Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines the DenseMap class.
11
///
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ADT_DENSEMAP_H
15
#define LLVM_ADT_DENSEMAP_H
16
 
17
#include "llvm/ADT/DenseMapInfo.h"
18
#include "llvm/ADT/EpochTracker.h"
19
#include "llvm/Support/AlignOf.h"
20
#include "llvm/Support/Compiler.h"
21
#include "llvm/Support/MathExtras.h"
22
#include "llvm/Support/MemAlloc.h"
23
#include "llvm/Support/ReverseIteration.h"
24
#include "llvm/Support/type_traits.h"
25
#include <algorithm>
26
#include <cassert>
27
#include <cstddef>
28
#include <cstring>
29
#include <initializer_list>
30
#include <iterator>
31
#include <new>
32
#include <type_traits>
33
#include <utility>
34
 
35
namespace llvm {
36
 
37
namespace detail {
38
 
39
// We extend a pair to allow users to override the bucket type with their own
40
// implementation without requiring two members.
41
template <typename KeyT, typename ValueT>
42
struct DenseMapPair : public std::pair<KeyT, ValueT> {
43
  using std::pair<KeyT, ValueT>::pair;
44
 
45
  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
46
  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
47
  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
48
  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
49
};
50
 
51
} // end namespace detail
52
 
53
template <typename KeyT, typename ValueT,
54
          typename KeyInfoT = DenseMapInfo<KeyT>,
55
          typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
56
          bool IsConst = false>
57
class DenseMapIterator;
58
 
59
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
60
          typename BucketT>
61
class DenseMapBase : public DebugEpochBase {
62
  template <typename T>
63
  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
64
 
65
public:
66
  using size_type = unsigned;
67
  using key_type = KeyT;
68
  using mapped_type = ValueT;
69
  using value_type = BucketT;
70
 
71
  using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
72
  using const_iterator =
73
      DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
74
 
75
  inline iterator begin() {
76
    // When the map is empty, avoid the overhead of advancing/retreating past
77
    // empty buckets.
78
    if (empty())
79
      return end();
80
    if (shouldReverseIterate<KeyT>())
81
      return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
82
    return makeIterator(getBuckets(), getBucketsEnd(), *this);
83
  }
84
  inline iterator end() {
85
    return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
86
  }
87
  inline const_iterator begin() const {
88
    if (empty())
89
      return end();
90
    if (shouldReverseIterate<KeyT>())
91
      return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
92
    return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
93
  }
94
  inline const_iterator end() const {
95
    return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
96
  }
97
 
98
  [[nodiscard]] bool empty() const { return getNumEntries() == 0; }
99
  unsigned size() const { return getNumEntries(); }
100
 
101
  /// Grow the densemap so that it can contain at least \p NumEntries items
102
  /// before resizing again.
103
  void reserve(size_type NumEntries) {
104
    auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
105
    incrementEpoch();
106
    if (NumBuckets > getNumBuckets())
107
      grow(NumBuckets);
108
  }
109
 
110
  void clear() {
111
    incrementEpoch();
112
    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
113
 
114
    // If the capacity of the array is huge, and the # elements used is small,
115
    // shrink the array.
116
    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
117
      shrink_and_clear();
118
      return;
119
    }
120
 
121
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
122
    if (std::is_trivially_destructible<ValueT>::value) {
123
      // Use a simpler loop when values don't need destruction.
124
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
125
        P->getFirst() = EmptyKey;
126
    } else {
127
      unsigned NumEntries = getNumEntries();
128
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
129
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
130
          if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
131
            P->getSecond().~ValueT();
132
            --NumEntries;
133
          }
134
          P->getFirst() = EmptyKey;
135
        }
136
      }
137
      assert(NumEntries == 0 && "Node count imbalance!");
138
      (void)NumEntries;
139
    }
140
    setNumEntries(0);
141
    setNumTombstones(0);
142
  }
143
 
144
  /// Return 1 if the specified key is in the map, 0 otherwise.
145
  size_type count(const_arg_type_t<KeyT> Val) const {
146
    const BucketT *TheBucket;
147
    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
148
  }
149
 
150
  iterator find(const_arg_type_t<KeyT> Val) {
151
    BucketT *TheBucket;
152
    if (LookupBucketFor(Val, TheBucket))
153
      return makeIterator(TheBucket,
154
                          shouldReverseIterate<KeyT>() ? getBuckets()
155
                                                       : getBucketsEnd(),
156
                          *this, true);
157
    return end();
158
  }
159
  const_iterator find(const_arg_type_t<KeyT> Val) const {
160
    const BucketT *TheBucket;
161
    if (LookupBucketFor(Val, TheBucket))
162
      return makeConstIterator(TheBucket,
163
                               shouldReverseIterate<KeyT>() ? getBuckets()
164
                                                            : getBucketsEnd(),
165
                               *this, true);
166
    return end();
167
  }
168
 
169
  /// Alternate version of find() which allows a different, and possibly
170
  /// less expensive, key type.
171
  /// The DenseMapInfo is responsible for supplying methods
172
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
173
  /// type used.
174
  template<class LookupKeyT>
175
  iterator find_as(const LookupKeyT &Val) {
176
    BucketT *TheBucket;
177
    if (LookupBucketFor(Val, TheBucket))
178
      return makeIterator(TheBucket,
179
                          shouldReverseIterate<KeyT>() ? getBuckets()
180
                                                       : getBucketsEnd(),
181
                          *this, true);
182
    return end();
183
  }
184
  template<class LookupKeyT>
185
  const_iterator find_as(const LookupKeyT &Val) const {
186
    const BucketT *TheBucket;
187
    if (LookupBucketFor(Val, TheBucket))
188
      return makeConstIterator(TheBucket,
189
                               shouldReverseIterate<KeyT>() ? getBuckets()
190
                                                            : getBucketsEnd(),
191
                               *this, true);
192
    return end();
193
  }
194
 
195
  /// lookup - Return the entry for the specified key, or a default
196
  /// constructed value if no such entry exists.
197
  ValueT lookup(const_arg_type_t<KeyT> Val) const {
198
    const BucketT *TheBucket;
199
    if (LookupBucketFor(Val, TheBucket))
200
      return TheBucket->getSecond();
201
    return ValueT();
202
  }
203
 
204
  // Inserts key,value pair into the map if the key isn't already in the map.
205
  // If the key is already in the map, it returns false and doesn't update the
206
  // value.
207
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
208
    return try_emplace(KV.first, KV.second);
209
  }
210
 
211
  // Inserts key,value pair into the map if the key isn't already in the map.
212
  // If the key is already in the map, it returns false and doesn't update the
213
  // value.
214
  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
215
    return try_emplace(std::move(KV.first), std::move(KV.second));
216
  }
217
 
218
  // Inserts key,value pair into the map if the key isn't already in the map.
219
  // The value is constructed in-place if the key is not in the map, otherwise
220
  // it is not moved.
221
  template <typename... Ts>
222
  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
223
    BucketT *TheBucket;
224
    if (LookupBucketFor(Key, TheBucket))
225
      return std::make_pair(makeIterator(TheBucket,
226
                                         shouldReverseIterate<KeyT>()
227
                                             ? getBuckets()
228
                                             : getBucketsEnd(),
229
                                         *this, true),
230
                            false); // Already in map.
231
 
232
    // Otherwise, insert the new element.
233
    TheBucket =
234
        InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
235
    return std::make_pair(makeIterator(TheBucket,
236
                                       shouldReverseIterate<KeyT>()
237
                                           ? getBuckets()
238
                                           : getBucketsEnd(),
239
                                       *this, true),
240
                          true);
241
  }
242
 
243
  // Inserts key,value pair into the map if the key isn't already in the map.
244
  // The value is constructed in-place if the key is not in the map, otherwise
245
  // it is not moved.
246
  template <typename... Ts>
247
  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
248
    BucketT *TheBucket;
249
    if (LookupBucketFor(Key, TheBucket))
250
      return std::make_pair(makeIterator(TheBucket,
251
                                         shouldReverseIterate<KeyT>()
252
                                             ? getBuckets()
253
                                             : getBucketsEnd(),
254
                                         *this, true),
255
                            false); // Already in map.
256
 
257
    // Otherwise, insert the new element.
258
    TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
259
    return std::make_pair(makeIterator(TheBucket,
260
                                       shouldReverseIterate<KeyT>()
261
                                           ? getBuckets()
262
                                           : getBucketsEnd(),
263
                                       *this, true),
264
                          true);
265
  }
266
 
267
  /// Alternate version of insert() which allows a different, and possibly
268
  /// less expensive, key type.
269
  /// The DenseMapInfo is responsible for supplying methods
270
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
271
  /// type used.
272
  template <typename LookupKeyT>
273
  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
274
                                      const LookupKeyT &Val) {
275
    BucketT *TheBucket;
276
    if (LookupBucketFor(Val, TheBucket))
277
      return std::make_pair(makeIterator(TheBucket,
278
                                         shouldReverseIterate<KeyT>()
279
                                             ? getBuckets()
280
                                             : getBucketsEnd(),
281
                                         *this, true),
282
                            false); // Already in map.
283
 
284
    // Otherwise, insert the new element.
285
    TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
286
                                           std::move(KV.second), Val);
287
    return std::make_pair(makeIterator(TheBucket,
288
                                       shouldReverseIterate<KeyT>()
289
                                           ? getBuckets()
290
                                           : getBucketsEnd(),
291
                                       *this, true),
292
                          true);
293
  }
294
 
295
  /// insert - Range insertion of pairs.
296
  template<typename InputIt>
297
  void insert(InputIt I, InputIt E) {
298
    for (; I != E; ++I)
299
      insert(*I);
300
  }
301
 
302
  bool erase(const KeyT &Val) {
303
    BucketT *TheBucket;
304
    if (!LookupBucketFor(Val, TheBucket))
305
      return false; // not in map.
306
 
307
    TheBucket->getSecond().~ValueT();
308
    TheBucket->getFirst() = getTombstoneKey();
309
    decrementNumEntries();
310
    incrementNumTombstones();
311
    return true;
312
  }
313
  void erase(iterator I) {
314
    BucketT *TheBucket = &*I;
315
    TheBucket->getSecond().~ValueT();
316
    TheBucket->getFirst() = getTombstoneKey();
317
    decrementNumEntries();
318
    incrementNumTombstones();
319
  }
320
 
321
  value_type& FindAndConstruct(const KeyT &Key) {
322
    BucketT *TheBucket;
323
    if (LookupBucketFor(Key, TheBucket))
324
      return *TheBucket;
325
 
326
    return *InsertIntoBucket(TheBucket, Key);
327
  }
328
 
329
  ValueT &operator[](const KeyT &Key) {
330
    return FindAndConstruct(Key).second;
331
  }
332
 
333
  value_type& FindAndConstruct(KeyT &&Key) {
334
    BucketT *TheBucket;
335
    if (LookupBucketFor(Key, TheBucket))
336
      return *TheBucket;
337
 
338
    return *InsertIntoBucket(TheBucket, std::move(Key));
339
  }
340
 
341
  ValueT &operator[](KeyT &&Key) {
342
    return FindAndConstruct(std::move(Key)).second;
343
  }
344
 
345
  /// isPointerIntoBucketsArray - Return true if the specified pointer points
346
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
347
  /// value in the DenseMap).
348
  bool isPointerIntoBucketsArray(const void *Ptr) const {
349
    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
350
  }
351
 
352
  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
353
  /// array.  In conjunction with the previous method, this can be used to
354
  /// determine whether an insertion caused the DenseMap to reallocate.
355
  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
356
 
357
protected:
358
  DenseMapBase() = default;
359
 
360
  void destroyAll() {
361
    if (getNumBuckets() == 0) // Nothing to do.
362
      return;
363
 
364
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
365
    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
366
      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
367
          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
368
        P->getSecond().~ValueT();
369
      P->getFirst().~KeyT();
370
    }
371
  }
372
 
373
  void initEmpty() {
374
    setNumEntries(0);
375
    setNumTombstones(0);
376
 
377
    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
378
           "# initial buckets must be a power of two!");
379
    const KeyT EmptyKey = getEmptyKey();
380
    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
381
      ::new (&B->getFirst()) KeyT(EmptyKey);
382
  }
383
 
384
  /// Returns the number of buckets to allocate to ensure that the DenseMap can
385
  /// accommodate \p NumEntries without need to grow().
386
  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
387
    // Ensure that "NumEntries * 4 < NumBuckets * 3"
388
    if (NumEntries == 0)
389
      return 0;
390
    // +1 is required because of the strict equality.
391
    // For example if NumEntries is 48, we need to return 401.
392
    return NextPowerOf2(NumEntries * 4 / 3 + 1);
393
  }
394
 
395
  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
396
    initEmpty();
397
 
398
    // Insert all the old elements.
399
    const KeyT EmptyKey = getEmptyKey();
400
    const KeyT TombstoneKey = getTombstoneKey();
401
    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
402
      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
403
          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
404
        // Insert the key/value into the new table.
405
        BucketT *DestBucket;
406
        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
407
        (void)FoundVal; // silence warning.
408
        assert(!FoundVal && "Key already in new map?");
409
        DestBucket->getFirst() = std::move(B->getFirst());
410
        ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
411
        incrementNumEntries();
412
 
413
        // Free the value.
414
        B->getSecond().~ValueT();
415
      }
416
      B->getFirst().~KeyT();
417
    }
418
  }
419
 
420
  template <typename OtherBaseT>
421
  void copyFrom(
422
      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
423
    assert(&other != this);
424
    assert(getNumBuckets() == other.getNumBuckets());
425
 
426
    setNumEntries(other.getNumEntries());
427
    setNumTombstones(other.getNumTombstones());
428
 
429
    if (std::is_trivially_copyable<KeyT>::value &&
430
        std::is_trivially_copyable<ValueT>::value)
431
      memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
432
             getNumBuckets() * sizeof(BucketT));
433
    else
434
      for (size_t i = 0; i < getNumBuckets(); ++i) {
435
        ::new (&getBuckets()[i].getFirst())
436
            KeyT(other.getBuckets()[i].getFirst());
437
        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
438
            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
439
          ::new (&getBuckets()[i].getSecond())
440
              ValueT(other.getBuckets()[i].getSecond());
441
      }
442
  }
443
 
444
  static unsigned getHashValue(const KeyT &Val) {
445
    return KeyInfoT::getHashValue(Val);
446
  }
447
 
448
  template<typename LookupKeyT>
449
  static unsigned getHashValue(const LookupKeyT &Val) {
450
    return KeyInfoT::getHashValue(Val);
451
  }
452
 
453
  static const KeyT getEmptyKey() {
454
    static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
455
                  "Must pass the derived type to this template!");
456
    return KeyInfoT::getEmptyKey();
457
  }
458
 
459
  static const KeyT getTombstoneKey() {
460
    return KeyInfoT::getTombstoneKey();
461
  }
462
 
463
private:
464
  iterator makeIterator(BucketT *P, BucketT *E,
465
                        DebugEpochBase &Epoch,
466
                        bool NoAdvance=false) {
467
    if (shouldReverseIterate<KeyT>()) {
468
      BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
469
      return iterator(B, E, Epoch, NoAdvance);
470
    }
471
    return iterator(P, E, Epoch, NoAdvance);
472
  }
473
 
474
  const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
475
                                   const DebugEpochBase &Epoch,
476
                                   const bool NoAdvance=false) const {
477
    if (shouldReverseIterate<KeyT>()) {
478
      const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
479
      return const_iterator(B, E, Epoch, NoAdvance);
480
    }
481
    return const_iterator(P, E, Epoch, NoAdvance);
482
  }
483
 
484
  unsigned getNumEntries() const {
485
    return static_cast<const DerivedT *>(this)->getNumEntries();
486
  }
487
 
488
  void setNumEntries(unsigned Num) {
489
    static_cast<DerivedT *>(this)->setNumEntries(Num);
490
  }
491
 
492
  void incrementNumEntries() {
493
    setNumEntries(getNumEntries() + 1);
494
  }
495
 
496
  void decrementNumEntries() {
497
    setNumEntries(getNumEntries() - 1);
498
  }
499
 
500
  unsigned getNumTombstones() const {
501
    return static_cast<const DerivedT *>(this)->getNumTombstones();
502
  }
503
 
504
  void setNumTombstones(unsigned Num) {
505
    static_cast<DerivedT *>(this)->setNumTombstones(Num);
506
  }
507
 
508
  void incrementNumTombstones() {
509
    setNumTombstones(getNumTombstones() + 1);
510
  }
511
 
512
  void decrementNumTombstones() {
513
    setNumTombstones(getNumTombstones() - 1);
514
  }
515
 
516
  const BucketT *getBuckets() const {
517
    return static_cast<const DerivedT *>(this)->getBuckets();
518
  }
519
 
520
  BucketT *getBuckets() {
521
    return static_cast<DerivedT *>(this)->getBuckets();
522
  }
523
 
524
  unsigned getNumBuckets() const {
525
    return static_cast<const DerivedT *>(this)->getNumBuckets();
526
  }
527
 
528
  BucketT *getBucketsEnd() {
529
    return getBuckets() + getNumBuckets();
530
  }
531
 
532
  const BucketT *getBucketsEnd() const {
533
    return getBuckets() + getNumBuckets();
534
  }
535
 
536
  void grow(unsigned AtLeast) {
537
    static_cast<DerivedT *>(this)->grow(AtLeast);
538
  }
539
 
540
  void shrink_and_clear() {
541
    static_cast<DerivedT *>(this)->shrink_and_clear();
542
  }
543
 
544
  template <typename KeyArg, typename... ValueArgs>
545
  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
546
                            ValueArgs &&... Values) {
547
    TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
548
 
549
    TheBucket->getFirst() = std::forward<KeyArg>(Key);
550
    ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
551
    return TheBucket;
552
  }
553
 
554
  template <typename LookupKeyT>
555
  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
556
                                      ValueT &&Value, LookupKeyT &Lookup) {
557
    TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
558
 
559
    TheBucket->getFirst() = std::move(Key);
560
    ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
561
    return TheBucket;
562
  }
563
 
564
  template <typename LookupKeyT>
565
  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
566
                                BucketT *TheBucket) {
567
    incrementEpoch();
568
 
569
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
570
    // the buckets are empty (meaning that many are filled with tombstones),
571
    // grow the table.
572
    //
573
    // The later case is tricky.  For example, if we had one empty bucket with
574
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
575
    // probe almost the entire table until it found the empty bucket.  If the
576
    // table completely filled with tombstones, no lookup would ever succeed,
577
    // causing infinite loops in lookup.
578
    unsigned NewNumEntries = getNumEntries() + 1;
579
    unsigned NumBuckets = getNumBuckets();
580
    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
581
      this->grow(NumBuckets * 2);
582
      LookupBucketFor(Lookup, TheBucket);
583
      NumBuckets = getNumBuckets();
584
    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
585
                             NumBuckets/8)) {
586
      this->grow(NumBuckets);
587
      LookupBucketFor(Lookup, TheBucket);
588
    }
589
    assert(TheBucket);
590
 
591
    // Only update the state after we've grown our bucket space appropriately
592
    // so that when growing buckets we have self-consistent entry count.
593
    incrementNumEntries();
594
 
595
    // If we are writing over a tombstone, remember this.
596
    const KeyT EmptyKey = getEmptyKey();
597
    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
598
      decrementNumTombstones();
599
 
600
    return TheBucket;
601
  }
602
 
603
  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
604
  /// FoundBucket.  If the bucket contains the key and a value, this returns
605
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
606
  /// returns false.
607
  template<typename LookupKeyT>
608
  bool LookupBucketFor(const LookupKeyT &Val,
609
                       const BucketT *&FoundBucket) const {
610
    const BucketT *BucketsPtr = getBuckets();
611
    const unsigned NumBuckets = getNumBuckets();
612
 
613
    if (NumBuckets == 0) {
614
      FoundBucket = nullptr;
615
      return false;
616
    }
617
 
618
    // FoundTombstone - Keep track of whether we find a tombstone while probing.
619
    const BucketT *FoundTombstone = nullptr;
620
    const KeyT EmptyKey = getEmptyKey();
621
    const KeyT TombstoneKey = getTombstoneKey();
622
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
623
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
624
           "Empty/Tombstone value shouldn't be inserted into map!");
625
 
626
    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
627
    unsigned ProbeAmt = 1;
628
    while (true) {
629
      const BucketT *ThisBucket = BucketsPtr + BucketNo;
630
      // Found Val's bucket?  If so, return it.
631
      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
632
        FoundBucket = ThisBucket;
633
        return true;
634
      }
635
 
636
      // If we found an empty bucket, the key doesn't exist in the set.
637
      // Insert it and return the default value.
638
      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
639
        // If we've already seen a tombstone while probing, fill it in instead
640
        // of the empty bucket we eventually probed to.
641
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
642
        return false;
643
      }
644
 
645
      // If this is a tombstone, remember it.  If Val ends up not in the map, we
646
      // prefer to return it than something that would require more probing.
647
      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
648
          !FoundTombstone)
649
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
650
 
651
      // Otherwise, it's a hash collision or a tombstone, continue quadratic
652
      // probing.
653
      BucketNo += ProbeAmt++;
654
      BucketNo &= (NumBuckets-1);
655
    }
656
  }
657
 
658
  template <typename LookupKeyT>
659
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
660
    const BucketT *ConstFoundBucket;
661
    bool Result = const_cast<const DenseMapBase *>(this)
662
      ->LookupBucketFor(Val, ConstFoundBucket);
663
    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
664
    return Result;
665
  }
666
 
667
public:
668
  /// Return the approximate size (in bytes) of the actual map.
669
  /// This is just the raw memory used by DenseMap.
670
  /// If entries are pointers to objects, the size of the referenced objects
671
  /// are not included.
672
  size_t getMemorySize() const {
673
    return getNumBuckets() * sizeof(BucketT);
674
  }
675
};
676
 
677
/// Equality comparison for DenseMap.
678
///
679
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
680
/// is also in RHS, and that no additional pairs are in RHS.
681
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
682
/// complexity is linear, worst case is O(N^2) (if every hash collides).
683
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
684
          typename BucketT>
685
bool operator==(
686
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
687
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
688
  if (LHS.size() != RHS.size())
689
    return false;
690
 
691
  for (auto &KV : LHS) {
692
    auto I = RHS.find(KV.first);
693
    if (I == RHS.end() || I->second != KV.second)
694
      return false;
695
  }
696
 
697
  return true;
698
}
699
 
700
/// Inequality comparison for DenseMap.
701
///
702
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
703
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
704
          typename BucketT>
705
bool operator!=(
706
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
707
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
708
  return !(LHS == RHS);
709
}
710
 
711
template <typename KeyT, typename ValueT,
712
          typename KeyInfoT = DenseMapInfo<KeyT>,
713
          typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
714
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
715
                                     KeyT, ValueT, KeyInfoT, BucketT> {
716
  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
717
 
718
  // Lift some types from the dependent base class into this class for
719
  // simplicity of referring to them.
720
  using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
721
 
722
  BucketT *Buckets;
723
  unsigned NumEntries;
724
  unsigned NumTombstones;
725
  unsigned NumBuckets;
726
 
727
public:
728
  /// Create a DenseMap with an optional \p InitialReserve that guarantee that
729
  /// this number of elements can be inserted in the map without grow()
730
  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
731
 
732
  DenseMap(const DenseMap &other) : BaseT() {
733
    init(0);
734
    copyFrom(other);
735
  }
736
 
737
  DenseMap(DenseMap &&other) : BaseT() {
738
    init(0);
739
    swap(other);
740
  }
741
 
742
  template<typename InputIt>
743
  DenseMap(const InputIt &I, const InputIt &E) {
744
    init(std::distance(I, E));
745
    this->insert(I, E);
746
  }
747
 
748
  DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
749
    init(Vals.size());
750
    this->insert(Vals.begin(), Vals.end());
751
  }
752
 
753
  ~DenseMap() {
754
    this->destroyAll();
755
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
756
  }
757
 
758
  void swap(DenseMap& RHS) {
759
    this->incrementEpoch();
760
    RHS.incrementEpoch();
761
    std::swap(Buckets, RHS.Buckets);
762
    std::swap(NumEntries, RHS.NumEntries);
763
    std::swap(NumTombstones, RHS.NumTombstones);
764
    std::swap(NumBuckets, RHS.NumBuckets);
765
  }
766
 
767
  DenseMap& operator=(const DenseMap& other) {
768
    if (&other != this)
769
      copyFrom(other);
770
    return *this;
771
  }
772
 
773
  DenseMap& operator=(DenseMap &&other) {
774
    this->destroyAll();
775
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
776
    init(0);
777
    swap(other);
778
    return *this;
779
  }
780
 
781
  void copyFrom(const DenseMap& other) {
782
    this->destroyAll();
783
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
784
    if (allocateBuckets(other.NumBuckets)) {
785
      this->BaseT::copyFrom(other);
786
    } else {
787
      NumEntries = 0;
788
      NumTombstones = 0;
789
    }
790
  }
791
 
792
  void init(unsigned InitNumEntries) {
793
    auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
794
    if (allocateBuckets(InitBuckets)) {
795
      this->BaseT::initEmpty();
796
    } else {
797
      NumEntries = 0;
798
      NumTombstones = 0;
799
    }
800
  }
801
 
802
  void grow(unsigned AtLeast) {
803
    unsigned OldNumBuckets = NumBuckets;
804
    BucketT *OldBuckets = Buckets;
805
 
806
    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
807
    assert(Buckets);
808
    if (!OldBuckets) {
809
      this->BaseT::initEmpty();
810
      return;
811
    }
812
 
813
    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
814
 
815
    // Free the old table.
816
    deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
817
                      alignof(BucketT));
818
  }
819
 
820
  void shrink_and_clear() {
821
    unsigned OldNumBuckets = NumBuckets;
822
    unsigned OldNumEntries = NumEntries;
823
    this->destroyAll();
824
 
825
    // Reduce the number of buckets.
826
    unsigned NewNumBuckets = 0;
827
    if (OldNumEntries)
828
      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
829
    if (NewNumBuckets == NumBuckets) {
830
      this->BaseT::initEmpty();
831
      return;
832
    }
833
 
834
    deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
835
                      alignof(BucketT));
836
    init(NewNumBuckets);
837
  }
838
 
839
private:
840
  unsigned getNumEntries() const {
841
    return NumEntries;
842
  }
843
 
844
  void setNumEntries(unsigned Num) {
845
    NumEntries = Num;
846
  }
847
 
848
  unsigned getNumTombstones() const {
849
    return NumTombstones;
850
  }
851
 
852
  void setNumTombstones(unsigned Num) {
853
    NumTombstones = Num;
854
  }
855
 
856
  BucketT *getBuckets() const {
857
    return Buckets;
858
  }
859
 
860
  unsigned getNumBuckets() const {
861
    return NumBuckets;
862
  }
863
 
864
  bool allocateBuckets(unsigned Num) {
865
    NumBuckets = Num;
866
    if (NumBuckets == 0) {
867
      Buckets = nullptr;
868
      return false;
869
    }
870
 
871
    Buckets = static_cast<BucketT *>(
872
        allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
873
    return true;
874
  }
875
};
876
 
877
template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
878
          typename KeyInfoT = DenseMapInfo<KeyT>,
879
          typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
880
class SmallDenseMap
881
    : public DenseMapBase<
882
          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
883
          ValueT, KeyInfoT, BucketT> {
884
  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
885
 
886
  // Lift some types from the dependent base class into this class for
887
  // simplicity of referring to them.
888
  using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
889
 
890
  static_assert(isPowerOf2_64(InlineBuckets),
891
                "InlineBuckets must be a power of 2.");
892
 
893
  unsigned Small : 1;
894
  unsigned NumEntries : 31;
895
  unsigned NumTombstones;
896
 
897
  struct LargeRep {
898
    BucketT *Buckets;
899
    unsigned NumBuckets;
900
  };
901
 
902
  /// A "union" of an inline bucket array and the struct representing
903
  /// a large bucket. This union will be discriminated by the 'Small' bit.
904
  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
905
 
906
public:
907
  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
908
    if (NumInitBuckets > InlineBuckets)
909
      NumInitBuckets = NextPowerOf2(NumInitBuckets - 1);
910
    init(NumInitBuckets);
911
  }
912
 
913
  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
914
    init(0);
915
    copyFrom(other);
916
  }
917
 
918
  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
919
    init(0);
920
    swap(other);
921
  }
922
 
923
  template<typename InputIt>
924
  SmallDenseMap(const InputIt &I, const InputIt &E) {
925
    init(NextPowerOf2(std::distance(I, E)));
926
    this->insert(I, E);
927
  }
928
 
929
  SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)
930
      : SmallDenseMap(Vals.begin(), Vals.end()) {}
931
 
932
  ~SmallDenseMap() {
933
    this->destroyAll();
934
    deallocateBuckets();
935
  }
936
 
937
  void swap(SmallDenseMap& RHS) {
938
    unsigned TmpNumEntries = RHS.NumEntries;
939
    RHS.NumEntries = NumEntries;
940
    NumEntries = TmpNumEntries;
941
    std::swap(NumTombstones, RHS.NumTombstones);
942
 
943
    const KeyT EmptyKey = this->getEmptyKey();
944
    const KeyT TombstoneKey = this->getTombstoneKey();
945
    if (Small && RHS.Small) {
946
      // If we're swapping inline bucket arrays, we have to cope with some of
947
      // the tricky bits of DenseMap's storage system: the buckets are not
948
      // fully initialized. Thus we swap every key, but we may have
949
      // a one-directional move of the value.
950
      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
951
        BucketT *LHSB = &getInlineBuckets()[i],
952
                *RHSB = &RHS.getInlineBuckets()[i];
953
        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
954
                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
955
        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
956
                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
957
        if (hasLHSValue && hasRHSValue) {
958
          // Swap together if we can...
959
          std::swap(*LHSB, *RHSB);
960
          continue;
961
        }
962
        // Swap separately and handle any asymmetry.
963
        std::swap(LHSB->getFirst(), RHSB->getFirst());
964
        if (hasLHSValue) {
965
          ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
966
          LHSB->getSecond().~ValueT();
967
        } else if (hasRHSValue) {
968
          ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
969
          RHSB->getSecond().~ValueT();
970
        }
971
      }
972
      return;
973
    }
974
    if (!Small && !RHS.Small) {
975
      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
976
      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
977
      return;
978
    }
979
 
980
    SmallDenseMap &SmallSide = Small ? *this : RHS;
981
    SmallDenseMap &LargeSide = Small ? RHS : *this;
982
 
983
    // First stash the large side's rep and move the small side across.
984
    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
985
    LargeSide.getLargeRep()->~LargeRep();
986
    LargeSide.Small = true;
987
    // This is similar to the standard move-from-old-buckets, but the bucket
988
    // count hasn't actually rotated in this case. So we have to carefully
989
    // move construct the keys and values into their new locations, but there
990
    // is no need to re-hash things.
991
    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
992
      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
993
              *OldB = &SmallSide.getInlineBuckets()[i];
994
      ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
995
      OldB->getFirst().~KeyT();
996
      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
997
          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
998
        ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
999
        OldB->getSecond().~ValueT();
1000
      }
1001
    }
1002
 
1003
    // The hard part of moving the small buckets across is done, just move
1004
    // the TmpRep into its new home.
1005
    SmallSide.Small = false;
1006
    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
1007
  }
1008
 
1009
  SmallDenseMap& operator=(const SmallDenseMap& other) {
1010
    if (&other != this)
1011
      copyFrom(other);
1012
    return *this;
1013
  }
1014
 
1015
  SmallDenseMap& operator=(SmallDenseMap &&other) {
1016
    this->destroyAll();
1017
    deallocateBuckets();
1018
    init(0);
1019
    swap(other);
1020
    return *this;
1021
  }
1022
 
1023
  void copyFrom(const SmallDenseMap& other) {
1024
    this->destroyAll();
1025
    deallocateBuckets();
1026
    Small = true;
1027
    if (other.getNumBuckets() > InlineBuckets) {
1028
      Small = false;
1029
      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
1030
    }
1031
    this->BaseT::copyFrom(other);
1032
  }
1033
 
1034
  void init(unsigned InitBuckets) {
1035
    Small = true;
1036
    if (InitBuckets > InlineBuckets) {
1037
      Small = false;
1038
      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
1039
    }
1040
    this->BaseT::initEmpty();
1041
  }
1042
 
1043
  void grow(unsigned AtLeast) {
1044
    if (AtLeast > InlineBuckets)
1045
      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
1046
 
1047
    if (Small) {
1048
      // First move the inline buckets into a temporary storage.
1049
      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
1050
      BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage);
1051
      BucketT *TmpEnd = TmpBegin;
1052
 
1053
      // Loop over the buckets, moving non-empty, non-tombstones into the
1054
      // temporary storage. Have the loop move the TmpEnd forward as it goes.
1055
      const KeyT EmptyKey = this->getEmptyKey();
1056
      const KeyT TombstoneKey = this->getTombstoneKey();
1057
      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
1058
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
1059
            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
1060
          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
1061
                 "Too many inline buckets!");
1062
          ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
1063
          ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
1064
          ++TmpEnd;
1065
          P->getSecond().~ValueT();
1066
        }
1067
        P->getFirst().~KeyT();
1068
      }
1069
 
1070
      // AtLeast == InlineBuckets can happen if there are many tombstones,
1071
      // and grow() is used to remove them. Usually we always switch to the
1072
      // large rep here.
1073
      if (AtLeast > InlineBuckets) {
1074
        Small = false;
1075
        new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1076
      }
1077
      this->moveFromOldBuckets(TmpBegin, TmpEnd);
1078
      return;
1079
    }
1080
 
1081
    LargeRep OldRep = std::move(*getLargeRep());
1082
    getLargeRep()->~LargeRep();
1083
    if (AtLeast <= InlineBuckets) {
1084
      Small = true;
1085
    } else {
1086
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1087
    }
1088
 
1089
    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
1090
 
1091
    // Free the old table.
1092
    deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
1093
                      alignof(BucketT));
1094
  }
1095
 
1096
  void shrink_and_clear() {
1097
    unsigned OldSize = this->size();
1098
    this->destroyAll();
1099
 
1100
    // Reduce the number of buckets.
1101
    unsigned NewNumBuckets = 0;
1102
    if (OldSize) {
1103
      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
1104
      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
1105
        NewNumBuckets = 64;
1106
    }
1107
    if ((Small && NewNumBuckets <= InlineBuckets) ||
1108
        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
1109
      this->BaseT::initEmpty();
1110
      return;
1111
    }
1112
 
1113
    deallocateBuckets();
1114
    init(NewNumBuckets);
1115
  }
1116
 
1117
private:
1118
  unsigned getNumEntries() const {
1119
    return NumEntries;
1120
  }
1121
 
1122
  void setNumEntries(unsigned Num) {
1123
    // NumEntries is hardcoded to be 31 bits wide.
1124
    assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1125
    NumEntries = Num;
1126
  }
1127
 
1128
  unsigned getNumTombstones() const {
1129
    return NumTombstones;
1130
  }
1131
 
1132
  void setNumTombstones(unsigned Num) {
1133
    NumTombstones = Num;
1134
  }
1135
 
1136
  const BucketT *getInlineBuckets() const {
1137
    assert(Small);
1138
    // Note that this cast does not violate aliasing rules as we assert that
1139
    // the memory's dynamic type is the small, inline bucket buffer, and the
1140
    // 'storage' is a POD containing a char buffer.
1141
    return reinterpret_cast<const BucketT *>(&storage);
1142
  }
1143
 
1144
  BucketT *getInlineBuckets() {
1145
    return const_cast<BucketT *>(
1146
      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1147
  }
1148
 
1149
  const LargeRep *getLargeRep() const {
1150
    assert(!Small);
1151
    // Note, same rule about aliasing as with getInlineBuckets.
1152
    return reinterpret_cast<const LargeRep *>(&storage);
1153
  }
1154
 
1155
  LargeRep *getLargeRep() {
1156
    return const_cast<LargeRep *>(
1157
      const_cast<const SmallDenseMap *>(this)->getLargeRep());
1158
  }
1159
 
1160
  const BucketT *getBuckets() const {
1161
    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1162
  }
1163
 
1164
  BucketT *getBuckets() {
1165
    return const_cast<BucketT *>(
1166
      const_cast<const SmallDenseMap *>(this)->getBuckets());
1167
  }
1168
 
1169
  unsigned getNumBuckets() const {
1170
    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1171
  }
1172
 
1173
  void deallocateBuckets() {
1174
    if (Small)
1175
      return;
1176
 
1177
    deallocate_buffer(getLargeRep()->Buckets,
1178
                      sizeof(BucketT) * getLargeRep()->NumBuckets,
1179
                      alignof(BucketT));
1180
    getLargeRep()->~LargeRep();
1181
  }
1182
 
1183
  LargeRep allocateBuckets(unsigned Num) {
1184
    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1185
    LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
1186
                        sizeof(BucketT) * Num, alignof(BucketT))),
1187
                    Num};
1188
    return Rep;
1189
  }
1190
};
1191
 
1192
template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1193
          bool IsConst>
1194
class DenseMapIterator : DebugEpochBase::HandleBase {
1195
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1196
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1197
 
1198
public:
1199
  using difference_type = ptrdiff_t;
1200
  using value_type = std::conditional_t<IsConst, const Bucket, Bucket>;
1201
  using pointer = value_type *;
1202
  using reference = value_type &;
1203
  using iterator_category = std::forward_iterator_tag;
1204
 
1205
private:
1206
  pointer Ptr = nullptr;
1207
  pointer End = nullptr;
1208
 
1209
public:
1210
  DenseMapIterator() = default;
1211
 
1212
  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1213
                   bool NoAdvance = false)
1214
      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1215
    assert(isHandleInSync() && "invalid construction!");
1216
 
1217
    if (NoAdvance) return;
1218
    if (shouldReverseIterate<KeyT>()) {
1219
      RetreatPastEmptyBuckets();
1220
      return;
1221
    }
1222
    AdvancePastEmptyBuckets();
1223
  }
1224
 
1225
  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1226
  // for const iterator destinations so it doesn't end up as a user defined copy
1227
  // constructor.
1228
  template <bool IsConstSrc,
1229
            typename = std::enable_if_t<!IsConstSrc && IsConst>>
1230
  DenseMapIterator(
1231
      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1232
      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1233
 
1234
  reference operator*() const {
1235
    assert(isHandleInSync() && "invalid iterator access!");
1236
    assert(Ptr != End && "dereferencing end() iterator");
1237
    if (shouldReverseIterate<KeyT>())
1238
      return Ptr[-1];
1239
    return *Ptr;
1240
  }
1241
  pointer operator->() const {
1242
    assert(isHandleInSync() && "invalid iterator access!");
1243
    assert(Ptr != End && "dereferencing end() iterator");
1244
    if (shouldReverseIterate<KeyT>())
1245
      return &(Ptr[-1]);
1246
    return Ptr;
1247
  }
1248
 
1249
  friend bool operator==(const DenseMapIterator &LHS,
1250
                         const DenseMapIterator &RHS) {
1251
    assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!");
1252
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1253
    assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&
1254
           "comparing incomparable iterators!");
1255
    return LHS.Ptr == RHS.Ptr;
1256
  }
1257
 
1258
  friend bool operator!=(const DenseMapIterator &LHS,
1259
                         const DenseMapIterator &RHS) {
1260
    return !(LHS == RHS);
1261
  }
1262
 
1263
  inline DenseMapIterator& operator++() {  // Preincrement
1264
    assert(isHandleInSync() && "invalid iterator access!");
1265
    assert(Ptr != End && "incrementing end() iterator");
1266
    if (shouldReverseIterate<KeyT>()) {
1267
      --Ptr;
1268
      RetreatPastEmptyBuckets();
1269
      return *this;
1270
    }
1271
    ++Ptr;
1272
    AdvancePastEmptyBuckets();
1273
    return *this;
1274
  }
1275
  DenseMapIterator operator++(int) {  // Postincrement
1276
    assert(isHandleInSync() && "invalid iterator access!");
1277
    DenseMapIterator tmp = *this; ++*this; return tmp;
1278
  }
1279
 
1280
private:
1281
  void AdvancePastEmptyBuckets() {
1282
    assert(Ptr <= End);
1283
    const KeyT Empty = KeyInfoT::getEmptyKey();
1284
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1285
 
1286
    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1287
                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1288
      ++Ptr;
1289
  }
1290
 
1291
  void RetreatPastEmptyBuckets() {
1292
    assert(Ptr >= End);
1293
    const KeyT Empty = KeyInfoT::getEmptyKey();
1294
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1295
 
1296
    while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
1297
                          KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
1298
      --Ptr;
1299
  }
1300
};
1301
 
1302
template <typename KeyT, typename ValueT, typename KeyInfoT>
1303
inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1304
  return X.getMemorySize();
1305
}
1306
 
1307
} // end namespace llvm
1308
 
1309
#endif // LLVM_ADT_DENSEMAP_H