Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/ADT/CoalescingBitVector.h - A coalescing bitvector --*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// |
||
| 9 | /// \file |
||
| 10 | /// A bitvector that uses an IntervalMap to coalesce adjacent elements |
||
| 11 | /// into intervals. |
||
| 12 | /// |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_ADT_COALESCINGBITVECTOR_H |
||
| 16 | #define LLVM_ADT_COALESCINGBITVECTOR_H |
||
| 17 | |||
| 18 | #include "llvm/ADT/IntervalMap.h" |
||
| 19 | #include "llvm/ADT/STLExtras.h" |
||
| 20 | #include "llvm/ADT/SmallVector.h" |
||
| 21 | #include "llvm/ADT/iterator_range.h" |
||
| 22 | #include "llvm/Support/Debug.h" |
||
| 23 | #include "llvm/Support/raw_ostream.h" |
||
| 24 | |||
| 25 | #include <initializer_list> |
||
| 26 | |||
| 27 | namespace llvm { |
||
| 28 | |||
| 29 | /// A bitvector that, under the hood, relies on an IntervalMap to coalesce |
||
| 30 | /// elements into intervals. Good for representing sets which predominantly |
||
| 31 | /// contain contiguous ranges. Bad for representing sets with lots of gaps |
||
| 32 | /// between elements. |
||
| 33 | /// |
||
| 34 | /// Compared to SparseBitVector, CoalescingBitVector offers more predictable |
||
| 35 | /// performance for non-sequential find() operations. |
||
| 36 | /// |
||
| 37 | /// \tparam IndexT - The type of the index into the bitvector. |
||
| 38 | template <typename IndexT> class CoalescingBitVector { |
||
| 39 | static_assert(std::is_unsigned<IndexT>::value, |
||
| 40 | "Index must be an unsigned integer."); |
||
| 41 | |||
| 42 | using ThisT = CoalescingBitVector<IndexT>; |
||
| 43 | |||
| 44 | /// An interval map for closed integer ranges. The mapped values are unused. |
||
| 45 | using MapT = IntervalMap<IndexT, char>; |
||
| 46 | |||
| 47 | using UnderlyingIterator = typename MapT::const_iterator; |
||
| 48 | |||
| 49 | using IntervalT = std::pair<IndexT, IndexT>; |
||
| 50 | |||
| 51 | public: |
||
| 52 | using Allocator = typename MapT::Allocator; |
||
| 53 | |||
| 54 | /// Construct by passing in a CoalescingBitVector<IndexT>::Allocator |
||
| 55 | /// reference. |
||
| 56 | CoalescingBitVector(Allocator &Alloc) |
||
| 57 | : Alloc(&Alloc), Intervals(Alloc) {} |
||
| 58 | |||
| 59 | /// \name Copy/move constructors and assignment operators. |
||
| 60 | /// @{ |
||
| 61 | |||
| 62 | CoalescingBitVector(const ThisT &Other) |
||
| 63 | : Alloc(Other.Alloc), Intervals(*Other.Alloc) { |
||
| 64 | set(Other); |
||
| 65 | } |
||
| 66 | |||
| 67 | ThisT &operator=(const ThisT &Other) { |
||
| 68 | clear(); |
||
| 69 | set(Other); |
||
| 70 | return *this; |
||
| 71 | } |
||
| 72 | |||
| 73 | CoalescingBitVector(ThisT &&Other) = delete; |
||
| 74 | ThisT &operator=(ThisT &&Other) = delete; |
||
| 75 | |||
| 76 | /// @} |
||
| 77 | |||
| 78 | /// Clear all the bits. |
||
| 79 | void clear() { Intervals.clear(); } |
||
| 80 | |||
| 81 | /// Check whether no bits are set. |
||
| 82 | bool empty() const { return Intervals.empty(); } |
||
| 83 | |||
| 84 | /// Count the number of set bits. |
||
| 85 | unsigned count() const { |
||
| 86 | unsigned Bits = 0; |
||
| 87 | for (auto It = Intervals.begin(), End = Intervals.end(); It != End; ++It) |
||
| 88 | Bits += 1 + It.stop() - It.start(); |
||
| 89 | return Bits; |
||
| 90 | } |
||
| 91 | |||
| 92 | /// Set the bit at \p Index. |
||
| 93 | /// |
||
| 94 | /// This method does /not/ support setting a bit that has already been set, |
||
| 95 | /// for efficiency reasons. If possible, restructure your code to not set the |
||
| 96 | /// same bit multiple times, or use \ref test_and_set. |
||
| 97 | void set(IndexT Index) { |
||
| 98 | assert(!test(Index) && "Setting already-set bits not supported/efficient, " |
||
| 99 | "IntervalMap will assert"); |
||
| 100 | insert(Index, Index); |
||
| 101 | } |
||
| 102 | |||
| 103 | /// Set the bits set in \p Other. |
||
| 104 | /// |
||
| 105 | /// This method does /not/ support setting already-set bits, see \ref set |
||
| 106 | /// for the rationale. For a safe set union operation, use \ref operator|=. |
||
| 107 | void set(const ThisT &Other) { |
||
| 108 | for (auto It = Other.Intervals.begin(), End = Other.Intervals.end(); |
||
| 109 | It != End; ++It) |
||
| 110 | insert(It.start(), It.stop()); |
||
| 111 | } |
||
| 112 | |||
| 113 | /// Set the bits at \p Indices. Used for testing, primarily. |
||
| 114 | void set(std::initializer_list<IndexT> Indices) { |
||
| 115 | for (IndexT Index : Indices) |
||
| 116 | set(Index); |
||
| 117 | } |
||
| 118 | |||
| 119 | /// Check whether the bit at \p Index is set. |
||
| 120 | bool test(IndexT Index) const { |
||
| 121 | const auto It = Intervals.find(Index); |
||
| 122 | if (It == Intervals.end()) |
||
| 123 | return false; |
||
| 124 | assert(It.stop() >= Index && "Interval must end after Index"); |
||
| 125 | return It.start() <= Index; |
||
| 126 | } |
||
| 127 | |||
| 128 | /// Set the bit at \p Index. Supports setting an already-set bit. |
||
| 129 | void test_and_set(IndexT Index) { |
||
| 130 | if (!test(Index)) |
||
| 131 | set(Index); |
||
| 132 | } |
||
| 133 | |||
| 134 | /// Reset the bit at \p Index. Supports resetting an already-unset bit. |
||
| 135 | void reset(IndexT Index) { |
||
| 136 | auto It = Intervals.find(Index); |
||
| 137 | if (It == Intervals.end()) |
||
| 138 | return; |
||
| 139 | |||
| 140 | // Split the interval containing Index into up to two parts: one from |
||
| 141 | // [Start, Index-1] and another from [Index+1, Stop]. If Index is equal to |
||
| 142 | // either Start or Stop, we create one new interval. If Index is equal to |
||
| 143 | // both Start and Stop, we simply erase the existing interval. |
||
| 144 | IndexT Start = It.start(); |
||
| 145 | if (Index < Start) |
||
| 146 | // The index was not set. |
||
| 147 | return; |
||
| 148 | IndexT Stop = It.stop(); |
||
| 149 | assert(Index <= Stop && "Wrong interval for index"); |
||
| 150 | It.erase(); |
||
| 151 | if (Start < Index) |
||
| 152 | insert(Start, Index - 1); |
||
| 153 | if (Index < Stop) |
||
| 154 | insert(Index + 1, Stop); |
||
| 155 | } |
||
| 156 | |||
| 157 | /// Set union. If \p RHS is guaranteed to not overlap with this, \ref set may |
||
| 158 | /// be a faster alternative. |
||
| 159 | void operator|=(const ThisT &RHS) { |
||
| 160 | // Get the overlaps between the two interval maps. |
||
| 161 | SmallVector<IntervalT, 8> Overlaps; |
||
| 162 | getOverlaps(RHS, Overlaps); |
||
| 163 | |||
| 164 | // Insert the non-overlapping parts of all the intervals from RHS. |
||
| 165 | for (auto It = RHS.Intervals.begin(), End = RHS.Intervals.end(); |
||
| 166 | It != End; ++It) { |
||
| 167 | IndexT Start = It.start(); |
||
| 168 | IndexT Stop = It.stop(); |
||
| 169 | SmallVector<IntervalT, 8> NonOverlappingParts; |
||
| 170 | getNonOverlappingParts(Start, Stop, Overlaps, NonOverlappingParts); |
||
| 171 | for (IntervalT AdditivePortion : NonOverlappingParts) |
||
| 172 | insert(AdditivePortion.first, AdditivePortion.second); |
||
| 173 | } |
||
| 174 | } |
||
| 175 | |||
| 176 | /// Set intersection. |
||
| 177 | void operator&=(const ThisT &RHS) { |
||
| 178 | // Get the overlaps between the two interval maps (i.e. the intersection). |
||
| 179 | SmallVector<IntervalT, 8> Overlaps; |
||
| 180 | getOverlaps(RHS, Overlaps); |
||
| 181 | // Rebuild the interval map, including only the overlaps. |
||
| 182 | clear(); |
||
| 183 | for (IntervalT Overlap : Overlaps) |
||
| 184 | insert(Overlap.first, Overlap.second); |
||
| 185 | } |
||
| 186 | |||
| 187 | /// Reset all bits present in \p Other. |
||
| 188 | void intersectWithComplement(const ThisT &Other) { |
||
| 189 | SmallVector<IntervalT, 8> Overlaps; |
||
| 190 | if (!getOverlaps(Other, Overlaps)) { |
||
| 191 | // If there is no overlap with Other, the intersection is empty. |
||
| 192 | return; |
||
| 193 | } |
||
| 194 | |||
| 195 | // Delete the overlapping intervals. Split up intervals that only partially |
||
| 196 | // intersect an overlap. |
||
| 197 | for (IntervalT Overlap : Overlaps) { |
||
| 198 | IndexT OlapStart, OlapStop; |
||
| 199 | std::tie(OlapStart, OlapStop) = Overlap; |
||
| 200 | |||
| 201 | auto It = Intervals.find(OlapStart); |
||
| 202 | IndexT CurrStart = It.start(); |
||
| 203 | IndexT CurrStop = It.stop(); |
||
| 204 | assert(CurrStart <= OlapStart && OlapStop <= CurrStop && |
||
| 205 | "Expected some intersection!"); |
||
| 206 | |||
| 207 | // Split the overlap interval into up to two parts: one from [CurrStart, |
||
| 208 | // OlapStart-1] and another from [OlapStop+1, CurrStop]. If OlapStart is |
||
| 209 | // equal to CurrStart, the first split interval is unnecessary. Ditto for |
||
| 210 | // when OlapStop is equal to CurrStop, we omit the second split interval. |
||
| 211 | It.erase(); |
||
| 212 | if (CurrStart < OlapStart) |
||
| 213 | insert(CurrStart, OlapStart - 1); |
||
| 214 | if (OlapStop < CurrStop) |
||
| 215 | insert(OlapStop + 1, CurrStop); |
||
| 216 | } |
||
| 217 | } |
||
| 218 | |||
| 219 | bool operator==(const ThisT &RHS) const { |
||
| 220 | // We cannot just use std::equal because it checks the dereferenced values |
||
| 221 | // of an iterator pair for equality, not the iterators themselves. In our |
||
| 222 | // case that results in comparison of the (unused) IntervalMap values. |
||
| 223 | auto ItL = Intervals.begin(); |
||
| 224 | auto ItR = RHS.Intervals.begin(); |
||
| 225 | while (ItL != Intervals.end() && ItR != RHS.Intervals.end() && |
||
| 226 | ItL.start() == ItR.start() && ItL.stop() == ItR.stop()) { |
||
| 227 | ++ItL; |
||
| 228 | ++ItR; |
||
| 229 | } |
||
| 230 | return ItL == Intervals.end() && ItR == RHS.Intervals.end(); |
||
| 231 | } |
||
| 232 | |||
| 233 | bool operator!=(const ThisT &RHS) const { return !operator==(RHS); } |
||
| 234 | |||
| 235 | class const_iterator { |
||
| 236 | friend class CoalescingBitVector; |
||
| 237 | |||
| 238 | public: |
||
| 239 | using iterator_category = std::forward_iterator_tag; |
||
| 240 | using value_type = IndexT; |
||
| 241 | using difference_type = std::ptrdiff_t; |
||
| 242 | using pointer = value_type *; |
||
| 243 | using reference = value_type &; |
||
| 244 | |||
| 245 | private: |
||
| 246 | // For performance reasons, make the offset at the end different than the |
||
| 247 | // one used in \ref begin, to optimize the common `It == end()` pattern. |
||
| 248 | static constexpr unsigned kIteratorAtTheEndOffset = ~0u; |
||
| 249 | |||
| 250 | UnderlyingIterator MapIterator; |
||
| 251 | unsigned OffsetIntoMapIterator = 0; |
||
| 252 | |||
| 253 | // Querying the start/stop of an IntervalMap iterator can be very expensive. |
||
| 254 | // Cache these values for performance reasons. |
||
| 255 | IndexT CachedStart = IndexT(); |
||
| 256 | IndexT CachedStop = IndexT(); |
||
| 257 | |||
| 258 | void setToEnd() { |
||
| 259 | OffsetIntoMapIterator = kIteratorAtTheEndOffset; |
||
| 260 | CachedStart = IndexT(); |
||
| 261 | CachedStop = IndexT(); |
||
| 262 | } |
||
| 263 | |||
| 264 | /// MapIterator has just changed, reset the cached state to point to the |
||
| 265 | /// start of the new underlying iterator. |
||
| 266 | void resetCache() { |
||
| 267 | if (MapIterator.valid()) { |
||
| 268 | OffsetIntoMapIterator = 0; |
||
| 269 | CachedStart = MapIterator.start(); |
||
| 270 | CachedStop = MapIterator.stop(); |
||
| 271 | } else { |
||
| 272 | setToEnd(); |
||
| 273 | } |
||
| 274 | } |
||
| 275 | |||
| 276 | /// Advance the iterator to \p Index, if it is contained within the current |
||
| 277 | /// interval. The public-facing method which supports advancing past the |
||
| 278 | /// current interval is \ref advanceToLowerBound. |
||
| 279 | void advanceTo(IndexT Index) { |
||
| 280 | assert(Index <= CachedStop && "Cannot advance to OOB index"); |
||
| 281 | if (Index < CachedStart) |
||
| 282 | // We're already past this index. |
||
| 283 | return; |
||
| 284 | OffsetIntoMapIterator = Index - CachedStart; |
||
| 285 | } |
||
| 286 | |||
| 287 | const_iterator(UnderlyingIterator MapIt) : MapIterator(MapIt) { |
||
| 288 | resetCache(); |
||
| 289 | } |
||
| 290 | |||
| 291 | public: |
||
| 292 | const_iterator() { setToEnd(); } |
||
| 293 | |||
| 294 | bool operator==(const const_iterator &RHS) const { |
||
| 295 | // Do /not/ compare MapIterator for equality, as this is very expensive. |
||
| 296 | // The cached start/stop values make that check unnecessary. |
||
| 297 | return std::tie(OffsetIntoMapIterator, CachedStart, CachedStop) == |
||
| 298 | std::tie(RHS.OffsetIntoMapIterator, RHS.CachedStart, |
||
| 299 | RHS.CachedStop); |
||
| 300 | } |
||
| 301 | |||
| 302 | bool operator!=(const const_iterator &RHS) const { |
||
| 303 | return !operator==(RHS); |
||
| 304 | } |
||
| 305 | |||
| 306 | IndexT operator*() const { return CachedStart + OffsetIntoMapIterator; } |
||
| 307 | |||
| 308 | const_iterator &operator++() { // Pre-increment (++It). |
||
| 309 | if (CachedStart + OffsetIntoMapIterator < CachedStop) { |
||
| 310 | // Keep going within the current interval. |
||
| 311 | ++OffsetIntoMapIterator; |
||
| 312 | } else { |
||
| 313 | // We reached the end of the current interval: advance. |
||
| 314 | ++MapIterator; |
||
| 315 | resetCache(); |
||
| 316 | } |
||
| 317 | return *this; |
||
| 318 | } |
||
| 319 | |||
| 320 | const_iterator operator++(int) { // Post-increment (It++). |
||
| 321 | const_iterator tmp = *this; |
||
| 322 | operator++(); |
||
| 323 | return tmp; |
||
| 324 | } |
||
| 325 | |||
| 326 | /// Advance the iterator to the first set bit AT, OR AFTER, \p Index. If |
||
| 327 | /// no such set bit exists, advance to end(). This is like std::lower_bound. |
||
| 328 | /// This is useful if \p Index is close to the current iterator position. |
||
| 329 | /// However, unlike \ref find(), this has worst-case O(n) performance. |
||
| 330 | void advanceToLowerBound(IndexT Index) { |
||
| 331 | if (OffsetIntoMapIterator == kIteratorAtTheEndOffset) |
||
| 332 | return; |
||
| 333 | |||
| 334 | // Advance to the first interval containing (or past) Index, or to end(). |
||
| 335 | while (Index > CachedStop) { |
||
| 336 | ++MapIterator; |
||
| 337 | resetCache(); |
||
| 338 | if (OffsetIntoMapIterator == kIteratorAtTheEndOffset) |
||
| 339 | return; |
||
| 340 | } |
||
| 341 | |||
| 342 | advanceTo(Index); |
||
| 343 | } |
||
| 344 | }; |
||
| 345 | |||
| 346 | const_iterator begin() const { return const_iterator(Intervals.begin()); } |
||
| 347 | |||
| 348 | const_iterator end() const { return const_iterator(); } |
||
| 349 | |||
| 350 | /// Return an iterator pointing to the first set bit AT, OR AFTER, \p Index. |
||
| 351 | /// If no such set bit exists, return end(). This is like std::lower_bound. |
||
| 352 | /// This has worst-case logarithmic performance (roughly O(log(gaps between |
||
| 353 | /// contiguous ranges))). |
||
| 354 | const_iterator find(IndexT Index) const { |
||
| 355 | auto UnderlyingIt = Intervals.find(Index); |
||
| 356 | if (UnderlyingIt == Intervals.end()) |
||
| 357 | return end(); |
||
| 358 | auto It = const_iterator(UnderlyingIt); |
||
| 359 | It.advanceTo(Index); |
||
| 360 | return It; |
||
| 361 | } |
||
| 362 | |||
| 363 | /// Return a range iterator which iterates over all of the set bits in the |
||
| 364 | /// half-open range [Start, End). |
||
| 365 | iterator_range<const_iterator> half_open_range(IndexT Start, |
||
| 366 | IndexT End) const { |
||
| 367 | assert(Start < End && "Not a valid range"); |
||
| 368 | auto StartIt = find(Start); |
||
| 369 | if (StartIt == end() || *StartIt >= End) |
||
| 370 | return {end(), end()}; |
||
| 371 | auto EndIt = StartIt; |
||
| 372 | EndIt.advanceToLowerBound(End); |
||
| 373 | return {StartIt, EndIt}; |
||
| 374 | } |
||
| 375 | |||
| 376 | void print(raw_ostream &OS) const { |
||
| 377 | OS << "{"; |
||
| 378 | for (auto It = Intervals.begin(), End = Intervals.end(); It != End; |
||
| 379 | ++It) { |
||
| 380 | OS << "[" << It.start(); |
||
| 381 | if (It.start() != It.stop()) |
||
| 382 | OS << ", " << It.stop(); |
||
| 383 | OS << "]"; |
||
| 384 | } |
||
| 385 | OS << "}"; |
||
| 386 | } |
||
| 387 | |||
| 388 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
| 389 | LLVM_DUMP_METHOD void dump() const { |
||
| 390 | // LLDB swallows the first line of output after callling dump(). Add |
||
| 391 | // newlines before/after the braces to work around this. |
||
| 392 | dbgs() << "\n"; |
||
| 393 | print(dbgs()); |
||
| 394 | dbgs() << "\n"; |
||
| 395 | } |
||
| 396 | #endif |
||
| 397 | |||
| 398 | private: |
||
| 399 | void insert(IndexT Start, IndexT End) { Intervals.insert(Start, End, 0); } |
||
| 400 | |||
| 401 | /// Record the overlaps between \p this and \p Other in \p Overlaps. Return |
||
| 402 | /// true if there is any overlap. |
||
| 403 | bool getOverlaps(const ThisT &Other, |
||
| 404 | SmallVectorImpl<IntervalT> &Overlaps) const { |
||
| 405 | for (IntervalMapOverlaps<MapT, MapT> I(Intervals, Other.Intervals); |
||
| 406 | I.valid(); ++I) |
||
| 407 | Overlaps.emplace_back(I.start(), I.stop()); |
||
| 408 | assert(llvm::is_sorted(Overlaps, |
||
| 409 | [](IntervalT LHS, IntervalT RHS) { |
||
| 410 | return LHS.second < RHS.first; |
||
| 411 | }) && |
||
| 412 | "Overlaps must be sorted"); |
||
| 413 | return !Overlaps.empty(); |
||
| 414 | } |
||
| 415 | |||
| 416 | /// Given the set of overlaps between this and some other bitvector, and an |
||
| 417 | /// interval [Start, Stop] from that bitvector, determine the portions of the |
||
| 418 | /// interval which do not overlap with this. |
||
| 419 | void getNonOverlappingParts(IndexT Start, IndexT Stop, |
||
| 420 | const SmallVectorImpl<IntervalT> &Overlaps, |
||
| 421 | SmallVectorImpl<IntervalT> &NonOverlappingParts) { |
||
| 422 | IndexT NextUncoveredBit = Start; |
||
| 423 | for (IntervalT Overlap : Overlaps) { |
||
| 424 | IndexT OlapStart, OlapStop; |
||
| 425 | std::tie(OlapStart, OlapStop) = Overlap; |
||
| 426 | |||
| 427 | // [Start;Stop] and [OlapStart;OlapStop] overlap iff OlapStart <= Stop |
||
| 428 | // and Start <= OlapStop. |
||
| 429 | bool DoesOverlap = OlapStart <= Stop && Start <= OlapStop; |
||
| 430 | if (!DoesOverlap) |
||
| 431 | continue; |
||
| 432 | |||
| 433 | // Cover the range [NextUncoveredBit, OlapStart). This puts the start of |
||
| 434 | // the next uncovered range at OlapStop+1. |
||
| 435 | if (NextUncoveredBit < OlapStart) |
||
| 436 | NonOverlappingParts.emplace_back(NextUncoveredBit, OlapStart - 1); |
||
| 437 | NextUncoveredBit = OlapStop + 1; |
||
| 438 | if (NextUncoveredBit > Stop) |
||
| 439 | break; |
||
| 440 | } |
||
| 441 | if (NextUncoveredBit <= Stop) |
||
| 442 | NonOverlappingParts.emplace_back(NextUncoveredBit, Stop); |
||
| 443 | } |
||
| 444 | |||
| 445 | Allocator *Alloc; |
||
| 446 | MapT Intervals; |
||
| 447 | }; |
||
| 448 | |||
| 449 | } // namespace llvm |
||
| 450 | |||
| 451 | #endif // LLVM_ADT_COALESCINGBITVECTOR_H |