Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// |
||
| 9 | /// \file |
||
| 10 | /// This file implements a coalescing interval map for small objects. |
||
| 11 | /// |
||
| 12 | /// KeyT objects are mapped to ValT objects. Intervals of keys that map to the |
||
| 13 | /// same value are represented in a compressed form. |
||
| 14 | /// |
||
| 15 | /// Iterators provide ordered access to the compressed intervals rather than the |
||
| 16 | /// individual keys, and insert and erase operations use key intervals as well. |
||
| 17 | /// |
||
| 18 | /// Like SmallVector, IntervalMap will store the first N intervals in the map |
||
| 19 | /// object itself without any allocations. When space is exhausted it switches |
||
| 20 | /// to a B+-tree representation with very small overhead for small key and |
||
| 21 | /// value objects. |
||
| 22 | /// |
||
| 23 | /// A Traits class specifies how keys are compared. It also allows IntervalMap |
||
| 24 | /// to work with both closed and half-open intervals. |
||
| 25 | /// |
||
| 26 | /// Keys and values are not stored next to each other in a std::pair, so we |
||
| 27 | /// don't provide such a value_type. Dereferencing iterators only returns the |
||
| 28 | /// mapped value. The interval bounds are accessible through the start() and |
||
| 29 | /// stop() iterator methods. |
||
| 30 | /// |
||
| 31 | /// IntervalMap is optimized for small key and value objects, 4 or 8 bytes |
||
| 32 | /// each is the optimal size. For large objects use std::map instead. |
||
| 33 | // |
||
| 34 | //===----------------------------------------------------------------------===// |
||
| 35 | // |
||
| 36 | // Synopsis: |
||
| 37 | // |
||
| 38 | // template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 39 | // class IntervalMap { |
||
| 40 | // public: |
||
| 41 | // typedef KeyT key_type; |
||
| 42 | // typedef ValT mapped_type; |
||
| 43 | // typedef RecyclingAllocator<...> Allocator; |
||
| 44 | // class iterator; |
||
| 45 | // class const_iterator; |
||
| 46 | // |
||
| 47 | // explicit IntervalMap(Allocator&); |
||
| 48 | // ~IntervalMap(): |
||
| 49 | // |
||
| 50 | // bool empty() const; |
||
| 51 | // KeyT start() const; |
||
| 52 | // KeyT stop() const; |
||
| 53 | // ValT lookup(KeyT x, Value NotFound = Value()) const; |
||
| 54 | // |
||
| 55 | // const_iterator begin() const; |
||
| 56 | // const_iterator end() const; |
||
| 57 | // iterator begin(); |
||
| 58 | // iterator end(); |
||
| 59 | // const_iterator find(KeyT x) const; |
||
| 60 | // iterator find(KeyT x); |
||
| 61 | // |
||
| 62 | // void insert(KeyT a, KeyT b, ValT y); |
||
| 63 | // void clear(); |
||
| 64 | // }; |
||
| 65 | // |
||
| 66 | // template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 67 | // class IntervalMap::const_iterator { |
||
| 68 | // public: |
||
| 69 | // using iterator_category = std::bidirectional_iterator_tag; |
||
| 70 | // using value_type = ValT; |
||
| 71 | // using difference_type = std::ptrdiff_t; |
||
| 72 | // using pointer = value_type *; |
||
| 73 | // using reference = value_type &; |
||
| 74 | // |
||
| 75 | // bool operator==(const const_iterator &) const; |
||
| 76 | // bool operator!=(const const_iterator &) const; |
||
| 77 | // bool valid() const; |
||
| 78 | // |
||
| 79 | // const KeyT &start() const; |
||
| 80 | // const KeyT &stop() const; |
||
| 81 | // const ValT &value() const; |
||
| 82 | // const ValT &operator*() const; |
||
| 83 | // const ValT *operator->() const; |
||
| 84 | // |
||
| 85 | // const_iterator &operator++(); |
||
| 86 | // const_iterator &operator++(int); |
||
| 87 | // const_iterator &operator--(); |
||
| 88 | // const_iterator &operator--(int); |
||
| 89 | // void goToBegin(); |
||
| 90 | // void goToEnd(); |
||
| 91 | // void find(KeyT x); |
||
| 92 | // void advanceTo(KeyT x); |
||
| 93 | // }; |
||
| 94 | // |
||
| 95 | // template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 96 | // class IntervalMap::iterator : public const_iterator { |
||
| 97 | // public: |
||
| 98 | // void insert(KeyT a, KeyT b, Value y); |
||
| 99 | // void erase(); |
||
| 100 | // }; |
||
| 101 | // |
||
| 102 | //===----------------------------------------------------------------------===// |
||
| 103 | |||
| 104 | #ifndef LLVM_ADT_INTERVALMAP_H |
||
| 105 | #define LLVM_ADT_INTERVALMAP_H |
||
| 106 | |||
| 107 | #include "llvm/ADT/PointerIntPair.h" |
||
| 108 | #include "llvm/ADT/SmallVector.h" |
||
| 109 | #include "llvm/Support/Allocator.h" |
||
| 110 | #include "llvm/Support/RecyclingAllocator.h" |
||
| 111 | #include <algorithm> |
||
| 112 | #include <cassert> |
||
| 113 | #include <iterator> |
||
| 114 | #include <new> |
||
| 115 | #include <utility> |
||
| 116 | |||
| 117 | namespace llvm { |
||
| 118 | |||
| 119 | //===----------------------------------------------------------------------===// |
||
| 120 | //--- Key traits ---// |
||
| 121 | //===----------------------------------------------------------------------===// |
||
| 122 | // |
||
| 123 | // The IntervalMap works with closed or half-open intervals. |
||
| 124 | // Adjacent intervals that map to the same value are coalesced. |
||
| 125 | // |
||
| 126 | // The IntervalMapInfo traits class is used to determine if a key is contained |
||
| 127 | // in an interval, and if two intervals are adjacent so they can be coalesced. |
||
| 128 | // The provided implementation works for closed integer intervals, other keys |
||
| 129 | // probably need a specialized version. |
||
| 130 | // |
||
| 131 | // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x). |
||
| 132 | // |
||
| 133 | // It is assumed that (a;b] half-open intervals are not used, only [a;b) is |
||
| 134 | // allowed. This is so that stopLess(a, b) can be used to determine if two |
||
| 135 | // intervals overlap. |
||
| 136 | // |
||
| 137 | //===----------------------------------------------------------------------===// |
||
| 138 | |||
| 139 | template <typename T> |
||
| 140 | struct IntervalMapInfo { |
||
| 141 | /// startLess - Return true if x is not in [a;b]. |
||
| 142 | /// This is x < a both for closed intervals and for [a;b) half-open intervals. |
||
| 143 | static inline bool startLess(const T &x, const T &a) { |
||
| 144 | return x < a; |
||
| 145 | } |
||
| 146 | |||
| 147 | /// stopLess - Return true if x is not in [a;b]. |
||
| 148 | /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals. |
||
| 149 | static inline bool stopLess(const T &b, const T &x) { |
||
| 150 | return b < x; |
||
| 151 | } |
||
| 152 | |||
| 153 | /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce. |
||
| 154 | /// This is a+1 == b for closed intervals, a == b for half-open intervals. |
||
| 155 | static inline bool adjacent(const T &a, const T &b) { |
||
| 156 | return a+1 == b; |
||
| 157 | } |
||
| 158 | |||
| 159 | /// nonEmpty - Return true if [a;b] is non-empty. |
||
| 160 | /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals. |
||
| 161 | static inline bool nonEmpty(const T &a, const T &b) { |
||
| 162 | return a <= b; |
||
| 163 | } |
||
| 164 | }; |
||
| 165 | |||
| 166 | template <typename T> |
||
| 167 | struct IntervalMapHalfOpenInfo { |
||
| 168 | /// startLess - Return true if x is not in [a;b). |
||
| 169 | static inline bool startLess(const T &x, const T &a) { |
||
| 170 | return x < a; |
||
| 171 | } |
||
| 172 | |||
| 173 | /// stopLess - Return true if x is not in [a;b). |
||
| 174 | static inline bool stopLess(const T &b, const T &x) { |
||
| 175 | return b <= x; |
||
| 176 | } |
||
| 177 | |||
| 178 | /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce. |
||
| 179 | static inline bool adjacent(const T &a, const T &b) { |
||
| 180 | return a == b; |
||
| 181 | } |
||
| 182 | |||
| 183 | /// nonEmpty - Return true if [a;b) is non-empty. |
||
| 184 | static inline bool nonEmpty(const T &a, const T &b) { |
||
| 185 | return a < b; |
||
| 186 | } |
||
| 187 | }; |
||
| 188 | |||
| 189 | /// IntervalMapImpl - Namespace used for IntervalMap implementation details. |
||
| 190 | /// It should be considered private to the implementation. |
||
| 191 | namespace IntervalMapImpl { |
||
| 192 | |||
| 193 | using IdxPair = std::pair<unsigned,unsigned>; |
||
| 194 | |||
| 195 | //===----------------------------------------------------------------------===// |
||
| 196 | //--- IntervalMapImpl::NodeBase ---// |
||
| 197 | //===----------------------------------------------------------------------===// |
||
| 198 | // |
||
| 199 | // Both leaf and branch nodes store vectors of pairs. |
||
| 200 | // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT). |
||
| 201 | // |
||
| 202 | // Keys and values are stored in separate arrays to avoid padding caused by |
||
| 203 | // different object alignments. This also helps improve locality of reference |
||
| 204 | // when searching the keys. |
||
| 205 | // |
||
| 206 | // The nodes don't know how many elements they contain - that information is |
||
| 207 | // stored elsewhere. Omitting the size field prevents padding and allows a node |
||
| 208 | // to fill the allocated cache lines completely. |
||
| 209 | // |
||
| 210 | // These are typical key and value sizes, the node branching factor (N), and |
||
| 211 | // wasted space when nodes are sized to fit in three cache lines (192 bytes): |
||
| 212 | // |
||
| 213 | // T1 T2 N Waste Used by |
||
| 214 | // 4 4 24 0 Branch<4> (32-bit pointers) |
||
| 215 | // 8 4 16 0 Leaf<4,4>, Branch<4> |
||
| 216 | // 8 8 12 0 Leaf<4,8>, Branch<8> |
||
| 217 | // 16 4 9 12 Leaf<8,4> |
||
| 218 | // 16 8 8 0 Leaf<8,8> |
||
| 219 | // |
||
| 220 | //===----------------------------------------------------------------------===// |
||
| 221 | |||
| 222 | template <typename T1, typename T2, unsigned N> |
||
| 223 | class NodeBase { |
||
| 224 | public: |
||
| 225 | enum { Capacity = N }; |
||
| 226 | |||
| 227 | T1 first[N]; |
||
| 228 | T2 second[N]; |
||
| 229 | |||
| 230 | /// copy - Copy elements from another node. |
||
| 231 | /// @param Other Node elements are copied from. |
||
| 232 | /// @param i Beginning of the source range in other. |
||
| 233 | /// @param j Beginning of the destination range in this. |
||
| 234 | /// @param Count Number of elements to copy. |
||
| 235 | template <unsigned M> |
||
| 236 | void copy(const NodeBase<T1, T2, M> &Other, unsigned i, |
||
| 237 | unsigned j, unsigned Count) { |
||
| 238 | assert(i + Count <= M && "Invalid source range"); |
||
| 239 | assert(j + Count <= N && "Invalid dest range"); |
||
| 240 | for (unsigned e = i + Count; i != e; ++i, ++j) { |
||
| 241 | first[j] = Other.first[i]; |
||
| 242 | second[j] = Other.second[i]; |
||
| 243 | } |
||
| 244 | } |
||
| 245 | |||
| 246 | /// moveLeft - Move elements to the left. |
||
| 247 | /// @param i Beginning of the source range. |
||
| 248 | /// @param j Beginning of the destination range. |
||
| 249 | /// @param Count Number of elements to copy. |
||
| 250 | void moveLeft(unsigned i, unsigned j, unsigned Count) { |
||
| 251 | assert(j <= i && "Use moveRight shift elements right"); |
||
| 252 | copy(*this, i, j, Count); |
||
| 253 | } |
||
| 254 | |||
| 255 | /// moveRight - Move elements to the right. |
||
| 256 | /// @param i Beginning of the source range. |
||
| 257 | /// @param j Beginning of the destination range. |
||
| 258 | /// @param Count Number of elements to copy. |
||
| 259 | void moveRight(unsigned i, unsigned j, unsigned Count) { |
||
| 260 | assert(i <= j && "Use moveLeft shift elements left"); |
||
| 261 | assert(j + Count <= N && "Invalid range"); |
||
| 262 | while (Count--) { |
||
| 263 | first[j + Count] = first[i + Count]; |
||
| 264 | second[j + Count] = second[i + Count]; |
||
| 265 | } |
||
| 266 | } |
||
| 267 | |||
| 268 | /// erase - Erase elements [i;j). |
||
| 269 | /// @param i Beginning of the range to erase. |
||
| 270 | /// @param j End of the range. (Exclusive). |
||
| 271 | /// @param Size Number of elements in node. |
||
| 272 | void erase(unsigned i, unsigned j, unsigned Size) { |
||
| 273 | moveLeft(j, i, Size - j); |
||
| 274 | } |
||
| 275 | |||
| 276 | /// erase - Erase element at i. |
||
| 277 | /// @param i Index of element to erase. |
||
| 278 | /// @param Size Number of elements in node. |
||
| 279 | void erase(unsigned i, unsigned Size) { |
||
| 280 | erase(i, i+1, Size); |
||
| 281 | } |
||
| 282 | |||
| 283 | /// shift - Shift elements [i;size) 1 position to the right. |
||
| 284 | /// @param i Beginning of the range to move. |
||
| 285 | /// @param Size Number of elements in node. |
||
| 286 | void shift(unsigned i, unsigned Size) { |
||
| 287 | moveRight(i, i + 1, Size - i); |
||
| 288 | } |
||
| 289 | |||
| 290 | /// transferToLeftSib - Transfer elements to a left sibling node. |
||
| 291 | /// @param Size Number of elements in this. |
||
| 292 | /// @param Sib Left sibling node. |
||
| 293 | /// @param SSize Number of elements in sib. |
||
| 294 | /// @param Count Number of elements to transfer. |
||
| 295 | void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, |
||
| 296 | unsigned Count) { |
||
| 297 | Sib.copy(*this, 0, SSize, Count); |
||
| 298 | erase(0, Count, Size); |
||
| 299 | } |
||
| 300 | |||
| 301 | /// transferToRightSib - Transfer elements to a right sibling node. |
||
| 302 | /// @param Size Number of elements in this. |
||
| 303 | /// @param Sib Right sibling node. |
||
| 304 | /// @param SSize Number of elements in sib. |
||
| 305 | /// @param Count Number of elements to transfer. |
||
| 306 | void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize, |
||
| 307 | unsigned Count) { |
||
| 308 | Sib.moveRight(0, Count, SSize); |
||
| 309 | Sib.copy(*this, Size-Count, 0, Count); |
||
| 310 | } |
||
| 311 | |||
| 312 | /// adjustFromLeftSib - Adjust the number if elements in this node by moving |
||
| 313 | /// elements to or from a left sibling node. |
||
| 314 | /// @param Size Number of elements in this. |
||
| 315 | /// @param Sib Right sibling node. |
||
| 316 | /// @param SSize Number of elements in sib. |
||
| 317 | /// @param Add The number of elements to add to this node, possibly < 0. |
||
| 318 | /// @return Number of elements added to this node, possibly negative. |
||
| 319 | int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) { |
||
| 320 | if (Add > 0) { |
||
| 321 | // We want to grow, copy from sib. |
||
| 322 | unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size); |
||
| 323 | Sib.transferToRightSib(SSize, *this, Size, Count); |
||
| 324 | return Count; |
||
| 325 | } else { |
||
| 326 | // We want to shrink, copy to sib. |
||
| 327 | unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize); |
||
| 328 | transferToLeftSib(Size, Sib, SSize, Count); |
||
| 329 | return -Count; |
||
| 330 | } |
||
| 331 | } |
||
| 332 | }; |
||
| 333 | |||
| 334 | /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes. |
||
| 335 | /// @param Node Array of pointers to sibling nodes. |
||
| 336 | /// @param Nodes Number of nodes. |
||
| 337 | /// @param CurSize Array of current node sizes, will be overwritten. |
||
| 338 | /// @param NewSize Array of desired node sizes. |
||
| 339 | template <typename NodeT> |
||
| 340 | void adjustSiblingSizes(NodeT *Node[], unsigned Nodes, |
||
| 341 | unsigned CurSize[], const unsigned NewSize[]) { |
||
| 342 | // Move elements right. |
||
| 343 | for (int n = Nodes - 1; n; --n) { |
||
| 344 | if (CurSize[n] == NewSize[n]) |
||
| 345 | continue; |
||
| 346 | for (int m = n - 1; m != -1; --m) { |
||
| 347 | int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m], |
||
| 348 | NewSize[n] - CurSize[n]); |
||
| 349 | CurSize[m] -= d; |
||
| 350 | CurSize[n] += d; |
||
| 351 | // Keep going if the current node was exhausted. |
||
| 352 | if (CurSize[n] >= NewSize[n]) |
||
| 353 | break; |
||
| 354 | } |
||
| 355 | } |
||
| 356 | |||
| 357 | if (Nodes == 0) |
||
| 358 | return; |
||
| 359 | |||
| 360 | // Move elements left. |
||
| 361 | for (unsigned n = 0; n != Nodes - 1; ++n) { |
||
| 362 | if (CurSize[n] == NewSize[n]) |
||
| 363 | continue; |
||
| 364 | for (unsigned m = n + 1; m != Nodes; ++m) { |
||
| 365 | int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n], |
||
| 366 | CurSize[n] - NewSize[n]); |
||
| 367 | CurSize[m] += d; |
||
| 368 | CurSize[n] -= d; |
||
| 369 | // Keep going if the current node was exhausted. |
||
| 370 | if (CurSize[n] >= NewSize[n]) |
||
| 371 | break; |
||
| 372 | } |
||
| 373 | } |
||
| 374 | |||
| 375 | #ifndef NDEBUG |
||
| 376 | for (unsigned n = 0; n != Nodes; n++) |
||
| 377 | assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle"); |
||
| 378 | #endif |
||
| 379 | } |
||
| 380 | |||
| 381 | /// IntervalMapImpl::distribute - Compute a new distribution of node elements |
||
| 382 | /// after an overflow or underflow. Reserve space for a new element at Position, |
||
| 383 | /// and compute the node that will hold Position after redistributing node |
||
| 384 | /// elements. |
||
| 385 | /// |
||
| 386 | /// It is required that |
||
| 387 | /// |
||
| 388 | /// Elements == sum(CurSize), and |
||
| 389 | /// Elements + Grow <= Nodes * Capacity. |
||
| 390 | /// |
||
| 391 | /// NewSize[] will be filled in such that: |
||
| 392 | /// |
||
| 393 | /// sum(NewSize) == Elements, and |
||
| 394 | /// NewSize[i] <= Capacity. |
||
| 395 | /// |
||
| 396 | /// The returned index is the node where Position will go, so: |
||
| 397 | /// |
||
| 398 | /// sum(NewSize[0..idx-1]) <= Position |
||
| 399 | /// sum(NewSize[0..idx]) >= Position |
||
| 400 | /// |
||
| 401 | /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when |
||
| 402 | /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node |
||
| 403 | /// before the one holding the Position'th element where there is room for an |
||
| 404 | /// insertion. |
||
| 405 | /// |
||
| 406 | /// @param Nodes The number of nodes. |
||
| 407 | /// @param Elements Total elements in all nodes. |
||
| 408 | /// @param Capacity The capacity of each node. |
||
| 409 | /// @param CurSize Array[Nodes] of current node sizes, or NULL. |
||
| 410 | /// @param NewSize Array[Nodes] to receive the new node sizes. |
||
| 411 | /// @param Position Insert position. |
||
| 412 | /// @param Grow Reserve space for a new element at Position. |
||
| 413 | /// @return (node, offset) for Position. |
||
| 414 | IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity, |
||
| 415 | const unsigned *CurSize, unsigned NewSize[], |
||
| 416 | unsigned Position, bool Grow); |
||
| 417 | |||
| 418 | //===----------------------------------------------------------------------===// |
||
| 419 | //--- IntervalMapImpl::NodeSizer ---// |
||
| 420 | //===----------------------------------------------------------------------===// |
||
| 421 | // |
||
| 422 | // Compute node sizes from key and value types. |
||
| 423 | // |
||
| 424 | // The branching factors are chosen to make nodes fit in three cache lines. |
||
| 425 | // This may not be possible if keys or values are very large. Such large objects |
||
| 426 | // are handled correctly, but a std::map would probably give better performance. |
||
| 427 | // |
||
| 428 | //===----------------------------------------------------------------------===// |
||
| 429 | |||
| 430 | enum { |
||
| 431 | // Cache line size. Most architectures have 32 or 64 byte cache lines. |
||
| 432 | // We use 64 bytes here because it provides good branching factors. |
||
| 433 | Log2CacheLine = 6, |
||
| 434 | CacheLineBytes = 1 << Log2CacheLine, |
||
| 435 | DesiredNodeBytes = 3 * CacheLineBytes |
||
| 436 | }; |
||
| 437 | |||
| 438 | template <typename KeyT, typename ValT> |
||
| 439 | struct NodeSizer { |
||
| 440 | enum { |
||
| 441 | // Compute the leaf node branching factor that makes a node fit in three |
||
| 442 | // cache lines. The branching factor must be at least 3, or some B+-tree |
||
| 443 | // balancing algorithms won't work. |
||
| 444 | // LeafSize can't be larger than CacheLineBytes. This is required by the |
||
| 445 | // PointerIntPair used by NodeRef. |
||
| 446 | DesiredLeafSize = DesiredNodeBytes / |
||
| 447 | static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)), |
||
| 448 | MinLeafSize = 3, |
||
| 449 | LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize |
||
| 450 | }; |
||
| 451 | |||
| 452 | using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>; |
||
| 453 | |||
| 454 | enum { |
||
| 455 | // Now that we have the leaf branching factor, compute the actual allocation |
||
| 456 | // unit size by rounding up to a whole number of cache lines. |
||
| 457 | AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1), |
||
| 458 | |||
| 459 | // Determine the branching factor for branch nodes. |
||
| 460 | BranchSize = AllocBytes / |
||
| 461 | static_cast<unsigned>(sizeof(KeyT) + sizeof(void*)) |
||
| 462 | }; |
||
| 463 | |||
| 464 | /// Allocator - The recycling allocator used for both branch and leaf nodes. |
||
| 465 | /// This typedef is very likely to be identical for all IntervalMaps with |
||
| 466 | /// reasonably sized entries, so the same allocator can be shared among |
||
| 467 | /// different kinds of maps. |
||
| 468 | using Allocator = |
||
| 469 | RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>; |
||
| 470 | }; |
||
| 471 | |||
| 472 | //===----------------------------------------------------------------------===// |
||
| 473 | //--- IntervalMapImpl::NodeRef ---// |
||
| 474 | //===----------------------------------------------------------------------===// |
||
| 475 | // |
||
| 476 | // B+-tree nodes can be leaves or branches, so we need a polymorphic node |
||
| 477 | // pointer that can point to both kinds. |
||
| 478 | // |
||
| 479 | // All nodes are cache line aligned and the low 6 bits of a node pointer are |
||
| 480 | // always 0. These bits are used to store the number of elements in the |
||
| 481 | // referenced node. Besides saving space, placing node sizes in the parents |
||
| 482 | // allow tree balancing algorithms to run without faulting cache lines for nodes |
||
| 483 | // that may not need to be modified. |
||
| 484 | // |
||
| 485 | // A NodeRef doesn't know whether it references a leaf node or a branch node. |
||
| 486 | // It is the responsibility of the caller to use the correct types. |
||
| 487 | // |
||
| 488 | // Nodes are never supposed to be empty, and it is invalid to store a node size |
||
| 489 | // of 0 in a NodeRef. The valid range of sizes is 1-64. |
||
| 490 | // |
||
| 491 | //===----------------------------------------------------------------------===// |
||
| 492 | |||
| 493 | class NodeRef { |
||
| 494 | struct CacheAlignedPointerTraits { |
||
| 495 | static inline void *getAsVoidPointer(void *P) { return P; } |
||
| 496 | static inline void *getFromVoidPointer(void *P) { return P; } |
||
| 497 | static constexpr int NumLowBitsAvailable = Log2CacheLine; |
||
| 498 | }; |
||
| 499 | PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip; |
||
| 500 | |||
| 501 | public: |
||
| 502 | /// NodeRef - Create a null ref. |
||
| 503 | NodeRef() = default; |
||
| 504 | |||
| 505 | /// operator bool - Detect a null ref. |
||
| 506 | explicit operator bool() const { return pip.getOpaqueValue(); } |
||
| 507 | |||
| 508 | /// NodeRef - Create a reference to the node p with n elements. |
||
| 509 | template <typename NodeT> |
||
| 510 | NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) { |
||
| 511 | assert(n <= NodeT::Capacity && "Size too big for node"); |
||
| 512 | } |
||
| 513 | |||
| 514 | /// size - Return the number of elements in the referenced node. |
||
| 515 | unsigned size() const { return pip.getInt() + 1; } |
||
| 516 | |||
| 517 | /// setSize - Update the node size. |
||
| 518 | void setSize(unsigned n) { pip.setInt(n - 1); } |
||
| 519 | |||
| 520 | /// subtree - Access the i'th subtree reference in a branch node. |
||
| 521 | /// This depends on branch nodes storing the NodeRef array as their first |
||
| 522 | /// member. |
||
| 523 | NodeRef &subtree(unsigned i) const { |
||
| 524 | return reinterpret_cast<NodeRef*>(pip.getPointer())[i]; |
||
| 525 | } |
||
| 526 | |||
| 527 | /// get - Dereference as a NodeT reference. |
||
| 528 | template <typename NodeT> |
||
| 529 | NodeT &get() const { |
||
| 530 | return *reinterpret_cast<NodeT*>(pip.getPointer()); |
||
| 531 | } |
||
| 532 | |||
| 533 | bool operator==(const NodeRef &RHS) const { |
||
| 534 | if (pip == RHS.pip) |
||
| 535 | return true; |
||
| 536 | assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs"); |
||
| 537 | return false; |
||
| 538 | } |
||
| 539 | |||
| 540 | bool operator!=(const NodeRef &RHS) const { |
||
| 541 | return !operator==(RHS); |
||
| 542 | } |
||
| 543 | }; |
||
| 544 | |||
| 545 | //===----------------------------------------------------------------------===// |
||
| 546 | //--- IntervalMapImpl::LeafNode ---// |
||
| 547 | //===----------------------------------------------------------------------===// |
||
| 548 | // |
||
| 549 | // Leaf nodes store up to N disjoint intervals with corresponding values. |
||
| 550 | // |
||
| 551 | // The intervals are kept sorted and fully coalesced so there are no adjacent |
||
| 552 | // intervals mapping to the same value. |
||
| 553 | // |
||
| 554 | // These constraints are always satisfied: |
||
| 555 | // |
||
| 556 | // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals. |
||
| 557 | // |
||
| 558 | // - Traits::stopLess(stop(i), start(i + 1) - Sorted. |
||
| 559 | // |
||
| 560 | // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1)) |
||
| 561 | // - Fully coalesced. |
||
| 562 | // |
||
| 563 | //===----------------------------------------------------------------------===// |
||
| 564 | |||
| 565 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 566 | class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> { |
||
| 567 | public: |
||
| 568 | const KeyT &start(unsigned i) const { return this->first[i].first; } |
||
| 569 | const KeyT &stop(unsigned i) const { return this->first[i].second; } |
||
| 570 | const ValT &value(unsigned i) const { return this->second[i]; } |
||
| 571 | |||
| 572 | KeyT &start(unsigned i) { return this->first[i].first; } |
||
| 573 | KeyT &stop(unsigned i) { return this->first[i].second; } |
||
| 574 | ValT &value(unsigned i) { return this->second[i]; } |
||
| 575 | |||
| 576 | /// findFrom - Find the first interval after i that may contain x. |
||
| 577 | /// @param i Starting index for the search. |
||
| 578 | /// @param Size Number of elements in node. |
||
| 579 | /// @param x Key to search for. |
||
| 580 | /// @return First index with !stopLess(key[i].stop, x), or size. |
||
| 581 | /// This is the first interval that can possibly contain x. |
||
| 582 | unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { |
||
| 583 | assert(i <= Size && Size <= N && "Bad indices"); |
||
| 584 | assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && |
||
| 585 | "Index is past the needed point"); |
||
| 586 | while (i != Size && Traits::stopLess(stop(i), x)) ++i; |
||
| 587 | return i; |
||
| 588 | } |
||
| 589 | |||
| 590 | /// safeFind - Find an interval that is known to exist. This is the same as |
||
| 591 | /// findFrom except is it assumed that x is at least within range of the last |
||
| 592 | /// interval. |
||
| 593 | /// @param i Starting index for the search. |
||
| 594 | /// @param x Key to search for. |
||
| 595 | /// @return First index with !stopLess(key[i].stop, x), never size. |
||
| 596 | /// This is the first interval that can possibly contain x. |
||
| 597 | unsigned safeFind(unsigned i, KeyT x) const { |
||
| 598 | assert(i < N && "Bad index"); |
||
| 599 | assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && |
||
| 600 | "Index is past the needed point"); |
||
| 601 | while (Traits::stopLess(stop(i), x)) ++i; |
||
| 602 | assert(i < N && "Unsafe intervals"); |
||
| 603 | return i; |
||
| 604 | } |
||
| 605 | |||
| 606 | /// safeLookup - Lookup mapped value for a safe key. |
||
| 607 | /// It is assumed that x is within range of the last entry. |
||
| 608 | /// @param x Key to search for. |
||
| 609 | /// @param NotFound Value to return if x is not in any interval. |
||
| 610 | /// @return The mapped value at x or NotFound. |
||
| 611 | ValT safeLookup(KeyT x, ValT NotFound) const { |
||
| 612 | unsigned i = safeFind(0, x); |
||
| 613 | return Traits::startLess(x, start(i)) ? NotFound : value(i); |
||
| 614 | } |
||
| 615 | |||
| 616 | unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y); |
||
| 617 | }; |
||
| 618 | |||
| 619 | /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as |
||
| 620 | /// possible. This may cause the node to grow by 1, or it may cause the node |
||
| 621 | /// to shrink because of coalescing. |
||
| 622 | /// @param Pos Starting index = insertFrom(0, size, a) |
||
| 623 | /// @param Size Number of elements in node. |
||
| 624 | /// @param a Interval start. |
||
| 625 | /// @param b Interval stop. |
||
| 626 | /// @param y Value be mapped. |
||
| 627 | /// @return (insert position, new size), or (i, Capacity+1) on overflow. |
||
| 628 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 629 | unsigned LeafNode<KeyT, ValT, N, Traits>:: |
||
| 630 | insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) { |
||
| 631 | unsigned i = Pos; |
||
| 632 | assert(i <= Size && Size <= N && "Invalid index"); |
||
| 633 | assert(!Traits::stopLess(b, a) && "Invalid interval"); |
||
| 634 | |||
| 635 | // Verify the findFrom invariant. |
||
| 636 | assert((i == 0 || Traits::stopLess(stop(i - 1), a))); |
||
| 637 | assert((i == Size || !Traits::stopLess(stop(i), a))); |
||
| 638 | assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert"); |
||
| 639 | |||
| 640 | // Coalesce with previous interval. |
||
| 641 | if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) { |
||
| 642 | Pos = i - 1; |
||
| 643 | // Also coalesce with next interval? |
||
| 644 | if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) { |
||
| 645 | stop(i - 1) = stop(i); |
||
| 646 | this->erase(i, Size); |
||
| 647 | return Size - 1; |
||
| 648 | } |
||
| 649 | stop(i - 1) = b; |
||
| 650 | return Size; |
||
| 651 | } |
||
| 652 | |||
| 653 | // Detect overflow. |
||
| 654 | if (i == N) |
||
| 655 | return N + 1; |
||
| 656 | |||
| 657 | // Add new interval at end. |
||
| 658 | if (i == Size) { |
||
| 659 | start(i) = a; |
||
| 660 | stop(i) = b; |
||
| 661 | value(i) = y; |
||
| 662 | return Size + 1; |
||
| 663 | } |
||
| 664 | |||
| 665 | // Try to coalesce with following interval. |
||
| 666 | if (value(i) == y && Traits::adjacent(b, start(i))) { |
||
| 667 | start(i) = a; |
||
| 668 | return Size; |
||
| 669 | } |
||
| 670 | |||
| 671 | // We must insert before i. Detect overflow. |
||
| 672 | if (Size == N) |
||
| 673 | return N + 1; |
||
| 674 | |||
| 675 | // Insert before i. |
||
| 676 | this->shift(i, Size); |
||
| 677 | start(i) = a; |
||
| 678 | stop(i) = b; |
||
| 679 | value(i) = y; |
||
| 680 | return Size + 1; |
||
| 681 | } |
||
| 682 | |||
| 683 | //===----------------------------------------------------------------------===// |
||
| 684 | //--- IntervalMapImpl::BranchNode ---// |
||
| 685 | //===----------------------------------------------------------------------===// |
||
| 686 | // |
||
| 687 | // A branch node stores references to 1--N subtrees all of the same height. |
||
| 688 | // |
||
| 689 | // The key array in a branch node holds the rightmost stop key of each subtree. |
||
| 690 | // It is redundant to store the last stop key since it can be found in the |
||
| 691 | // parent node, but doing so makes tree balancing a lot simpler. |
||
| 692 | // |
||
| 693 | // It is unusual for a branch node to only have one subtree, but it can happen |
||
| 694 | // in the root node if it is smaller than the normal nodes. |
||
| 695 | // |
||
| 696 | // When all of the leaf nodes from all the subtrees are concatenated, they must |
||
| 697 | // satisfy the same constraints as a single leaf node. They must be sorted, |
||
| 698 | // sane, and fully coalesced. |
||
| 699 | // |
||
| 700 | //===----------------------------------------------------------------------===// |
||
| 701 | |||
| 702 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 703 | class BranchNode : public NodeBase<NodeRef, KeyT, N> { |
||
| 704 | public: |
||
| 705 | const KeyT &stop(unsigned i) const { return this->second[i]; } |
||
| 706 | const NodeRef &subtree(unsigned i) const { return this->first[i]; } |
||
| 707 | |||
| 708 | KeyT &stop(unsigned i) { return this->second[i]; } |
||
| 709 | NodeRef &subtree(unsigned i) { return this->first[i]; } |
||
| 710 | |||
| 711 | /// findFrom - Find the first subtree after i that may contain x. |
||
| 712 | /// @param i Starting index for the search. |
||
| 713 | /// @param Size Number of elements in node. |
||
| 714 | /// @param x Key to search for. |
||
| 715 | /// @return First index with !stopLess(key[i], x), or size. |
||
| 716 | /// This is the first subtree that can possibly contain x. |
||
| 717 | unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { |
||
| 718 | assert(i <= Size && Size <= N && "Bad indices"); |
||
| 719 | assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && |
||
| 720 | "Index to findFrom is past the needed point"); |
||
| 721 | while (i != Size && Traits::stopLess(stop(i), x)) ++i; |
||
| 722 | return i; |
||
| 723 | } |
||
| 724 | |||
| 725 | /// safeFind - Find a subtree that is known to exist. This is the same as |
||
| 726 | /// findFrom except is it assumed that x is in range. |
||
| 727 | /// @param i Starting index for the search. |
||
| 728 | /// @param x Key to search for. |
||
| 729 | /// @return First index with !stopLess(key[i], x), never size. |
||
| 730 | /// This is the first subtree that can possibly contain x. |
||
| 731 | unsigned safeFind(unsigned i, KeyT x) const { |
||
| 732 | assert(i < N && "Bad index"); |
||
| 733 | assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && |
||
| 734 | "Index is past the needed point"); |
||
| 735 | while (Traits::stopLess(stop(i), x)) ++i; |
||
| 736 | assert(i < N && "Unsafe intervals"); |
||
| 737 | return i; |
||
| 738 | } |
||
| 739 | |||
| 740 | /// safeLookup - Get the subtree containing x, Assuming that x is in range. |
||
| 741 | /// @param x Key to search for. |
||
| 742 | /// @return Subtree containing x |
||
| 743 | NodeRef safeLookup(KeyT x) const { |
||
| 744 | return subtree(safeFind(0, x)); |
||
| 745 | } |
||
| 746 | |||
| 747 | /// insert - Insert a new (subtree, stop) pair. |
||
| 748 | /// @param i Insert position, following entries will be shifted. |
||
| 749 | /// @param Size Number of elements in node. |
||
| 750 | /// @param Node Subtree to insert. |
||
| 751 | /// @param Stop Last key in subtree. |
||
| 752 | void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) { |
||
| 753 | assert(Size < N && "branch node overflow"); |
||
| 754 | assert(i <= Size && "Bad insert position"); |
||
| 755 | this->shift(i, Size); |
||
| 756 | subtree(i) = Node; |
||
| 757 | stop(i) = Stop; |
||
| 758 | } |
||
| 759 | }; |
||
| 760 | |||
| 761 | //===----------------------------------------------------------------------===// |
||
| 762 | //--- IntervalMapImpl::Path ---// |
||
| 763 | //===----------------------------------------------------------------------===// |
||
| 764 | // |
||
| 765 | // A Path is used by iterators to represent a position in a B+-tree, and the |
||
| 766 | // path to get there from the root. |
||
| 767 | // |
||
| 768 | // The Path class also contains the tree navigation code that doesn't have to |
||
| 769 | // be templatized. |
||
| 770 | // |
||
| 771 | //===----------------------------------------------------------------------===// |
||
| 772 | |||
| 773 | class Path { |
||
| 774 | /// Entry - Each step in the path is a node pointer and an offset into that |
||
| 775 | /// node. |
||
| 776 | struct Entry { |
||
| 777 | void *node; |
||
| 778 | unsigned size; |
||
| 779 | unsigned offset; |
||
| 780 | |||
| 781 | Entry(void *Node, unsigned Size, unsigned Offset) |
||
| 782 | : node(Node), size(Size), offset(Offset) {} |
||
| 783 | |||
| 784 | Entry(NodeRef Node, unsigned Offset) |
||
| 785 | : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {} |
||
| 786 | |||
| 787 | NodeRef &subtree(unsigned i) const { |
||
| 788 | return reinterpret_cast<NodeRef*>(node)[i]; |
||
| 789 | } |
||
| 790 | }; |
||
| 791 | |||
| 792 | /// path - The path entries, path[0] is the root node, path.back() is a leaf. |
||
| 793 | SmallVector<Entry, 4> path; |
||
| 794 | |||
| 795 | public: |
||
| 796 | // Node accessors. |
||
| 797 | template <typename NodeT> NodeT &node(unsigned Level) const { |
||
| 798 | return *reinterpret_cast<NodeT*>(path[Level].node); |
||
| 799 | } |
||
| 800 | unsigned size(unsigned Level) const { return path[Level].size; } |
||
| 801 | unsigned offset(unsigned Level) const { return path[Level].offset; } |
||
| 802 | unsigned &offset(unsigned Level) { return path[Level].offset; } |
||
| 803 | |||
| 804 | // Leaf accessors. |
||
| 805 | template <typename NodeT> NodeT &leaf() const { |
||
| 806 | return *reinterpret_cast<NodeT*>(path.back().node); |
||
| 807 | } |
||
| 808 | unsigned leafSize() const { return path.back().size; } |
||
| 809 | unsigned leafOffset() const { return path.back().offset; } |
||
| 810 | unsigned &leafOffset() { return path.back().offset; } |
||
| 811 | |||
| 812 | /// valid - Return true if path is at a valid node, not at end(). |
||
| 813 | bool valid() const { |
||
| 814 | return !path.empty() && path.front().offset < path.front().size; |
||
| 815 | } |
||
| 816 | |||
| 817 | /// height - Return the height of the tree corresponding to this path. |
||
| 818 | /// This matches map->height in a full path. |
||
| 819 | unsigned height() const { return path.size() - 1; } |
||
| 820 | |||
| 821 | /// subtree - Get the subtree referenced from Level. When the path is |
||
| 822 | /// consistent, node(Level + 1) == subtree(Level). |
||
| 823 | /// @param Level 0..height-1. The leaves have no subtrees. |
||
| 824 | NodeRef &subtree(unsigned Level) const { |
||
| 825 | return path[Level].subtree(path[Level].offset); |
||
| 826 | } |
||
| 827 | |||
| 828 | /// reset - Reset cached information about node(Level) from subtree(Level -1). |
||
| 829 | /// @param Level 1..height. The node to update after parent node changed. |
||
| 830 | void reset(unsigned Level) { |
||
| 831 | path[Level] = Entry(subtree(Level - 1), offset(Level)); |
||
| 832 | } |
||
| 833 | |||
| 834 | /// push - Add entry to path. |
||
| 835 | /// @param Node Node to add, should be subtree(path.size()-1). |
||
| 836 | /// @param Offset Offset into Node. |
||
| 837 | void push(NodeRef Node, unsigned Offset) { |
||
| 838 | path.push_back(Entry(Node, Offset)); |
||
| 839 | } |
||
| 840 | |||
| 841 | /// pop - Remove the last path entry. |
||
| 842 | void pop() { |
||
| 843 | path.pop_back(); |
||
| 844 | } |
||
| 845 | |||
| 846 | /// setSize - Set the size of a node both in the path and in the tree. |
||
| 847 | /// @param Level 0..height. Note that setting the root size won't change |
||
| 848 | /// map->rootSize. |
||
| 849 | /// @param Size New node size. |
||
| 850 | void setSize(unsigned Level, unsigned Size) { |
||
| 851 | path[Level].size = Size; |
||
| 852 | if (Level) |
||
| 853 | subtree(Level - 1).setSize(Size); |
||
| 854 | } |
||
| 855 | |||
| 856 | /// setRoot - Clear the path and set a new root node. |
||
| 857 | /// @param Node New root node. |
||
| 858 | /// @param Size New root size. |
||
| 859 | /// @param Offset Offset into root node. |
||
| 860 | void setRoot(void *Node, unsigned Size, unsigned Offset) { |
||
| 861 | path.clear(); |
||
| 862 | path.push_back(Entry(Node, Size, Offset)); |
||
| 863 | } |
||
| 864 | |||
| 865 | /// replaceRoot - Replace the current root node with two new entries after the |
||
| 866 | /// tree height has increased. |
||
| 867 | /// @param Root The new root node. |
||
| 868 | /// @param Size Number of entries in the new root. |
||
| 869 | /// @param Offsets Offsets into the root and first branch nodes. |
||
| 870 | void replaceRoot(void *Root, unsigned Size, IdxPair Offsets); |
||
| 871 | |||
| 872 | /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. |
||
| 873 | /// @param Level Get the sibling to node(Level). |
||
| 874 | /// @return Left sibling, or NodeRef(). |
||
| 875 | NodeRef getLeftSibling(unsigned Level) const; |
||
| 876 | |||
| 877 | /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level |
||
| 878 | /// unaltered. |
||
| 879 | /// @param Level Move node(Level). |
||
| 880 | void moveLeft(unsigned Level); |
||
| 881 | |||
| 882 | /// fillLeft - Grow path to Height by taking leftmost branches. |
||
| 883 | /// @param Height The target height. |
||
| 884 | void fillLeft(unsigned Height) { |
||
| 885 | while (height() < Height) |
||
| 886 | push(subtree(height()), 0); |
||
| 887 | } |
||
| 888 | |||
| 889 | /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. |
||
| 890 | /// @param Level Get the sibling to node(Level). |
||
| 891 | /// @return Left sibling, or NodeRef(). |
||
| 892 | NodeRef getRightSibling(unsigned Level) const; |
||
| 893 | |||
| 894 | /// moveRight - Move path to the left sibling at Level. Leave nodes below |
||
| 895 | /// Level unaltered. |
||
| 896 | /// @param Level Move node(Level). |
||
| 897 | void moveRight(unsigned Level); |
||
| 898 | |||
| 899 | /// atBegin - Return true if path is at begin(). |
||
| 900 | bool atBegin() const { |
||
| 901 | for (unsigned i = 0, e = path.size(); i != e; ++i) |
||
| 902 | if (path[i].offset != 0) |
||
| 903 | return false; |
||
| 904 | return true; |
||
| 905 | } |
||
| 906 | |||
| 907 | /// atLastEntry - Return true if the path is at the last entry of the node at |
||
| 908 | /// Level. |
||
| 909 | /// @param Level Node to examine. |
||
| 910 | bool atLastEntry(unsigned Level) const { |
||
| 911 | return path[Level].offset == path[Level].size - 1; |
||
| 912 | } |
||
| 913 | |||
| 914 | /// legalizeForInsert - Prepare the path for an insertion at Level. When the |
||
| 915 | /// path is at end(), node(Level) may not be a legal node. legalizeForInsert |
||
| 916 | /// ensures that node(Level) is real by moving back to the last node at Level, |
||
| 917 | /// and setting offset(Level) to size(Level) if required. |
||
| 918 | /// @param Level The level where an insertion is about to take place. |
||
| 919 | void legalizeForInsert(unsigned Level) { |
||
| 920 | if (valid()) |
||
| 921 | return; |
||
| 922 | moveLeft(Level); |
||
| 923 | ++path[Level].offset; |
||
| 924 | } |
||
| 925 | }; |
||
| 926 | |||
| 927 | } // end namespace IntervalMapImpl |
||
| 928 | |||
| 929 | //===----------------------------------------------------------------------===// |
||
| 930 | //--- IntervalMap ----// |
||
| 931 | //===----------------------------------------------------------------------===// |
||
| 932 | |||
| 933 | template <typename KeyT, typename ValT, |
||
| 934 | unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize, |
||
| 935 | typename Traits = IntervalMapInfo<KeyT>> |
||
| 936 | class IntervalMap { |
||
| 937 | using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>; |
||
| 938 | using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>; |
||
| 939 | using Branch = |
||
| 940 | IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>; |
||
| 941 | using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>; |
||
| 942 | using IdxPair = IntervalMapImpl::IdxPair; |
||
| 943 | |||
| 944 | // The RootLeaf capacity is given as a template parameter. We must compute the |
||
| 945 | // corresponding RootBranch capacity. |
||
| 946 | enum { |
||
| 947 | DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) / |
||
| 948 | (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)), |
||
| 949 | RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1 |
||
| 950 | }; |
||
| 951 | |||
| 952 | using RootBranch = |
||
| 953 | IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>; |
||
| 954 | |||
| 955 | // When branched, we store a global start key as well as the branch node. |
||
| 956 | struct RootBranchData { |
||
| 957 | KeyT start; |
||
| 958 | RootBranch node; |
||
| 959 | }; |
||
| 960 | |||
| 961 | public: |
||
| 962 | using Allocator = typename Sizer::Allocator; |
||
| 963 | using KeyType = KeyT; |
||
| 964 | using ValueType = ValT; |
||
| 965 | using KeyTraits = Traits; |
||
| 966 | |||
| 967 | private: |
||
| 968 | // The root data is either a RootLeaf or a RootBranchData instance. |
||
| 969 | union { |
||
| 970 | RootLeaf leaf; |
||
| 971 | RootBranchData branchData; |
||
| 972 | }; |
||
| 973 | |||
| 974 | // Tree height. |
||
| 975 | // 0: Leaves in root. |
||
| 976 | // 1: Root points to leaf. |
||
| 977 | // 2: root->branch->leaf ... |
||
| 978 | unsigned height = 0; |
||
| 979 | |||
| 980 | // Number of entries in the root node. |
||
| 981 | unsigned rootSize = 0; |
||
| 982 | |||
| 983 | // Allocator used for creating external nodes. |
||
| 984 | Allocator *allocator = nullptr; |
||
| 985 | |||
| 986 | const RootLeaf &rootLeaf() const { |
||
| 987 | assert(!branched() && "Cannot acces leaf data in branched root"); |
||
| 988 | return leaf; |
||
| 989 | } |
||
| 990 | RootLeaf &rootLeaf() { |
||
| 991 | assert(!branched() && "Cannot acces leaf data in branched root"); |
||
| 992 | return leaf; |
||
| 993 | } |
||
| 994 | |||
| 995 | const RootBranchData &rootBranchData() const { |
||
| 996 | assert(branched() && "Cannot access branch data in non-branched root"); |
||
| 997 | return branchData; |
||
| 998 | } |
||
| 999 | RootBranchData &rootBranchData() { |
||
| 1000 | assert(branched() && "Cannot access branch data in non-branched root"); |
||
| 1001 | return branchData; |
||
| 1002 | } |
||
| 1003 | |||
| 1004 | const RootBranch &rootBranch() const { return rootBranchData().node; } |
||
| 1005 | RootBranch &rootBranch() { return rootBranchData().node; } |
||
| 1006 | KeyT rootBranchStart() const { return rootBranchData().start; } |
||
| 1007 | KeyT &rootBranchStart() { return rootBranchData().start; } |
||
| 1008 | |||
| 1009 | template <typename NodeT> NodeT *newNode() { |
||
| 1010 | return new (allocator->template Allocate<NodeT>()) NodeT(); |
||
| 1011 | } |
||
| 1012 | |||
| 1013 | template <typename NodeT> void deleteNode(NodeT *P) { |
||
| 1014 | P->~NodeT(); |
||
| 1015 | allocator->Deallocate(P); |
||
| 1016 | } |
||
| 1017 | |||
| 1018 | IdxPair branchRoot(unsigned Position); |
||
| 1019 | IdxPair splitRoot(unsigned Position); |
||
| 1020 | |||
| 1021 | void switchRootToBranch() { |
||
| 1022 | rootLeaf().~RootLeaf(); |
||
| 1023 | height = 1; |
||
| 1024 | new (&rootBranchData()) RootBranchData(); |
||
| 1025 | } |
||
| 1026 | |||
| 1027 | void switchRootToLeaf() { |
||
| 1028 | rootBranchData().~RootBranchData(); |
||
| 1029 | height = 0; |
||
| 1030 | new(&rootLeaf()) RootLeaf(); |
||
| 1031 | } |
||
| 1032 | |||
| 1033 | bool branched() const { return height > 0; } |
||
| 1034 | |||
| 1035 | ValT treeSafeLookup(KeyT x, ValT NotFound) const; |
||
| 1036 | void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, |
||
| 1037 | unsigned Level)); |
||
| 1038 | void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level); |
||
| 1039 | |||
| 1040 | public: |
||
| 1041 | explicit IntervalMap(Allocator &a) : allocator(&a) { |
||
| 1042 | new (&rootLeaf()) RootLeaf(); |
||
| 1043 | } |
||
| 1044 | |||
| 1045 | ///@{ |
||
| 1046 | /// NOTE: The moved-from or copied-from object's allocator needs to have a |
||
| 1047 | /// lifetime equal to or exceeding the moved-to or copied-to object to avoid |
||
| 1048 | /// undefined behaviour. |
||
| 1049 | IntervalMap(IntervalMap const &RHS) : IntervalMap(*RHS.allocator) { |
||
| 1050 | // Future-proofing assertion: this function assumes the IntervalMap |
||
| 1051 | // constructor doesn't add any nodes. |
||
| 1052 | assert(empty() && "Expected emptry tree"); |
||
| 1053 | *this = RHS; |
||
| 1054 | } |
||
| 1055 | IntervalMap &operator=(IntervalMap const &RHS) { |
||
| 1056 | clear(); |
||
| 1057 | allocator = RHS.allocator; |
||
| 1058 | for (auto It = RHS.begin(), End = RHS.end(); It != End; ++It) |
||
| 1059 | insert(It.start(), It.stop(), It.value()); |
||
| 1060 | return *this; |
||
| 1061 | } |
||
| 1062 | |||
| 1063 | IntervalMap(IntervalMap &&RHS) : IntervalMap(*RHS.allocator) { |
||
| 1064 | // Future-proofing assertion: this function assumes the IntervalMap |
||
| 1065 | // constructor doesn't add any nodes. |
||
| 1066 | assert(empty() && "Expected emptry tree"); |
||
| 1067 | *this = std::move(RHS); |
||
| 1068 | } |
||
| 1069 | IntervalMap &operator=(IntervalMap &&RHS) { |
||
| 1070 | // Calling clear deallocates memory and switches to rootLeaf. |
||
| 1071 | clear(); |
||
| 1072 | // Destroy the new rootLeaf. |
||
| 1073 | rootLeaf().~RootLeaf(); |
||
| 1074 | |||
| 1075 | height = RHS.height; |
||
| 1076 | rootSize = RHS.rootSize; |
||
| 1077 | allocator = RHS.allocator; |
||
| 1078 | |||
| 1079 | // rootLeaf and rootBranch are both uninitialized. Move RHS data into |
||
| 1080 | // appropriate field. |
||
| 1081 | if (RHS.branched()) { |
||
| 1082 | rootBranch() = std::move(RHS.rootBranch()); |
||
| 1083 | // Prevent RHS deallocating memory LHS now owns by replacing RHS |
||
| 1084 | // rootBranch with a new rootLeaf. |
||
| 1085 | RHS.rootBranch().~RootBranch(); |
||
| 1086 | RHS.height = 0; |
||
| 1087 | new (&RHS.rootLeaf()) RootLeaf(); |
||
| 1088 | } else { |
||
| 1089 | rootLeaf() = std::move(RHS.rootLeaf()); |
||
| 1090 | } |
||
| 1091 | return *this; |
||
| 1092 | } |
||
| 1093 | ///@} |
||
| 1094 | |||
| 1095 | ~IntervalMap() { |
||
| 1096 | clear(); |
||
| 1097 | rootLeaf().~RootLeaf(); |
||
| 1098 | } |
||
| 1099 | |||
| 1100 | /// empty - Return true when no intervals are mapped. |
||
| 1101 | bool empty() const { |
||
| 1102 | return rootSize == 0; |
||
| 1103 | } |
||
| 1104 | |||
| 1105 | /// start - Return the smallest mapped key in a non-empty map. |
||
| 1106 | KeyT start() const { |
||
| 1107 | assert(!empty() && "Empty IntervalMap has no start"); |
||
| 1108 | return !branched() ? rootLeaf().start(0) : rootBranchStart(); |
||
| 1109 | } |
||
| 1110 | |||
| 1111 | /// stop - Return the largest mapped key in a non-empty map. |
||
| 1112 | KeyT stop() const { |
||
| 1113 | assert(!empty() && "Empty IntervalMap has no stop"); |
||
| 1114 | return !branched() ? rootLeaf().stop(rootSize - 1) : |
||
| 1115 | rootBranch().stop(rootSize - 1); |
||
| 1116 | } |
||
| 1117 | |||
| 1118 | /// lookup - Return the mapped value at x or NotFound. |
||
| 1119 | ValT lookup(KeyT x, ValT NotFound = ValT()) const { |
||
| 1120 | if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x)) |
||
| 1121 | return NotFound; |
||
| 1122 | return branched() ? treeSafeLookup(x, NotFound) : |
||
| 1123 | rootLeaf().safeLookup(x, NotFound); |
||
| 1124 | } |
||
| 1125 | |||
| 1126 | /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals. |
||
| 1127 | /// It is assumed that no key in the interval is mapped to another value, but |
||
| 1128 | /// overlapping intervals already mapped to y will be coalesced. |
||
| 1129 | void insert(KeyT a, KeyT b, ValT y) { |
||
| 1130 | if (branched() || rootSize == RootLeaf::Capacity) |
||
| 1131 | return find(a).insert(a, b, y); |
||
| 1132 | |||
| 1133 | // Easy insert into root leaf. |
||
| 1134 | unsigned p = rootLeaf().findFrom(0, rootSize, a); |
||
| 1135 | rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y); |
||
| 1136 | } |
||
| 1137 | |||
| 1138 | /// clear - Remove all entries. |
||
| 1139 | void clear(); |
||
| 1140 | |||
| 1141 | class const_iterator; |
||
| 1142 | class iterator; |
||
| 1143 | friend class const_iterator; |
||
| 1144 | friend class iterator; |
||
| 1145 | |||
| 1146 | const_iterator begin() const { |
||
| 1147 | const_iterator I(*this); |
||
| 1148 | I.goToBegin(); |
||
| 1149 | return I; |
||
| 1150 | } |
||
| 1151 | |||
| 1152 | iterator begin() { |
||
| 1153 | iterator I(*this); |
||
| 1154 | I.goToBegin(); |
||
| 1155 | return I; |
||
| 1156 | } |
||
| 1157 | |||
| 1158 | const_iterator end() const { |
||
| 1159 | const_iterator I(*this); |
||
| 1160 | I.goToEnd(); |
||
| 1161 | return I; |
||
| 1162 | } |
||
| 1163 | |||
| 1164 | iterator end() { |
||
| 1165 | iterator I(*this); |
||
| 1166 | I.goToEnd(); |
||
| 1167 | return I; |
||
| 1168 | } |
||
| 1169 | |||
| 1170 | /// find - Return an iterator pointing to the first interval ending at or |
||
| 1171 | /// after x, or end(). |
||
| 1172 | const_iterator find(KeyT x) const { |
||
| 1173 | const_iterator I(*this); |
||
| 1174 | I.find(x); |
||
| 1175 | return I; |
||
| 1176 | } |
||
| 1177 | |||
| 1178 | iterator find(KeyT x) { |
||
| 1179 | iterator I(*this); |
||
| 1180 | I.find(x); |
||
| 1181 | return I; |
||
| 1182 | } |
||
| 1183 | |||
| 1184 | /// overlaps(a, b) - Return true if the intervals in this map overlap with the |
||
| 1185 | /// interval [a;b]. |
||
| 1186 | bool overlaps(KeyT a, KeyT b) const { |
||
| 1187 | assert(Traits::nonEmpty(a, b)); |
||
| 1188 | const_iterator I = find(a); |
||
| 1189 | if (!I.valid()) |
||
| 1190 | return false; |
||
| 1191 | // [a;b] and [x;y] overlap iff x<=b and a<=y. The find() call guarantees the |
||
| 1192 | // second part (y = find(a).stop()), so it is sufficient to check the first |
||
| 1193 | // one. |
||
| 1194 | return !Traits::stopLess(b, I.start()); |
||
| 1195 | } |
||
| 1196 | }; |
||
| 1197 | |||
| 1198 | /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a |
||
| 1199 | /// branched root. |
||
| 1200 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1201 | ValT IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1202 | treeSafeLookup(KeyT x, ValT NotFound) const { |
||
| 1203 | assert(branched() && "treeLookup assumes a branched root"); |
||
| 1204 | |||
| 1205 | IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x); |
||
| 1206 | for (unsigned h = height-1; h; --h) |
||
| 1207 | NR = NR.get<Branch>().safeLookup(x); |
||
| 1208 | return NR.get<Leaf>().safeLookup(x, NotFound); |
||
| 1209 | } |
||
| 1210 | |||
| 1211 | // branchRoot - Switch from a leaf root to a branched root. |
||
| 1212 | // Return the new (root offset, node offset) corresponding to Position. |
||
| 1213 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1214 | IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1215 | branchRoot(unsigned Position) { |
||
| 1216 | using namespace IntervalMapImpl; |
||
| 1217 | // How many external leaf nodes to hold RootLeaf+1? |
||
| 1218 | const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1; |
||
| 1219 | |||
| 1220 | // Compute element distribution among new nodes. |
||
| 1221 | unsigned size[Nodes]; |
||
| 1222 | IdxPair NewOffset(0, Position); |
||
| 1223 | |||
| 1224 | // Is is very common for the root node to be smaller than external nodes. |
||
| 1225 | if (Nodes == 1) |
||
| 1226 | size[0] = rootSize; |
||
| 1227 | else |
||
| 1228 | NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size, |
||
| 1229 | Position, true); |
||
| 1230 | |||
| 1231 | // Allocate new nodes. |
||
| 1232 | unsigned pos = 0; |
||
| 1233 | NodeRef node[Nodes]; |
||
| 1234 | for (unsigned n = 0; n != Nodes; ++n) { |
||
| 1235 | Leaf *L = newNode<Leaf>(); |
||
| 1236 | L->copy(rootLeaf(), pos, 0, size[n]); |
||
| 1237 | node[n] = NodeRef(L, size[n]); |
||
| 1238 | pos += size[n]; |
||
| 1239 | } |
||
| 1240 | |||
| 1241 | // Destroy the old leaf node, construct branch node instead. |
||
| 1242 | switchRootToBranch(); |
||
| 1243 | for (unsigned n = 0; n != Nodes; ++n) { |
||
| 1244 | rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1); |
||
| 1245 | rootBranch().subtree(n) = node[n]; |
||
| 1246 | } |
||
| 1247 | rootBranchStart() = node[0].template get<Leaf>().start(0); |
||
| 1248 | rootSize = Nodes; |
||
| 1249 | return NewOffset; |
||
| 1250 | } |
||
| 1251 | |||
| 1252 | // splitRoot - Split the current BranchRoot into multiple Branch nodes. |
||
| 1253 | // Return the new (root offset, node offset) corresponding to Position. |
||
| 1254 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1255 | IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1256 | splitRoot(unsigned Position) { |
||
| 1257 | using namespace IntervalMapImpl; |
||
| 1258 | // How many external leaf nodes to hold RootBranch+1? |
||
| 1259 | const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1; |
||
| 1260 | |||
| 1261 | // Compute element distribution among new nodes. |
||
| 1262 | unsigned Size[Nodes]; |
||
| 1263 | IdxPair NewOffset(0, Position); |
||
| 1264 | |||
| 1265 | // Is is very common for the root node to be smaller than external nodes. |
||
| 1266 | if (Nodes == 1) |
||
| 1267 | Size[0] = rootSize; |
||
| 1268 | else |
||
| 1269 | NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size, |
||
| 1270 | Position, true); |
||
| 1271 | |||
| 1272 | // Allocate new nodes. |
||
| 1273 | unsigned Pos = 0; |
||
| 1274 | NodeRef Node[Nodes]; |
||
| 1275 | for (unsigned n = 0; n != Nodes; ++n) { |
||
| 1276 | Branch *B = newNode<Branch>(); |
||
| 1277 | B->copy(rootBranch(), Pos, 0, Size[n]); |
||
| 1278 | Node[n] = NodeRef(B, Size[n]); |
||
| 1279 | Pos += Size[n]; |
||
| 1280 | } |
||
| 1281 | |||
| 1282 | for (unsigned n = 0; n != Nodes; ++n) { |
||
| 1283 | rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1); |
||
| 1284 | rootBranch().subtree(n) = Node[n]; |
||
| 1285 | } |
||
| 1286 | rootSize = Nodes; |
||
| 1287 | ++height; |
||
| 1288 | return NewOffset; |
||
| 1289 | } |
||
| 1290 | |||
| 1291 | /// visitNodes - Visit each external node. |
||
| 1292 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1293 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1294 | visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) { |
||
| 1295 | if (!branched()) |
||
| 1296 | return; |
||
| 1297 | SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs; |
||
| 1298 | |||
| 1299 | // Collect level 0 nodes from the root. |
||
| 1300 | for (unsigned i = 0; i != rootSize; ++i) |
||
| 1301 | Refs.push_back(rootBranch().subtree(i)); |
||
| 1302 | |||
| 1303 | // Visit all branch nodes. |
||
| 1304 | for (unsigned h = height - 1; h; --h) { |
||
| 1305 | for (unsigned i = 0, e = Refs.size(); i != e; ++i) { |
||
| 1306 | for (unsigned j = 0, s = Refs[i].size(); j != s; ++j) |
||
| 1307 | NextRefs.push_back(Refs[i].subtree(j)); |
||
| 1308 | (this->*f)(Refs[i], h); |
||
| 1309 | } |
||
| 1310 | Refs.clear(); |
||
| 1311 | Refs.swap(NextRefs); |
||
| 1312 | } |
||
| 1313 | |||
| 1314 | // Visit all leaf nodes. |
||
| 1315 | for (unsigned i = 0, e = Refs.size(); i != e; ++i) |
||
| 1316 | (this->*f)(Refs[i], 0); |
||
| 1317 | } |
||
| 1318 | |||
| 1319 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1320 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1321 | deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) { |
||
| 1322 | if (Level) |
||
| 1323 | deleteNode(&Node.get<Branch>()); |
||
| 1324 | else |
||
| 1325 | deleteNode(&Node.get<Leaf>()); |
||
| 1326 | } |
||
| 1327 | |||
| 1328 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1329 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1330 | clear() { |
||
| 1331 | if (branched()) { |
||
| 1332 | visitNodes(&IntervalMap::deleteNode); |
||
| 1333 | switchRootToLeaf(); |
||
| 1334 | } |
||
| 1335 | rootSize = 0; |
||
| 1336 | } |
||
| 1337 | |||
| 1338 | //===----------------------------------------------------------------------===// |
||
| 1339 | //--- IntervalMap::const_iterator ----// |
||
| 1340 | //===----------------------------------------------------------------------===// |
||
| 1341 | |||
| 1342 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1343 | class IntervalMap<KeyT, ValT, N, Traits>::const_iterator { |
||
| 1344 | friend class IntervalMap; |
||
| 1345 | |||
| 1346 | public: |
||
| 1347 | using iterator_category = std::bidirectional_iterator_tag; |
||
| 1348 | using value_type = ValT; |
||
| 1349 | using difference_type = std::ptrdiff_t; |
||
| 1350 | using pointer = value_type *; |
||
| 1351 | using reference = value_type &; |
||
| 1352 | |||
| 1353 | protected: |
||
| 1354 | // The map referred to. |
||
| 1355 | IntervalMap *map = nullptr; |
||
| 1356 | |||
| 1357 | // We store a full path from the root to the current position. |
||
| 1358 | // The path may be partially filled, but never between iterator calls. |
||
| 1359 | IntervalMapImpl::Path path; |
||
| 1360 | |||
| 1361 | explicit const_iterator(const IntervalMap &map) : |
||
| 1362 | map(const_cast<IntervalMap*>(&map)) {} |
||
| 1363 | |||
| 1364 | bool branched() const { |
||
| 1365 | assert(map && "Invalid iterator"); |
||
| 1366 | return map->branched(); |
||
| 1367 | } |
||
| 1368 | |||
| 1369 | void setRoot(unsigned Offset) { |
||
| 1370 | if (branched()) |
||
| 1371 | path.setRoot(&map->rootBranch(), map->rootSize, Offset); |
||
| 1372 | else |
||
| 1373 | path.setRoot(&map->rootLeaf(), map->rootSize, Offset); |
||
| 1374 | } |
||
| 1375 | |||
| 1376 | void pathFillFind(KeyT x); |
||
| 1377 | void treeFind(KeyT x); |
||
| 1378 | void treeAdvanceTo(KeyT x); |
||
| 1379 | |||
| 1380 | /// unsafeStart - Writable access to start() for iterator. |
||
| 1381 | KeyT &unsafeStart() const { |
||
| 1382 | assert(valid() && "Cannot access invalid iterator"); |
||
| 1383 | return branched() ? path.leaf<Leaf>().start(path.leafOffset()) : |
||
| 1384 | path.leaf<RootLeaf>().start(path.leafOffset()); |
||
| 1385 | } |
||
| 1386 | |||
| 1387 | /// unsafeStop - Writable access to stop() for iterator. |
||
| 1388 | KeyT &unsafeStop() const { |
||
| 1389 | assert(valid() && "Cannot access invalid iterator"); |
||
| 1390 | return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) : |
||
| 1391 | path.leaf<RootLeaf>().stop(path.leafOffset()); |
||
| 1392 | } |
||
| 1393 | |||
| 1394 | /// unsafeValue - Writable access to value() for iterator. |
||
| 1395 | ValT &unsafeValue() const { |
||
| 1396 | assert(valid() && "Cannot access invalid iterator"); |
||
| 1397 | return branched() ? path.leaf<Leaf>().value(path.leafOffset()) : |
||
| 1398 | path.leaf<RootLeaf>().value(path.leafOffset()); |
||
| 1399 | } |
||
| 1400 | |||
| 1401 | public: |
||
| 1402 | /// const_iterator - Create an iterator that isn't pointing anywhere. |
||
| 1403 | const_iterator() = default; |
||
| 1404 | |||
| 1405 | /// setMap - Change the map iterated over. This call must be followed by a |
||
| 1406 | /// call to goToBegin(), goToEnd(), or find() |
||
| 1407 | void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); } |
||
| 1408 | |||
| 1409 | /// valid - Return true if the current position is valid, false for end(). |
||
| 1410 | bool valid() const { return path.valid(); } |
||
| 1411 | |||
| 1412 | /// atBegin - Return true if the current position is the first map entry. |
||
| 1413 | bool atBegin() const { return path.atBegin(); } |
||
| 1414 | |||
| 1415 | /// start - Return the beginning of the current interval. |
||
| 1416 | const KeyT &start() const { return unsafeStart(); } |
||
| 1417 | |||
| 1418 | /// stop - Return the end of the current interval. |
||
| 1419 | const KeyT &stop() const { return unsafeStop(); } |
||
| 1420 | |||
| 1421 | /// value - Return the mapped value at the current interval. |
||
| 1422 | const ValT &value() const { return unsafeValue(); } |
||
| 1423 | |||
| 1424 | const ValT &operator*() const { return value(); } |
||
| 1425 | |||
| 1426 | bool operator==(const const_iterator &RHS) const { |
||
| 1427 | assert(map == RHS.map && "Cannot compare iterators from different maps"); |
||
| 1428 | if (!valid()) |
||
| 1429 | return !RHS.valid(); |
||
| 1430 | if (path.leafOffset() != RHS.path.leafOffset()) |
||
| 1431 | return false; |
||
| 1432 | return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>(); |
||
| 1433 | } |
||
| 1434 | |||
| 1435 | bool operator!=(const const_iterator &RHS) const { |
||
| 1436 | return !operator==(RHS); |
||
| 1437 | } |
||
| 1438 | |||
| 1439 | /// goToBegin - Move to the first interval in map. |
||
| 1440 | void goToBegin() { |
||
| 1441 | setRoot(0); |
||
| 1442 | if (branched()) |
||
| 1443 | path.fillLeft(map->height); |
||
| 1444 | } |
||
| 1445 | |||
| 1446 | /// goToEnd - Move beyond the last interval in map. |
||
| 1447 | void goToEnd() { |
||
| 1448 | setRoot(map->rootSize); |
||
| 1449 | } |
||
| 1450 | |||
| 1451 | /// preincrement - Move to the next interval. |
||
| 1452 | const_iterator &operator++() { |
||
| 1453 | assert(valid() && "Cannot increment end()"); |
||
| 1454 | if (++path.leafOffset() == path.leafSize() && branched()) |
||
| 1455 | path.moveRight(map->height); |
||
| 1456 | return *this; |
||
| 1457 | } |
||
| 1458 | |||
| 1459 | /// postincrement - Don't do that! |
||
| 1460 | const_iterator operator++(int) { |
||
| 1461 | const_iterator tmp = *this; |
||
| 1462 | operator++(); |
||
| 1463 | return tmp; |
||
| 1464 | } |
||
| 1465 | |||
| 1466 | /// predecrement - Move to the previous interval. |
||
| 1467 | const_iterator &operator--() { |
||
| 1468 | if (path.leafOffset() && (valid() || !branched())) |
||
| 1469 | --path.leafOffset(); |
||
| 1470 | else |
||
| 1471 | path.moveLeft(map->height); |
||
| 1472 | return *this; |
||
| 1473 | } |
||
| 1474 | |||
| 1475 | /// postdecrement - Don't do that! |
||
| 1476 | const_iterator operator--(int) { |
||
| 1477 | const_iterator tmp = *this; |
||
| 1478 | operator--(); |
||
| 1479 | return tmp; |
||
| 1480 | } |
||
| 1481 | |||
| 1482 | /// find - Move to the first interval with stop >= x, or end(). |
||
| 1483 | /// This is a full search from the root, the current position is ignored. |
||
| 1484 | void find(KeyT x) { |
||
| 1485 | if (branched()) |
||
| 1486 | treeFind(x); |
||
| 1487 | else |
||
| 1488 | setRoot(map->rootLeaf().findFrom(0, map->rootSize, x)); |
||
| 1489 | } |
||
| 1490 | |||
| 1491 | /// advanceTo - Move to the first interval with stop >= x, or end(). |
||
| 1492 | /// The search is started from the current position, and no earlier positions |
||
| 1493 | /// can be found. This is much faster than find() for small moves. |
||
| 1494 | void advanceTo(KeyT x) { |
||
| 1495 | if (!valid()) |
||
| 1496 | return; |
||
| 1497 | if (branched()) |
||
| 1498 | treeAdvanceTo(x); |
||
| 1499 | else |
||
| 1500 | path.leafOffset() = |
||
| 1501 | map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x); |
||
| 1502 | } |
||
| 1503 | }; |
||
| 1504 | |||
| 1505 | /// pathFillFind - Complete path by searching for x. |
||
| 1506 | /// @param x Key to search for. |
||
| 1507 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1508 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1509 | const_iterator::pathFillFind(KeyT x) { |
||
| 1510 | IntervalMapImpl::NodeRef NR = path.subtree(path.height()); |
||
| 1511 | for (unsigned i = map->height - path.height() - 1; i; --i) { |
||
| 1512 | unsigned p = NR.get<Branch>().safeFind(0, x); |
||
| 1513 | path.push(NR, p); |
||
| 1514 | NR = NR.subtree(p); |
||
| 1515 | } |
||
| 1516 | path.push(NR, NR.get<Leaf>().safeFind(0, x)); |
||
| 1517 | } |
||
| 1518 | |||
| 1519 | /// treeFind - Find in a branched tree. |
||
| 1520 | /// @param x Key to search for. |
||
| 1521 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1522 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1523 | const_iterator::treeFind(KeyT x) { |
||
| 1524 | setRoot(map->rootBranch().findFrom(0, map->rootSize, x)); |
||
| 1525 | if (valid()) |
||
| 1526 | pathFillFind(x); |
||
| 1527 | } |
||
| 1528 | |||
| 1529 | /// treeAdvanceTo - Find position after the current one. |
||
| 1530 | /// @param x Key to search for. |
||
| 1531 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1532 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1533 | const_iterator::treeAdvanceTo(KeyT x) { |
||
| 1534 | // Can we stay on the same leaf node? |
||
| 1535 | if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) { |
||
| 1536 | path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x); |
||
| 1537 | return; |
||
| 1538 | } |
||
| 1539 | |||
| 1540 | // Drop the current leaf. |
||
| 1541 | path.pop(); |
||
| 1542 | |||
| 1543 | // Search towards the root for a usable subtree. |
||
| 1544 | if (path.height()) { |
||
| 1545 | for (unsigned l = path.height() - 1; l; --l) { |
||
| 1546 | if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) { |
||
| 1547 | // The branch node at l+1 is usable |
||
| 1548 | path.offset(l + 1) = |
||
| 1549 | path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x); |
||
| 1550 | return pathFillFind(x); |
||
| 1551 | } |
||
| 1552 | path.pop(); |
||
| 1553 | } |
||
| 1554 | // Is the level-1 Branch usable? |
||
| 1555 | if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) { |
||
| 1556 | path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x); |
||
| 1557 | return pathFillFind(x); |
||
| 1558 | } |
||
| 1559 | } |
||
| 1560 | |||
| 1561 | // We reached the root. |
||
| 1562 | setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x)); |
||
| 1563 | if (valid()) |
||
| 1564 | pathFillFind(x); |
||
| 1565 | } |
||
| 1566 | |||
| 1567 | //===----------------------------------------------------------------------===// |
||
| 1568 | //--- IntervalMap::iterator ----// |
||
| 1569 | //===----------------------------------------------------------------------===// |
||
| 1570 | |||
| 1571 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1572 | class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator { |
||
| 1573 | friend class IntervalMap; |
||
| 1574 | |||
| 1575 | using IdxPair = IntervalMapImpl::IdxPair; |
||
| 1576 | |||
| 1577 | explicit iterator(IntervalMap &map) : const_iterator(map) {} |
||
| 1578 | |||
| 1579 | void setNodeStop(unsigned Level, KeyT Stop); |
||
| 1580 | bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop); |
||
| 1581 | template <typename NodeT> bool overflow(unsigned Level); |
||
| 1582 | void treeInsert(KeyT a, KeyT b, ValT y); |
||
| 1583 | void eraseNode(unsigned Level); |
||
| 1584 | void treeErase(bool UpdateRoot = true); |
||
| 1585 | bool canCoalesceLeft(KeyT Start, ValT x); |
||
| 1586 | bool canCoalesceRight(KeyT Stop, ValT x); |
||
| 1587 | |||
| 1588 | public: |
||
| 1589 | /// iterator - Create null iterator. |
||
| 1590 | iterator() = default; |
||
| 1591 | |||
| 1592 | /// setStart - Move the start of the current interval. |
||
| 1593 | /// This may cause coalescing with the previous interval. |
||
| 1594 | /// @param a New start key, must not overlap the previous interval. |
||
| 1595 | void setStart(KeyT a); |
||
| 1596 | |||
| 1597 | /// setStop - Move the end of the current interval. |
||
| 1598 | /// This may cause coalescing with the following interval. |
||
| 1599 | /// @param b New stop key, must not overlap the following interval. |
||
| 1600 | void setStop(KeyT b); |
||
| 1601 | |||
| 1602 | /// setValue - Change the mapped value of the current interval. |
||
| 1603 | /// This may cause coalescing with the previous and following intervals. |
||
| 1604 | /// @param x New value. |
||
| 1605 | void setValue(ValT x); |
||
| 1606 | |||
| 1607 | /// setStartUnchecked - Move the start of the current interval without |
||
| 1608 | /// checking for coalescing or overlaps. |
||
| 1609 | /// This should only be used when it is known that coalescing is not required. |
||
| 1610 | /// @param a New start key. |
||
| 1611 | void setStartUnchecked(KeyT a) { this->unsafeStart() = a; } |
||
| 1612 | |||
| 1613 | /// setStopUnchecked - Move the end of the current interval without checking |
||
| 1614 | /// for coalescing or overlaps. |
||
| 1615 | /// This should only be used when it is known that coalescing is not required. |
||
| 1616 | /// @param b New stop key. |
||
| 1617 | void setStopUnchecked(KeyT b) { |
||
| 1618 | this->unsafeStop() = b; |
||
| 1619 | // Update keys in branch nodes as well. |
||
| 1620 | if (this->path.atLastEntry(this->path.height())) |
||
| 1621 | setNodeStop(this->path.height(), b); |
||
| 1622 | } |
||
| 1623 | |||
| 1624 | /// setValueUnchecked - Change the mapped value of the current interval |
||
| 1625 | /// without checking for coalescing. |
||
| 1626 | /// @param x New value. |
||
| 1627 | void setValueUnchecked(ValT x) { this->unsafeValue() = x; } |
||
| 1628 | |||
| 1629 | /// insert - Insert mapping [a;b] -> y before the current position. |
||
| 1630 | void insert(KeyT a, KeyT b, ValT y); |
||
| 1631 | |||
| 1632 | /// erase - Erase the current interval. |
||
| 1633 | void erase(); |
||
| 1634 | |||
| 1635 | iterator &operator++() { |
||
| 1636 | const_iterator::operator++(); |
||
| 1637 | return *this; |
||
| 1638 | } |
||
| 1639 | |||
| 1640 | iterator operator++(int) { |
||
| 1641 | iterator tmp = *this; |
||
| 1642 | operator++(); |
||
| 1643 | return tmp; |
||
| 1644 | } |
||
| 1645 | |||
| 1646 | iterator &operator--() { |
||
| 1647 | const_iterator::operator--(); |
||
| 1648 | return *this; |
||
| 1649 | } |
||
| 1650 | |||
| 1651 | iterator operator--(int) { |
||
| 1652 | iterator tmp = *this; |
||
| 1653 | operator--(); |
||
| 1654 | return tmp; |
||
| 1655 | } |
||
| 1656 | }; |
||
| 1657 | |||
| 1658 | /// canCoalesceLeft - Can the current interval coalesce to the left after |
||
| 1659 | /// changing start or value? |
||
| 1660 | /// @param Start New start of current interval. |
||
| 1661 | /// @param Value New value for current interval. |
||
| 1662 | /// @return True when updating the current interval would enable coalescing. |
||
| 1663 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1664 | bool IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1665 | iterator::canCoalesceLeft(KeyT Start, ValT Value) { |
||
| 1666 | using namespace IntervalMapImpl; |
||
| 1667 | Path &P = this->path; |
||
| 1668 | if (!this->branched()) { |
||
| 1669 | unsigned i = P.leafOffset(); |
||
| 1670 | RootLeaf &Node = P.leaf<RootLeaf>(); |
||
| 1671 | return i && Node.value(i-1) == Value && |
||
| 1672 | Traits::adjacent(Node.stop(i-1), Start); |
||
| 1673 | } |
||
| 1674 | // Branched. |
||
| 1675 | if (unsigned i = P.leafOffset()) { |
||
| 1676 | Leaf &Node = P.leaf<Leaf>(); |
||
| 1677 | return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start); |
||
| 1678 | } else if (NodeRef NR = P.getLeftSibling(P.height())) { |
||
| 1679 | unsigned i = NR.size() - 1; |
||
| 1680 | Leaf &Node = NR.get<Leaf>(); |
||
| 1681 | return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start); |
||
| 1682 | } |
||
| 1683 | return false; |
||
| 1684 | } |
||
| 1685 | |||
| 1686 | /// canCoalesceRight - Can the current interval coalesce to the right after |
||
| 1687 | /// changing stop or value? |
||
| 1688 | /// @param Stop New stop of current interval. |
||
| 1689 | /// @param Value New value for current interval. |
||
| 1690 | /// @return True when updating the current interval would enable coalescing. |
||
| 1691 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1692 | bool IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1693 | iterator::canCoalesceRight(KeyT Stop, ValT Value) { |
||
| 1694 | using namespace IntervalMapImpl; |
||
| 1695 | Path &P = this->path; |
||
| 1696 | unsigned i = P.leafOffset() + 1; |
||
| 1697 | if (!this->branched()) { |
||
| 1698 | if (i >= P.leafSize()) |
||
| 1699 | return false; |
||
| 1700 | RootLeaf &Node = P.leaf<RootLeaf>(); |
||
| 1701 | return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); |
||
| 1702 | } |
||
| 1703 | // Branched. |
||
| 1704 | if (i < P.leafSize()) { |
||
| 1705 | Leaf &Node = P.leaf<Leaf>(); |
||
| 1706 | return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); |
||
| 1707 | } else if (NodeRef NR = P.getRightSibling(P.height())) { |
||
| 1708 | Leaf &Node = NR.get<Leaf>(); |
||
| 1709 | return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0)); |
||
| 1710 | } |
||
| 1711 | return false; |
||
| 1712 | } |
||
| 1713 | |||
| 1714 | /// setNodeStop - Update the stop key of the current node at level and above. |
||
| 1715 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1716 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1717 | iterator::setNodeStop(unsigned Level, KeyT Stop) { |
||
| 1718 | // There are no references to the root node, so nothing to update. |
||
| 1719 | if (!Level) |
||
| 1720 | return; |
||
| 1721 | IntervalMapImpl::Path &P = this->path; |
||
| 1722 | // Update nodes pointing to the current node. |
||
| 1723 | while (--Level) { |
||
| 1724 | P.node<Branch>(Level).stop(P.offset(Level)) = Stop; |
||
| 1725 | if (!P.atLastEntry(Level)) |
||
| 1726 | return; |
||
| 1727 | } |
||
| 1728 | // Update root separately since it has a different layout. |
||
| 1729 | P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop; |
||
| 1730 | } |
||
| 1731 | |||
| 1732 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1733 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1734 | iterator::setStart(KeyT a) { |
||
| 1735 | assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop"); |
||
| 1736 | KeyT &CurStart = this->unsafeStart(); |
||
| 1737 | if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) { |
||
| 1738 | CurStart = a; |
||
| 1739 | return; |
||
| 1740 | } |
||
| 1741 | // Coalesce with the interval to the left. |
||
| 1742 | --*this; |
||
| 1743 | a = this->start(); |
||
| 1744 | erase(); |
||
| 1745 | setStartUnchecked(a); |
||
| 1746 | } |
||
| 1747 | |||
| 1748 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1749 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1750 | iterator::setStop(KeyT b) { |
||
| 1751 | assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start"); |
||
| 1752 | if (Traits::startLess(b, this->stop()) || |
||
| 1753 | !canCoalesceRight(b, this->value())) { |
||
| 1754 | setStopUnchecked(b); |
||
| 1755 | return; |
||
| 1756 | } |
||
| 1757 | // Coalesce with interval to the right. |
||
| 1758 | KeyT a = this->start(); |
||
| 1759 | erase(); |
||
| 1760 | setStartUnchecked(a); |
||
| 1761 | } |
||
| 1762 | |||
| 1763 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1764 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1765 | iterator::setValue(ValT x) { |
||
| 1766 | setValueUnchecked(x); |
||
| 1767 | if (canCoalesceRight(this->stop(), x)) { |
||
| 1768 | KeyT a = this->start(); |
||
| 1769 | erase(); |
||
| 1770 | setStartUnchecked(a); |
||
| 1771 | } |
||
| 1772 | if (canCoalesceLeft(this->start(), x)) { |
||
| 1773 | --*this; |
||
| 1774 | KeyT a = this->start(); |
||
| 1775 | erase(); |
||
| 1776 | setStartUnchecked(a); |
||
| 1777 | } |
||
| 1778 | } |
||
| 1779 | |||
| 1780 | /// insertNode - insert a node before the current path at level. |
||
| 1781 | /// Leave the current path pointing at the new node. |
||
| 1782 | /// @param Level path index of the node to be inserted. |
||
| 1783 | /// @param Node The node to be inserted. |
||
| 1784 | /// @param Stop The last index in the new node. |
||
| 1785 | /// @return True if the tree height was increased. |
||
| 1786 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1787 | bool IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1788 | iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) { |
||
| 1789 | assert(Level && "Cannot insert next to the root"); |
||
| 1790 | bool SplitRoot = false; |
||
| 1791 | IntervalMap &IM = *this->map; |
||
| 1792 | IntervalMapImpl::Path &P = this->path; |
||
| 1793 | |||
| 1794 | if (Level == 1) { |
||
| 1795 | // Insert into the root branch node. |
||
| 1796 | if (IM.rootSize < RootBranch::Capacity) { |
||
| 1797 | IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop); |
||
| 1798 | P.setSize(0, ++IM.rootSize); |
||
| 1799 | P.reset(Level); |
||
| 1800 | return SplitRoot; |
||
| 1801 | } |
||
| 1802 | |||
| 1803 | // We need to split the root while keeping our position. |
||
| 1804 | SplitRoot = true; |
||
| 1805 | IdxPair Offset = IM.splitRoot(P.offset(0)); |
||
| 1806 | P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); |
||
| 1807 | |||
| 1808 | // Fall through to insert at the new higher level. |
||
| 1809 | ++Level; |
||
| 1810 | } |
||
| 1811 | |||
| 1812 | // When inserting before end(), make sure we have a valid path. |
||
| 1813 | P.legalizeForInsert(--Level); |
||
| 1814 | |||
| 1815 | // Insert into the branch node at Level-1. |
||
| 1816 | if (P.size(Level) == Branch::Capacity) { |
||
| 1817 | // Branch node is full, handle handle the overflow. |
||
| 1818 | assert(!SplitRoot && "Cannot overflow after splitting the root"); |
||
| 1819 | SplitRoot = overflow<Branch>(Level); |
||
| 1820 | Level += SplitRoot; |
||
| 1821 | } |
||
| 1822 | P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop); |
||
| 1823 | P.setSize(Level, P.size(Level) + 1); |
||
| 1824 | if (P.atLastEntry(Level)) |
||
| 1825 | setNodeStop(Level, Stop); |
||
| 1826 | P.reset(Level + 1); |
||
| 1827 | return SplitRoot; |
||
| 1828 | } |
||
| 1829 | |||
| 1830 | // insert |
||
| 1831 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1832 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1833 | iterator::insert(KeyT a, KeyT b, ValT y) { |
||
| 1834 | if (this->branched()) |
||
| 1835 | return treeInsert(a, b, y); |
||
| 1836 | IntervalMap &IM = *this->map; |
||
| 1837 | IntervalMapImpl::Path &P = this->path; |
||
| 1838 | |||
| 1839 | // Try simple root leaf insert. |
||
| 1840 | unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y); |
||
| 1841 | |||
| 1842 | // Was the root node insert successful? |
||
| 1843 | if (Size <= RootLeaf::Capacity) { |
||
| 1844 | P.setSize(0, IM.rootSize = Size); |
||
| 1845 | return; |
||
| 1846 | } |
||
| 1847 | |||
| 1848 | // Root leaf node is full, we must branch. |
||
| 1849 | IdxPair Offset = IM.branchRoot(P.leafOffset()); |
||
| 1850 | P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); |
||
| 1851 | |||
| 1852 | // Now it fits in the new leaf. |
||
| 1853 | treeInsert(a, b, y); |
||
| 1854 | } |
||
| 1855 | |||
| 1856 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1857 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1858 | iterator::treeInsert(KeyT a, KeyT b, ValT y) { |
||
| 1859 | using namespace IntervalMapImpl; |
||
| 1860 | Path &P = this->path; |
||
| 1861 | |||
| 1862 | if (!P.valid()) |
||
| 1863 | P.legalizeForInsert(this->map->height); |
||
| 1864 | |||
| 1865 | // Check if this insertion will extend the node to the left. |
||
| 1866 | if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) { |
||
| 1867 | // Node is growing to the left, will it affect a left sibling node? |
||
| 1868 | if (NodeRef Sib = P.getLeftSibling(P.height())) { |
||
| 1869 | Leaf &SibLeaf = Sib.get<Leaf>(); |
||
| 1870 | unsigned SibOfs = Sib.size() - 1; |
||
| 1871 | if (SibLeaf.value(SibOfs) == y && |
||
| 1872 | Traits::adjacent(SibLeaf.stop(SibOfs), a)) { |
||
| 1873 | // This insertion will coalesce with the last entry in SibLeaf. We can |
||
| 1874 | // handle it in two ways: |
||
| 1875 | // 1. Extend SibLeaf.stop to b and be done, or |
||
| 1876 | // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue. |
||
| 1877 | // We prefer 1., but need 2 when coalescing to the right as well. |
||
| 1878 | Leaf &CurLeaf = P.leaf<Leaf>(); |
||
| 1879 | P.moveLeft(P.height()); |
||
| 1880 | if (Traits::stopLess(b, CurLeaf.start(0)) && |
||
| 1881 | (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) { |
||
| 1882 | // Easy, just extend SibLeaf and we're done. |
||
| 1883 | setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b); |
||
| 1884 | return; |
||
| 1885 | } else { |
||
| 1886 | // We have both left and right coalescing. Erase the old SibLeaf entry |
||
| 1887 | // and continue inserting the larger interval. |
||
| 1888 | a = SibLeaf.start(SibOfs); |
||
| 1889 | treeErase(/* UpdateRoot= */false); |
||
| 1890 | } |
||
| 1891 | } |
||
| 1892 | } else { |
||
| 1893 | // No left sibling means we are at begin(). Update cached bound. |
||
| 1894 | this->map->rootBranchStart() = a; |
||
| 1895 | } |
||
| 1896 | } |
||
| 1897 | |||
| 1898 | // When we are inserting at the end of a leaf node, we must update stops. |
||
| 1899 | unsigned Size = P.leafSize(); |
||
| 1900 | bool Grow = P.leafOffset() == Size; |
||
| 1901 | Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y); |
||
| 1902 | |||
| 1903 | // Leaf insertion unsuccessful? Overflow and try again. |
||
| 1904 | if (Size > Leaf::Capacity) { |
||
| 1905 | overflow<Leaf>(P.height()); |
||
| 1906 | Grow = P.leafOffset() == P.leafSize(); |
||
| 1907 | Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y); |
||
| 1908 | assert(Size <= Leaf::Capacity && "overflow() didn't make room"); |
||
| 1909 | } |
||
| 1910 | |||
| 1911 | // Inserted, update offset and leaf size. |
||
| 1912 | P.setSize(P.height(), Size); |
||
| 1913 | |||
| 1914 | // Insert was the last node entry, update stops. |
||
| 1915 | if (Grow) |
||
| 1916 | setNodeStop(P.height(), b); |
||
| 1917 | } |
||
| 1918 | |||
| 1919 | /// erase - erase the current interval and move to the next position. |
||
| 1920 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1921 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1922 | iterator::erase() { |
||
| 1923 | IntervalMap &IM = *this->map; |
||
| 1924 | IntervalMapImpl::Path &P = this->path; |
||
| 1925 | assert(P.valid() && "Cannot erase end()"); |
||
| 1926 | if (this->branched()) |
||
| 1927 | return treeErase(); |
||
| 1928 | IM.rootLeaf().erase(P.leafOffset(), IM.rootSize); |
||
| 1929 | P.setSize(0, --IM.rootSize); |
||
| 1930 | } |
||
| 1931 | |||
| 1932 | /// treeErase - erase() for a branched tree. |
||
| 1933 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1934 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1935 | iterator::treeErase(bool UpdateRoot) { |
||
| 1936 | IntervalMap &IM = *this->map; |
||
| 1937 | IntervalMapImpl::Path &P = this->path; |
||
| 1938 | Leaf &Node = P.leaf<Leaf>(); |
||
| 1939 | |||
| 1940 | // Nodes are not allowed to become empty. |
||
| 1941 | if (P.leafSize() == 1) { |
||
| 1942 | IM.deleteNode(&Node); |
||
| 1943 | eraseNode(IM.height); |
||
| 1944 | // Update rootBranchStart if we erased begin(). |
||
| 1945 | if (UpdateRoot && IM.branched() && P.valid() && P.atBegin()) |
||
| 1946 | IM.rootBranchStart() = P.leaf<Leaf>().start(0); |
||
| 1947 | return; |
||
| 1948 | } |
||
| 1949 | |||
| 1950 | // Erase current entry. |
||
| 1951 | Node.erase(P.leafOffset(), P.leafSize()); |
||
| 1952 | unsigned NewSize = P.leafSize() - 1; |
||
| 1953 | P.setSize(IM.height, NewSize); |
||
| 1954 | // When we erase the last entry, update stop and move to a legal position. |
||
| 1955 | if (P.leafOffset() == NewSize) { |
||
| 1956 | setNodeStop(IM.height, Node.stop(NewSize - 1)); |
||
| 1957 | P.moveRight(IM.height); |
||
| 1958 | } else if (UpdateRoot && P.atBegin()) |
||
| 1959 | IM.rootBranchStart() = P.leaf<Leaf>().start(0); |
||
| 1960 | } |
||
| 1961 | |||
| 1962 | /// eraseNode - Erase the current node at Level from its parent and move path to |
||
| 1963 | /// the first entry of the next sibling node. |
||
| 1964 | /// The node must be deallocated by the caller. |
||
| 1965 | /// @param Level 1..height, the root node cannot be erased. |
||
| 1966 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 1967 | void IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 1968 | iterator::eraseNode(unsigned Level) { |
||
| 1969 | assert(Level && "Cannot erase root node"); |
||
| 1970 | IntervalMap &IM = *this->map; |
||
| 1971 | IntervalMapImpl::Path &P = this->path; |
||
| 1972 | |||
| 1973 | if (--Level == 0) { |
||
| 1974 | IM.rootBranch().erase(P.offset(0), IM.rootSize); |
||
| 1975 | P.setSize(0, --IM.rootSize); |
||
| 1976 | // If this cleared the root, switch to height=0. |
||
| 1977 | if (IM.empty()) { |
||
| 1978 | IM.switchRootToLeaf(); |
||
| 1979 | this->setRoot(0); |
||
| 1980 | return; |
||
| 1981 | } |
||
| 1982 | } else { |
||
| 1983 | // Remove node ref from branch node at Level. |
||
| 1984 | Branch &Parent = P.node<Branch>(Level); |
||
| 1985 | if (P.size(Level) == 1) { |
||
| 1986 | // Branch node became empty, remove it recursively. |
||
| 1987 | IM.deleteNode(&Parent); |
||
| 1988 | eraseNode(Level); |
||
| 1989 | } else { |
||
| 1990 | // Branch node won't become empty. |
||
| 1991 | Parent.erase(P.offset(Level), P.size(Level)); |
||
| 1992 | unsigned NewSize = P.size(Level) - 1; |
||
| 1993 | P.setSize(Level, NewSize); |
||
| 1994 | // If we removed the last branch, update stop and move to a legal pos. |
||
| 1995 | if (P.offset(Level) == NewSize) { |
||
| 1996 | setNodeStop(Level, Parent.stop(NewSize - 1)); |
||
| 1997 | P.moveRight(Level); |
||
| 1998 | } |
||
| 1999 | } |
||
| 2000 | } |
||
| 2001 | // Update path cache for the new right sibling position. |
||
| 2002 | if (P.valid()) { |
||
| 2003 | P.reset(Level + 1); |
||
| 2004 | P.offset(Level + 1) = 0; |
||
| 2005 | } |
||
| 2006 | } |
||
| 2007 | |||
| 2008 | /// overflow - Distribute entries of the current node evenly among |
||
| 2009 | /// its siblings and ensure that the current node is not full. |
||
| 2010 | /// This may require allocating a new node. |
||
| 2011 | /// @tparam NodeT The type of node at Level (Leaf or Branch). |
||
| 2012 | /// @param Level path index of the overflowing node. |
||
| 2013 | /// @return True when the tree height was changed. |
||
| 2014 | template <typename KeyT, typename ValT, unsigned N, typename Traits> |
||
| 2015 | template <typename NodeT> |
||
| 2016 | bool IntervalMap<KeyT, ValT, N, Traits>:: |
||
| 2017 | iterator::overflow(unsigned Level) { |
||
| 2018 | using namespace IntervalMapImpl; |
||
| 2019 | Path &P = this->path; |
||
| 2020 | unsigned CurSize[4]; |
||
| 2021 | NodeT *Node[4]; |
||
| 2022 | unsigned Nodes = 0; |
||
| 2023 | unsigned Elements = 0; |
||
| 2024 | unsigned Offset = P.offset(Level); |
||
| 2025 | |||
| 2026 | // Do we have a left sibling? |
||
| 2027 | NodeRef LeftSib = P.getLeftSibling(Level); |
||
| 2028 | if (LeftSib) { |
||
| 2029 | Offset += Elements = CurSize[Nodes] = LeftSib.size(); |
||
| 2030 | Node[Nodes++] = &LeftSib.get<NodeT>(); |
||
| 2031 | } |
||
| 2032 | |||
| 2033 | // Current node. |
||
| 2034 | Elements += CurSize[Nodes] = P.size(Level); |
||
| 2035 | Node[Nodes++] = &P.node<NodeT>(Level); |
||
| 2036 | |||
| 2037 | // Do we have a right sibling? |
||
| 2038 | NodeRef RightSib = P.getRightSibling(Level); |
||
| 2039 | if (RightSib) { |
||
| 2040 | Elements += CurSize[Nodes] = RightSib.size(); |
||
| 2041 | Node[Nodes++] = &RightSib.get<NodeT>(); |
||
| 2042 | } |
||
| 2043 | |||
| 2044 | // Do we need to allocate a new node? |
||
| 2045 | unsigned NewNode = 0; |
||
| 2046 | if (Elements + 1 > Nodes * NodeT::Capacity) { |
||
| 2047 | // Insert NewNode at the penultimate position, or after a single node. |
||
| 2048 | NewNode = Nodes == 1 ? 1 : Nodes - 1; |
||
| 2049 | CurSize[Nodes] = CurSize[NewNode]; |
||
| 2050 | Node[Nodes] = Node[NewNode]; |
||
| 2051 | CurSize[NewNode] = 0; |
||
| 2052 | Node[NewNode] = this->map->template newNode<NodeT>(); |
||
| 2053 | ++Nodes; |
||
| 2054 | } |
||
| 2055 | |||
| 2056 | // Compute the new element distribution. |
||
| 2057 | unsigned NewSize[4]; |
||
| 2058 | IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity, |
||
| 2059 | CurSize, NewSize, Offset, true); |
||
| 2060 | adjustSiblingSizes(Node, Nodes, CurSize, NewSize); |
||
| 2061 | |||
| 2062 | // Move current location to the leftmost node. |
||
| 2063 | if (LeftSib) |
||
| 2064 | P.moveLeft(Level); |
||
| 2065 | |||
| 2066 | // Elements have been rearranged, now update node sizes and stops. |
||
| 2067 | bool SplitRoot = false; |
||
| 2068 | unsigned Pos = 0; |
||
| 2069 | while (true) { |
||
| 2070 | KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1); |
||
| 2071 | if (NewNode && Pos == NewNode) { |
||
| 2072 | SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop); |
||
| 2073 | Level += SplitRoot; |
||
| 2074 | } else { |
||
| 2075 | P.setSize(Level, NewSize[Pos]); |
||
| 2076 | setNodeStop(Level, Stop); |
||
| 2077 | } |
||
| 2078 | if (Pos + 1 == Nodes) |
||
| 2079 | break; |
||
| 2080 | P.moveRight(Level); |
||
| 2081 | ++Pos; |
||
| 2082 | } |
||
| 2083 | |||
| 2084 | // Where was I? Find NewOffset. |
||
| 2085 | while(Pos != NewOffset.first) { |
||
| 2086 | P.moveLeft(Level); |
||
| 2087 | --Pos; |
||
| 2088 | } |
||
| 2089 | P.offset(Level) = NewOffset.second; |
||
| 2090 | return SplitRoot; |
||
| 2091 | } |
||
| 2092 | |||
| 2093 | //===----------------------------------------------------------------------===// |
||
| 2094 | //--- IntervalMapOverlaps ----// |
||
| 2095 | //===----------------------------------------------------------------------===// |
||
| 2096 | |||
| 2097 | /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two |
||
| 2098 | /// IntervalMaps. The maps may be different, but the KeyT and Traits types |
||
| 2099 | /// should be the same. |
||
| 2100 | /// |
||
| 2101 | /// Typical uses: |
||
| 2102 | /// |
||
| 2103 | /// 1. Test for overlap: |
||
| 2104 | /// bool overlap = IntervalMapOverlaps(a, b).valid(); |
||
| 2105 | /// |
||
| 2106 | /// 2. Enumerate overlaps: |
||
| 2107 | /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... } |
||
| 2108 | /// |
||
| 2109 | template <typename MapA, typename MapB> |
||
| 2110 | class IntervalMapOverlaps { |
||
| 2111 | using KeyType = typename MapA::KeyType; |
||
| 2112 | using Traits = typename MapA::KeyTraits; |
||
| 2113 | |||
| 2114 | typename MapA::const_iterator posA; |
||
| 2115 | typename MapB::const_iterator posB; |
||
| 2116 | |||
| 2117 | /// advance - Move posA and posB forward until reaching an overlap, or until |
||
| 2118 | /// either meets end. |
||
| 2119 | /// Don't move the iterators if they are already overlapping. |
||
| 2120 | void advance() { |
||
| 2121 | if (!valid()) |
||
| 2122 | return; |
||
| 2123 | |||
| 2124 | if (Traits::stopLess(posA.stop(), posB.start())) { |
||
| 2125 | // A ends before B begins. Catch up. |
||
| 2126 | posA.advanceTo(posB.start()); |
||
| 2127 | if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) |
||
| 2128 | return; |
||
| 2129 | } else if (Traits::stopLess(posB.stop(), posA.start())) { |
||
| 2130 | // B ends before A begins. Catch up. |
||
| 2131 | posB.advanceTo(posA.start()); |
||
| 2132 | if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) |
||
| 2133 | return; |
||
| 2134 | } else |
||
| 2135 | // Already overlapping. |
||
| 2136 | return; |
||
| 2137 | |||
| 2138 | while (true) { |
||
| 2139 | // Make a.end > b.start. |
||
| 2140 | posA.advanceTo(posB.start()); |
||
| 2141 | if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) |
||
| 2142 | return; |
||
| 2143 | // Make b.end > a.start. |
||
| 2144 | posB.advanceTo(posA.start()); |
||
| 2145 | if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) |
||
| 2146 | return; |
||
| 2147 | } |
||
| 2148 | } |
||
| 2149 | |||
| 2150 | public: |
||
| 2151 | /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b. |
||
| 2152 | IntervalMapOverlaps(const MapA &a, const MapB &b) |
||
| 2153 | : posA(b.empty() ? a.end() : a.find(b.start())), |
||
| 2154 | posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); } |
||
| 2155 | |||
| 2156 | /// valid - Return true if iterator is at an overlap. |
||
| 2157 | bool valid() const { |
||
| 2158 | return posA.valid() && posB.valid(); |
||
| 2159 | } |
||
| 2160 | |||
| 2161 | /// a - access the left hand side in the overlap. |
||
| 2162 | const typename MapA::const_iterator &a() const { return posA; } |
||
| 2163 | |||
| 2164 | /// b - access the right hand side in the overlap. |
||
| 2165 | const typename MapB::const_iterator &b() const { return posB; } |
||
| 2166 | |||
| 2167 | /// start - Beginning of the overlapping interval. |
||
| 2168 | KeyType start() const { |
||
| 2169 | KeyType ak = a().start(); |
||
| 2170 | KeyType bk = b().start(); |
||
| 2171 | return Traits::startLess(ak, bk) ? bk : ak; |
||
| 2172 | } |
||
| 2173 | |||
| 2174 | /// stop - End of the overlapping interval. |
||
| 2175 | KeyType stop() const { |
||
| 2176 | KeyType ak = a().stop(); |
||
| 2177 | KeyType bk = b().stop(); |
||
| 2178 | return Traits::startLess(ak, bk) ? ak : bk; |
||
| 2179 | } |
||
| 2180 | |||
| 2181 | /// skipA - Move to the next overlap that doesn't involve a(). |
||
| 2182 | void skipA() { |
||
| 2183 | ++posA; |
||
| 2184 | advance(); |
||
| 2185 | } |
||
| 2186 | |||
| 2187 | /// skipB - Move to the next overlap that doesn't involve b(). |
||
| 2188 | void skipB() { |
||
| 2189 | ++posB; |
||
| 2190 | advance(); |
||
| 2191 | } |
||
| 2192 | |||
| 2193 | /// Preincrement - Move to the next overlap. |
||
| 2194 | IntervalMapOverlaps &operator++() { |
||
| 2195 | // Bump the iterator that ends first. The other one may have more overlaps. |
||
| 2196 | if (Traits::startLess(posB.stop(), posA.stop())) |
||
| 2197 | skipB(); |
||
| 2198 | else |
||
| 2199 | skipA(); |
||
| 2200 | return *this; |
||
| 2201 | } |
||
| 2202 | |||
| 2203 | /// advanceTo - Move to the first overlapping interval with |
||
| 2204 | /// stopLess(x, stop()). |
||
| 2205 | void advanceTo(KeyType x) { |
||
| 2206 | if (!valid()) |
||
| 2207 | return; |
||
| 2208 | // Make sure advanceTo sees monotonic keys. |
||
| 2209 | if (Traits::stopLess(posA.stop(), x)) |
||
| 2210 | posA.advanceTo(x); |
||
| 2211 | if (Traits::stopLess(posB.stop(), x)) |
||
| 2212 | posB.advanceTo(x); |
||
| 2213 | advance(); |
||
| 2214 | } |
||
| 2215 | }; |
||
| 2216 | |||
| 2217 | } // end namespace llvm |
||
| 2218 | |||
| 2219 | #endif // LLVM_ADT_INTERVALMAP_H |