Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines the ImutAVLTree and ImmutableSet classes.
11
///
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ADT_IMMUTABLESET_H
15
#define LLVM_ADT_IMMUTABLESET_H
16
 
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/FoldingSet.h"
19
#include "llvm/ADT/IntrusiveRefCntPtr.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/iterator.h"
22
#include "llvm/Support/Allocator.h"
23
#include "llvm/Support/ErrorHandling.h"
24
#include <cassert>
25
#include <cstdint>
26
#include <functional>
27
#include <iterator>
28
#include <new>
29
#include <vector>
30
 
31
namespace llvm {
32
 
33
//===----------------------------------------------------------------------===//
34
// Immutable AVL-Tree Definition.
35
//===----------------------------------------------------------------------===//
36
 
37
template <typename ImutInfo> class ImutAVLFactory;
38
template <typename ImutInfo> class ImutIntervalAVLFactory;
39
template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
40
template <typename ImutInfo> class ImutAVLTreeGenericIterator;
41
 
42
template <typename ImutInfo >
43
class ImutAVLTree {
44
public:
45
  using key_type_ref = typename ImutInfo::key_type_ref;
46
  using value_type = typename ImutInfo::value_type;
47
  using value_type_ref = typename ImutInfo::value_type_ref;
48
  using Factory = ImutAVLFactory<ImutInfo>;
49
  using iterator = ImutAVLTreeInOrderIterator<ImutInfo>;
50
 
51
  friend class ImutAVLFactory<ImutInfo>;
52
  friend class ImutIntervalAVLFactory<ImutInfo>;
53
  friend class ImutAVLTreeGenericIterator<ImutInfo>;
54
 
55
  //===----------------------------------------------------===//
56
  // Public Interface.
57
  //===----------------------------------------------------===//
58
 
59
  /// Return a pointer to the left subtree.  This value
60
  ///  is NULL if there is no left subtree.
61
  ImutAVLTree *getLeft() const { return left; }
62
 
63
  /// Return a pointer to the right subtree.  This value is
64
  ///  NULL if there is no right subtree.
65
  ImutAVLTree *getRight() const { return right; }
66
 
67
  /// getHeight - Returns the height of the tree.  A tree with no subtrees
68
  ///  has a height of 1.
69
  unsigned getHeight() const { return height; }
70
 
71
  /// getValue - Returns the data value associated with the tree node.
72
  const value_type& getValue() const { return value; }
73
 
74
  /// find - Finds the subtree associated with the specified key value.
75
  ///  This method returns NULL if no matching subtree is found.
76
  ImutAVLTree* find(key_type_ref K) {
77
    ImutAVLTree *T = this;
78
    while (T) {
79
      key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
80
      if (ImutInfo::isEqual(K,CurrentKey))
81
        return T;
82
      else if (ImutInfo::isLess(K,CurrentKey))
83
        T = T->getLeft();
84
      else
85
        T = T->getRight();
86
    }
87
    return nullptr;
88
  }
89
 
90
  /// getMaxElement - Find the subtree associated with the highest ranged
91
  ///  key value.
92
  ImutAVLTree* getMaxElement() {
93
    ImutAVLTree *T = this;
94
    ImutAVLTree *Right = T->getRight();
95
    while (Right) { T = Right; Right = T->getRight(); }
96
    return T;
97
  }
98
 
99
  /// size - Returns the number of nodes in the tree, which includes
100
  ///  both leaves and non-leaf nodes.
101
  unsigned size() const {
102
    unsigned n = 1;
103
    if (const ImutAVLTree* L = getLeft())
104
      n += L->size();
105
    if (const ImutAVLTree* R = getRight())
106
      n += R->size();
107
    return n;
108
  }
109
 
110
  /// begin - Returns an iterator that iterates over the nodes of the tree
111
  ///  in an inorder traversal.  The returned iterator thus refers to the
112
  ///  the tree node with the minimum data element.
113
  iterator begin() const { return iterator(this); }
114
 
115
  /// end - Returns an iterator for the tree that denotes the end of an
116
  ///  inorder traversal.
117
  iterator end() const { return iterator(); }
118
 
119
  bool isElementEqual(value_type_ref V) const {
120
    // Compare the keys.
121
    if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
122
                           ImutInfo::KeyOfValue(V)))
123
      return false;
124
 
125
    // Also compare the data values.
126
    if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
127
                               ImutInfo::DataOfValue(V)))
128
      return false;
129
 
130
    return true;
131
  }
132
 
133
  bool isElementEqual(const ImutAVLTree* RHS) const {
134
    return isElementEqual(RHS->getValue());
135
  }
136
 
137
  /// isEqual - Compares two trees for structural equality and returns true
138
  ///   if they are equal.  This worst case performance of this operation is
139
  //    linear in the sizes of the trees.
140
  bool isEqual(const ImutAVLTree& RHS) const {
141
    if (&RHS == this)
142
      return true;
143
 
144
    iterator LItr = begin(), LEnd = end();
145
    iterator RItr = RHS.begin(), REnd = RHS.end();
146
 
147
    while (LItr != LEnd && RItr != REnd) {
148
      if (&*LItr == &*RItr) {
149
        LItr.skipSubTree();
150
        RItr.skipSubTree();
151
        continue;
152
      }
153
 
154
      if (!LItr->isElementEqual(&*RItr))
155
        return false;
156
 
157
      ++LItr;
158
      ++RItr;
159
    }
160
 
161
    return LItr == LEnd && RItr == REnd;
162
  }
163
 
164
  /// isNotEqual - Compares two trees for structural inequality.  Performance
165
  ///  is the same is isEqual.
166
  bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
167
 
168
  /// contains - Returns true if this tree contains a subtree (node) that
169
  ///  has an data element that matches the specified key.  Complexity
170
  ///  is logarithmic in the size of the tree.
171
  bool contains(key_type_ref K) { return (bool) find(K); }
172
 
173
  /// validateTree - A utility method that checks that the balancing and
174
  ///  ordering invariants of the tree are satisfied.  It is a recursive
175
  ///  method that returns the height of the tree, which is then consumed
176
  ///  by the enclosing validateTree call.  External callers should ignore the
177
  ///  return value.  An invalid tree will cause an assertion to fire in
178
  ///  a debug build.
179
  unsigned validateTree() const {
180
    unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
181
    unsigned HR = getRight() ? getRight()->validateTree() : 0;
182
    (void) HL;
183
    (void) HR;
184
 
185
    assert(getHeight() == ( HL > HR ? HL : HR ) + 1
186
            && "Height calculation wrong");
187
 
188
    assert((HL > HR ? HL-HR : HR-HL) <= 2
189
           && "Balancing invariant violated");
190
 
191
    assert((!getLeft() ||
192
            ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
193
                             ImutInfo::KeyOfValue(getValue()))) &&
194
           "Value in left child is not less that current value");
195
 
196
    assert((!getRight() ||
197
             ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
198
                              ImutInfo::KeyOfValue(getRight()->getValue()))) &&
199
           "Current value is not less that value of right child");
200
 
201
    return getHeight();
202
  }
203
 
204
  //===----------------------------------------------------===//
205
  // Internal values.
206
  //===----------------------------------------------------===//
207
 
208
private:
209
  Factory *factory;
210
  ImutAVLTree *left;
211
  ImutAVLTree *right;
212
  ImutAVLTree *prev = nullptr;
213
  ImutAVLTree *next = nullptr;
214
 
215
  unsigned height : 28;
216
  bool IsMutable : 1;
217
  bool IsDigestCached : 1;
218
  bool IsCanonicalized : 1;
219
 
220
  value_type value;
221
  uint32_t digest = 0;
222
  uint32_t refCount = 0;
223
 
224
  //===----------------------------------------------------===//
225
  // Internal methods (node manipulation; used by Factory).
226
  //===----------------------------------------------------===//
227
 
228
private:
229
  /// ImutAVLTree - Internal constructor that is only called by
230
  ///   ImutAVLFactory.
231
  ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
232
              unsigned height)
233
    : factory(f), left(l), right(r), height(height), IsMutable(true),
234
      IsDigestCached(false), IsCanonicalized(false), value(v)
235
  {
236
    if (left) left->retain();
237
    if (right) right->retain();
238
  }
239
 
240
  /// isMutable - Returns true if the left and right subtree references
241
  ///  (as well as height) can be changed.  If this method returns false,
242
  ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
243
  ///  object should always have this method return true.  Further, if this
244
  ///  method returns false for an instance of ImutAVLTree, all subtrees
245
  ///  will also have this method return false.  The converse is not true.
246
  bool isMutable() const { return IsMutable; }
247
 
248
  /// hasCachedDigest - Returns true if the digest for this tree is cached.
249
  ///  This can only be true if the tree is immutable.
250
  bool hasCachedDigest() const { return IsDigestCached; }
251
 
252
  //===----------------------------------------------------===//
253
  // Mutating operations.  A tree root can be manipulated as
254
  // long as its reference has not "escaped" from internal
255
  // methods of a factory object (see below).  When a tree
256
  // pointer is externally viewable by client code, the
257
  // internal "mutable bit" is cleared to mark the tree
258
  // immutable.  Note that a tree that still has its mutable
259
  // bit set may have children (subtrees) that are themselves
260
  // immutable.
261
  //===----------------------------------------------------===//
262
 
263
  /// markImmutable - Clears the mutable flag for a tree.  After this happens,
264
  ///   it is an error to call setLeft(), setRight(), and setHeight().
265
  void markImmutable() {
266
    assert(isMutable() && "Mutable flag already removed.");
267
    IsMutable = false;
268
  }
269
 
270
  /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
271
  void markedCachedDigest() {
272
    assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
273
    IsDigestCached = true;
274
  }
275
 
276
  /// setHeight - Changes the height of the tree.  Used internally by
277
  ///  ImutAVLFactory.
278
  void setHeight(unsigned h) {
279
    assert(isMutable() && "Only a mutable tree can have its height changed.");
280
    height = h;
281
  }
282
 
283
  static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
284
                                value_type_ref V) {
285
    uint32_t digest = 0;
286
 
287
    if (L)
288
      digest += L->computeDigest();
289
 
290
    // Compute digest of stored data.
291
    FoldingSetNodeID ID;
292
    ImutInfo::Profile(ID,V);
293
    digest += ID.ComputeHash();
294
 
295
    if (R)
296
      digest += R->computeDigest();
297
 
298
    return digest;
299
  }
300
 
301
  uint32_t computeDigest() {
302
    // Check the lowest bit to determine if digest has actually been
303
    // pre-computed.
304
    if (hasCachedDigest())
305
      return digest;
306
 
307
    uint32_t X = computeDigest(getLeft(), getRight(), getValue());
308
    digest = X;
309
    markedCachedDigest();
310
    return X;
311
  }
312
 
313
  //===----------------------------------------------------===//
314
  // Reference count operations.
315
  //===----------------------------------------------------===//
316
 
317
public:
318
  void retain() { ++refCount; }
319
 
320
  void release() {
321
    assert(refCount > 0);
322
    if (--refCount == 0)
323
      destroy();
324
  }
325
 
326
  void destroy() {
327
    if (left)
328
      left->release();
329
    if (right)
330
      right->release();
331
    if (IsCanonicalized) {
332
      if (next)
333
        next->prev = prev;
334
 
335
      if (prev)
336
        prev->next = next;
337
      else
338
        factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
339
    }
340
 
341
    // We need to clear the mutability bit in case we are
342
    // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
343
    IsMutable = false;
344
    factory->freeNodes.push_back(this);
345
  }
346
};
347
 
348
template <typename ImutInfo>
349
struct IntrusiveRefCntPtrInfo<ImutAVLTree<ImutInfo>> {
350
  static void retain(ImutAVLTree<ImutInfo> *Tree) { Tree->retain(); }
351
  static void release(ImutAVLTree<ImutInfo> *Tree) { Tree->release(); }
352
};
353
 
354
//===----------------------------------------------------------------------===//
355
// Immutable AVL-Tree Factory class.
356
//===----------------------------------------------------------------------===//
357
 
358
template <typename ImutInfo >
359
class ImutAVLFactory {
360
  friend class ImutAVLTree<ImutInfo>;
361
 
362
  using TreeTy = ImutAVLTree<ImutInfo>;
363
  using value_type_ref = typename TreeTy::value_type_ref;
364
  using key_type_ref = typename TreeTy::key_type_ref;
365
  using CacheTy = DenseMap<unsigned, TreeTy*>;
366
 
367
  CacheTy Cache;
368
  uintptr_t Allocator;
369
  std::vector<TreeTy*> createdNodes;
370
  std::vector<TreeTy*> freeNodes;
371
 
372
  bool ownsAllocator() const {
373
    return (Allocator & 0x1) == 0;
374
  }
375
 
376
  BumpPtrAllocator& getAllocator() const {
377
    return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
378
  }
379
 
380
  //===--------------------------------------------------===//
381
  // Public interface.
382
  //===--------------------------------------------------===//
383
 
384
public:
385
  ImutAVLFactory()
386
    : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
387
 
388
  ImutAVLFactory(BumpPtrAllocator& Alloc)
389
    : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
390
 
391
  ~ImutAVLFactory() {
392
    if (ownsAllocator()) delete &getAllocator();
393
  }
394
 
395
  TreeTy* add(TreeTy* T, value_type_ref V) {
396
    T = add_internal(V,T);
397
    markImmutable(T);
398
    recoverNodes();
399
    return T;
400
  }
401
 
402
  TreeTy* remove(TreeTy* T, key_type_ref V) {
403
    T = remove_internal(V,T);
404
    markImmutable(T);
405
    recoverNodes();
406
    return T;
407
  }
408
 
409
  TreeTy* getEmptyTree() const { return nullptr; }
410
 
411
protected:
412
  //===--------------------------------------------------===//
413
  // A bunch of quick helper functions used for reasoning
414
  // about the properties of trees and their children.
415
  // These have succinct names so that the balancing code
416
  // is as terse (and readable) as possible.
417
  //===--------------------------------------------------===//
418
 
419
  bool            isEmpty(TreeTy* T) const { return !T; }
420
  unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
421
  TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
422
  TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
423
  value_type_ref  getValue(TreeTy* T) const { return T->value; }
424
 
425
  // Make sure the index is not the Tombstone or Entry key of the DenseMap.
426
  static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
427
 
428
  unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
429
    unsigned hl = getHeight(L);
430
    unsigned hr = getHeight(R);
431
    return (hl > hr ? hl : hr) + 1;
432
  }
433
 
434
  static bool compareTreeWithSection(TreeTy* T,
435
                                     typename TreeTy::iterator& TI,
436
                                     typename TreeTy::iterator& TE) {
437
    typename TreeTy::iterator I = T->begin(), E = T->end();
438
    for ( ; I!=E ; ++I, ++TI) {
439
      if (TI == TE || !I->isElementEqual(&*TI))
440
        return false;
441
    }
442
    return true;
443
  }
444
 
445
  //===--------------------------------------------------===//
446
  // "createNode" is used to generate new tree roots that link
447
  // to other trees.  The function may also simply move links
448
  // in an existing root if that root is still marked mutable.
449
  // This is necessary because otherwise our balancing code
450
  // would leak memory as it would create nodes that are
451
  // then discarded later before the finished tree is
452
  // returned to the caller.
453
  //===--------------------------------------------------===//
454
 
455
  TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
456
    BumpPtrAllocator& A = getAllocator();
457
    TreeTy* T;
458
    if (!freeNodes.empty()) {
459
      T = freeNodes.back();
460
      freeNodes.pop_back();
461
      assert(T != L);
462
      assert(T != R);
463
    } else {
464
      T = (TreeTy*) A.Allocate<TreeTy>();
465
    }
466
    new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
467
    createdNodes.push_back(T);
468
    return T;
469
  }
470
 
471
  TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
472
    return createNode(newLeft, getValue(oldTree), newRight);
473
  }
474
 
475
  void recoverNodes() {
476
    for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
477
      TreeTy *N = createdNodes[i];
478
      if (N->isMutable() && N->refCount == 0)
479
        N->destroy();
480
    }
481
    createdNodes.clear();
482
  }
483
 
484
  /// balanceTree - Used by add_internal and remove_internal to
485
  ///  balance a newly created tree.
486
  TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
487
    unsigned hl = getHeight(L);
488
    unsigned hr = getHeight(R);
489
 
490
    if (hl > hr + 2) {
491
      assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
492
 
493
      TreeTy *LL = getLeft(L);
494
      TreeTy *LR = getRight(L);
495
 
496
      if (getHeight(LL) >= getHeight(LR))
497
        return createNode(LL, L, createNode(LR,V,R));
498
 
499
      assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
500
 
501
      TreeTy *LRL = getLeft(LR);
502
      TreeTy *LRR = getRight(LR);
503
 
504
      return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
505
    }
506
 
507
    if (hr > hl + 2) {
508
      assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
509
 
510
      TreeTy *RL = getLeft(R);
511
      TreeTy *RR = getRight(R);
512
 
513
      if (getHeight(RR) >= getHeight(RL))
514
        return createNode(createNode(L,V,RL), R, RR);
515
 
516
      assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
517
 
518
      TreeTy *RLL = getLeft(RL);
519
      TreeTy *RLR = getRight(RL);
520
 
521
      return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
522
    }
523
 
524
    return createNode(L,V,R);
525
  }
526
 
527
  /// add_internal - Creates a new tree that includes the specified
528
  ///  data and the data from the original tree.  If the original tree
529
  ///  already contained the data item, the original tree is returned.
530
  TreeTy* add_internal(value_type_ref V, TreeTy* T) {
531
    if (isEmpty(T))
532
      return createNode(T, V, T);
533
    assert(!T->isMutable());
534
 
535
    key_type_ref K = ImutInfo::KeyOfValue(V);
536
    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
537
 
538
    if (ImutInfo::isEqual(K,KCurrent))
539
      return createNode(getLeft(T), V, getRight(T));
540
    else if (ImutInfo::isLess(K,KCurrent))
541
      return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
542
    else
543
      return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
544
  }
545
 
546
  /// remove_internal - Creates a new tree that includes all the data
547
  ///  from the original tree except the specified data.  If the
548
  ///  specified data did not exist in the original tree, the original
549
  ///  tree is returned.
550
  TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
551
    if (isEmpty(T))
552
      return T;
553
 
554
    assert(!T->isMutable());
555
 
556
    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
557
 
558
    if (ImutInfo::isEqual(K,KCurrent)) {
559
      return combineTrees(getLeft(T), getRight(T));
560
    } else if (ImutInfo::isLess(K,KCurrent)) {
561
      return balanceTree(remove_internal(K, getLeft(T)),
562
                                            getValue(T), getRight(T));
563
    } else {
564
      return balanceTree(getLeft(T), getValue(T),
565
                         remove_internal(K, getRight(T)));
566
    }
567
  }
568
 
569
  TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
570
    if (isEmpty(L))
571
      return R;
572
    if (isEmpty(R))
573
      return L;
574
    TreeTy* OldNode;
575
    TreeTy* newRight = removeMinBinding(R,OldNode);
576
    return balanceTree(L, getValue(OldNode), newRight);
577
  }
578
 
579
  TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
580
    assert(!isEmpty(T));
581
    if (isEmpty(getLeft(T))) {
582
      Noderemoved = T;
583
      return getRight(T);
584
    }
585
    return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
586
                       getValue(T), getRight(T));
587
  }
588
 
589
  /// markImmutable - Clears the mutable bits of a root and all of its
590
  ///  descendants.
591
  void markImmutable(TreeTy* T) {
592
    if (!T || !T->isMutable())
593
      return;
594
    T->markImmutable();
595
    markImmutable(getLeft(T));
596
    markImmutable(getRight(T));
597
  }
598
 
599
public:
600
  TreeTy *getCanonicalTree(TreeTy *TNew) {
601
    if (!TNew)
602
      return nullptr;
603
 
604
    if (TNew->IsCanonicalized)
605
      return TNew;
606
 
607
    // Search the hashtable for another tree with the same digest, and
608
    // if find a collision compare those trees by their contents.
609
    unsigned digest = TNew->computeDigest();
610
    TreeTy *&entry = Cache[maskCacheIndex(digest)];
611
    do {
612
      if (!entry)
613
        break;
614
      for (TreeTy *T = entry ; T != nullptr; T = T->next) {
615
        // Compare the Contents('T') with Contents('TNew')
616
        typename TreeTy::iterator TI = T->begin(), TE = T->end();
617
        if (!compareTreeWithSection(TNew, TI, TE))
618
          continue;
619
        if (TI != TE)
620
          continue; // T has more contents than TNew.
621
        // Trees did match!  Return 'T'.
622
        if (TNew->refCount == 0)
623
          TNew->destroy();
624
        return T;
625
      }
626
      entry->prev = TNew;
627
      TNew->next = entry;
628
    }
629
    while (false);
630
 
631
    entry = TNew;
632
    TNew->IsCanonicalized = true;
633
    return TNew;
634
  }
635
};
636
 
637
//===----------------------------------------------------------------------===//
638
// Immutable AVL-Tree Iterators.
639
//===----------------------------------------------------------------------===//
640
 
641
template <typename ImutInfo> class ImutAVLTreeGenericIterator {
642
  SmallVector<uintptr_t,20> stack;
643
 
644
public:
645
  using iterator_category = std::bidirectional_iterator_tag;
646
  using value_type = ImutAVLTree<ImutInfo>;
647
  using difference_type = std::ptrdiff_t;
648
  using pointer = value_type *;
649
  using reference = value_type &;
650
 
651
  enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
652
                   Flags=0x3 };
653
 
654
  using TreeTy = ImutAVLTree<ImutInfo>;
655
 
656
  ImutAVLTreeGenericIterator() = default;
657
  ImutAVLTreeGenericIterator(const TreeTy *Root) {
658
    if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
659
  }
660
 
661
  TreeTy &operator*() const {
662
    assert(!stack.empty());
663
    return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
664
  }
665
  TreeTy *operator->() const { return &*this; }
666
 
667
  uintptr_t getVisitState() const {
668
    assert(!stack.empty());
669
    return stack.back() & Flags;
670
  }
671
 
672
  bool atEnd() const { return stack.empty(); }
673
 
674
  bool atBeginning() const {
675
    return stack.size() == 1 && getVisitState() == VisitedNone;
676
  }
677
 
678
  void skipToParent() {
679
    assert(!stack.empty());
680
    stack.pop_back();
681
    if (stack.empty())
682
      return;
683
    switch (getVisitState()) {
684
      case VisitedNone:
685
        stack.back() |= VisitedLeft;
686
        break;
687
      case VisitedLeft:
688
        stack.back() |= VisitedRight;
689
        break;
690
      default:
691
        llvm_unreachable("Unreachable.");
692
    }
693
  }
694
 
695
  bool operator==(const ImutAVLTreeGenericIterator &x) const {
696
    return stack == x.stack;
697
  }
698
 
699
  bool operator!=(const ImutAVLTreeGenericIterator &x) const {
700
    return !(*this == x);
701
  }
702
 
703
  ImutAVLTreeGenericIterator &operator++() {
704
    assert(!stack.empty());
705
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
706
    assert(Current);
707
    switch (getVisitState()) {
708
      case VisitedNone:
709
        if (TreeTy* L = Current->getLeft())
710
          stack.push_back(reinterpret_cast<uintptr_t>(L));
711
        else
712
          stack.back() |= VisitedLeft;
713
        break;
714
      case VisitedLeft:
715
        if (TreeTy* R = Current->getRight())
716
          stack.push_back(reinterpret_cast<uintptr_t>(R));
717
        else
718
          stack.back() |= VisitedRight;
719
        break;
720
      case VisitedRight:
721
        skipToParent();
722
        break;
723
      default:
724
        llvm_unreachable("Unreachable.");
725
    }
726
    return *this;
727
  }
728
 
729
  ImutAVLTreeGenericIterator &operator--() {
730
    assert(!stack.empty());
731
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
732
    assert(Current);
733
    switch (getVisitState()) {
734
      case VisitedNone:
735
        stack.pop_back();
736
        break;
737
      case VisitedLeft:
738
        stack.back() &= ~Flags; // Set state to "VisitedNone."
739
        if (TreeTy* L = Current->getLeft())
740
          stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
741
        break;
742
      case VisitedRight:
743
        stack.back() &= ~Flags;
744
        stack.back() |= VisitedLeft;
745
        if (TreeTy* R = Current->getRight())
746
          stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
747
        break;
748
      default:
749
        llvm_unreachable("Unreachable.");
750
    }
751
    return *this;
752
  }
753
};
754
 
755
template <typename ImutInfo> class ImutAVLTreeInOrderIterator {
756
  using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>;
757
 
758
  InternalIteratorTy InternalItr;
759
 
760
public:
761
  using iterator_category = std::bidirectional_iterator_tag;
762
  using value_type = ImutAVLTree<ImutInfo>;
763
  using difference_type = std::ptrdiff_t;
764
  using pointer = value_type *;
765
  using reference = value_type &;
766
 
767
  using TreeTy = ImutAVLTree<ImutInfo>;
768
 
769
  ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
770
    if (Root)
771
      ++*this; // Advance to first element.
772
  }
773
 
774
  ImutAVLTreeInOrderIterator() : InternalItr() {}
775
 
776
  bool operator==(const ImutAVLTreeInOrderIterator &x) const {
777
    return InternalItr == x.InternalItr;
778
  }
779
 
780
  bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
781
    return !(*this == x);
782
  }
783
 
784
  TreeTy &operator*() const { return *InternalItr; }
785
  TreeTy *operator->() const { return &*InternalItr; }
786
 
787
  ImutAVLTreeInOrderIterator &operator++() {
788
    do ++InternalItr;
789
    while (!InternalItr.atEnd() &&
790
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
791
 
792
    return *this;
793
  }
794
 
795
  ImutAVLTreeInOrderIterator &operator--() {
796
    do --InternalItr;
797
    while (!InternalItr.atBeginning() &&
798
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
799
 
800
    return *this;
801
  }
802
 
803
  void skipSubTree() {
804
    InternalItr.skipToParent();
805
 
806
    while (!InternalItr.atEnd() &&
807
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
808
      ++InternalItr;
809
  }
810
};
811
 
812
/// Generic iterator that wraps a T::TreeTy::iterator and exposes
813
/// iterator::getValue() on dereference.
814
template <typename T>
815
struct ImutAVLValueIterator
816
    : iterator_adaptor_base<
817
          ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
818
          typename std::iterator_traits<
819
              typename T::TreeTy::iterator>::iterator_category,
820
          const typename T::value_type> {
821
  ImutAVLValueIterator() = default;
822
  explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
823
      : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
824
 
825
  typename ImutAVLValueIterator::reference operator*() const {
826
    return this->I->getValue();
827
  }
828
};
829
 
830
//===----------------------------------------------------------------------===//
831
// Trait classes for Profile information.
832
//===----------------------------------------------------------------------===//
833
 
834
/// Generic profile template.  The default behavior is to invoke the
835
/// profile method of an object.  Specializations for primitive integers
836
/// and generic handling of pointers is done below.
837
template <typename T>
838
struct ImutProfileInfo {
839
  using value_type = const T;
840
  using value_type_ref = const T&;
841
 
842
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
843
    FoldingSetTrait<T>::Profile(X,ID);
844
  }
845
};
846
 
847
/// Profile traits for integers.
848
template <typename T>
849
struct ImutProfileInteger {
850
  using value_type = const T;
851
  using value_type_ref = const T&;
852
 
853
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
854
    ID.AddInteger(X);
855
  }
856
};
857
 
858
#define PROFILE_INTEGER_INFO(X)\
859
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
860
 
861
PROFILE_INTEGER_INFO(char)
862
PROFILE_INTEGER_INFO(unsigned char)
863
PROFILE_INTEGER_INFO(short)
864
PROFILE_INTEGER_INFO(unsigned short)
865
PROFILE_INTEGER_INFO(unsigned)
866
PROFILE_INTEGER_INFO(signed)
867
PROFILE_INTEGER_INFO(long)
868
PROFILE_INTEGER_INFO(unsigned long)
869
PROFILE_INTEGER_INFO(long long)
870
PROFILE_INTEGER_INFO(unsigned long long)
871
 
872
#undef PROFILE_INTEGER_INFO
873
 
874
/// Profile traits for booleans.
875
template <>
876
struct ImutProfileInfo<bool> {
877
  using value_type = const bool;
878
  using value_type_ref = const bool&;
879
 
880
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
881
    ID.AddBoolean(X);
882
  }
883
};
884
 
885
/// Generic profile trait for pointer types.  We treat pointers as
886
/// references to unique objects.
887
template <typename T>
888
struct ImutProfileInfo<T*> {
889
  using value_type = const T*;
890
  using value_type_ref = value_type;
891
 
892
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
893
    ID.AddPointer(X);
894
  }
895
};
896
 
897
//===----------------------------------------------------------------------===//
898
// Trait classes that contain element comparison operators and type
899
//  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
900
//  inherit from the profile traits (ImutProfileInfo) to include operations
901
//  for element profiling.
902
//===----------------------------------------------------------------------===//
903
 
904
/// ImutContainerInfo - Generic definition of comparison operations for
905
///   elements of immutable containers that defaults to using
906
///   std::equal_to<> and std::less<> to perform comparison of elements.
907
template <typename T>
908
struct ImutContainerInfo : public ImutProfileInfo<T> {
909
  using value_type = typename ImutProfileInfo<T>::value_type;
910
  using value_type_ref = typename ImutProfileInfo<T>::value_type_ref;
911
  using key_type = value_type;
912
  using key_type_ref = value_type_ref;
913
  using data_type = bool;
914
  using data_type_ref = bool;
915
 
916
  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
917
  static data_type_ref DataOfValue(value_type_ref) { return true; }
918
 
919
  static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
920
    return std::equal_to<key_type>()(LHS,RHS);
921
  }
922
 
923
  static bool isLess(key_type_ref LHS, key_type_ref RHS) {
924
    return std::less<key_type>()(LHS,RHS);
925
  }
926
 
927
  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
928
};
929
 
930
/// ImutContainerInfo - Specialization for pointer values to treat pointers
931
///  as references to unique objects.  Pointers are thus compared by
932
///  their addresses.
933
template <typename T>
934
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
935
  using value_type = typename ImutProfileInfo<T*>::value_type;
936
  using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref;
937
  using key_type = value_type;
938
  using key_type_ref = value_type_ref;
939
  using data_type = bool;
940
  using data_type_ref = bool;
941
 
942
  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
943
  static data_type_ref DataOfValue(value_type_ref) { return true; }
944
 
945
  static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
946
 
947
  static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
948
 
949
  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
950
};
951
 
952
//===----------------------------------------------------------------------===//
953
// Immutable Set
954
//===----------------------------------------------------------------------===//
955
 
956
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
957
class ImmutableSet {
958
public:
959
  using value_type = typename ValInfo::value_type;
960
  using value_type_ref = typename ValInfo::value_type_ref;
961
  using TreeTy = ImutAVLTree<ValInfo>;
962
 
963
private:
964
  IntrusiveRefCntPtr<TreeTy> Root;
965
 
966
public:
967
  /// Constructs a set from a pointer to a tree root.  In general one
968
  /// should use a Factory object to create sets instead of directly
969
  /// invoking the constructor, but there are cases where make this
970
  /// constructor public is useful.
971
  explicit ImmutableSet(TreeTy *R) : Root(R) {}
972
 
973
  class Factory {
974
    typename TreeTy::Factory F;
975
    const bool Canonicalize;
976
 
977
  public:
978
    Factory(bool canonicalize = true)
979
      : Canonicalize(canonicalize) {}
980
 
981
    Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
982
      : F(Alloc), Canonicalize(canonicalize) {}
983
 
984
    Factory(const Factory& RHS) = delete;
985
    void operator=(const Factory& RHS) = delete;
986
 
987
    /// getEmptySet - Returns an immutable set that contains no elements.
988
    ImmutableSet getEmptySet() {
989
      return ImmutableSet(F.getEmptyTree());
990
    }
991
 
992
    /// add - Creates a new immutable set that contains all of the values
993
    ///  of the original set with the addition of the specified value.  If
994
    ///  the original set already included the value, then the original set is
995
    ///  returned and no memory is allocated.  The time and space complexity
996
    ///  of this operation is logarithmic in the size of the original set.
997
    ///  The memory allocated to represent the set is released when the
998
    ///  factory object that created the set is destroyed.
999
    [[nodiscard]] ImmutableSet add(ImmutableSet Old, value_type_ref V) {
1000
      TreeTy *NewT = F.add(Old.Root.get(), V);
1001
      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1002
    }
1003
 
1004
    /// remove - Creates a new immutable set that contains all of the values
1005
    ///  of the original set with the exception of the specified value.  If
1006
    ///  the original set did not contain the value, the original set is
1007
    ///  returned and no memory is allocated.  The time and space complexity
1008
    ///  of this operation is logarithmic in the size of the original set.
1009
    ///  The memory allocated to represent the set is released when the
1010
    ///  factory object that created the set is destroyed.
1011
    [[nodiscard]] ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
1012
      TreeTy *NewT = F.remove(Old.Root.get(), V);
1013
      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1014
    }
1015
 
1016
    BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
1017
 
1018
    typename TreeTy::Factory *getTreeFactory() const {
1019
      return const_cast<typename TreeTy::Factory *>(&F);
1020
    }
1021
  };
1022
 
1023
  friend class Factory;
1024
 
1025
  /// Returns true if the set contains the specified value.
1026
  bool contains(value_type_ref V) const {
1027
    return Root ? Root->contains(V) : false;
1028
  }
1029
 
1030
  bool operator==(const ImmutableSet &RHS) const {
1031
    return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root;
1032
  }
1033
 
1034
  bool operator!=(const ImmutableSet &RHS) const {
1035
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get())
1036
                            : Root != RHS.Root;
1037
  }
1038
 
1039
  TreeTy *getRoot() {
1040
    if (Root) { Root->retain(); }
1041
    return Root.get();
1042
  }
1043
 
1044
  TreeTy *getRootWithoutRetain() const { return Root.get(); }
1045
 
1046
  /// isEmpty - Return true if the set contains no elements.
1047
  bool isEmpty() const { return !Root; }
1048
 
1049
  /// isSingleton - Return true if the set contains exactly one element.
1050
  ///   This method runs in constant time.
1051
  bool isSingleton() const { return getHeight() == 1; }
1052
 
1053
  //===--------------------------------------------------===//
1054
  // Iterators.
1055
  //===--------------------------------------------------===//
1056
 
1057
  using iterator = ImutAVLValueIterator<ImmutableSet>;
1058
 
1059
  iterator begin() const { return iterator(Root.get()); }
1060
  iterator end() const { return iterator(); }
1061
 
1062
  //===--------------------------------------------------===//
1063
  // Utility methods.
1064
  //===--------------------------------------------------===//
1065
 
1066
  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1067
 
1068
  static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
1069
    ID.AddPointer(S.Root.get());
1070
  }
1071
 
1072
  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1073
 
1074
  //===--------------------------------------------------===//
1075
  // For testing.
1076
  //===--------------------------------------------------===//
1077
 
1078
  void validateTree() const { if (Root) Root->validateTree(); }
1079
};
1080
 
1081
// NOTE: This may some day replace the current ImmutableSet.
1082
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
1083
class ImmutableSetRef {
1084
public:
1085
  using value_type = typename ValInfo::value_type;
1086
  using value_type_ref = typename ValInfo::value_type_ref;
1087
  using TreeTy = ImutAVLTree<ValInfo>;
1088
  using FactoryTy = typename TreeTy::Factory;
1089
 
1090
private:
1091
  IntrusiveRefCntPtr<TreeTy> Root;
1092
  FactoryTy *Factory;
1093
 
1094
public:
1095
  /// Constructs a set from a pointer to a tree root.  In general one
1096
  /// should use a Factory object to create sets instead of directly
1097
  /// invoking the constructor, but there are cases where make this
1098
  /// constructor public is useful.
1099
  ImmutableSetRef(TreeTy *R, FactoryTy *F) : Root(R), Factory(F) {}
1100
 
1101
  static ImmutableSetRef getEmptySet(FactoryTy *F) {
1102
    return ImmutableSetRef(0, F);
1103
  }
1104
 
1105
  ImmutableSetRef add(value_type_ref V) {
1106
    return ImmutableSetRef(Factory->add(Root.get(), V), Factory);
1107
  }
1108
 
1109
  ImmutableSetRef remove(value_type_ref V) {
1110
    return ImmutableSetRef(Factory->remove(Root.get(), V), Factory);
1111
  }
1112
 
1113
  /// Returns true if the set contains the specified value.
1114
  bool contains(value_type_ref V) const {
1115
    return Root ? Root->contains(V) : false;
1116
  }
1117
 
1118
  ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
1119
    return ImmutableSet<ValT>(
1120
        canonicalize ? Factory->getCanonicalTree(Root.get()) : Root.get());
1121
  }
1122
 
1123
  TreeTy *getRootWithoutRetain() const { return Root.get(); }
1124
 
1125
  bool operator==(const ImmutableSetRef &RHS) const {
1126
    return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root;
1127
  }
1128
 
1129
  bool operator!=(const ImmutableSetRef &RHS) const {
1130
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get())
1131
                            : Root != RHS.Root;
1132
  }
1133
 
1134
  /// isEmpty - Return true if the set contains no elements.
1135
  bool isEmpty() const { return !Root; }
1136
 
1137
  /// isSingleton - Return true if the set contains exactly one element.
1138
  ///   This method runs in constant time.
1139
  bool isSingleton() const { return getHeight() == 1; }
1140
 
1141
  //===--------------------------------------------------===//
1142
  // Iterators.
1143
  //===--------------------------------------------------===//
1144
 
1145
  using iterator = ImutAVLValueIterator<ImmutableSetRef>;
1146
 
1147
  iterator begin() const { return iterator(Root.get()); }
1148
  iterator end() const { return iterator(); }
1149
 
1150
  //===--------------------------------------------------===//
1151
  // Utility methods.
1152
  //===--------------------------------------------------===//
1153
 
1154
  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1155
 
1156
  static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
1157
    ID.AddPointer(S.Root.get());
1158
  }
1159
 
1160
  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1161
 
1162
  //===--------------------------------------------------===//
1163
  // For testing.
1164
  //===--------------------------------------------------===//
1165
 
1166
  void validateTree() const { if (Root) Root->validateTree(); }
1167
};
1168
 
1169
} // end namespace llvm
1170
 
1171
#endif // LLVM_ADT_IMMUTABLESET_H