Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file implements the newly proposed standard C++ interfaces for hashing |
||
10 | // arbitrary data and building hash functions for user-defined types. This |
||
11 | // interface was originally proposed in N3333[1] and is currently under review |
||
12 | // for inclusion in a future TR and/or standard. |
||
13 | // |
||
14 | // The primary interfaces provide are comprised of one type and three functions: |
||
15 | // |
||
16 | // -- 'hash_code' class is an opaque type representing the hash code for some |
||
17 | // data. It is the intended product of hashing, and can be used to implement |
||
18 | // hash tables, checksumming, and other common uses of hashes. It is not an |
||
19 | // integer type (although it can be converted to one) because it is risky |
||
20 | // to assume much about the internals of a hash_code. In particular, each |
||
21 | // execution of the program has a high probability of producing a different |
||
22 | // hash_code for a given input. Thus their values are not stable to save or |
||
23 | // persist, and should only be used during the execution for the |
||
24 | // construction of hashing datastructures. |
||
25 | // |
||
26 | // -- 'hash_value' is a function designed to be overloaded for each |
||
27 | // user-defined type which wishes to be used within a hashing context. It |
||
28 | // should be overloaded within the user-defined type's namespace and found |
||
29 | // via ADL. Overloads for primitive types are provided by this library. |
||
30 | // |
||
31 | // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid |
||
32 | // programmers in easily and intuitively combining a set of data into |
||
33 | // a single hash_code for their object. They should only logically be used |
||
34 | // within the implementation of a 'hash_value' routine or similar context. |
||
35 | // |
||
36 | // Note that 'hash_combine_range' contains very special logic for hashing |
||
37 | // a contiguous array of integers or pointers. This logic is *extremely* fast, |
||
38 | // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were |
||
39 | // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys |
||
40 | // under 32-bytes. |
||
41 | // |
||
42 | //===----------------------------------------------------------------------===// |
||
43 | |||
44 | #ifndef LLVM_ADT_HASHING_H |
||
45 | #define LLVM_ADT_HASHING_H |
||
46 | |||
47 | #include "llvm/Support/DataTypes.h" |
||
48 | #include "llvm/Support/ErrorHandling.h" |
||
49 | #include "llvm/Support/SwapByteOrder.h" |
||
50 | #include "llvm/Support/type_traits.h" |
||
51 | #include <algorithm> |
||
52 | #include <cassert> |
||
53 | #include <cstring> |
||
54 | #include <optional> |
||
55 | #include <string> |
||
56 | #include <tuple> |
||
57 | #include <utility> |
||
58 | |||
59 | namespace llvm { |
||
60 | template <typename T, typename Enable> struct DenseMapInfo; |
||
61 | |||
62 | /// An opaque object representing a hash code. |
||
63 | /// |
||
64 | /// This object represents the result of hashing some entity. It is intended to |
||
65 | /// be used to implement hashtables or other hashing-based data structures. |
||
66 | /// While it wraps and exposes a numeric value, this value should not be |
||
67 | /// trusted to be stable or predictable across processes or executions. |
||
68 | /// |
||
69 | /// In order to obtain the hash_code for an object 'x': |
||
70 | /// \code |
||
71 | /// using llvm::hash_value; |
||
72 | /// llvm::hash_code code = hash_value(x); |
||
73 | /// \endcode |
||
74 | class hash_code { |
||
75 | size_t value; |
||
76 | |||
77 | public: |
||
78 | /// Default construct a hash_code. |
||
79 | /// Note that this leaves the value uninitialized. |
||
80 | hash_code() = default; |
||
81 | |||
82 | /// Form a hash code directly from a numerical value. |
||
83 | hash_code(size_t value) : value(value) {} |
||
84 | |||
85 | /// Convert the hash code to its numerical value for use. |
||
86 | /*explicit*/ operator size_t() const { return value; } |
||
87 | |||
88 | friend bool operator==(const hash_code &lhs, const hash_code &rhs) { |
||
89 | return lhs.value == rhs.value; |
||
90 | } |
||
91 | friend bool operator!=(const hash_code &lhs, const hash_code &rhs) { |
||
92 | return lhs.value != rhs.value; |
||
93 | } |
||
94 | |||
95 | /// Allow a hash_code to be directly run through hash_value. |
||
96 | friend size_t hash_value(const hash_code &code) { return code.value; } |
||
97 | }; |
||
98 | |||
99 | /// Compute a hash_code for any integer value. |
||
100 | /// |
||
101 | /// Note that this function is intended to compute the same hash_code for |
||
102 | /// a particular value without regard to the pre-promotion type. This is in |
||
103 | /// contrast to hash_combine which may produce different hash_codes for |
||
104 | /// differing argument types even if they would implicit promote to a common |
||
105 | /// type without changing the value. |
||
106 | template <typename T> |
||
107 | std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value); |
||
108 | |||
109 | /// Compute a hash_code for a pointer's address. |
||
110 | /// |
||
111 | /// N.B.: This hashes the *address*. Not the value and not the type. |
||
112 | template <typename T> hash_code hash_value(const T *ptr); |
||
113 | |||
114 | /// Compute a hash_code for a pair of objects. |
||
115 | template <typename T, typename U> |
||
116 | hash_code hash_value(const std::pair<T, U> &arg); |
||
117 | |||
118 | /// Compute a hash_code for a tuple. |
||
119 | template <typename... Ts> |
||
120 | hash_code hash_value(const std::tuple<Ts...> &arg); |
||
121 | |||
122 | /// Compute a hash_code for a standard string. |
||
123 | template <typename T> |
||
124 | hash_code hash_value(const std::basic_string<T> &arg); |
||
125 | |||
126 | /// Compute a hash_code for a standard string. |
||
127 | template <typename T> hash_code hash_value(const std::optional<T> &arg); |
||
128 | |||
129 | /// Override the execution seed with a fixed value. |
||
130 | /// |
||
131 | /// This hashing library uses a per-execution seed designed to change on each |
||
132 | /// run with high probability in order to ensure that the hash codes are not |
||
133 | /// attackable and to ensure that output which is intended to be stable does |
||
134 | /// not rely on the particulars of the hash codes produced. |
||
135 | /// |
||
136 | /// That said, there are use cases where it is important to be able to |
||
137 | /// reproduce *exactly* a specific behavior. To that end, we provide a function |
||
138 | /// which will forcibly set the seed to a fixed value. This must be done at the |
||
139 | /// start of the program, before any hashes are computed. Also, it cannot be |
||
140 | /// undone. This makes it thread-hostile and very hard to use outside of |
||
141 | /// immediately on start of a simple program designed for reproducible |
||
142 | /// behavior. |
||
143 | void set_fixed_execution_hash_seed(uint64_t fixed_value); |
||
144 | |||
145 | |||
146 | // All of the implementation details of actually computing the various hash |
||
147 | // code values are held within this namespace. These routines are included in |
||
148 | // the header file mainly to allow inlining and constant propagation. |
||
149 | namespace hashing { |
||
150 | namespace detail { |
||
151 | |||
152 | inline uint64_t fetch64(const char *p) { |
||
153 | uint64_t result; |
||
154 | memcpy(&result, p, sizeof(result)); |
||
155 | if (sys::IsBigEndianHost) |
||
156 | sys::swapByteOrder(result); |
||
157 | return result; |
||
158 | } |
||
159 | |||
160 | inline uint32_t fetch32(const char *p) { |
||
161 | uint32_t result; |
||
162 | memcpy(&result, p, sizeof(result)); |
||
163 | if (sys::IsBigEndianHost) |
||
164 | sys::swapByteOrder(result); |
||
165 | return result; |
||
166 | } |
||
167 | |||
168 | /// Some primes between 2^63 and 2^64 for various uses. |
||
169 | static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL; |
||
170 | static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL; |
||
171 | static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL; |
||
172 | static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL; |
||
173 | |||
174 | /// Bitwise right rotate. |
||
175 | /// Normally this will compile to a single instruction, especially if the |
||
176 | /// shift is a manifest constant. |
||
177 | inline uint64_t rotate(uint64_t val, size_t shift) { |
||
178 | // Avoid shifting by 64: doing so yields an undefined result. |
||
179 | return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); |
||
180 | } |
||
181 | |||
182 | inline uint64_t shift_mix(uint64_t val) { |
||
183 | return val ^ (val >> 47); |
||
184 | } |
||
185 | |||
186 | inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) { |
||
187 | // Murmur-inspired hashing. |
||
188 | const uint64_t kMul = 0x9ddfea08eb382d69ULL; |
||
189 | uint64_t a = (low ^ high) * kMul; |
||
190 | a ^= (a >> 47); |
||
191 | uint64_t b = (high ^ a) * kMul; |
||
192 | b ^= (b >> 47); |
||
193 | b *= kMul; |
||
194 | return b; |
||
195 | } |
||
196 | |||
197 | inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) { |
||
198 | uint8_t a = s[0]; |
||
199 | uint8_t b = s[len >> 1]; |
||
200 | uint8_t c = s[len - 1]; |
||
201 | uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); |
||
202 | uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2); |
||
203 | return shift_mix(y * k2 ^ z * k3 ^ seed) * k2; |
||
204 | } |
||
205 | |||
206 | inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) { |
||
207 | uint64_t a = fetch32(s); |
||
208 | return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4)); |
||
209 | } |
||
210 | |||
211 | inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) { |
||
212 | uint64_t a = fetch64(s); |
||
213 | uint64_t b = fetch64(s + len - 8); |
||
214 | return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b; |
||
215 | } |
||
216 | |||
217 | inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) { |
||
218 | uint64_t a = fetch64(s) * k1; |
||
219 | uint64_t b = fetch64(s + 8); |
||
220 | uint64_t c = fetch64(s + len - 8) * k2; |
||
221 | uint64_t d = fetch64(s + len - 16) * k0; |
||
222 | return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d, |
||
223 | a + rotate(b ^ k3, 20) - c + len + seed); |
||
224 | } |
||
225 | |||
226 | inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) { |
||
227 | uint64_t z = fetch64(s + 24); |
||
228 | uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0; |
||
229 | uint64_t b = rotate(a + z, 52); |
||
230 | uint64_t c = rotate(a, 37); |
||
231 | a += fetch64(s + 8); |
||
232 | c += rotate(a, 7); |
||
233 | a += fetch64(s + 16); |
||
234 | uint64_t vf = a + z; |
||
235 | uint64_t vs = b + rotate(a, 31) + c; |
||
236 | a = fetch64(s + 16) + fetch64(s + len - 32); |
||
237 | z = fetch64(s + len - 8); |
||
238 | b = rotate(a + z, 52); |
||
239 | c = rotate(a, 37); |
||
240 | a += fetch64(s + len - 24); |
||
241 | c += rotate(a, 7); |
||
242 | a += fetch64(s + len - 16); |
||
243 | uint64_t wf = a + z; |
||
244 | uint64_t ws = b + rotate(a, 31) + c; |
||
245 | uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0); |
||
246 | return shift_mix((seed ^ (r * k0)) + vs) * k2; |
||
247 | } |
||
248 | |||
249 | inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) { |
||
250 | if (length >= 4 && length <= 8) |
||
251 | return hash_4to8_bytes(s, length, seed); |
||
252 | if (length > 8 && length <= 16) |
||
253 | return hash_9to16_bytes(s, length, seed); |
||
254 | if (length > 16 && length <= 32) |
||
255 | return hash_17to32_bytes(s, length, seed); |
||
256 | if (length > 32) |
||
257 | return hash_33to64_bytes(s, length, seed); |
||
258 | if (length != 0) |
||
259 | return hash_1to3_bytes(s, length, seed); |
||
260 | |||
261 | return k2 ^ seed; |
||
262 | } |
||
263 | |||
264 | /// The intermediate state used during hashing. |
||
265 | /// Currently, the algorithm for computing hash codes is based on CityHash and |
||
266 | /// keeps 56 bytes of arbitrary state. |
||
267 | struct hash_state { |
||
268 | uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0; |
||
269 | |||
270 | /// Create a new hash_state structure and initialize it based on the |
||
271 | /// seed and the first 64-byte chunk. |
||
272 | /// This effectively performs the initial mix. |
||
273 | static hash_state create(const char *s, uint64_t seed) { |
||
274 | hash_state state = { |
||
275 | 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49), |
||
276 | seed * k1, shift_mix(seed), 0 }; |
||
277 | state.h6 = hash_16_bytes(state.h4, state.h5); |
||
278 | state.mix(s); |
||
279 | return state; |
||
280 | } |
||
281 | |||
282 | /// Mix 32-bytes from the input sequence into the 16-bytes of 'a' |
||
283 | /// and 'b', including whatever is already in 'a' and 'b'. |
||
284 | static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) { |
||
285 | a += fetch64(s); |
||
286 | uint64_t c = fetch64(s + 24); |
||
287 | b = rotate(b + a + c, 21); |
||
288 | uint64_t d = a; |
||
289 | a += fetch64(s + 8) + fetch64(s + 16); |
||
290 | b += rotate(a, 44) + d; |
||
291 | a += c; |
||
292 | } |
||
293 | |||
294 | /// Mix in a 64-byte buffer of data. |
||
295 | /// We mix all 64 bytes even when the chunk length is smaller, but we |
||
296 | /// record the actual length. |
||
297 | void mix(const char *s) { |
||
298 | h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1; |
||
299 | h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1; |
||
300 | h0 ^= h6; |
||
301 | h1 += h3 + fetch64(s + 40); |
||
302 | h2 = rotate(h2 + h5, 33) * k1; |
||
303 | h3 = h4 * k1; |
||
304 | h4 = h0 + h5; |
||
305 | mix_32_bytes(s, h3, h4); |
||
306 | h5 = h2 + h6; |
||
307 | h6 = h1 + fetch64(s + 16); |
||
308 | mix_32_bytes(s + 32, h5, h6); |
||
309 | std::swap(h2, h0); |
||
310 | } |
||
311 | |||
312 | /// Compute the final 64-bit hash code value based on the current |
||
313 | /// state and the length of bytes hashed. |
||
314 | uint64_t finalize(size_t length) { |
||
315 | return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2, |
||
316 | hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0); |
||
317 | } |
||
318 | }; |
||
319 | |||
320 | |||
321 | /// A global, fixed seed-override variable. |
||
322 | /// |
||
323 | /// This variable can be set using the \see llvm::set_fixed_execution_seed |
||
324 | /// function. See that function for details. Do not, under any circumstances, |
||
325 | /// set or read this variable. |
||
326 | extern uint64_t fixed_seed_override; |
||
327 | |||
328 | inline uint64_t get_execution_seed() { |
||
329 | // FIXME: This needs to be a per-execution seed. This is just a placeholder |
||
330 | // implementation. Switching to a per-execution seed is likely to flush out |
||
331 | // instability bugs and so will happen as its own commit. |
||
332 | // |
||
333 | // However, if there is a fixed seed override set the first time this is |
||
334 | // called, return that instead of the per-execution seed. |
||
335 | const uint64_t seed_prime = 0xff51afd7ed558ccdULL; |
||
336 | static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime; |
||
337 | return seed; |
||
338 | } |
||
339 | |||
340 | |||
341 | /// Trait to indicate whether a type's bits can be hashed directly. |
||
342 | /// |
||
343 | /// A type trait which is true if we want to combine values for hashing by |
||
344 | /// reading the underlying data. It is false if values of this type must |
||
345 | /// first be passed to hash_value, and the resulting hash_codes combined. |
||
346 | // |
||
347 | // FIXME: We want to replace is_integral_or_enum and is_pointer here with |
||
348 | // a predicate which asserts that comparing the underlying storage of two |
||
349 | // values of the type for equality is equivalent to comparing the two values |
||
350 | // for equality. For all the platforms we care about, this holds for integers |
||
351 | // and pointers, but there are platforms where it doesn't and we would like to |
||
352 | // support user-defined types which happen to satisfy this property. |
||
353 | template <typename T> struct is_hashable_data |
||
354 | : std::integral_constant<bool, ((is_integral_or_enum<T>::value || |
||
355 | std::is_pointer<T>::value) && |
||
356 | 64 % sizeof(T) == 0)> {}; |
||
357 | |||
358 | // Special case std::pair to detect when both types are viable and when there |
||
359 | // is no alignment-derived padding in the pair. This is a bit of a lie because |
||
360 | // std::pair isn't truly POD, but it's close enough in all reasonable |
||
361 | // implementations for our use case of hashing the underlying data. |
||
362 | template <typename T, typename U> struct is_hashable_data<std::pair<T, U> > |
||
363 | : std::integral_constant<bool, (is_hashable_data<T>::value && |
||
364 | is_hashable_data<U>::value && |
||
365 | (sizeof(T) + sizeof(U)) == |
||
366 | sizeof(std::pair<T, U>))> {}; |
||
367 | |||
368 | /// Helper to get the hashable data representation for a type. |
||
369 | /// This variant is enabled when the type itself can be used. |
||
370 | template <typename T> |
||
371 | std::enable_if_t<is_hashable_data<T>::value, T> |
||
372 | get_hashable_data(const T &value) { |
||
373 | return value; |
||
374 | } |
||
375 | /// Helper to get the hashable data representation for a type. |
||
376 | /// This variant is enabled when we must first call hash_value and use the |
||
377 | /// result as our data. |
||
378 | template <typename T> |
||
379 | std::enable_if_t<!is_hashable_data<T>::value, size_t> |
||
380 | get_hashable_data(const T &value) { |
||
381 | using ::llvm::hash_value; |
||
382 | return hash_value(value); |
||
383 | } |
||
384 | |||
385 | /// Helper to store data from a value into a buffer and advance the |
||
386 | /// pointer into that buffer. |
||
387 | /// |
||
388 | /// This routine first checks whether there is enough space in the provided |
||
389 | /// buffer, and if not immediately returns false. If there is space, it |
||
390 | /// copies the underlying bytes of value into the buffer, advances the |
||
391 | /// buffer_ptr past the copied bytes, and returns true. |
||
392 | template <typename T> |
||
393 | bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value, |
||
394 | size_t offset = 0) { |
||
395 | size_t store_size = sizeof(value) - offset; |
||
396 | if (buffer_ptr + store_size > buffer_end) |
||
397 | return false; |
||
398 | const char *value_data = reinterpret_cast<const char *>(&value); |
||
399 | memcpy(buffer_ptr, value_data + offset, store_size); |
||
400 | buffer_ptr += store_size; |
||
401 | return true; |
||
402 | } |
||
403 | |||
404 | /// Implement the combining of integral values into a hash_code. |
||
405 | /// |
||
406 | /// This overload is selected when the value type of the iterator is |
||
407 | /// integral. Rather than computing a hash_code for each object and then |
||
408 | /// combining them, this (as an optimization) directly combines the integers. |
||
409 | template <typename InputIteratorT> |
||
410 | hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) { |
||
411 | const uint64_t seed = get_execution_seed(); |
||
412 | char buffer[64], *buffer_ptr = buffer; |
||
413 | char *const buffer_end = std::end(buffer); |
||
414 | while (first != last && store_and_advance(buffer_ptr, buffer_end, |
||
415 | get_hashable_data(*first))) |
||
416 | ++first; |
||
417 | if (first == last) |
||
418 | return hash_short(buffer, buffer_ptr - buffer, seed); |
||
419 | assert(buffer_ptr == buffer_end); |
||
420 | |||
421 | hash_state state = state.create(buffer, seed); |
||
422 | size_t length = 64; |
||
423 | while (first != last) { |
||
424 | // Fill up the buffer. We don't clear it, which re-mixes the last round |
||
425 | // when only a partial 64-byte chunk is left. |
||
426 | buffer_ptr = buffer; |
||
427 | while (first != last && store_and_advance(buffer_ptr, buffer_end, |
||
428 | get_hashable_data(*first))) |
||
429 | ++first; |
||
430 | |||
431 | // Rotate the buffer if we did a partial fill in order to simulate doing |
||
432 | // a mix of the last 64-bytes. That is how the algorithm works when we |
||
433 | // have a contiguous byte sequence, and we want to emulate that here. |
||
434 | std::rotate(buffer, buffer_ptr, buffer_end); |
||
435 | |||
436 | // Mix this chunk into the current state. |
||
437 | state.mix(buffer); |
||
438 | length += buffer_ptr - buffer; |
||
439 | }; |
||
440 | |||
441 | return state.finalize(length); |
||
442 | } |
||
443 | |||
444 | /// Implement the combining of integral values into a hash_code. |
||
445 | /// |
||
446 | /// This overload is selected when the value type of the iterator is integral |
||
447 | /// and when the input iterator is actually a pointer. Rather than computing |
||
448 | /// a hash_code for each object and then combining them, this (as an |
||
449 | /// optimization) directly combines the integers. Also, because the integers |
||
450 | /// are stored in contiguous memory, this routine avoids copying each value |
||
451 | /// and directly reads from the underlying memory. |
||
452 | template <typename ValueT> |
||
453 | std::enable_if_t<is_hashable_data<ValueT>::value, hash_code> |
||
454 | hash_combine_range_impl(ValueT *first, ValueT *last) { |
||
455 | const uint64_t seed = get_execution_seed(); |
||
456 | const char *s_begin = reinterpret_cast<const char *>(first); |
||
457 | const char *s_end = reinterpret_cast<const char *>(last); |
||
458 | const size_t length = std::distance(s_begin, s_end); |
||
459 | if (length <= 64) |
||
460 | return hash_short(s_begin, length, seed); |
||
461 | |||
462 | const char *s_aligned_end = s_begin + (length & ~63); |
||
463 | hash_state state = state.create(s_begin, seed); |
||
464 | s_begin += 64; |
||
465 | while (s_begin != s_aligned_end) { |
||
466 | state.mix(s_begin); |
||
467 | s_begin += 64; |
||
468 | } |
||
469 | if (length & 63) |
||
470 | state.mix(s_end - 64); |
||
471 | |||
472 | return state.finalize(length); |
||
473 | } |
||
474 | |||
475 | } // namespace detail |
||
476 | } // namespace hashing |
||
477 | |||
478 | |||
479 | /// Compute a hash_code for a sequence of values. |
||
480 | /// |
||
481 | /// This hashes a sequence of values. It produces the same hash_code as |
||
482 | /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences |
||
483 | /// and is significantly faster given pointers and types which can be hashed as |
||
484 | /// a sequence of bytes. |
||
485 | template <typename InputIteratorT> |
||
486 | hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) { |
||
487 | return ::llvm::hashing::detail::hash_combine_range_impl(first, last); |
||
488 | } |
||
489 | |||
490 | |||
491 | // Implementation details for hash_combine. |
||
492 | namespace hashing { |
||
493 | namespace detail { |
||
494 | |||
495 | /// Helper class to manage the recursive combining of hash_combine |
||
496 | /// arguments. |
||
497 | /// |
||
498 | /// This class exists to manage the state and various calls involved in the |
||
499 | /// recursive combining of arguments used in hash_combine. It is particularly |
||
500 | /// useful at minimizing the code in the recursive calls to ease the pain |
||
501 | /// caused by a lack of variadic functions. |
||
502 | struct hash_combine_recursive_helper { |
||
503 | char buffer[64] = {}; |
||
504 | hash_state state; |
||
505 | const uint64_t seed; |
||
506 | |||
507 | public: |
||
508 | /// Construct a recursive hash combining helper. |
||
509 | /// |
||
510 | /// This sets up the state for a recursive hash combine, including getting |
||
511 | /// the seed and buffer setup. |
||
512 | hash_combine_recursive_helper() |
||
513 | : seed(get_execution_seed()) {} |
||
514 | |||
515 | /// Combine one chunk of data into the current in-flight hash. |
||
516 | /// |
||
517 | /// This merges one chunk of data into the hash. First it tries to buffer |
||
518 | /// the data. If the buffer is full, it hashes the buffer into its |
||
519 | /// hash_state, empties it, and then merges the new chunk in. This also |
||
520 | /// handles cases where the data straddles the end of the buffer. |
||
521 | template <typename T> |
||
522 | char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) { |
||
523 | if (!store_and_advance(buffer_ptr, buffer_end, data)) { |
||
524 | // Check for skew which prevents the buffer from being packed, and do |
||
525 | // a partial store into the buffer to fill it. This is only a concern |
||
526 | // with the variadic combine because that formation can have varying |
||
527 | // argument types. |
||
528 | size_t partial_store_size = buffer_end - buffer_ptr; |
||
529 | memcpy(buffer_ptr, &data, partial_store_size); |
||
530 | |||
531 | // If the store fails, our buffer is full and ready to hash. We have to |
||
532 | // either initialize the hash state (on the first full buffer) or mix |
||
533 | // this buffer into the existing hash state. Length tracks the *hashed* |
||
534 | // length, not the buffered length. |
||
535 | if (length == 0) { |
||
536 | state = state.create(buffer, seed); |
||
537 | length = 64; |
||
538 | } else { |
||
539 | // Mix this chunk into the current state and bump length up by 64. |
||
540 | state.mix(buffer); |
||
541 | length += 64; |
||
542 | } |
||
543 | // Reset the buffer_ptr to the head of the buffer for the next chunk of |
||
544 | // data. |
||
545 | buffer_ptr = buffer; |
||
546 | |||
547 | // Try again to store into the buffer -- this cannot fail as we only |
||
548 | // store types smaller than the buffer. |
||
549 | if (!store_and_advance(buffer_ptr, buffer_end, data, |
||
550 | partial_store_size)) |
||
551 | llvm_unreachable("buffer smaller than stored type"); |
||
552 | } |
||
553 | return buffer_ptr; |
||
554 | } |
||
555 | |||
556 | /// Recursive, variadic combining method. |
||
557 | /// |
||
558 | /// This function recurses through each argument, combining that argument |
||
559 | /// into a single hash. |
||
560 | template <typename T, typename ...Ts> |
||
561 | hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, |
||
562 | const T &arg, const Ts &...args) { |
||
563 | buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg)); |
||
564 | |||
565 | // Recurse to the next argument. |
||
566 | return combine(length, buffer_ptr, buffer_end, args...); |
||
567 | } |
||
568 | |||
569 | /// Base case for recursive, variadic combining. |
||
570 | /// |
||
571 | /// The base case when combining arguments recursively is reached when all |
||
572 | /// arguments have been handled. It flushes the remaining buffer and |
||
573 | /// constructs a hash_code. |
||
574 | hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) { |
||
575 | // Check whether the entire set of values fit in the buffer. If so, we'll |
||
576 | // use the optimized short hashing routine and skip state entirely. |
||
577 | if (length == 0) |
||
578 | return hash_short(buffer, buffer_ptr - buffer, seed); |
||
579 | |||
580 | // Mix the final buffer, rotating it if we did a partial fill in order to |
||
581 | // simulate doing a mix of the last 64-bytes. That is how the algorithm |
||
582 | // works when we have a contiguous byte sequence, and we want to emulate |
||
583 | // that here. |
||
584 | std::rotate(buffer, buffer_ptr, buffer_end); |
||
585 | |||
586 | // Mix this chunk into the current state. |
||
587 | state.mix(buffer); |
||
588 | length += buffer_ptr - buffer; |
||
589 | |||
590 | return state.finalize(length); |
||
591 | } |
||
592 | }; |
||
593 | |||
594 | } // namespace detail |
||
595 | } // namespace hashing |
||
596 | |||
597 | /// Combine values into a single hash_code. |
||
598 | /// |
||
599 | /// This routine accepts a varying number of arguments of any type. It will |
||
600 | /// attempt to combine them into a single hash_code. For user-defined types it |
||
601 | /// attempts to call a \see hash_value overload (via ADL) for the type. For |
||
602 | /// integer and pointer types it directly combines their data into the |
||
603 | /// resulting hash_code. |
||
604 | /// |
||
605 | /// The result is suitable for returning from a user's hash_value |
||
606 | /// *implementation* for their user-defined type. Consumers of a type should |
||
607 | /// *not* call this routine, they should instead call 'hash_value'. |
||
608 | template <typename ...Ts> hash_code hash_combine(const Ts &...args) { |
||
609 | // Recursively hash each argument using a helper class. |
||
610 | ::llvm::hashing::detail::hash_combine_recursive_helper helper; |
||
611 | return helper.combine(0, helper.buffer, helper.buffer + 64, args...); |
||
612 | } |
||
613 | |||
614 | // Implementation details for implementations of hash_value overloads provided |
||
615 | // here. |
||
616 | namespace hashing { |
||
617 | namespace detail { |
||
618 | |||
619 | /// Helper to hash the value of a single integer. |
||
620 | /// |
||
621 | /// Overloads for smaller integer types are not provided to ensure consistent |
||
622 | /// behavior in the presence of integral promotions. Essentially, |
||
623 | /// "hash_value('4')" and "hash_value('0' + 4)" should be the same. |
||
624 | inline hash_code hash_integer_value(uint64_t value) { |
||
625 | // Similar to hash_4to8_bytes but using a seed instead of length. |
||
626 | const uint64_t seed = get_execution_seed(); |
||
627 | const char *s = reinterpret_cast<const char *>(&value); |
||
628 | const uint64_t a = fetch32(s); |
||
629 | return hash_16_bytes(seed + (a << 3), fetch32(s + 4)); |
||
630 | } |
||
631 | |||
632 | } // namespace detail |
||
633 | } // namespace hashing |
||
634 | |||
635 | // Declared and documented above, but defined here so that any of the hashing |
||
636 | // infrastructure is available. |
||
637 | template <typename T> |
||
638 | std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) { |
||
639 | return ::llvm::hashing::detail::hash_integer_value( |
||
640 | static_cast<uint64_t>(value)); |
||
641 | } |
||
642 | |||
643 | // Declared and documented above, but defined here so that any of the hashing |
||
644 | // infrastructure is available. |
||
645 | template <typename T> hash_code hash_value(const T *ptr) { |
||
646 | return ::llvm::hashing::detail::hash_integer_value( |
||
647 | reinterpret_cast<uintptr_t>(ptr)); |
||
648 | } |
||
649 | |||
650 | // Declared and documented above, but defined here so that any of the hashing |
||
651 | // infrastructure is available. |
||
652 | template <typename T, typename U> |
||
653 | hash_code hash_value(const std::pair<T, U> &arg) { |
||
654 | return hash_combine(arg.first, arg.second); |
||
655 | } |
||
656 | |||
657 | template <typename... Ts> hash_code hash_value(const std::tuple<Ts...> &arg) { |
||
658 | return std::apply([](const auto &...xs) { return hash_combine(xs...); }, arg); |
||
659 | } |
||
660 | |||
661 | // Declared and documented above, but defined here so that any of the hashing |
||
662 | // infrastructure is available. |
||
663 | template <typename T> |
||
664 | hash_code hash_value(const std::basic_string<T> &arg) { |
||
665 | return hash_combine_range(arg.begin(), arg.end()); |
||
666 | } |
||
667 | |||
668 | template <typename T> hash_code hash_value(const std::optional<T> &arg) { |
||
669 | return arg ? hash_combine(true, *arg) : hash_value(false); |
||
670 | } |
||
671 | |||
672 | template <> struct DenseMapInfo<hash_code, void> { |
||
673 | static inline hash_code getEmptyKey() { return hash_code(-1); } |
||
674 | static inline hash_code getTombstoneKey() { return hash_code(-2); } |
||
675 | static unsigned getHashValue(hash_code val) { return val; } |
||
676 | static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; } |
||
677 | }; |
||
678 | |||
679 | } // namespace llvm |
||
680 | |||
681 | #endif |