Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file implements the BitVector class.
11
///
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ADT_BITVECTOR_H
15
#define LLVM_ADT_BITVECTOR_H
16
 
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/ADT/DenseMapInfo.h"
19
#include "llvm/ADT/iterator_range.h"
20
#include "llvm/Support/MathExtras.h"
21
#include <algorithm>
22
#include <cassert>
23
#include <climits>
24
#include <cstdint>
25
#include <cstdlib>
26
#include <cstring>
27
#include <utility>
28
 
29
namespace llvm {
30
 
31
/// ForwardIterator for the bits that are set.
32
/// Iterators get invalidated when resize / reserve is called.
33
template <typename BitVectorT> class const_set_bits_iterator_impl {
34
  const BitVectorT &Parent;
35
  int Current = 0;
36
 
37
  void advance() {
38
    assert(Current != -1 && "Trying to advance past end.");
39
    Current = Parent.find_next(Current);
40
  }
41
 
42
public:
43
  const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
44
      : Parent(Parent), Current(Current) {}
45
  explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
46
      : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
47
  const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
48
 
49
  const_set_bits_iterator_impl operator++(int) {
50
    auto Prev = *this;
51
    advance();
52
    return Prev;
53
  }
54
 
55
  const_set_bits_iterator_impl &operator++() {
56
    advance();
57
    return *this;
58
  }
59
 
60
  unsigned operator*() const { return Current; }
61
 
62
  bool operator==(const const_set_bits_iterator_impl &Other) const {
63
    assert(&Parent == &Other.Parent &&
64
           "Comparing iterators from different BitVectors");
65
    return Current == Other.Current;
66
  }
67
 
68
  bool operator!=(const const_set_bits_iterator_impl &Other) const {
69
    assert(&Parent == &Other.Parent &&
70
           "Comparing iterators from different BitVectors");
71
    return Current != Other.Current;
72
  }
73
};
74
 
75
class BitVector {
76
  typedef uintptr_t BitWord;
77
 
78
  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
79
 
80
  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
81
                "Unsupported word size");
82
 
83
  using Storage = SmallVector<BitWord>;
84
 
85
  Storage Bits;  // Actual bits.
86
  unsigned Size = 0; // Size of bitvector in bits.
87
 
88
public:
89
  using size_type = unsigned;
90
 
91
  // Encapsulation of a single bit.
92
  class reference {
93
 
94
    BitWord *WordRef;
95
    unsigned BitPos;
96
 
97
  public:
98
    reference(BitVector &b, unsigned Idx) {
99
      WordRef = &b.Bits[Idx / BITWORD_SIZE];
100
      BitPos = Idx % BITWORD_SIZE;
101
    }
102
 
103
    reference() = delete;
104
    reference(const reference&) = default;
105
 
106
    reference &operator=(reference t) {
107
      *this = bool(t);
108
      return *this;
109
    }
110
 
111
    reference& operator=(bool t) {
112
      if (t)
113
        *WordRef |= BitWord(1) << BitPos;
114
      else
115
        *WordRef &= ~(BitWord(1) << BitPos);
116
      return *this;
117
    }
118
 
119
    operator bool() const {
120
      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
121
    }
122
  };
123
 
124
  typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
125
  typedef const_set_bits_iterator set_iterator;
126
 
127
  const_set_bits_iterator set_bits_begin() const {
128
    return const_set_bits_iterator(*this);
129
  }
130
  const_set_bits_iterator set_bits_end() const {
131
    return const_set_bits_iterator(*this, -1);
132
  }
133
  iterator_range<const_set_bits_iterator> set_bits() const {
134
    return make_range(set_bits_begin(), set_bits_end());
135
  }
136
 
137
  /// BitVector default ctor - Creates an empty bitvector.
138
  BitVector() = default;
139
 
140
  /// BitVector ctor - Creates a bitvector of specified number of bits. All
141
  /// bits are initialized to the specified value.
142
  explicit BitVector(unsigned s, bool t = false)
143
      : Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) {
144
    if (t)
145
      clear_unused_bits();
146
  }
147
 
148
  /// empty - Tests whether there are no bits in this bitvector.
149
  bool empty() const { return Size == 0; }
150
 
151
  /// size - Returns the number of bits in this bitvector.
152
  size_type size() const { return Size; }
153
 
154
  /// count - Returns the number of bits which are set.
155
  size_type count() const {
156
    unsigned NumBits = 0;
157
    for (auto Bit : Bits)
158
      NumBits += llvm::popcount(Bit);
159
    return NumBits;
160
  }
161
 
162
  /// any - Returns true if any bit is set.
163
  bool any() const {
164
    return any_of(Bits, [](BitWord Bit) { return Bit != 0; });
165
  }
166
 
167
  /// all - Returns true if all bits are set.
168
  bool all() const {
169
    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
170
      if (Bits[i] != ~BitWord(0))
171
        return false;
172
 
173
    // If bits remain check that they are ones. The unused bits are always zero.
174
    if (unsigned Remainder = Size % BITWORD_SIZE)
175
      return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
176
 
177
    return true;
178
  }
179
 
180
  /// none - Returns true if none of the bits are set.
181
  bool none() const {
182
    return !any();
183
  }
184
 
185
  /// find_first_in - Returns the index of the first set / unset bit,
186
  /// depending on \p Set, in the range [Begin, End).
187
  /// Returns -1 if all bits in the range are unset / set.
188
  int find_first_in(unsigned Begin, unsigned End, bool Set = true) const {
189
    assert(Begin <= End && End <= Size);
190
    if (Begin == End)
191
      return -1;
192
 
193
    unsigned FirstWord = Begin / BITWORD_SIZE;
194
    unsigned LastWord = (End - 1) / BITWORD_SIZE;
195
 
196
    // Check subsequent words.
197
    // The code below is based on search for the first _set_ bit. If
198
    // we're searching for the first _unset_, we just take the
199
    // complement of each word before we use it and apply
200
    // the same method.
201
    for (unsigned i = FirstWord; i <= LastWord; ++i) {
202
      BitWord Copy = Bits[i];
203
      if (!Set)
204
        Copy = ~Copy;
205
 
206
      if (i == FirstWord) {
207
        unsigned FirstBit = Begin % BITWORD_SIZE;
208
        Copy &= maskTrailingZeros<BitWord>(FirstBit);
209
      }
210
 
211
      if (i == LastWord) {
212
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
213
        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
214
      }
215
      if (Copy != 0)
216
        return i * BITWORD_SIZE + countTrailingZeros(Copy);
217
    }
218
    return -1;
219
  }
220
 
221
  /// find_last_in - Returns the index of the last set bit in the range
222
  /// [Begin, End).  Returns -1 if all bits in the range are unset.
223
  int find_last_in(unsigned Begin, unsigned End) const {
224
    assert(Begin <= End && End <= Size);
225
    if (Begin == End)
226
      return -1;
227
 
228
    unsigned LastWord = (End - 1) / BITWORD_SIZE;
229
    unsigned FirstWord = Begin / BITWORD_SIZE;
230
 
231
    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
232
      unsigned CurrentWord = i - 1;
233
 
234
      BitWord Copy = Bits[CurrentWord];
235
      if (CurrentWord == LastWord) {
236
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
237
        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
238
      }
239
 
240
      if (CurrentWord == FirstWord) {
241
        unsigned FirstBit = Begin % BITWORD_SIZE;
242
        Copy &= maskTrailingZeros<BitWord>(FirstBit);
243
      }
244
 
245
      if (Copy != 0)
246
        return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
247
    }
248
 
249
    return -1;
250
  }
251
 
252
  /// find_first_unset_in - Returns the index of the first unset bit in the
253
  /// range [Begin, End).  Returns -1 if all bits in the range are set.
254
  int find_first_unset_in(unsigned Begin, unsigned End) const {
255
    return find_first_in(Begin, End, /* Set = */ false);
256
  }
257
 
258
  /// find_last_unset_in - Returns the index of the last unset bit in the
259
  /// range [Begin, End).  Returns -1 if all bits in the range are set.
260
  int find_last_unset_in(unsigned Begin, unsigned End) const {
261
    assert(Begin <= End && End <= Size);
262
    if (Begin == End)
263
      return -1;
264
 
265
    unsigned LastWord = (End - 1) / BITWORD_SIZE;
266
    unsigned FirstWord = Begin / BITWORD_SIZE;
267
 
268
    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
269
      unsigned CurrentWord = i - 1;
270
 
271
      BitWord Copy = Bits[CurrentWord];
272
      if (CurrentWord == LastWord) {
273
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
274
        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
275
      }
276
 
277
      if (CurrentWord == FirstWord) {
278
        unsigned FirstBit = Begin % BITWORD_SIZE;
279
        Copy |= maskTrailingOnes<BitWord>(FirstBit);
280
      }
281
 
282
      if (Copy != ~BitWord(0)) {
283
        unsigned Result =
284
            (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
285
        return Result < Size ? Result : -1;
286
      }
287
    }
288
    return -1;
289
  }
290
 
291
  /// find_first - Returns the index of the first set bit, -1 if none
292
  /// of the bits are set.
293
  int find_first() const { return find_first_in(0, Size); }
294
 
295
  /// find_last - Returns the index of the last set bit, -1 if none of the bits
296
  /// are set.
297
  int find_last() const { return find_last_in(0, Size); }
298
 
299
  /// find_next - Returns the index of the next set bit following the
300
  /// "Prev" bit. Returns -1 if the next set bit is not found.
301
  int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
302
 
303
  /// find_prev - Returns the index of the first set bit that precedes the
304
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
305
  int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
306
 
307
  /// find_first_unset - Returns the index of the first unset bit, -1 if all
308
  /// of the bits are set.
309
  int find_first_unset() const { return find_first_unset_in(0, Size); }
310
 
311
  /// find_next_unset - Returns the index of the next unset bit following the
312
  /// "Prev" bit.  Returns -1 if all remaining bits are set.
313
  int find_next_unset(unsigned Prev) const {
314
    return find_first_unset_in(Prev + 1, Size);
315
  }
316
 
317
  /// find_last_unset - Returns the index of the last unset bit, -1 if all of
318
  /// the bits are set.
319
  int find_last_unset() const { return find_last_unset_in(0, Size); }
320
 
321
  /// find_prev_unset - Returns the index of the first unset bit that precedes
322
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
323
  int find_prev_unset(unsigned PriorTo) {
324
    return find_last_unset_in(0, PriorTo);
325
  }
326
 
327
  /// clear - Removes all bits from the bitvector.
328
  void clear() {
329
    Size = 0;
330
    Bits.clear();
331
  }
332
 
333
  /// resize - Grow or shrink the bitvector.
334
  void resize(unsigned N, bool t = false) {
335
    set_unused_bits(t);
336
    Size = N;
337
    Bits.resize(NumBitWords(N), 0 - BitWord(t));
338
    clear_unused_bits();
339
  }
340
 
341
  void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); }
342
 
343
  // Set, reset, flip
344
  BitVector &set() {
345
    init_words(true);
346
    clear_unused_bits();
347
    return *this;
348
  }
349
 
350
  BitVector &set(unsigned Idx) {
351
    assert(Idx < Size && "access in bound");
352
    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
353
    return *this;
354
  }
355
 
356
  /// set - Efficiently set a range of bits in [I, E)
357
  BitVector &set(unsigned I, unsigned E) {
358
    assert(I <= E && "Attempted to set backwards range!");
359
    assert(E <= size() && "Attempted to set out-of-bounds range!");
360
 
361
    if (I == E) return *this;
362
 
363
    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
364
      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
365
      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
366
      BitWord Mask = EMask - IMask;
367
      Bits[I / BITWORD_SIZE] |= Mask;
368
      return *this;
369
    }
370
 
371
    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
372
    Bits[I / BITWORD_SIZE] |= PrefixMask;
373
    I = alignTo(I, BITWORD_SIZE);
374
 
375
    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
376
      Bits[I / BITWORD_SIZE] = ~BitWord(0);
377
 
378
    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
379
    if (I < E)
380
      Bits[I / BITWORD_SIZE] |= PostfixMask;
381
 
382
    return *this;
383
  }
384
 
385
  BitVector &reset() {
386
    init_words(false);
387
    return *this;
388
  }
389
 
390
  BitVector &reset(unsigned Idx) {
391
    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
392
    return *this;
393
  }
394
 
395
  /// reset - Efficiently reset a range of bits in [I, E)
396
  BitVector &reset(unsigned I, unsigned E) {
397
    assert(I <= E && "Attempted to reset backwards range!");
398
    assert(E <= size() && "Attempted to reset out-of-bounds range!");
399
 
400
    if (I == E) return *this;
401
 
402
    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
403
      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
404
      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
405
      BitWord Mask = EMask - IMask;
406
      Bits[I / BITWORD_SIZE] &= ~Mask;
407
      return *this;
408
    }
409
 
410
    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
411
    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
412
    I = alignTo(I, BITWORD_SIZE);
413
 
414
    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
415
      Bits[I / BITWORD_SIZE] = BitWord(0);
416
 
417
    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
418
    if (I < E)
419
      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
420
 
421
    return *this;
422
  }
423
 
424
  BitVector &flip() {
425
    for (auto &Bit : Bits)
426
      Bit = ~Bit;
427
    clear_unused_bits();
428
    return *this;
429
  }
430
 
431
  BitVector &flip(unsigned Idx) {
432
    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
433
    return *this;
434
  }
435
 
436
  // Indexing.
437
  reference operator[](unsigned Idx) {
438
    assert (Idx < Size && "Out-of-bounds Bit access.");
439
    return reference(*this, Idx);
440
  }
441
 
442
  bool operator[](unsigned Idx) const {
443
    assert (Idx < Size && "Out-of-bounds Bit access.");
444
    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
445
    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
446
  }
447
 
448
  /// Return the last element in the vector.
449
  bool back() const {
450
    assert(!empty() && "Getting last element of empty vector.");
451
    return (*this)[size() - 1];
452
  }
453
 
454
  bool test(unsigned Idx) const {
455
    return (*this)[Idx];
456
  }
457
 
458
  // Push single bit to end of vector.
459
  void push_back(bool Val) {
460
    unsigned OldSize = Size;
461
    unsigned NewSize = Size + 1;
462
 
463
    // Resize, which will insert zeros.
464
    // If we already fit then the unused bits will be already zero.
465
    if (NewSize > getBitCapacity())
466
      resize(NewSize, false);
467
    else
468
      Size = NewSize;
469
 
470
    // If true, set single bit.
471
    if (Val)
472
      set(OldSize);
473
  }
474
 
475
  /// Pop one bit from the end of the vector.
476
  void pop_back() {
477
    assert(!empty() && "Empty vector has no element to pop.");
478
    resize(size() - 1);
479
  }
480
 
481
  /// Test if any common bits are set.
482
  bool anyCommon(const BitVector &RHS) const {
483
    unsigned ThisWords = Bits.size();
484
    unsigned RHSWords = RHS.Bits.size();
485
    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
486
      if (Bits[i] & RHS.Bits[i])
487
        return true;
488
    return false;
489
  }
490
 
491
  // Comparison operators.
492
  bool operator==(const BitVector &RHS) const {
493
    if (size() != RHS.size())
494
      return false;
495
    unsigned NumWords = Bits.size();
496
    return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin());
497
  }
498
 
499
  bool operator!=(const BitVector &RHS) const { return !(*this == RHS); }
500
 
501
  /// Intersection, union, disjoint union.
502
  BitVector &operator&=(const BitVector &RHS) {
503
    unsigned ThisWords = Bits.size();
504
    unsigned RHSWords = RHS.Bits.size();
505
    unsigned i;
506
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
507
      Bits[i] &= RHS.Bits[i];
508
 
509
    // Any bits that are just in this bitvector become zero, because they aren't
510
    // in the RHS bit vector.  Any words only in RHS are ignored because they
511
    // are already zero in the LHS.
512
    for (; i != ThisWords; ++i)
513
      Bits[i] = 0;
514
 
515
    return *this;
516
  }
517
 
518
  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
519
  BitVector &reset(const BitVector &RHS) {
520
    unsigned ThisWords = Bits.size();
521
    unsigned RHSWords = RHS.Bits.size();
522
    for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i)
523
      Bits[i] &= ~RHS.Bits[i];
524
    return *this;
525
  }
526
 
527
  /// test - Check if (This - RHS) is zero.
528
  /// This is the same as reset(RHS) and any().
529
  bool test(const BitVector &RHS) const {
530
    unsigned ThisWords = Bits.size();
531
    unsigned RHSWords = RHS.Bits.size();
532
    unsigned i;
533
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
534
      if ((Bits[i] & ~RHS.Bits[i]) != 0)
535
        return true;
536
 
537
    for (; i != ThisWords ; ++i)
538
      if (Bits[i] != 0)
539
        return true;
540
 
541
    return false;
542
  }
543
 
544
  template <class F, class... ArgTys>
545
  static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg,
546
                          ArgTys const &...Args) {
547
    assert(llvm::all_of(
548
               std::initializer_list<unsigned>{Args.size()...},
549
               [&Arg](auto const &BV) { return Arg.size() == BV; }) &&
550
           "consistent sizes");
551
    Out.resize(Arg.size());
552
    for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I)
553
      Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...);
554
    Out.clear_unused_bits();
555
    return Out;
556
  }
557
 
558
  BitVector &operator|=(const BitVector &RHS) {
559
    if (size() < RHS.size())
560
      resize(RHS.size());
561
    for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I)
562
      Bits[I] |= RHS.Bits[I];
563
    return *this;
564
  }
565
 
566
  BitVector &operator^=(const BitVector &RHS) {
567
    if (size() < RHS.size())
568
      resize(RHS.size());
569
    for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I)
570
      Bits[I] ^= RHS.Bits[I];
571
    return *this;
572
  }
573
 
574
  BitVector &operator>>=(unsigned N) {
575
    assert(N <= Size);
576
    if (LLVM_UNLIKELY(empty() || N == 0))
577
      return *this;
578
 
579
    unsigned NumWords = Bits.size();
580
    assert(NumWords >= 1);
581
 
582
    wordShr(N / BITWORD_SIZE);
583
 
584
    unsigned BitDistance = N % BITWORD_SIZE;
585
    if (BitDistance == 0)
586
      return *this;
587
 
588
    // When the shift size is not a multiple of the word size, then we have
589
    // a tricky situation where each word in succession needs to extract some
590
    // of the bits from the next word and or them into this word while
591
    // shifting this word to make room for the new bits.  This has to be done
592
    // for every word in the array.
593
 
594
    // Since we're shifting each word right, some bits will fall off the end
595
    // of each word to the right, and empty space will be created on the left.
596
    // The final word in the array will lose bits permanently, so starting at
597
    // the beginning, work forwards shifting each word to the right, and
598
    // OR'ing in the bits from the end of the next word to the beginning of
599
    // the current word.
600
 
601
    // Example:
602
    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
603
    //   by 4 bits.
604
    // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
605
    // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
606
    // Step 3: Word[1] >>= 4           ; 0x0EEFF001
607
    // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
608
    // Step 5: Word[2] >>= 4           ; 0x02334455
609
    // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
610
    const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
611
    const unsigned LSH = BITWORD_SIZE - BitDistance;
612
 
613
    for (unsigned I = 0; I < NumWords - 1; ++I) {
614
      Bits[I] >>= BitDistance;
615
      Bits[I] |= (Bits[I + 1] & Mask) << LSH;
616
    }
617
 
618
    Bits[NumWords - 1] >>= BitDistance;
619
 
620
    return *this;
621
  }
622
 
623
  BitVector &operator<<=(unsigned N) {
624
    assert(N <= Size);
625
    if (LLVM_UNLIKELY(empty() || N == 0))
626
      return *this;
627
 
628
    unsigned NumWords = Bits.size();
629
    assert(NumWords >= 1);
630
 
631
    wordShl(N / BITWORD_SIZE);
632
 
633
    unsigned BitDistance = N % BITWORD_SIZE;
634
    if (BitDistance == 0)
635
      return *this;
636
 
637
    // When the shift size is not a multiple of the word size, then we have
638
    // a tricky situation where each word in succession needs to extract some
639
    // of the bits from the previous word and or them into this word while
640
    // shifting this word to make room for the new bits.  This has to be done
641
    // for every word in the array.  This is similar to the algorithm outlined
642
    // in operator>>=, but backwards.
643
 
644
    // Since we're shifting each word left, some bits will fall off the end
645
    // of each word to the left, and empty space will be created on the right.
646
    // The first word in the array will lose bits permanently, so starting at
647
    // the end, work backwards shifting each word to the left, and OR'ing
648
    // in the bits from the end of the next word to the beginning of the
649
    // current word.
650
 
651
    // Example:
652
    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
653
    //   by 4 bits.
654
    // Step 1: Word[2] <<= 4           ; 0x23344550
655
    // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
656
    // Step 3: Word[1] <<= 4           ; 0xEFF00110
657
    // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
658
    // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
659
    // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
660
    const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
661
    const unsigned RSH = BITWORD_SIZE - BitDistance;
662
 
663
    for (int I = NumWords - 1; I > 0; --I) {
664
      Bits[I] <<= BitDistance;
665
      Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
666
    }
667
    Bits[0] <<= BitDistance;
668
    clear_unused_bits();
669
 
670
    return *this;
671
  }
672
 
673
  void swap(BitVector &RHS) {
674
    std::swap(Bits, RHS.Bits);
675
    std::swap(Size, RHS.Size);
676
  }
677
 
678
  void invalid() {
679
    assert(!Size && Bits.empty());
680
    Size = (unsigned)-1;
681
  }
682
  bool isInvalid() const { return Size == (unsigned)-1; }
683
 
684
  ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; }
685
 
686
  //===--------------------------------------------------------------------===//
687
  // Portable bit mask operations.
688
  //===--------------------------------------------------------------------===//
689
  //
690
  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
691
  // fixed word size makes it easier to work with literal bit vector constants
692
  // in portable code.
693
  //
694
  // The LSB in each word is the lowest numbered bit.  The size of a portable
695
  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
696
  // given, the bit mask is assumed to cover the entire BitVector.
697
 
698
  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
699
  /// This computes "*this |= Mask".
700
  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
701
    applyMask<true, false>(Mask, MaskWords);
702
  }
703
 
704
  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
705
  /// Don't resize. This computes "*this &= ~Mask".
706
  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
707
    applyMask<false, false>(Mask, MaskWords);
708
  }
709
 
710
  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
711
  /// Don't resize.  This computes "*this |= ~Mask".
712
  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
713
    applyMask<true, true>(Mask, MaskWords);
714
  }
715
 
716
  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
717
  /// Don't resize.  This computes "*this &= Mask".
718
  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
719
    applyMask<false, true>(Mask, MaskWords);
720
  }
721
 
722
private:
723
  /// Perform a logical left shift of \p Count words by moving everything
724
  /// \p Count words to the right in memory.
725
  ///
726
  /// While confusing, words are stored from least significant at Bits[0] to
727
  /// most significant at Bits[NumWords-1].  A logical shift left, however,
728
  /// moves the current least significant bit to a higher logical index, and
729
  /// fills the previous least significant bits with 0.  Thus, we actually
730
  /// need to move the bytes of the memory to the right, not to the left.
731
  /// Example:
732
  ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
733
  /// represents a BitVector where 0xBBBBAAAA contain the least significant
734
  /// bits.  So if we want to shift the BitVector left by 2 words, we need
735
  /// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
736
  /// memmove which moves right, not left.
737
  void wordShl(uint32_t Count) {
738
    if (Count == 0)
739
      return;
740
 
741
    uint32_t NumWords = Bits.size();
742
 
743
    // Since we always move Word-sized chunks of data with src and dest both
744
    // aligned to a word-boundary, we don't need to worry about endianness
745
    // here.
746
    std::copy(Bits.begin(), Bits.begin() + NumWords - Count,
747
              Bits.begin() + Count);
748
    std::fill(Bits.begin(), Bits.begin() + Count, 0);
749
    clear_unused_bits();
750
  }
751
 
752
  /// Perform a logical right shift of \p Count words by moving those
753
  /// words to the left in memory.  See wordShl for more information.
754
  ///
755
  void wordShr(uint32_t Count) {
756
    if (Count == 0)
757
      return;
758
 
759
    uint32_t NumWords = Bits.size();
760
 
761
    std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin());
762
    std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0);
763
  }
764
 
765
  int next_unset_in_word(int WordIndex, BitWord Word) const {
766
    unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
767
    return Result < size() ? Result : -1;
768
  }
769
 
770
  unsigned NumBitWords(unsigned S) const {
771
    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
772
  }
773
 
774
  // Set the unused bits in the high words.
775
  void set_unused_bits(bool t = true) {
776
    //  Then set any stray high bits of the last used word.
777
    if (unsigned ExtraBits = Size % BITWORD_SIZE) {
778
      BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
779
      if (t)
780
        Bits.back() |= ExtraBitMask;
781
      else
782
        Bits.back() &= ~ExtraBitMask;
783
    }
784
  }
785
 
786
  // Clear the unused bits in the high words.
787
  void clear_unused_bits() {
788
    set_unused_bits(false);
789
  }
790
 
791
  void init_words(bool t) {
792
    std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t);
793
  }
794
 
795
  template<bool AddBits, bool InvertMask>
796
  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
797
    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
798
    MaskWords = std::min(MaskWords, (size() + 31) / 32);
799
    const unsigned Scale = BITWORD_SIZE / 32;
800
    unsigned i;
801
    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
802
      BitWord BW = Bits[i];
803
      // This inner loop should unroll completely when BITWORD_SIZE > 32.
804
      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
805
        uint32_t M = *Mask++;
806
        if (InvertMask) M = ~M;
807
        if (AddBits) BW |=   BitWord(M) << b;
808
        else         BW &= ~(BitWord(M) << b);
809
      }
810
      Bits[i] = BW;
811
    }
812
    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
813
      uint32_t M = *Mask++;
814
      if (InvertMask) M = ~M;
815
      if (AddBits) Bits[i] |=   BitWord(M) << b;
816
      else         Bits[i] &= ~(BitWord(M) << b);
817
    }
818
    if (AddBits)
819
      clear_unused_bits();
820
  }
821
 
822
public:
823
  /// Return the size (in bytes) of the bit vector.
824
  size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); }
825
  size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
826
};
827
 
828
inline BitVector::size_type capacity_in_bytes(const BitVector &X) {
829
  return X.getMemorySize();
830
}
831
 
832
template <> struct DenseMapInfo<BitVector> {
833
  static inline BitVector getEmptyKey() { return {}; }
834
  static inline BitVector getTombstoneKey() {
835
    BitVector V;
836
    V.invalid();
837
    return V;
838
  }
839
  static unsigned getHashValue(const BitVector &V) {
840
    return DenseMapInfo<std::pair<BitVector::size_type, ArrayRef<uintptr_t>>>::
841
        getHashValue(std::make_pair(V.size(), V.getData()));
842
  }
843
  static bool isEqual(const BitVector &LHS, const BitVector &RHS) {
844
    if (LHS.isInvalid() || RHS.isInvalid())
845
      return LHS.isInvalid() == RHS.isInvalid();
846
    return LHS == RHS;
847
  }
848
};
849
} // end namespace llvm
850
 
851
namespace std {
852
  /// Implement std::swap in terms of BitVector swap.
853
inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); }
854
} // end namespace std
855
 
856
#endif // LLVM_ADT_BITVECTOR_H