterator ValEnd) {
2024
  while (true) {
2025
    if (ValIt == ValEnd) {
2026
      Cont.erase(ContIt, ContEnd);
2027
      return;
2028
    } else if (ContIt == ContEnd) {
2029
      Cont.insert(ContIt, ValIt, ValEnd);
2030
      return;
2031
    }
2032
    *ContIt++ = *ValIt++;
2033
  }
2034
}
2035
 
2036
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2037
/// the range R.
2038
template<typename Container, typename Range = std::initializer_list<
2039
                                 typename Container::value_type>>
2040
void replace(Container &Cont, typename Container::iterator ContIt,
2041
             typename Container::iterator ContEnd, Range R) {
2042
  replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2043
}
2044
 
2045
/// An STL-style algorithm similar to std::for_each that applies a second
2046
/// functor between every pair of elements.
2047
///
2048
/// This provides the control flow logic to, for example, print a
2049
/// comma-separated list:
2050
/// \code
2051
///   interleave(names.begin(), names.end(),
2052
///              [&](StringRef name) { os << name; },
2053
///              [&] { os << ", "; });
2054
/// \endcode
2055
template <typename ForwardIterator, typename UnaryFunctor,
2056
          typename NullaryFunctor,
2057
          typename = std::enable_if_t<
2058
              !std::is_constructible<StringRef, UnaryFunctor>::value &&
2059
              !std::is_constructible<StringRef, NullaryFunctor>::value>>
2060
inline void interleave(ForwardIterator begin, ForwardIterator end,
2061
                       UnaryFunctor each_fn, NullaryFunctor between_fn) {
2062
  if (begin == end)
2063
    return;
2064
  each_fn(*begin);
2065
  ++begin;
2066
  for (; begin != end; ++begin) {
2067
    between_fn();
2068
    each_fn(*begin);
2069
  }
2070
}
2071
 
2072
template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2073
          typename = std::enable_if_t<
2074
              !std::is_constructible<StringRef, UnaryFunctor>::value &&
2075
              !std::is_constructible<StringRef, NullaryFunctor>::value>>
2076
inline void interleave(const Container &c, UnaryFunctor each_fn,
2077
                       NullaryFunctor between_fn) {
2078
  interleave(c.begin(), c.end(), each_fn, between_fn);
2079
}
2080
 
2081
/// Overload of interleave for the common case of string separator.
2082
template <typename Container, typename UnaryFunctor, typename StreamT,
2083
          typename T = detail::ValueOfRange<Container>>
2084
inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2085
                       const StringRef &separator) {
2086
  interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
2087
}
2088
template <typename Container, typename StreamT,
2089
          typename T = detail::ValueOfRange<Container>>
2090
inline void interleave(const Container &c, StreamT &os,
2091
                       const StringRef &separator) {
2092
  interleave(
2093
      c, os, [&](const T &a) { os << a; }, separator);
2094
}
2095
 
2096
template <typename Container, typename UnaryFunctor, typename StreamT,
2097
          typename T = detail::ValueOfRange<Container>>
2098
inline void interleaveComma(const Container &c, StreamT &os,
2099
                            UnaryFunctor each_fn) {
2100
  interleave(c, os, each_fn, ", ");
2101
}
2102
template <typename Container, typename StreamT,
2103
          typename T = detail::ValueOfRange<Container>>
2104
inline void interleaveComma(const Container &c, StreamT &os) {
2105
  interleaveComma(c, os, [&](const T &a) { os << a; });
2106
}
2107
 
2108
//===----------------------------------------------------------------------===//
2109
//     Extra additions to <memory>
2110
//===----------------------------------------------------------------------===//
2111
 
2112
struct FreeDeleter {
2113
  void operator()(void* v) {
2114
    ::free(v);
2115
  }
2116
};
2117
 
2118
template<typename First, typename Second>
2119
struct pair_hash {
2120
  size_t operator()(const std::pair<First, Second> &P) const {
2121
    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2122
  }
2123
};
2124
 
2125
/// Binary functor that adapts to any other binary functor after dereferencing
2126
/// operands.
2127
template <typename T> struct deref {
2128
  T func;
2129
 
2130
  // Could be further improved to cope with non-derivable functors and
2131
  // non-binary functors (should be a variadic template member function
2132
  // operator()).
2133
  template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2134
    assert(lhs);
2135
    assert(rhs);
2136
    return func(*lhs, *rhs);
2137
  }
2138
};
2139
 
2140
namespace detail {
2141
 
2142
template <typename R> class enumerator_iter;
2143
 
2144
template <typename R> struct result_pair {
2145
  using value_reference =
2146
      typename std::iterator_traits<IterOfRange<R>>::reference;
2147
 
2148
  friend class enumerator_iter<R>;
2149
 
2150
  result_pair() = default;
2151
  result_pair(std::size_t Index, IterOfRange<R> Iter)
2152
      : Index(Index), Iter(Iter) {}
2153
 
2154
  result_pair(const result_pair<R> &Other)
2155
      : Index(Other.Index), Iter(Other.Iter) {}
2156
  result_pair &operator=(const result_pair &Other) {
2157
    Index = Other.Index;
2158
    Iter = Other.Iter;
2159
    return *this;
2160
  }
2161
 
2162
  std::size_t index() const { return Index; }
2163
  value_reference value() const { return *Iter; }
2164
 
2165
private:
2166
  std::size_t Index = std::numeric_limits<std::size_t>::max();
2167
  IterOfRange<R> Iter;
2168
};
2169
 
2170
template <std::size_t i, typename R>
2171
decltype(auto) get(const result_pair<R> &Pair) {
2172
  static_assert(i < 2);
2173
  if constexpr (i == 0) {
2174
    return Pair.index();
2175
  } else {
2176
    return Pair.value();
2177
  }
2178
}
2179
 
2180
template <typename R>
2181
class enumerator_iter
2182
    : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag,
2183
                                  const result_pair<R>> {
2184
  using result_type = result_pair<R>;
2185
 
2186
public:
2187
  explicit enumerator_iter(IterOfRange<R> EndIter)
2188
      : Result(std::numeric_limits<size_t>::max(), EndIter) {}
2189
 
2190
  enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
2191
      : Result(Index, Iter) {}
2192
 
2193
  const result_type &operator*() const { return Result; }
2194
 
2195
  enumerator_iter &operator++() {
2196
    assert(Result.Index != std::numeric_limits<size_t>::max());
2197
    ++Result.Iter;
2198
    ++Result.Index;
2199
    return *this;
2200
  }
2201
 
2202
  bool operator==(const enumerator_iter &RHS) const {
2203
    // Don't compare indices here, only iterators.  It's possible for an end
2204
    // iterator to have different indices depending on whether it was created
2205
    // by calling std::end() versus incrementing a valid iterator.
2206
    return Result.Iter == RHS.Result.Iter;
2207
  }
2208
 
2209
  enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
2210
  enumerator_iter &operator=(const enumerator_iter &Other) {
2211
    Result = Other.Result;
2212
    return *this;
2213
  }
2214
 
2215
private:
2216
  result_type Result;
2217
};
2218
 
2219
template <typename R> class enumerator {
2220
public:
2221
  explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
2222
 
2223
  enumerator_iter<R> begin() {
2224
    return enumerator_iter<R>(0, std::begin(TheRange));
2225
  }
2226
  enumerator_iter<R> begin() const {
2227
    return enumerator_iter<R>(0, std::begin(TheRange));
2228
  }
2229
 
2230
  enumerator_iter<R> end() {
2231
    return enumerator_iter<R>(std::end(TheRange));
2232
  }
2233
  enumerator_iter<R> end() const {
2234
    return enumerator_iter<R>(std::end(TheRange));
2235
  }
2236
 
2237
private:
2238
  R TheRange;
2239
};
2240
 
2241
} // end namespace detail
2242
 
2243
/// Given an input range, returns a new range whose values are are pair (A,B)
2244
/// such that A is the 0-based index of the item in the sequence, and B is
2245
/// the value from the original sequence.  Example:
2246
///
2247
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
2248
/// for (auto X : enumerate(Items)) {
2249
///   printf("Item %d - %c\n", X.index(), X.value());
2250
/// }
2251
///
2252
/// or using structured bindings:
2253
///
2254
/// for (auto [Index, Value] : enumerate(Items)) {
2255
///   printf("Item %d - %c\n", Index, Value);
2256
/// }
2257
///
2258
/// Output:
2259
///   Item 0 - A
2260
///   Item 1 - B
2261
///   Item 2 - C
2262
///   Item 3 - D
2263
///
2264
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
2265
  return detail::enumerator<R>(std::forward<R>(TheRange));
2266
}
2267
 
2268
namespace detail {
2269
 
2270
template <typename Predicate, typename... Args>
2271
bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2272
  auto z = zip(args...);
2273
  auto it = z.begin();
2274
  auto end = z.end();
2275
  while (it != end) {
2276
    if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2277
      return false;
2278
    ++it;
2279
  }
2280
  return it.all_equals(end);
2281
}
2282
 
2283
// Just an adaptor to switch the order of argument and have the predicate before
2284
// the zipped inputs.
2285
template <typename... ArgsThenPredicate, size_t... InputIndexes>
2286
bool all_of_zip_predicate_last(
2287
    std::tuple<ArgsThenPredicate...> argsThenPredicate,
2288
    std::index_sequence<InputIndexes...>) {
2289
  auto constexpr OutputIndex =
2290
      std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2291
  return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2292
                             std::get<InputIndexes>(argsThenPredicate)...);
2293
}
2294
 
2295
} // end namespace detail
2296
 
2297
/// Compare two zipped ranges using the provided predicate (as last argument).
2298
/// Return true if all elements satisfy the predicate and false otherwise.
2299
//  Return false if the zipped iterator aren't all at end (size mismatch).
2300
template <typename... ArgsAndPredicate>
2301
bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2302
  return detail::all_of_zip_predicate_last(
2303
      std::forward_as_tuple(argsAndPredicate...),
2304
      std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2305
}
2306
 
2307
/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2308
/// time. Not meant for use with random-access iterators.
2309
/// Can optionally take a predicate to filter lazily some items.
2310
template <typename IterTy,
2311
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2312
bool hasNItems(
2313
    IterTy &&Begin, IterTy &&End, unsigned N,
2314
    Pred &&ShouldBeCounted =
2315
        [](const decltype(*std::declval<IterTy>()) &) { return true; },
2316
    std::enable_if_t<
2317
        !std::is_base_of<std::random_access_iterator_tag,
2318
                         typename std::iterator_traits<std::remove_reference_t<
2319
                             decltype(Begin)>>::iterator_category>::value,
2320
        void> * = nullptr) {
2321
  for (; N; ++Begin) {
2322
    if (Begin == End)
2323
      return false; // Too few.
2324
    N -= ShouldBeCounted(*Begin);
2325
  }
2326
  for (; Begin != End; ++Begin)
2327
    if (ShouldBeCounted(*Begin))
2328
      return false; // Too many.
2329
  return true;
2330
}
2331
 
2332
/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2333
/// time. Not meant for use with random-access iterators.
2334
/// Can optionally take a predicate to lazily filter some items.
2335
template <typename IterTy,
2336
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2337
bool hasNItemsOrMore(
2338
    IterTy &&Begin, IterTy &&End, unsigned N,
2339
    Pred &&ShouldBeCounted =
2340
        [](const decltype(*std::declval<IterTy>()) &) { return true; },
2341
    std::enable_if_t<
2342
        !std::is_base_of<std::random_access_iterator_tag,
2343
                         typename std::iterator_traits<std::remove_reference_t<
2344
                             decltype(Begin)>>::iterator_category>::value,
2345
        void> * = nullptr) {
2346
  for (; N; ++Begin) {
2347
    if (Begin == End)
2348
      return false; // Too few.
2349
    N -= ShouldBeCounted(*Begin);
2350
  }
2351
  return true;
2352
}
2353
 
2354
/// Returns true if the sequence [Begin, End) has N or less items. Can
2355
/// optionally take a predicate to lazily filter some items.
2356
template <typename IterTy,
2357
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2358
bool hasNItemsOrLess(
2359
    IterTy &&Begin, IterTy &&End, unsigned N,
2360
    Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2361
      return true;
2362
    }) {
2363
  assert(N != std::numeric_limits<unsigned>::max());
2364
  return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2365
}
2366
 
2367
/// Returns true if the given container has exactly N items
2368
template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2369
  return hasNItems(std::begin(C), std::end(C), N);
2370
}
2371
 
2372
/// Returns true if the given container has N or more items
2373
template <typename ContainerTy>
2374
bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2375
  return hasNItemsOrMore(std::begin(C), std::end(C), N);
2376
}
2377
 
2378
/// Returns true if the given container has N or less items
2379
template <typename ContainerTy>
2380
bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2381
  return hasNItemsOrLess(std::begin(C), std::end(C), N);
2382
}
2383
 
2384
/// Returns a raw pointer that represents the same address as the argument.
2385
///
2386
/// This implementation can be removed once we move to C++20 where it's defined
2387
/// as std::to_address().
2388
///
2389
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
2390
/// not been implemented.
2391
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2392
template <class T> constexpr T *to_address(T *P) { return P; }
2393
 
2394
} // end namespace llvm
2395
 
2396
namespace std {
2397
template <typename R>
2398
struct tuple_size<llvm::detail::result_pair<R>>
2399
    : std::integral_constant<std::size_t, 2> {};
2400
 
2401
template <std::size_t i, typename R>
2402
struct tuple_element<i, llvm::detail::result_pair<R>>
2403
    : std::conditional<i == 0, std::size_t,
2404
                       typename llvm::detail::result_pair<R>::value_reference> {
2405
};
2406
 
2407
} // namespace std
2408
 
2409
#endif // LLVM_ADT_STLEXTRAS_H