Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- GenericCycleImpl.h -------------------------------------*- C++ -*---===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// This template implementation resides in a separate file so that it |
||
11 | /// does not get injected into every .cpp file that includes the |
||
12 | /// generic header. |
||
13 | /// |
||
14 | /// DO NOT INCLUDE THIS FILE WHEN MERELY USING CYCLEINFO. |
||
15 | /// |
||
16 | /// This file should only be included by files that implement a |
||
17 | /// specialization of the relevant templates. Currently these are: |
||
18 | /// - CycleAnalysis.cpp |
||
19 | /// - MachineCycleAnalysis.cpp |
||
20 | /// |
||
21 | //===----------------------------------------------------------------------===// |
||
22 | |||
23 | #ifndef LLVM_ADT_GENERICCYCLEIMPL_H |
||
24 | #define LLVM_ADT_GENERICCYCLEIMPL_H |
||
25 | |||
26 | #include "llvm/ADT/DenseSet.h" |
||
27 | #include "llvm/ADT/DepthFirstIterator.h" |
||
28 | #include "llvm/ADT/GenericCycleInfo.h" |
||
29 | |||
30 | #define DEBUG_TYPE "generic-cycle-impl" |
||
31 | |||
32 | namespace llvm { |
||
33 | |||
34 | template <typename ContextT> |
||
35 | bool GenericCycle<ContextT>::contains(const GenericCycle *C) const { |
||
36 | if (!C) |
||
37 | return false; |
||
38 | |||
39 | if (Depth > C->Depth) |
||
40 | return false; |
||
41 | while (Depth < C->Depth) |
||
42 | C = C->ParentCycle; |
||
43 | return this == C; |
||
44 | } |
||
45 | |||
46 | template <typename ContextT> |
||
47 | void GenericCycle<ContextT>::getExitBlocks( |
||
48 | SmallVectorImpl<BlockT *> &TmpStorage) const { |
||
49 | TmpStorage.clear(); |
||
50 | |||
51 | size_t NumExitBlocks = 0; |
||
52 | for (BlockT *Block : blocks()) { |
||
53 | llvm::append_range(TmpStorage, successors(Block)); |
||
54 | |||
55 | for (size_t Idx = NumExitBlocks, End = TmpStorage.size(); Idx < End; |
||
56 | ++Idx) { |
||
57 | BlockT *Succ = TmpStorage[Idx]; |
||
58 | if (!contains(Succ)) { |
||
59 | auto ExitEndIt = TmpStorage.begin() + NumExitBlocks; |
||
60 | if (std::find(TmpStorage.begin(), ExitEndIt, Succ) == ExitEndIt) |
||
61 | TmpStorage[NumExitBlocks++] = Succ; |
||
62 | } |
||
63 | } |
||
64 | |||
65 | TmpStorage.resize(NumExitBlocks); |
||
66 | } |
||
67 | } |
||
68 | |||
69 | template <typename ContextT> |
||
70 | auto GenericCycle<ContextT>::getCyclePreheader() const -> BlockT * { |
||
71 | BlockT *Predecessor = getCyclePredecessor(); |
||
72 | if (!Predecessor) |
||
73 | return nullptr; |
||
74 | |||
75 | assert(isReducible() && "Cycle Predecessor must be in a reducible cycle!"); |
||
76 | |||
77 | if (succ_size(Predecessor) != 1) |
||
78 | return nullptr; |
||
79 | |||
80 | // Make sure we are allowed to hoist instructions into the predecessor. |
||
81 | if (!Predecessor->isLegalToHoistInto()) |
||
82 | return nullptr; |
||
83 | |||
84 | return Predecessor; |
||
85 | } |
||
86 | |||
87 | template <typename ContextT> |
||
88 | auto GenericCycle<ContextT>::getCyclePredecessor() const -> BlockT * { |
||
89 | if (!isReducible()) |
||
90 | return nullptr; |
||
91 | |||
92 | BlockT *Out = nullptr; |
||
93 | |||
94 | // Loop over the predecessors of the header node... |
||
95 | BlockT *Header = getHeader(); |
||
96 | for (const auto Pred : predecessors(Header)) { |
||
97 | if (!contains(Pred)) { |
||
98 | if (Out && Out != Pred) |
||
99 | return nullptr; |
||
100 | Out = Pred; |
||
101 | } |
||
102 | } |
||
103 | |||
104 | return Out; |
||
105 | } |
||
106 | |||
107 | /// \brief Helper class for computing cycle information. |
||
108 | template <typename ContextT> class GenericCycleInfoCompute { |
||
109 | using BlockT = typename ContextT::BlockT; |
||
110 | using CycleInfoT = GenericCycleInfo<ContextT>; |
||
111 | using CycleT = typename CycleInfoT::CycleT; |
||
112 | |||
113 | CycleInfoT &Info; |
||
114 | |||
115 | struct DFSInfo { |
||
116 | unsigned Start = 0; // DFS start; positive if block is found |
||
117 | unsigned End = 0; // DFS end |
||
118 | |||
119 | DFSInfo() = default; |
||
120 | explicit DFSInfo(unsigned Start) : Start(Start) {} |
||
121 | |||
122 | /// Whether this node is an ancestor (or equal to) the node \p Other |
||
123 | /// in the DFS tree. |
||
124 | bool isAncestorOf(const DFSInfo &Other) const { |
||
125 | return Start <= Other.Start && Other.End <= End; |
||
126 | } |
||
127 | }; |
||
128 | |||
129 | DenseMap<BlockT *, DFSInfo> BlockDFSInfo; |
||
130 | SmallVector<BlockT *, 8> BlockPreorder; |
||
131 | |||
132 | GenericCycleInfoCompute(const GenericCycleInfoCompute &) = delete; |
||
133 | GenericCycleInfoCompute &operator=(const GenericCycleInfoCompute &) = delete; |
||
134 | |||
135 | public: |
||
136 | GenericCycleInfoCompute(CycleInfoT &Info) : Info(Info) {} |
||
137 | |||
138 | void run(BlockT *EntryBlock); |
||
139 | |||
140 | static void updateDepth(CycleT *SubTree); |
||
141 | |||
142 | private: |
||
143 | void dfs(BlockT *EntryBlock); |
||
144 | }; |
||
145 | |||
146 | template <typename ContextT> |
||
147 | auto GenericCycleInfo<ContextT>::getTopLevelParentCycle(BlockT *Block) |
||
148 | -> CycleT * { |
||
149 | auto Cycle = BlockMapTopLevel.find(Block); |
||
150 | if (Cycle != BlockMapTopLevel.end()) |
||
151 | return Cycle->second; |
||
152 | |||
153 | auto MapIt = BlockMap.find(Block); |
||
154 | if (MapIt == BlockMap.end()) |
||
155 | return nullptr; |
||
156 | |||
157 | auto *C = MapIt->second; |
||
158 | while (C->ParentCycle) |
||
159 | C = C->ParentCycle; |
||
160 | BlockMapTopLevel.try_emplace(Block, C); |
||
161 | return C; |
||
162 | } |
||
163 | |||
164 | template <typename ContextT> |
||
165 | void GenericCycleInfo<ContextT>::moveTopLevelCycleToNewParent(CycleT *NewParent, |
||
166 | CycleT *Child) { |
||
167 | assert((!Child->ParentCycle && !NewParent->ParentCycle) && |
||
168 | "NewParent and Child must be both top level cycle!\n"); |
||
169 | auto &CurrentContainer = |
||
170 | Child->ParentCycle ? Child->ParentCycle->Children : TopLevelCycles; |
||
171 | auto Pos = llvm::find_if(CurrentContainer, [=](const auto &Ptr) -> bool { |
||
172 | return Child == Ptr.get(); |
||
173 | }); |
||
174 | assert(Pos != CurrentContainer.end()); |
||
175 | NewParent->Children.push_back(std::move(*Pos)); |
||
176 | *Pos = std::move(CurrentContainer.back()); |
||
177 | CurrentContainer.pop_back(); |
||
178 | Child->ParentCycle = NewParent; |
||
179 | |||
180 | NewParent->Blocks.insert(NewParent->Blocks.end(), Child->block_begin(), |
||
181 | Child->block_end()); |
||
182 | |||
183 | for (auto &It : BlockMapTopLevel) |
||
184 | if (It.second == Child) |
||
185 | It.second = NewParent; |
||
186 | } |
||
187 | |||
188 | /// \brief Main function of the cycle info computations. |
||
189 | template <typename ContextT> |
||
190 | void GenericCycleInfoCompute<ContextT>::run(BlockT *EntryBlock) { |
||
191 | LLVM_DEBUG(errs() << "Entry block: " << Info.Context.print(EntryBlock) |
||
192 | << "\n"); |
||
193 | dfs(EntryBlock); |
||
194 | |||
195 | SmallVector<BlockT *, 8> Worklist; |
||
196 | |||
197 | for (BlockT *HeaderCandidate : llvm::reverse(BlockPreorder)) { |
||
198 | const DFSInfo CandidateInfo = BlockDFSInfo.lookup(HeaderCandidate); |
||
199 | |||
200 | for (BlockT *Pred : predecessors(HeaderCandidate)) { |
||
201 | const DFSInfo PredDFSInfo = BlockDFSInfo.lookup(Pred); |
||
202 | if (CandidateInfo.isAncestorOf(PredDFSInfo)) |
||
203 | Worklist.push_back(Pred); |
||
204 | } |
||
205 | if (Worklist.empty()) { |
||
206 | continue; |
||
207 | } |
||
208 | |||
209 | // Found a cycle with the candidate as its header. |
||
210 | LLVM_DEBUG(errs() << "Found cycle for header: " |
||
211 | << Info.Context.print(HeaderCandidate) << "\n"); |
||
212 | std::unique_ptr<CycleT> NewCycle = std::make_unique<CycleT>(); |
||
213 | NewCycle->appendEntry(HeaderCandidate); |
||
214 | NewCycle->appendBlock(HeaderCandidate); |
||
215 | Info.BlockMap.try_emplace(HeaderCandidate, NewCycle.get()); |
||
216 | |||
217 | // Helper function to process (non-back-edge) predecessors of a discovered |
||
218 | // block and either add them to the worklist or recognize that the given |
||
219 | // block is an additional cycle entry. |
||
220 | auto ProcessPredecessors = [&](BlockT *Block) { |
||
221 | LLVM_DEBUG(errs() << " block " << Info.Context.print(Block) << ": "); |
||
222 | |||
223 | bool IsEntry = false; |
||
224 | for (BlockT *Pred : predecessors(Block)) { |
||
225 | const DFSInfo PredDFSInfo = BlockDFSInfo.lookup(Pred); |
||
226 | if (CandidateInfo.isAncestorOf(PredDFSInfo)) { |
||
227 | Worklist.push_back(Pred); |
||
228 | } else { |
||
229 | IsEntry = true; |
||
230 | } |
||
231 | } |
||
232 | if (IsEntry) { |
||
233 | assert(!NewCycle->isEntry(Block)); |
||
234 | LLVM_DEBUG(errs() << "append as entry\n"); |
||
235 | NewCycle->appendEntry(Block); |
||
236 | } else { |
||
237 | LLVM_DEBUG(errs() << "append as child\n"); |
||
238 | } |
||
239 | }; |
||
240 | |||
241 | do { |
||
242 | BlockT *Block = Worklist.pop_back_val(); |
||
243 | if (Block == HeaderCandidate) |
||
244 | continue; |
||
245 | |||
246 | // If the block has already been discovered by some cycle |
||
247 | // (possibly by ourself), then the outermost cycle containing it |
||
248 | // should become our child. |
||
249 | if (auto *BlockParent = Info.getTopLevelParentCycle(Block)) { |
||
250 | LLVM_DEBUG(errs() << " block " << Info.Context.print(Block) << ": "); |
||
251 | |||
252 | if (BlockParent != NewCycle.get()) { |
||
253 | LLVM_DEBUG(errs() |
||
254 | << "discovered child cycle " |
||
255 | << Info.Context.print(BlockParent->getHeader()) << "\n"); |
||
256 | // Make BlockParent the child of NewCycle. |
||
257 | Info.moveTopLevelCycleToNewParent(NewCycle.get(), BlockParent); |
||
258 | |||
259 | for (auto *ChildEntry : BlockParent->entries()) |
||
260 | ProcessPredecessors(ChildEntry); |
||
261 | } else { |
||
262 | LLVM_DEBUG(errs() |
||
263 | << "known child cycle " |
||
264 | << Info.Context.print(BlockParent->getHeader()) << "\n"); |
||
265 | } |
||
266 | } else { |
||
267 | Info.BlockMap.try_emplace(Block, NewCycle.get()); |
||
268 | assert(!is_contained(NewCycle->Blocks, Block)); |
||
269 | NewCycle->Blocks.push_back(Block); |
||
270 | ProcessPredecessors(Block); |
||
271 | Info.BlockMapTopLevel.try_emplace(Block, NewCycle.get()); |
||
272 | } |
||
273 | } while (!Worklist.empty()); |
||
274 | |||
275 | Info.TopLevelCycles.push_back(std::move(NewCycle)); |
||
276 | } |
||
277 | |||
278 | // Fix top-level cycle links and compute cycle depths. |
||
279 | for (auto *TLC : Info.toplevel_cycles()) { |
||
280 | LLVM_DEBUG(errs() << "top-level cycle: " |
||
281 | << Info.Context.print(TLC->getHeader()) << "\n"); |
||
282 | |||
283 | TLC->ParentCycle = nullptr; |
||
284 | updateDepth(TLC); |
||
285 | } |
||
286 | } |
||
287 | |||
288 | /// \brief Recompute depth values of \p SubTree and all descendants. |
||
289 | template <typename ContextT> |
||
290 | void GenericCycleInfoCompute<ContextT>::updateDepth(CycleT *SubTree) { |
||
291 | for (CycleT *Cycle : depth_first(SubTree)) |
||
292 | Cycle->Depth = Cycle->ParentCycle ? Cycle->ParentCycle->Depth + 1 : 1; |
||
293 | } |
||
294 | |||
295 | /// \brief Compute a DFS of basic blocks starting at the function entry. |
||
296 | /// |
||
297 | /// Fills BlockDFSInfo with start/end counters and BlockPreorder. |
||
298 | template <typename ContextT> |
||
299 | void GenericCycleInfoCompute<ContextT>::dfs(BlockT *EntryBlock) { |
||
300 | SmallVector<unsigned, 8> DFSTreeStack; |
||
301 | SmallVector<BlockT *, 8> TraverseStack; |
||
302 | unsigned Counter = 0; |
||
303 | TraverseStack.emplace_back(EntryBlock); |
||
304 | |||
305 | do { |
||
306 | BlockT *Block = TraverseStack.back(); |
||
307 | LLVM_DEBUG(errs() << "DFS visiting block: " << Info.Context.print(Block) |
||
308 | << "\n"); |
||
309 | if (!BlockDFSInfo.count(Block)) { |
||
310 | // We're visiting the block for the first time. Open its DFSInfo, add |
||
311 | // successors to the traversal stack, and remember the traversal stack |
||
312 | // depth at which the block was opened, so that we can correctly record |
||
313 | // its end time. |
||
314 | LLVM_DEBUG(errs() << " first encountered at depth " |
||
315 | << TraverseStack.size() << "\n"); |
||
316 | |||
317 | DFSTreeStack.emplace_back(TraverseStack.size()); |
||
318 | llvm::append_range(TraverseStack, successors(Block)); |
||
319 | |||
320 | bool Added = BlockDFSInfo.try_emplace(Block, ++Counter).second; |
||
321 | (void)Added; |
||
322 | assert(Added); |
||
323 | BlockPreorder.push_back(Block); |
||
324 | LLVM_DEBUG(errs() << " preorder number: " << Counter << "\n"); |
||
325 | } else { |
||
326 | assert(!DFSTreeStack.empty()); |
||
327 | if (DFSTreeStack.back() == TraverseStack.size()) { |
||
328 | LLVM_DEBUG(errs() << " ended at " << Counter << "\n"); |
||
329 | BlockDFSInfo.find(Block)->second.End = Counter; |
||
330 | DFSTreeStack.pop_back(); |
||
331 | } else { |
||
332 | LLVM_DEBUG(errs() << " already done\n"); |
||
333 | } |
||
334 | TraverseStack.pop_back(); |
||
335 | } |
||
336 | } while (!TraverseStack.empty()); |
||
337 | assert(DFSTreeStack.empty()); |
||
338 | |||
339 | LLVM_DEBUG( |
||
340 | errs() << "Preorder:\n"; |
||
341 | for (int i = 0, e = BlockPreorder.size(); i != e; ++i) { |
||
342 | errs() << " " << Info.Context.print(BlockPreorder[i]) << ": " << i << "\n"; |
||
343 | } |
||
344 | ); |
||
345 | } |
||
346 | |||
347 | /// \brief Reset the object to its initial state. |
||
348 | template <typename ContextT> void GenericCycleInfo<ContextT>::clear() { |
||
349 | TopLevelCycles.clear(); |
||
350 | BlockMap.clear(); |
||
351 | BlockMapTopLevel.clear(); |
||
352 | } |
||
353 | |||
354 | /// \brief Compute the cycle info for a function. |
||
355 | template <typename ContextT> |
||
356 | void GenericCycleInfo<ContextT>::compute(FunctionT &F) { |
||
357 | GenericCycleInfoCompute<ContextT> Compute(*this); |
||
358 | Context.setFunction(F); |
||
359 | |||
360 | LLVM_DEBUG(errs() << "Computing cycles for function: " << F.getName() |
||
361 | << "\n"); |
||
362 | Compute.run(ContextT::getEntryBlock(F)); |
||
363 | |||
364 | assert(validateTree()); |
||
365 | } |
||
366 | |||
367 | /// \brief Find the innermost cycle containing a given block. |
||
368 | /// |
||
369 | /// \returns the innermost cycle containing \p Block or nullptr if |
||
370 | /// it is not contained in any cycle. |
||
371 | template <typename ContextT> |
||
372 | auto GenericCycleInfo<ContextT>::getCycle(const BlockT *Block) const |
||
373 | -> CycleT * { |
||
374 | auto MapIt = BlockMap.find(Block); |
||
375 | if (MapIt != BlockMap.end()) |
||
376 | return MapIt->second; |
||
377 | return nullptr; |
||
378 | } |
||
379 | |||
380 | /// \brief get the depth for the cycle which containing a given block. |
||
381 | /// |
||
382 | /// \returns the depth for the innermost cycle containing \p Block or 0 if it is |
||
383 | /// not contained in any cycle. |
||
384 | template <typename ContextT> |
||
385 | unsigned GenericCycleInfo<ContextT>::getCycleDepth(const BlockT *Block) const { |
||
386 | CycleT *Cycle = getCycle(Block); |
||
387 | if (!Cycle) |
||
388 | return 0; |
||
389 | return Cycle->getDepth(); |
||
390 | } |
||
391 | |||
392 | #ifndef NDEBUG |
||
393 | /// \brief Validate the internal consistency of the cycle tree. |
||
394 | /// |
||
395 | /// Note that this does \em not check that cycles are really cycles in the CFG, |
||
396 | /// or that the right set of cycles in the CFG were found. |
||
397 | template <typename ContextT> |
||
398 | bool GenericCycleInfo<ContextT>::validateTree() const { |
||
399 | DenseSet<BlockT *> Blocks; |
||
400 | DenseSet<BlockT *> Entries; |
||
401 | |||
402 | auto reportError = [](const char *File, int Line, const char *Cond) { |
||
403 | errs() << File << ':' << Line |
||
404 | << ": GenericCycleInfo::validateTree: " << Cond << '\n'; |
||
405 | }; |
||
406 | #define check(cond) \ |
||
407 | do { \ |
||
408 | if (!(cond)) { \ |
||
409 | reportError(__FILE__, __LINE__, #cond); \ |
||
410 | return false; \ |
||
411 | } \ |
||
412 | } while (false) |
||
413 | |||
414 | for (const auto *TLC : toplevel_cycles()) { |
||
415 | for (const CycleT *Cycle : depth_first(TLC)) { |
||
416 | if (Cycle->ParentCycle) |
||
417 | check(is_contained(Cycle->ParentCycle->children(), Cycle)); |
||
418 | |||
419 | for (BlockT *Block : Cycle->Blocks) { |
||
420 | auto MapIt = BlockMap.find(Block); |
||
421 | check(MapIt != BlockMap.end()); |
||
422 | check(Cycle->contains(MapIt->second)); |
||
423 | check(Blocks.insert(Block).second); // duplicates in block list? |
||
424 | } |
||
425 | Blocks.clear(); |
||
426 | |||
427 | check(!Cycle->Entries.empty()); |
||
428 | for (BlockT *Entry : Cycle->Entries) { |
||
429 | check(Entries.insert(Entry).second); // duplicate entry? |
||
430 | check(is_contained(Cycle->Blocks, Entry)); |
||
431 | } |
||
432 | Entries.clear(); |
||
433 | |||
434 | unsigned ChildDepth = 0; |
||
435 | for (const CycleT *Child : Cycle->children()) { |
||
436 | check(Child->Depth > Cycle->Depth); |
||
437 | if (!ChildDepth) { |
||
438 | ChildDepth = Child->Depth; |
||
439 | } else { |
||
440 | check(ChildDepth == Child->Depth); |
||
441 | } |
||
442 | } |
||
443 | } |
||
444 | } |
||
445 | |||
446 | for (const auto &Entry : BlockMap) { |
||
447 | BlockT *Block = Entry.first; |
||
448 | for (const CycleT *Cycle = Entry.second; Cycle; |
||
449 | Cycle = Cycle->ParentCycle) { |
||
450 | check(is_contained(Cycle->Blocks, Block)); |
||
451 | } |
||
452 | } |
||
453 | |||
454 | #undef check |
||
455 | |||
456 | return true; |
||
457 | } |
||
458 | #endif |
||
459 | |||
460 | /// \brief Print the cycle info. |
||
461 | template <typename ContextT> |
||
462 | void GenericCycleInfo<ContextT>::print(raw_ostream &Out) const { |
||
463 | for (const auto *TLC : toplevel_cycles()) { |
||
464 | for (const CycleT *Cycle : depth_first(TLC)) { |
||
465 | for (unsigned I = 0; I < Cycle->Depth; ++I) |
||
466 | Out << " "; |
||
467 | |||
468 | Out << Cycle->print(Context) << '\n'; |
||
469 | } |
||
470 | } |
||
471 | } |
||
472 | |||
473 | } // namespace llvm |
||
474 | |||
475 | #undef DEBUG_TYPE |
||
476 | |||
477 | #endif // LLVM_ADT_GENERICCYCLEIMPL_H |