Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- IntervalTree.h ------------------------------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file implements an interval tree. |
||
| 10 | // |
||
| 11 | // Further information: |
||
| 12 | // https://en.wikipedia.org/wiki/Interval_tree |
||
| 13 | // |
||
| 14 | //===----------------------------------------------------------------------===// |
||
| 15 | |||
| 16 | #ifndef LLVM_ADT_INTERVALTREE_H |
||
| 17 | #define LLVM_ADT_INTERVALTREE_H |
||
| 18 | |||
| 19 | #include "llvm/ADT/SmallSet.h" |
||
| 20 | #include "llvm/ADT/SmallVector.h" |
||
| 21 | #include "llvm/Support/Allocator.h" |
||
| 22 | #include "llvm/Support/Format.h" |
||
| 23 | #include "llvm/Support/raw_ostream.h" |
||
| 24 | #include <algorithm> |
||
| 25 | #include <cassert> |
||
| 26 | #include <iterator> |
||
| 27 | |||
| 28 | // IntervalTree is a light tree data structure to hold intervals. It allows |
||
| 29 | // finding all intervals that overlap with any given point. At this time, |
||
| 30 | // it does not support any deletion or rebalancing operations. |
||
| 31 | // |
||
| 32 | // The IntervalTree is designed to be set up once, and then queried without |
||
| 33 | // any further additions. |
||
| 34 | // |
||
| 35 | // Synopsis: |
||
| 36 | // Closed intervals delimited by PointT objects are mapped to ValueT objects. |
||
| 37 | // |
||
| 38 | // Restrictions: |
||
| 39 | // PointT must be a fundamental type. |
||
| 40 | // ValueT must be a fundamental or pointer type. |
||
| 41 | // |
||
| 42 | // template <typename PointT, typename ValueT, typename DataT> |
||
| 43 | // class IntervalTree { |
||
| 44 | // public: |
||
| 45 | // |
||
| 46 | // IntervalTree(); |
||
| 47 | // ~IntervalTree(): |
||
| 48 | // |
||
| 49 | // using IntervalReferences = SmallVector<IntervalData *>; |
||
| 50 | // |
||
| 51 | // void create(); |
||
| 52 | // void insert(PointT Left, PointT Right, ValueT Value); |
||
| 53 | // |
||
| 54 | // IntervalReferences getContaining(PointT Point); |
||
| 55 | // static void sortIntervals(IntervalReferences &Intervals, Sorting Sort); |
||
| 56 | // |
||
| 57 | // find_iterator begin(PointType Point) const; |
||
| 58 | // find_iterator end() const; |
||
| 59 | // |
||
| 60 | // bool empty() const; |
||
| 61 | // void clear(); |
||
| 62 | // |
||
| 63 | // void print(raw_ostream &OS, bool HexFormat = true); |
||
| 64 | // }; |
||
| 65 | // |
||
| 66 | //===----------------------------------------------------------------------===// |
||
| 67 | // |
||
| 68 | // In the below given dataset |
||
| 69 | // |
||
| 70 | // [a, b] <- (x) |
||
| 71 | // |
||
| 72 | // 'a' and 'b' describe a range and 'x' the value for that interval. |
||
| 73 | // |
||
| 74 | // The following data are purely for illustrative purposes: |
||
| 75 | // |
||
| 76 | // [30, 35] <- (3035), [39, 50] <- (3950), [55, 61] <- (5561), |
||
| 77 | // [31, 56] <- (3156), [12, 21] <- (1221), [25, 41] <- (2541), |
||
| 78 | // [49, 65] <- (4965), [71, 79] <- (7179), [11, 16] <- (1116), |
||
| 79 | // [20, 30] <- (2030), [36, 54] <- (3654), [60, 70] <- (6070), |
||
| 80 | // [74, 80] <- (7480), [15, 40] <- (1540), [43, 43] <- (4343), |
||
| 81 | // [50, 75] <- (5075), [10, 85] <- (1085) |
||
| 82 | // |
||
| 83 | // The data represents a set of overlapping intervals: |
||
| 84 | // |
||
| 85 | // 30--35 39------------50 55----61 |
||
| 86 | // 31------------------------56 |
||
| 87 | // 12--------21 25------------41 49-------------65 71-----79 |
||
| 88 | // 11----16 20-----30 36----------------54 60------70 74---- 80 |
||
| 89 | // 15---------------------40 43--43 50--------------------75 |
||
| 90 | // 10----------------------------------------------------------------------85 |
||
| 91 | // |
||
| 92 | // The items are stored in a binary tree with each node storing: |
||
| 93 | // |
||
| 94 | // MP: A middle point. |
||
| 95 | // IL: All intervals whose left value are completely to the left of the middle |
||
| 96 | // point. They are sorted in ascending order by their beginning point. |
||
| 97 | // IR: All intervals whose right value are completely to the right of the |
||
| 98 | // middle point. They are sorted in descending order by their ending point. |
||
| 99 | // LS: Left subtree. |
||
| 100 | // RS: Right subtree. |
||
| 101 | // |
||
| 102 | // As IL and IR will contain the same intervals, in order to optimize space, |
||
| 103 | // instead of storing intervals on each node, we use two vectors that will |
||
| 104 | // contain the intervals described by IL and IR. Each node will contain an |
||
| 105 | // index into that vector (global bucket), to indicate the beginning of the |
||
| 106 | // intervals assigned to the node. |
||
| 107 | // |
||
| 108 | // The following is the output from print(): |
||
| 109 | // |
||
| 110 | // 0: MP:43 IR [10,85] [31,56] [36,54] [39,50] [43,43] |
||
| 111 | // 0: MP:43 IL [10,85] [31,56] [36,54] [39,50] [43,43] |
||
| 112 | // 1: MP:25 IR [25,41] [15,40] [20,30] |
||
| 113 | // 1: MP:25 IL [15,40] [20,30] [25,41] |
||
| 114 | // 2: MP:15 IR [12,21] [11,16] |
||
| 115 | // 2: MP:15 IL [11,16] [12,21] |
||
| 116 | // 2: MP:36 IR [] |
||
| 117 | // 2: MP:36 IL [] |
||
| 118 | // 3: MP:31 IR [30,35] |
||
| 119 | // 3: MP:31 IL [30,35] |
||
| 120 | // 1: MP:61 IR [50,75] [60,70] [49,65] [55,61] |
||
| 121 | // 1: MP:61 IL [49,65] [50,75] [55,61] [60,70] |
||
| 122 | // 2: MP:74 IR [74,80] [71,79] |
||
| 123 | // 2: MP:74 IL [71,79] [74,80] |
||
| 124 | // |
||
| 125 | // with: |
||
| 126 | // 0: Root Node. |
||
| 127 | // MP: Middle point. |
||
| 128 | // IL: Intervals to the left (in ascending order by beginning point). |
||
| 129 | // IR: Intervals to the right (in descending order by ending point). |
||
| 130 | // |
||
| 131 | // Root |
||
| 132 | // | |
||
| 133 | // V |
||
| 134 | // +------------MP:43------------+ |
||
| 135 | // | IL IR | |
||
| 136 | // | [10,85] [10,85] | |
||
| 137 | // LS | [31,56] [31,56] | RS |
||
| 138 | // | [36,54] [36,54] | |
||
| 139 | // | [39,50] [39,50] | |
||
| 140 | // | [43,43] [43,43] | |
||
| 141 | // V V |
||
| 142 | // +------------MP:25------------+ MP:61------------+ |
||
| 143 | // | IL IR | IL IR | |
||
| 144 | // | [15,40] [25,41] | [49,65] [50,75] | |
||
| 145 | // LS | [20,30] [15,40] | RS [50,75] [60,70] | RS |
||
| 146 | // | [25,41] [20,30] | [55,61] [49,65] | |
||
| 147 | // | | [60,70] [55,61] | |
||
| 148 | // V V V |
||
| 149 | // MP:15 +-------MP:36 MP:74 |
||
| 150 | // IL IR | IL IR IL IR |
||
| 151 | // [11,16] [12,21] LS | [] [] [71,79] [74,80] |
||
| 152 | // [12,21] [11,16] | [74,80] [71,79] |
||
| 153 | // V |
||
| 154 | // MP:31 |
||
| 155 | // IL IR |
||
| 156 | // [30,35] [30,35] |
||
| 157 | // |
||
| 158 | // The creation of an interval tree is done in 2 steps: |
||
| 159 | // 1) Insert the interval items by calling |
||
| 160 | // void insert(PointT Left, PointT Right, ValueT Value); |
||
| 161 | // Left, Right: the interval left and right limits. |
||
| 162 | // Value: the data associated with that specific interval. |
||
| 163 | // |
||
| 164 | // 2) Create the interval tree by calling |
||
| 165 | // void create(); |
||
| 166 | // |
||
| 167 | // Once the tree is created, it is switched to query mode. |
||
| 168 | // Query the tree by using iterators or container. |
||
| 169 | // |
||
| 170 | // a) Iterators over intervals overlapping the given point with very weak |
||
| 171 | // ordering guarantees. |
||
| 172 | // find_iterator begin(PointType Point) const; |
||
| 173 | // find_iterator end() const; |
||
| 174 | // Point: a target point to be tested for inclusion in any interval. |
||
| 175 | // |
||
| 176 | // b) Container: |
||
| 177 | // IntervalReferences getContaining(PointT Point); |
||
| 178 | // Point: a target point to be tested for inclusion in any interval. |
||
| 179 | // Returns vector with all the intervals containing the target point. |
||
| 180 | // |
||
| 181 | // The returned intervals are in their natural tree location. They can |
||
| 182 | // be sorted: |
||
| 183 | // |
||
| 184 | // static void sortIntervals(IntervalReferences &Intervals, Sorting Sort); |
||
| 185 | // |
||
| 186 | // Ability to print the constructed interval tree: |
||
| 187 | // void print(raw_ostream &OS, bool HexFormat = true); |
||
| 188 | // Display the associated data in hexadecimal format. |
||
| 189 | |||
| 190 | namespace llvm { |
||
| 191 | |||
| 192 | //===----------------------------------------------------------------------===// |
||
| 193 | //--- IntervalData ----// |
||
| 194 | //===----------------------------------------------------------------------===// |
||
| 195 | /// An interval data composed by a \a Left and \a Right points and an |
||
| 196 | /// associated \a Value. |
||
| 197 | /// \a PointT corresponds to the interval endpoints type. |
||
| 198 | /// \a ValueT corresponds to the interval value type. |
||
| 199 | template <typename PointT, typename ValueT> class IntervalData { |
||
| 200 | protected: |
||
| 201 | using PointType = PointT; |
||
| 202 | using ValueType = ValueT; |
||
| 203 | |||
| 204 | private: |
||
| 205 | PointType Left; |
||
| 206 | PointType Right; |
||
| 207 | ValueType Value; |
||
| 208 | |||
| 209 | public: |
||
| 210 | IntervalData() = delete; |
||
| 211 | IntervalData(PointType Left, PointType Right, ValueType Value) |
||
| 212 | : Left(Left), Right(Right), Value(Value) { |
||
| 213 | assert(Left <= Right && "'Left' must be less or equal to 'Right'"); |
||
| 214 | } |
||
| 215 | virtual ~IntervalData() = default; |
||
| 216 | PointType left() const { return Left; } |
||
| 217 | PointType right() const { return Right; } |
||
| 218 | ValueType value() const { return Value; } |
||
| 219 | |||
| 220 | /// Return true if \a Point is inside the left bound of closed interval \a |
||
| 221 | /// [Left;Right]. This is Left <= Point for closed intervals. |
||
| 222 | bool left(const PointType &Point) const { return left() <= Point; } |
||
| 223 | |||
| 224 | /// Return true if \a Point is inside the right bound of closed interval \a |
||
| 225 | /// [Left;Right]. This is Point <= Right for closed intervals. |
||
| 226 | bool right(const PointType &Point) const { return Point <= right(); } |
||
| 227 | |||
| 228 | /// Return true when \a Point is contained in interval \a [Left;Right]. |
||
| 229 | /// This is Left <= Point <= Right for closed intervals. |
||
| 230 | bool contains(const PointType &Point) const { |
||
| 231 | return left(Point) && right(Point); |
||
| 232 | } |
||
| 233 | }; |
||
| 234 | |||
| 235 | //===----------------------------------------------------------------------===// |
||
| 236 | //--- IntervalTree ----// |
||
| 237 | //===----------------------------------------------------------------------===// |
||
| 238 | // Helper class template that is used by the IntervalTree to ensure that one |
||
| 239 | // does instantiate using only fundamental and/or pointer types. |
||
| 240 | template <typename T> |
||
| 241 | using PointTypeIsValid = std::bool_constant<std::is_fundamental<T>::value>; |
||
| 242 | |||
| 243 | template <typename T> |
||
| 244 | using ValueTypeIsValid = std::bool_constant<std::is_fundamental<T>::value || |
||
| 245 | std::is_pointer<T>::value>; |
||
| 246 | |||
| 247 | template <typename PointT, typename ValueT, |
||
| 248 | typename DataT = IntervalData<PointT, ValueT>> |
||
| 249 | class IntervalTree { |
||
| 250 | static_assert(PointTypeIsValid<PointT>::value, |
||
| 251 | "PointT must be a fundamental type"); |
||
| 252 | static_assert(ValueTypeIsValid<ValueT>::value, |
||
| 253 | "ValueT must be a fundamental or pointer type"); |
||
| 254 | |||
| 255 | public: |
||
| 256 | using PointType = PointT; |
||
| 257 | using ValueType = ValueT; |
||
| 258 | using DataType = DataT; |
||
| 259 | using Allocator = BumpPtrAllocator; |
||
| 260 | |||
| 261 | enum class Sorting { Ascending, Descending }; |
||
| 262 | using IntervalReferences = SmallVector<const DataType *, 4>; |
||
| 263 | |||
| 264 | private: |
||
| 265 | using IntervalVector = SmallVector<DataType, 4>; |
||
| 266 | using PointsVector = SmallVector<PointType, 4>; |
||
| 267 | |||
| 268 | class IntervalNode { |
||
| 269 | PointType MiddlePoint; // MP - Middle point. |
||
| 270 | IntervalNode *Left = nullptr; // LS - Left subtree. |
||
| 271 | IntervalNode *Right = nullptr; // RS - Right subtree. |
||
| 272 | unsigned BucketIntervalsStart = 0; // Starting index in global bucket. |
||
| 273 | unsigned BucketIntervalsSize = 0; // Size of bucket. |
||
| 274 | |||
| 275 | public: |
||
| 276 | PointType middle() const { return MiddlePoint; } |
||
| 277 | unsigned start() const { return BucketIntervalsStart; } |
||
| 278 | unsigned size() const { return BucketIntervalsSize; } |
||
| 279 | |||
| 280 | IntervalNode(PointType Point, unsigned Start) |
||
| 281 | : MiddlePoint(Point), BucketIntervalsStart(Start) {} |
||
| 282 | |||
| 283 | friend IntervalTree; |
||
| 284 | }; |
||
| 285 | |||
| 286 | Allocator &NodeAllocator; // Allocator used for creating interval nodes. |
||
| 287 | IntervalNode *Root = nullptr; // Interval tree root. |
||
| 288 | IntervalVector Intervals; // Storage for each interval and all of the fields |
||
| 289 | // point back into it. |
||
| 290 | PointsVector EndPoints; // Sorted left and right points of all the intervals. |
||
| 291 | |||
| 292 | // These vectors provide storage that nodes carve buckets of overlapping |
||
| 293 | // intervals out of. All intervals are recorded on each vector. |
||
| 294 | // The bucket with the intervals associated to a node, is determined by |
||
| 295 | // the fields 'BucketIntervalStart' and 'BucketIntervalSize' in the node. |
||
| 296 | // The buckets in the first vector are sorted in ascending order using |
||
| 297 | // the left value and the buckets in the second vector are sorted in |
||
| 298 | // descending order using the right value. Every interval in a bucket |
||
| 299 | // contains the middle point for the node. |
||
| 300 | IntervalReferences IntervalsLeft; // Intervals to the left of middle point. |
||
| 301 | IntervalReferences IntervalsRight; // Intervals to the right of middle point. |
||
| 302 | |||
| 303 | // Working vector used during the tree creation to sort the intervals. It is |
||
| 304 | // cleared once the tree is created. |
||
| 305 | IntervalReferences References; |
||
| 306 | |||
| 307 | /// Recursively delete the constructed tree. |
||
| 308 | void deleteTree(IntervalNode *Node) { |
||
| 309 | if (Node) { |
||
| 310 | deleteTree(Node->Left); |
||
| 311 | deleteTree(Node->Right); |
||
| 312 | Node->~IntervalNode(); |
||
| 313 | NodeAllocator.Deallocate(Node); |
||
| 314 | } |
||
| 315 | } |
||
| 316 | |||
| 317 | /// Print the interval list (left and right) for a given \a Node. |
||
| 318 | static void printList(raw_ostream &OS, IntervalReferences &IntervalSet, |
||
| 319 | unsigned Start, unsigned Size, bool HexFormat = true) { |
||
| 320 | assert(Start + Size <= IntervalSet.size() && |
||
| 321 | "Start + Size must be in bounds of the IntervalSet"); |
||
| 322 | const char *Format = HexFormat ? "[0x%08x,0x%08x] " : "[%2d,%2d] "; |
||
| 323 | if (Size) { |
||
| 324 | for (unsigned Position = Start; Position < Start + Size; ++Position) |
||
| 325 | OS << format(Format, IntervalSet[Position]->left(), |
||
| 326 | IntervalSet[Position]->right()); |
||
| 327 | } else { |
||
| 328 | OS << "[]"; |
||
| 329 | } |
||
| 330 | OS << "\n"; |
||
| 331 | } |
||
| 332 | |||
| 333 | /// Print an interval tree \a Node. |
||
| 334 | void printNode(raw_ostream &OS, unsigned Level, IntervalNode *Node, |
||
| 335 | bool HexFormat = true) { |
||
| 336 | const char *Format = HexFormat ? "MP:0x%08x " : "MP:%2d "; |
||
| 337 | auto PrintNodeData = [&](StringRef Text, IntervalReferences &IntervalSet) { |
||
| 338 | OS << format("%5d: ", Level); |
||
| 339 | OS.indent(Level * 2); |
||
| 340 | OS << format(Format, Node->middle()) << Text << " "; |
||
| 341 | printList(OS, IntervalSet, Node->start(), Node->size(), HexFormat); |
||
| 342 | }; |
||
| 343 | |||
| 344 | PrintNodeData("IR", IntervalsRight); |
||
| 345 | PrintNodeData("IL", IntervalsLeft); |
||
| 346 | } |
||
| 347 | |||
| 348 | /// Recursively print all the interval nodes. |
||
| 349 | void printTree(raw_ostream &OS, unsigned Level, IntervalNode *Node, |
||
| 350 | bool HexFormat = true) { |
||
| 351 | if (Node) { |
||
| 352 | printNode(OS, Level, Node, HexFormat); |
||
| 353 | ++Level; |
||
| 354 | printTree(OS, Level, Node->Left, HexFormat); |
||
| 355 | printTree(OS, Level, Node->Right, HexFormat); |
||
| 356 | } |
||
| 357 | } |
||
| 358 | |||
| 359 | /// Recursively construct the interval tree. |
||
| 360 | /// IntervalsSize: Number of intervals that have been processed and it will |
||
| 361 | /// be used as the start for the intervals bucket for a node. |
||
| 362 | /// PointsBeginIndex, PointsEndIndex: Determine the range into the EndPoints |
||
| 363 | /// vector of end points to be processed. |
||
| 364 | /// ReferencesBeginIndex, ReferencesSize: Determine the range into the |
||
| 365 | /// intervals being processed. |
||
| 366 | IntervalNode *createTree(unsigned &IntervalsSize, int PointsBeginIndex, |
||
| 367 | int PointsEndIndex, int ReferencesBeginIndex, |
||
| 368 | int ReferencesSize) { |
||
| 369 | // We start by taking the entire range of all the intervals and dividing |
||
| 370 | // it in half at x_middle (in practice, x_middle should be picked to keep |
||
| 371 | // the tree relatively balanced). |
||
| 372 | // This gives three sets of intervals, those completely to the left of |
||
| 373 | // x_middle which we'll call S_left, those completely to the right of |
||
| 374 | // x_middle which we'll call S_right, and those overlapping x_middle |
||
| 375 | // which we'll call S_middle. |
||
| 376 | // The intervals in S_left and S_right are recursively divided in the |
||
| 377 | // same manner until there are no intervals remaining. |
||
| 378 | |||
| 379 | if (PointsBeginIndex > PointsEndIndex || |
||
| 380 | ReferencesBeginIndex >= ReferencesSize) |
||
| 381 | return nullptr; |
||
| 382 | |||
| 383 | int MiddleIndex = (PointsBeginIndex + PointsEndIndex) / 2; |
||
| 384 | PointType MiddlePoint = EndPoints[MiddleIndex]; |
||
| 385 | |||
| 386 | unsigned NewBucketStart = IntervalsSize; |
||
| 387 | unsigned NewBucketSize = 0; |
||
| 388 | int ReferencesRightIndex = ReferencesSize; |
||
| 389 | |||
| 390 | IntervalNode *Root = |
||
| 391 | new (NodeAllocator) IntervalNode(MiddlePoint, NewBucketStart); |
||
| 392 | |||
| 393 | // A quicksort implementation where all the intervals that overlap |
||
| 394 | // with the pivot are put into the "bucket", and "References" is the |
||
| 395 | // partition space where we recursively sort the remaining intervals. |
||
| 396 | for (int Index = ReferencesBeginIndex; Index < ReferencesRightIndex;) { |
||
| 397 | |||
| 398 | // Current interval contains the middle point. |
||
| 399 | if (References[Index]->contains(MiddlePoint)) { |
||
| 400 | IntervalsLeft[IntervalsSize] = References[Index]; |
||
| 401 | IntervalsRight[IntervalsSize] = References[Index]; |
||
| 402 | ++IntervalsSize; |
||
| 403 | Root->BucketIntervalsSize = ++NewBucketSize; |
||
| 404 | |||
| 405 | if (Index < --ReferencesRightIndex) |
||
| 406 | std::swap(References[Index], References[ReferencesRightIndex]); |
||
| 407 | if (ReferencesRightIndex < --ReferencesSize) |
||
| 408 | std::swap(References[ReferencesRightIndex], |
||
| 409 | References[ReferencesSize]); |
||
| 410 | continue; |
||
| 411 | } |
||
| 412 | |||
| 413 | if (References[Index]->left() > MiddlePoint) { |
||
| 414 | if (Index < --ReferencesRightIndex) |
||
| 415 | std::swap(References[Index], References[ReferencesRightIndex]); |
||
| 416 | continue; |
||
| 417 | } |
||
| 418 | ++Index; |
||
| 419 | } |
||
| 420 | |||
| 421 | // Sort intervals on the left and right of the middle point. |
||
| 422 | if (NewBucketSize > 1) { |
||
| 423 | // Sort the intervals in ascending order by their beginning point. |
||
| 424 | std::stable_sort(IntervalsLeft.begin() + NewBucketStart, |
||
| 425 | IntervalsLeft.begin() + NewBucketStart + NewBucketSize, |
||
| 426 | [](const DataType *LHS, const DataType *RHS) { |
||
| 427 | return LHS->left() < RHS->left(); |
||
| 428 | }); |
||
| 429 | // Sort the intervals in descending order by their ending point. |
||
| 430 | std::stable_sort(IntervalsRight.begin() + NewBucketStart, |
||
| 431 | IntervalsRight.begin() + NewBucketStart + NewBucketSize, |
||
| 432 | [](const DataType *LHS, const DataType *RHS) { |
||
| 433 | return LHS->right() > RHS->right(); |
||
| 434 | }); |
||
| 435 | } |
||
| 436 | |||
| 437 | if (PointsBeginIndex <= MiddleIndex - 1) { |
||
| 438 | Root->Left = createTree(IntervalsSize, PointsBeginIndex, MiddleIndex - 1, |
||
| 439 | ReferencesBeginIndex, ReferencesRightIndex); |
||
| 440 | } |
||
| 441 | |||
| 442 | if (MiddleIndex + 1 <= PointsEndIndex) { |
||
| 443 | Root->Right = createTree(IntervalsSize, MiddleIndex + 1, PointsEndIndex, |
||
| 444 | ReferencesRightIndex, ReferencesSize); |
||
| 445 | } |
||
| 446 | |||
| 447 | return Root; |
||
| 448 | } |
||
| 449 | |||
| 450 | public: |
||
| 451 | class find_iterator { |
||
| 452 | public: |
||
| 453 | using iterator_category = std::forward_iterator_tag; |
||
| 454 | using value_type = DataType; |
||
| 455 | using difference_type = DataType; |
||
| 456 | using pointer = DataType *; |
||
| 457 | using reference = DataType &; |
||
| 458 | |||
| 459 | private: |
||
| 460 | const IntervalReferences *AscendingBuckets = nullptr; |
||
| 461 | const IntervalReferences *DescendingBuckets = nullptr; |
||
| 462 | |||
| 463 | // Current node and index while traversing the intervals that contain |
||
| 464 | // the reference point. |
||
| 465 | IntervalNode *Node = nullptr; |
||
| 466 | PointType Point; |
||
| 467 | unsigned Index = 0; |
||
| 468 | |||
| 469 | // For the current node, check if we have intervals that contain the |
||
| 470 | // reference point. We return when the node does have intervals that |
||
| 471 | // contain such point. Otherwise we keep descending on that branch. |
||
| 472 | void initNode() { |
||
| 473 | Index = 0; |
||
| 474 | while (Node) { |
||
| 475 | // Return if the reference point is the same as the middle point or |
||
| 476 | // the current node doesn't have any intervals at all. |
||
| 477 | if (Point == Node->middle()) { |
||
| 478 | if (Node->size() == 0) { |
||
| 479 | // No intervals that contain the reference point. |
||
| 480 | Node = nullptr; |
||
| 481 | } |
||
| 482 | return; |
||
| 483 | } |
||
| 484 | |||
| 485 | if (Point < Node->middle()) { |
||
| 486 | // The reference point can be at the left or right of the middle |
||
| 487 | // point. Return if the current node has intervals that contain the |
||
| 488 | // reference point; otherwise descend on the respective branch. |
||
| 489 | if (Node->size() && (*AscendingBuckets)[Node->start()]->left(Point)) { |
||
| 490 | return; |
||
| 491 | } |
||
| 492 | Node = Node->Left; |
||
| 493 | } else { |
||
| 494 | if (Node->size() && |
||
| 495 | (*DescendingBuckets)[Node->start()]->right(Point)) { |
||
| 496 | return; |
||
| 497 | } |
||
| 498 | Node = Node->Right; |
||
| 499 | } |
||
| 500 | } |
||
| 501 | } |
||
| 502 | |||
| 503 | // Given the current node (which was initialized by initNode), move to |
||
| 504 | // the next interval in the list of intervals that contain the reference |
||
| 505 | // point. Otherwise move to the next node, as the intervals contained |
||
| 506 | // in that node, can contain the reference point. |
||
| 507 | void nextInterval() { |
||
| 508 | // If there are available intervals that contain the reference point, |
||
| 509 | // traverse them; otherwise move to the left or right node, depending |
||
| 510 | // on the middle point value. |
||
| 511 | if (++Index < Node->size()) { |
||
| 512 | if (Node->middle() == Point) |
||
| 513 | return; |
||
| 514 | if (Point < Node->middle()) { |
||
| 515 | // Reference point is on the left. |
||
| 516 | if (!(*AscendingBuckets)[Node->start() + Index]->left(Point)) { |
||
| 517 | // The intervals don't contain the reference point. Move to the |
||
| 518 | // next node, preserving the descending order. |
||
| 519 | Node = Node->Left; |
||
| 520 | initNode(); |
||
| 521 | } |
||
| 522 | } else { |
||
| 523 | // Reference point is on the right. |
||
| 524 | if (!(*DescendingBuckets)[Node->start() + Index]->right(Point)) { |
||
| 525 | // The intervals don't contain the reference point. Move to the |
||
| 526 | // next node, preserving the ascending order. |
||
| 527 | Node = Node->Right; |
||
| 528 | initNode(); |
||
| 529 | } |
||
| 530 | } |
||
| 531 | } else { |
||
| 532 | // We have traversed all the intervals in the current node. |
||
| 533 | if (Point == Node->middle()) { |
||
| 534 | Node = nullptr; |
||
| 535 | Index = 0; |
||
| 536 | return; |
||
| 537 | } |
||
| 538 | // Select a branch based on the middle point. |
||
| 539 | Node = Point < Node->middle() ? Node->Left : Node->Right; |
||
| 540 | initNode(); |
||
| 541 | } |
||
| 542 | } |
||
| 543 | |||
| 544 | find_iterator() = default; |
||
| 545 | explicit find_iterator(const IntervalReferences *Left, |
||
| 546 | const IntervalReferences *Right, IntervalNode *Node, |
||
| 547 | PointType Point) |
||
| 548 | : AscendingBuckets(Left), DescendingBuckets(Right), Node(Node), |
||
| 549 | Point(Point), Index(0) { |
||
| 550 | initNode(); |
||
| 551 | } |
||
| 552 | |||
| 553 | const DataType *current() const { |
||
| 554 | return (Point <= Node->middle()) |
||
| 555 | ? (*AscendingBuckets)[Node->start() + Index] |
||
| 556 | : (*DescendingBuckets)[Node->start() + Index]; |
||
| 557 | } |
||
| 558 | |||
| 559 | public: |
||
| 560 | find_iterator &operator++() { |
||
| 561 | nextInterval(); |
||
| 562 | return *this; |
||
| 563 | } |
||
| 564 | |||
| 565 | find_iterator operator++(int) { |
||
| 566 | find_iterator Iter(*this); |
||
| 567 | nextInterval(); |
||
| 568 | return Iter; |
||
| 569 | } |
||
| 570 | |||
| 571 | /// Dereference operators. |
||
| 572 | const DataType *operator->() const { return current(); } |
||
| 573 | const DataType &operator*() const { return *(current()); } |
||
| 574 | |||
| 575 | /// Comparison operators. |
||
| 576 | friend bool operator==(const find_iterator &LHS, const find_iterator &RHS) { |
||
| 577 | return (!LHS.Node && !RHS.Node && !LHS.Index && !RHS.Index) || |
||
| 578 | (LHS.Point == RHS.Point && LHS.Node == RHS.Node && |
||
| 579 | LHS.Index == RHS.Index); |
||
| 580 | } |
||
| 581 | friend bool operator!=(const find_iterator &LHS, const find_iterator &RHS) { |
||
| 582 | return !(LHS == RHS); |
||
| 583 | } |
||
| 584 | |||
| 585 | friend IntervalTree; |
||
| 586 | }; |
||
| 587 | |||
| 588 | private: |
||
| 589 | find_iterator End; |
||
| 590 | |||
| 591 | public: |
||
| 592 | explicit IntervalTree(Allocator &NodeAllocator) |
||
| 593 | : NodeAllocator(NodeAllocator) {} |
||
| 594 | ~IntervalTree() { clear(); } |
||
| 595 | |||
| 596 | /// Return true when no intervals are mapped. |
||
| 597 | bool empty() const { return Root == nullptr; } |
||
| 598 | |||
| 599 | /// Remove all entries. |
||
| 600 | void clear() { |
||
| 601 | deleteTree(Root); |
||
| 602 | Root = nullptr; |
||
| 603 | Intervals.clear(); |
||
| 604 | IntervalsLeft.clear(); |
||
| 605 | IntervalsRight.clear(); |
||
| 606 | EndPoints.clear(); |
||
| 607 | } |
||
| 608 | |||
| 609 | /// Add a mapping of [Left;Right] to \a Value. |
||
| 610 | void insert(PointType Left, PointType Right, ValueType Value) { |
||
| 611 | assert(empty() && "Invalid insertion. Interval tree already constructed."); |
||
| 612 | Intervals.emplace_back(Left, Right, Value); |
||
| 613 | } |
||
| 614 | |||
| 615 | /// Return all the intervals in their natural tree location, that |
||
| 616 | /// contain the given point. |
||
| 617 | IntervalReferences getContaining(PointType Point) const { |
||
| 618 | assert(!empty() && "Interval tree it is not constructed."); |
||
| 619 | IntervalReferences IntervalSet; |
||
| 620 | for (find_iterator Iter = find(Point), E = find_end(); Iter != E; ++Iter) |
||
| 621 | IntervalSet.push_back(const_cast<DataType *>(&(*Iter))); |
||
| 622 | return IntervalSet; |
||
| 623 | } |
||
| 624 | |||
| 625 | /// Sort the given intervals using the following sort options: |
||
| 626 | /// Ascending: return the intervals with the smallest at the front. |
||
| 627 | /// Descending: return the intervals with the biggest at the front. |
||
| 628 | static void sortIntervals(IntervalReferences &IntervalSet, Sorting Sort) { |
||
| 629 | std::stable_sort(IntervalSet.begin(), IntervalSet.end(), |
||
| 630 | [Sort](const DataType *RHS, const DataType *LHS) { |
||
| 631 | return Sort == Sorting::Ascending |
||
| 632 | ? (LHS->right() - LHS->left()) > |
||
| 633 | (RHS->right() - RHS->left()) |
||
| 634 | : (LHS->right() - LHS->left()) < |
||
| 635 | (RHS->right() - RHS->left()); |
||
| 636 | }); |
||
| 637 | } |
||
| 638 | |||
| 639 | /// Print the interval tree. |
||
| 640 | /// When \a HexFormat is true, the interval tree interval ranges and |
||
| 641 | /// associated values are printed in hexadecimal format. |
||
| 642 | void print(raw_ostream &OS, bool HexFormat = true) { |
||
| 643 | printTree(OS, 0, Root, HexFormat); |
||
| 644 | } |
||
| 645 | |||
| 646 | /// Create the interval tree. |
||
| 647 | void create() { |
||
| 648 | assert(empty() && "Interval tree already constructed."); |
||
| 649 | // Sorted vector of unique end points values of all the intervals. |
||
| 650 | // Records references to the collected intervals. |
||
| 651 | SmallVector<PointType, 4> Points; |
||
| 652 | for (const DataType &Data : Intervals) { |
||
| 653 | Points.push_back(Data.left()); |
||
| 654 | Points.push_back(Data.right()); |
||
| 655 | References.push_back(std::addressof(Data)); |
||
| 656 | } |
||
| 657 | std::stable_sort(Points.begin(), Points.end()); |
||
| 658 | auto Last = std::unique(Points.begin(), Points.end()); |
||
| 659 | Points.erase(Last, Points.end()); |
||
| 660 | |||
| 661 | EndPoints.assign(Points.begin(), Points.end()); |
||
| 662 | |||
| 663 | IntervalsLeft.resize(Intervals.size()); |
||
| 664 | IntervalsRight.resize(Intervals.size()); |
||
| 665 | |||
| 666 | // Given a set of n intervals, construct a data structure so that |
||
| 667 | // we can efficiently retrieve all intervals overlapping another |
||
| 668 | // interval or point. |
||
| 669 | unsigned IntervalsSize = 0; |
||
| 670 | Root = |
||
| 671 | createTree(IntervalsSize, /*PointsBeginIndex=*/0, EndPoints.size() - 1, |
||
| 672 | /*ReferencesBeginIndex=*/0, References.size()); |
||
| 673 | |||
| 674 | // Save to clear this storage, as it used only to sort the intervals. |
||
| 675 | References.clear(); |
||
| 676 | } |
||
| 677 | |||
| 678 | /// Iterator to start a find operation; it returns find_end() if the |
||
| 679 | /// tree has not been built. |
||
| 680 | /// There is no support to iterate over all the elements of the tree. |
||
| 681 | find_iterator find(PointType Point) const { |
||
| 682 | return empty() |
||
| 683 | ? find_end() |
||
| 684 | : find_iterator(&IntervalsLeft, &IntervalsRight, Root, Point); |
||
| 685 | } |
||
| 686 | |||
| 687 | /// Iterator to end find operation. |
||
| 688 | find_iterator find_end() const { return End; } |
||
| 689 | }; |
||
| 690 | |||
| 691 | } // namespace llvm |
||
| 692 | |||
| 693 | #endif // LLVM_ADT_INTERVALTREE_H |