Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file builds on the ADT/GraphTraits.h file to build a generic graph
11
/// post order iterator.  This should work over any graph type that has a
12
/// GraphTraits specialization.
13
///
14
//===----------------------------------------------------------------------===//
15
 
16
#ifndef LLVM_ADT_POSTORDERITERATOR_H
17
#define LLVM_ADT_POSTORDERITERATOR_H
18
 
19
#include "llvm/ADT/GraphTraits.h"
20
#include "llvm/ADT/SmallPtrSet.h"
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/ADT/iterator_range.h"
23
#include <iterator>
24
#include <optional>
25
#include <set>
26
#include <utility>
27
#include <vector>
28
 
29
namespace llvm {
30
 
31
// The po_iterator_storage template provides access to the set of already
32
// visited nodes during the po_iterator's depth-first traversal.
33
//
34
// The default implementation simply contains a set of visited nodes, while
35
// the External=true version uses a reference to an external set.
36
//
37
// It is possible to prune the depth-first traversal in several ways:
38
//
39
// - When providing an external set that already contains some graph nodes,
40
//   those nodes won't be visited again. This is useful for restarting a
41
//   post-order traversal on a graph with nodes that aren't dominated by a
42
//   single node.
43
//
44
// - By providing a custom SetType class, unwanted graph nodes can be excluded
45
//   by having the insert() function return false. This could for example
46
//   confine a CFG traversal to blocks in a specific loop.
47
//
48
// - Finally, by specializing the po_iterator_storage template itself, graph
49
//   edges can be pruned by returning false in the insertEdge() function. This
50
//   could be used to remove loop back-edges from the CFG seen by po_iterator.
51
//
52
// A specialized po_iterator_storage class can observe both the pre-order and
53
// the post-order. The insertEdge() function is called in a pre-order, while
54
// the finishPostorder() function is called just before the po_iterator moves
55
// on to the next node.
56
 
57
/// Default po_iterator_storage implementation with an internal set object.
58
template<class SetType, bool External>
59
class po_iterator_storage {
60
  SetType Visited;
61
 
62
public:
63
  // Return true if edge destination should be visited.
64
  template <typename NodeRef>
65
  bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
66
    return Visited.insert(To).second;
67
  }
68
 
69
  // Called after all children of BB have been visited.
70
  template <typename NodeRef> void finishPostorder(NodeRef BB) {}
71
};
72
 
73
/// Specialization of po_iterator_storage that references an external set.
74
template<class SetType>
75
class po_iterator_storage<SetType, true> {
76
  SetType &Visited;
77
 
78
public:
79
  po_iterator_storage(SetType &VSet) : Visited(VSet) {}
80
  po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
81
 
82
  // Return true if edge destination should be visited, called with From = 0 for
83
  // the root node.
84
  // Graph edges can be pruned by specializing this function.
85
  template <class NodeRef>
86
  bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
87
    return Visited.insert(To).second;
88
  }
89
 
90
  // Called after all children of BB have been visited.
91
  template <class NodeRef> void finishPostorder(NodeRef BB) {}
92
};
93
 
94
template <class GraphT,
95
          class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
96
          bool ExtStorage = false, class GT = GraphTraits<GraphT>>
97
class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
98
public:
99
  using iterator_category = std::forward_iterator_tag;
100
  using value_type = typename GT::NodeRef;
101
  using difference_type = std::ptrdiff_t;
102
  using pointer = value_type *;
103
  using reference = value_type &;
104
 
105
private:
106
  using NodeRef = typename GT::NodeRef;
107
  using ChildItTy = typename GT::ChildIteratorType;
108
 
109
  // VisitStack - Used to maintain the ordering.  Top = current block
110
  // First element is basic block pointer, second is the 'next child' to visit
111
  SmallVector<std::pair<NodeRef, ChildItTy>, 8> VisitStack;
112
 
113
  po_iterator(NodeRef BB) {
114
    this->insertEdge(std::optional<NodeRef>(), BB);
115
    VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
116
    traverseChild();
117
  }
118
 
119
  po_iterator() = default; // End is when stack is empty.
120
 
121
  po_iterator(NodeRef BB, SetType &S)
122
      : po_iterator_storage<SetType, ExtStorage>(S) {
123
    if (this->insertEdge(std::optional<NodeRef>(), BB)) {
124
      VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
125
      traverseChild();
126
    }
127
  }
128
 
129
  po_iterator(SetType &S)
130
      : po_iterator_storage<SetType, ExtStorage>(S) {
131
  } // End is when stack is empty.
132
 
133
  void traverseChild() {
134
    while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
135
      NodeRef BB = *VisitStack.back().second++;
136
      if (this->insertEdge(std::optional<NodeRef>(VisitStack.back().first),
137
                           BB)) {
138
        // If the block is not visited...
139
        VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
140
      }
141
    }
142
  }
143
 
144
public:
145
  // Provide static "constructors"...
146
  static po_iterator begin(const GraphT &G) {
147
    return po_iterator(GT::getEntryNode(G));
148
  }
149
  static po_iterator end(const GraphT &G) { return po_iterator(); }
150
 
151
  static po_iterator begin(const GraphT &G, SetType &S) {
152
    return po_iterator(GT::getEntryNode(G), S);
153
  }
154
  static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
155
 
156
  bool operator==(const po_iterator &x) const {
157
    return VisitStack == x.VisitStack;
158
  }
159
  bool operator!=(const po_iterator &x) const { return !(*this == x); }
160
 
161
  const NodeRef &operator*() const { return VisitStack.back().first; }
162
 
163
  // This is a nonstandard operator-> that dereferences the pointer an extra
164
  // time... so that you can actually call methods ON the BasicBlock, because
165
  // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
166
  //
167
  NodeRef operator->() const { return **this; }
168
 
169
  po_iterator &operator++() { // Preincrement
170
    this->finishPostorder(VisitStack.back().first);
171
    VisitStack.pop_back();
172
    if (!VisitStack.empty())
173
      traverseChild();
174
    return *this;
175
  }
176
 
177
  po_iterator operator++(int) { // Postincrement
178
    po_iterator tmp = *this;
179
    ++*this;
180
    return tmp;
181
  }
182
};
183
 
184
// Provide global constructors that automatically figure out correct types...
185
//
186
template <class T>
187
po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
188
template <class T>
189
po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
190
 
191
template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
192
  return make_range(po_begin(G), po_end(G));
193
}
194
 
195
// Provide global definitions of external postorder iterators...
196
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
197
struct po_ext_iterator : public po_iterator<T, SetType, true> {
198
  po_ext_iterator(const po_iterator<T, SetType, true> &V) :
199
  po_iterator<T, SetType, true>(V) {}
200
};
201
 
202
template<class T, class SetType>
203
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
204
  return po_ext_iterator<T, SetType>::begin(G, S);
205
}
206
 
207
template<class T, class SetType>
208
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
209
  return po_ext_iterator<T, SetType>::end(G, S);
210
}
211
 
212
template <class T, class SetType>
213
iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
214
  return make_range(po_ext_begin(G, S), po_ext_end(G, S));
215
}
216
 
217
// Provide global definitions of inverse post order iterators...
218
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
219
          bool External = false>
220
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
221
  ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
222
     po_iterator<Inverse<T>, SetType, External> (V) {}
223
};
224
 
225
template <class T>
226
ipo_iterator<T> ipo_begin(const T &G) {
227
  return ipo_iterator<T>::begin(G);
228
}
229
 
230
template <class T>
231
ipo_iterator<T> ipo_end(const T &G){
232
  return ipo_iterator<T>::end(G);
233
}
234
 
235
template <class T>
236
iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
237
  return make_range(ipo_begin(G), ipo_end(G));
238
}
239
 
240
// Provide global definitions of external inverse postorder iterators...
241
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
242
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
243
  ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
244
    ipo_iterator<T, SetType, true>(V) {}
245
  ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
246
    ipo_iterator<T, SetType, true>(V) {}
247
};
248
 
249
template <class T, class SetType>
250
ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
251
  return ipo_ext_iterator<T, SetType>::begin(G, S);
252
}
253
 
254
template <class T, class SetType>
255
ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
256
  return ipo_ext_iterator<T, SetType>::end(G, S);
257
}
258
 
259
template <class T, class SetType>
260
iterator_range<ipo_ext_iterator<T, SetType>>
261
inverse_post_order_ext(const T &G, SetType &S) {
262
  return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
263
}
264
 
265
//===--------------------------------------------------------------------===//
266
// Reverse Post Order CFG iterator code
267
//===--------------------------------------------------------------------===//
268
//
269
// This is used to visit basic blocks in a method in reverse post order.  This
270
// class is awkward to use because I don't know a good incremental algorithm to
271
// computer RPO from a graph.  Because of this, the construction of the
272
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
273
// with a postorder iterator to build the data structures).  The moral of this
274
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
275
//
276
// Because it does the traversal in its constructor, it won't invalidate when
277
// BasicBlocks are removed, *but* it may contain erased blocks. Some places
278
// rely on this behavior (i.e. GVN).
279
//
280
// This class should be used like this:
281
// {
282
//   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
283
//   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
284
//      ...
285
//   }
286
//   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
287
//      ...
288
//   }
289
// }
290
//
291
 
292
template<class GraphT, class GT = GraphTraits<GraphT>>
293
class ReversePostOrderTraversal {
294
  using NodeRef = typename GT::NodeRef;
295
 
296
  std::vector<NodeRef> Blocks; // Block list in normal PO order
297
 
298
  void Initialize(const GraphT &G) {
299
    std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
300
  }
301
 
302
public:
303
  using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
304
  using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
305
 
306
  ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
307
 
308
  // Because we want a reverse post order, use reverse iterators from the vector
309
  rpo_iterator begin() { return Blocks.rbegin(); }
310
  const_rpo_iterator begin() const { return Blocks.crbegin(); }
311
  rpo_iterator end() { return Blocks.rend(); }
312
  const_rpo_iterator end() const { return Blocks.crend(); }
313
};
314
 
315
} // end namespace llvm
316
 
317
#endif // LLVM_ADT_POSTORDERITERATOR_H