Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file implements a class to represent arbitrary precision
11
/// integral constant values and operations on them.
12
///
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_ADT_APINT_H
16
#define LLVM_ADT_APINT_H
17
 
18
#include "llvm/Support/Compiler.h"
19
#include "llvm/Support/MathExtras.h"
20
#include <cassert>
21
#include <climits>
22
#include <cstring>
23
#include <optional>
24
#include <utility>
25
 
26
namespace llvm {
27
class FoldingSetNodeID;
28
class StringRef;
29
class hash_code;
30
class raw_ostream;
31
 
32
template <typename T> class SmallVectorImpl;
33
template <typename T> class ArrayRef;
34
template <typename T, typename Enable> struct DenseMapInfo;
35
 
36
class APInt;
37
 
38
inline APInt operator-(APInt);
39
 
40
//===----------------------------------------------------------------------===//
41
//                              APInt Class
42
//===----------------------------------------------------------------------===//
43
 
44
/// Class for arbitrary precision integers.
45
///
46
/// APInt is a functional replacement for common case unsigned integer type like
47
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50
/// and methods to manipulate integer values of any bit-width. It supports both
51
/// the typical integer arithmetic and comparison operations as well as bitwise
52
/// manipulation.
53
///
54
/// The class has several invariants worth noting:
55
///   * All bit, byte, and word positions are zero-based.
56
///   * Once the bit width is set, it doesn't change except by the Truncate,
57
///     SignExtend, or ZeroExtend operations.
58
///   * All binary operators must be on APInt instances of the same bit width.
59
///     Attempting to use these operators on instances with different bit
60
///     widths will yield an assertion.
61
///   * The value is stored canonically as an unsigned value. For operations
62
///     where it makes a difference, there are both signed and unsigned variants
63
///     of the operation. For example, sdiv and udiv. However, because the bit
64
///     widths must be the same, operations such as Mul and Add produce the same
65
///     results regardless of whether the values are interpreted as signed or
66
///     not.
67
///   * In general, the class tries to follow the style of computation that LLVM
68
///     uses in its IR. This simplifies its use for LLVM.
69
///   * APInt supports zero-bit-width values, but operations that require bits
70
///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
71
///     integer).  This means that operations like zero extension and logical
72
///     shifts are defined, but sign extension and ashr is not.  Zero bit values
73
///     compare and hash equal to themselves, and countLeadingZeros returns 0.
74
///
75
class [[nodiscard]] APInt {
76
public:
77
  typedef uint64_t WordType;
78
 
79
  /// This enum is used to hold the constants we needed for APInt.
80
  enum : unsigned {
81
    /// Byte size of a word.
82
    APINT_WORD_SIZE = sizeof(WordType),
83
    /// Bits in a word.
84
    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
85
  };
86
 
87
  enum class Rounding {
88
    DOWN,
89
    TOWARD_ZERO,
90
    UP,
91
  };
92
 
93
  static constexpr WordType WORDTYPE_MAX = ~WordType(0);
94
 
95
  /// \name Constructors
96
  /// @{
97
 
98
  /// Create a new APInt of numBits width, initialized as val.
99
  ///
100
  /// If isSigned is true then val is treated as if it were a signed value
101
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
102
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
103
  /// the range of val are zero filled).
104
  ///
105
  /// \param numBits the bit width of the constructed APInt
106
  /// \param val the initial value of the APInt
107
  /// \param isSigned how to treat signedness of val
108
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
109
      : BitWidth(numBits) {
110
    if (isSingleWord()) {
111
      U.VAL = val;
112
      clearUnusedBits();
113
    } else {
114
      initSlowCase(val, isSigned);
115
    }
116
  }
117
 
118
  /// Construct an APInt of numBits width, initialized as bigVal[].
119
  ///
120
  /// Note that bigVal.size() can be smaller or larger than the corresponding
121
  /// bit width but any extraneous bits will be dropped.
122
  ///
123
  /// \param numBits the bit width of the constructed APInt
124
  /// \param bigVal a sequence of words to form the initial value of the APInt
125
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
126
 
127
  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
128
  /// deprecated because this constructor is prone to ambiguity with the
129
  /// APInt(unsigned, uint64_t, bool) constructor.
130
  ///
131
  /// If this overload is ever deleted, care should be taken to prevent calls
132
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
133
  /// constructor.
134
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
135
 
136
  /// Construct an APInt from a string representation.
137
  ///
138
  /// This constructor interprets the string \p str in the given radix. The
139
  /// interpretation stops when the first character that is not suitable for the
140
  /// radix is encountered, or the end of the string. Acceptable radix values
141
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
142
  /// string to require more bits than numBits.
143
  ///
144
  /// \param numBits the bit width of the constructed APInt
145
  /// \param str the string to be interpreted
146
  /// \param radix the radix to use for the conversion
147
  APInt(unsigned numBits, StringRef str, uint8_t radix);
148
 
149
  /// Default constructor that creates an APInt with a 1-bit zero value.
150
  explicit APInt() { U.VAL = 0; }
151
 
152
  /// Copy Constructor.
153
  APInt(const APInt &that) : BitWidth(that.BitWidth) {
154
    if (isSingleWord())
155
      U.VAL = that.U.VAL;
156
    else
157
      initSlowCase(that);
158
  }
159
 
160
  /// Move Constructor.
161
  APInt(APInt &&that) : BitWidth(that.BitWidth) {
162
    memcpy(&U, &that.U, sizeof(U));
163
    that.BitWidth = 0;
164
  }
165
 
166
  /// Destructor.
167
  ~APInt() {
168
    if (needsCleanup())
169
      delete[] U.pVal;
170
  }
171
 
172
  /// @}
173
  /// \name Value Generators
174
  /// @{
175
 
176
  /// Get the '0' value for the specified bit-width.
177
  static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
178
 
179
  /// NOTE: This is soft-deprecated.  Please use `getZero()` instead.
180
  static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
181
 
182
  /// Return an APInt zero bits wide.
183
  static APInt getZeroWidth() { return getZero(0); }
184
 
185
  /// Gets maximum unsigned value of APInt for specific bit width.
186
  static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187
 
188
  /// Gets maximum signed value of APInt for a specific bit width.
189
  static APInt getSignedMaxValue(unsigned numBits) {
190
    APInt API = getAllOnes(numBits);
191
    API.clearBit(numBits - 1);
192
    return API;
193
  }
194
 
195
  /// Gets minimum unsigned value of APInt for a specific bit width.
196
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197
 
198
  /// Gets minimum signed value of APInt for a specific bit width.
199
  static APInt getSignedMinValue(unsigned numBits) {
200
    APInt API(numBits, 0);
201
    API.setBit(numBits - 1);
202
    return API;
203
  }
204
 
205
  /// Get the SignMask for a specific bit width.
206
  ///
207
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
208
  /// readability when we want to get a SignMask.
209
  static APInt getSignMask(unsigned BitWidth) {
210
    return getSignedMinValue(BitWidth);
211
  }
212
 
213
  /// Return an APInt of a specified width with all bits set.
214
  static APInt getAllOnes(unsigned numBits) {
215
    return APInt(numBits, WORDTYPE_MAX, true);
216
  }
217
 
218
  /// NOTE: This is soft-deprecated.  Please use `getAllOnes()` instead.
219
  static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
220
 
221
  /// Return an APInt with exactly one bit set in the result.
222
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
223
    APInt Res(numBits, 0);
224
    Res.setBit(BitNo);
225
    return Res;
226
  }
227
 
228
  /// Get a value with a block of bits set.
229
  ///
230
  /// Constructs an APInt value that has a contiguous range of bits set. The
231
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
232
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
233
  /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
234
  /// \p hiBit.
235
  ///
236
  /// \param numBits the intended bit width of the result
237
  /// \param loBit the index of the lowest bit set.
238
  /// \param hiBit the index of the highest bit set.
239
  ///
240
  /// \returns An APInt value with the requested bits set.
241
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
242
    APInt Res(numBits, 0);
243
    Res.setBits(loBit, hiBit);
244
    return Res;
245
  }
246
 
247
  /// Wrap version of getBitsSet.
248
  /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
249
  /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
250
  /// with parameters (32, 28, 4), you would get 0xF000000F.
251
  /// If \p hiBit is equal to \p loBit, you would get a result with all bits
252
  /// set.
253
  static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
254
                                  unsigned hiBit) {
255
    APInt Res(numBits, 0);
256
    Res.setBitsWithWrap(loBit, hiBit);
257
    return Res;
258
  }
259
 
260
  /// Constructs an APInt value that has a contiguous range of bits set. The
261
  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
262
  /// bits will be zero. For example, with parameters(32, 12) you would get
263
  /// 0xFFFFF000.
264
  ///
265
  /// \param numBits the intended bit width of the result
266
  /// \param loBit the index of the lowest bit to set.
267
  ///
268
  /// \returns An APInt value with the requested bits set.
269
  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
270
    APInt Res(numBits, 0);
271
    Res.setBitsFrom(loBit);
272
    return Res;
273
  }
274
 
275
  /// Constructs an APInt value that has the top hiBitsSet bits set.
276
  ///
277
  /// \param numBits the bitwidth of the result
278
  /// \param hiBitsSet the number of high-order bits set in the result.
279
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
280
    APInt Res(numBits, 0);
281
    Res.setHighBits(hiBitsSet);
282
    return Res;
283
  }
284
 
285
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
286
  ///
287
  /// \param numBits the bitwidth of the result
288
  /// \param loBitsSet the number of low-order bits set in the result.
289
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
290
    APInt Res(numBits, 0);
291
    Res.setLowBits(loBitsSet);
292
    return Res;
293
  }
294
 
295
  /// Return a value containing V broadcasted over NewLen bits.
296
  static APInt getSplat(unsigned NewLen, const APInt &V);
297
 
298
  /// @}
299
  /// \name Value Tests
300
  /// @{
301
 
302
  /// Determine if this APInt just has one word to store value.
303
  ///
304
  /// \returns true if the number of bits <= 64, false otherwise.
305
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
306
 
307
  /// Determine sign of this APInt.
308
  ///
309
  /// This tests the high bit of this APInt to determine if it is set.
310
  ///
311
  /// \returns true if this APInt is negative, false otherwise
312
  bool isNegative() const { return (*this)[BitWidth - 1]; }
313
 
314
  /// Determine if this APInt Value is non-negative (>= 0)
315
  ///
316
  /// This tests the high bit of the APInt to determine if it is unset.
317
  bool isNonNegative() const { return !isNegative(); }
318
 
319
  /// Determine if sign bit of this APInt is set.
320
  ///
321
  /// This tests the high bit of this APInt to determine if it is set.
322
  ///
323
  /// \returns true if this APInt has its sign bit set, false otherwise.
324
  bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
325
 
326
  /// Determine if sign bit of this APInt is clear.
327
  ///
328
  /// This tests the high bit of this APInt to determine if it is clear.
329
  ///
330
  /// \returns true if this APInt has its sign bit clear, false otherwise.
331
  bool isSignBitClear() const { return !isSignBitSet(); }
332
 
333
  /// Determine if this APInt Value is positive.
334
  ///
335
  /// This tests if the value of this APInt is positive (> 0). Note
336
  /// that 0 is not a positive value.
337
  ///
338
  /// \returns true if this APInt is positive.
339
  bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
340
 
341
  /// Determine if this APInt Value is non-positive (<= 0).
342
  ///
343
  /// \returns true if this APInt is non-positive.
344
  bool isNonPositive() const { return !isStrictlyPositive(); }
345
 
346
  /// Determine if this APInt Value only has the specified bit set.
347
  ///
348
  /// \returns true if this APInt only has the specified bit set.
349
  bool isOneBitSet(unsigned BitNo) const {
350
    return (*this)[BitNo] && countPopulation() == 1;
351
  }
352
 
353
  /// Determine if all bits are set.  This is true for zero-width values.
354
  bool isAllOnes() const {
355
    if (BitWidth == 0)
356
      return true;
357
    if (isSingleWord())
358
      return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
359
    return countTrailingOnesSlowCase() == BitWidth;
360
  }
361
 
362
  /// NOTE: This is soft-deprecated.  Please use `isAllOnes()` instead.
363
  bool isAllOnesValue() const { return isAllOnes(); }
364
 
365
  /// Determine if this value is zero, i.e. all bits are clear.
366
  bool isZero() const {
367
    if (isSingleWord())
368
      return U.VAL == 0;
369
    return countLeadingZerosSlowCase() == BitWidth;
370
  }
371
 
372
  /// NOTE: This is soft-deprecated.  Please use `isZero()` instead.
373
  bool isNullValue() const { return isZero(); }
374
 
375
  /// Determine if this is a value of 1.
376
  ///
377
  /// This checks to see if the value of this APInt is one.
378
  bool isOne() const {
379
    if (isSingleWord())
380
      return U.VAL == 1;
381
    return countLeadingZerosSlowCase() == BitWidth - 1;
382
  }
383
 
384
  /// NOTE: This is soft-deprecated.  Please use `isOne()` instead.
385
  bool isOneValue() const { return isOne(); }
386
 
387
  /// Determine if this is the largest unsigned value.
388
  ///
389
  /// This checks to see if the value of this APInt is the maximum unsigned
390
  /// value for the APInt's bit width.
391
  bool isMaxValue() const { return isAllOnes(); }
392
 
393
  /// Determine if this is the largest signed value.
394
  ///
395
  /// This checks to see if the value of this APInt is the maximum signed
396
  /// value for the APInt's bit width.
397
  bool isMaxSignedValue() const {
398
    if (isSingleWord()) {
399
      assert(BitWidth && "zero width values not allowed");
400
      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
401
    }
402
    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
403
  }
404
 
405
  /// Determine if this is the smallest unsigned value.
406
  ///
407
  /// This checks to see if the value of this APInt is the minimum unsigned
408
  /// value for the APInt's bit width.
409
  bool isMinValue() const { return isZero(); }
410
 
411
  /// Determine if this is the smallest signed value.
412
  ///
413
  /// This checks to see if the value of this APInt is the minimum signed
414
  /// value for the APInt's bit width.
415
  bool isMinSignedValue() const {
416
    if (isSingleWord()) {
417
      assert(BitWidth && "zero width values not allowed");
418
      return U.VAL == (WordType(1) << (BitWidth - 1));
419
    }
420
    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
421
  }
422
 
423
  /// Check if this APInt has an N-bits unsigned integer value.
424
  bool isIntN(unsigned N) const { return getActiveBits() <= N; }
425
 
426
  /// Check if this APInt has an N-bits signed integer value.
427
  bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
428
 
429
  /// Check if this APInt's value is a power of two greater than zero.
430
  ///
431
  /// \returns true if the argument APInt value is a power of two > 0.
432
  bool isPowerOf2() const {
433
    if (isSingleWord()) {
434
      assert(BitWidth && "zero width values not allowed");
435
      return isPowerOf2_64(U.VAL);
436
    }
437
    return countPopulationSlowCase() == 1;
438
  }
439
 
440
  /// Check if this APInt's negated value is a power of two greater than zero.
441
  bool isNegatedPowerOf2() const {
442
    assert(BitWidth && "zero width values not allowed");
443
    if (isNonNegative())
444
      return false;
445
    // NegatedPowerOf2 - shifted mask in the top bits.
446
    unsigned LO = countLeadingOnes();
447
    unsigned TZ = countTrailingZeros();
448
    return (LO + TZ) == BitWidth;
449
  }
450
 
451
  /// Check if the APInt's value is returned by getSignMask.
452
  ///
453
  /// \returns true if this is the value returned by getSignMask.
454
  bool isSignMask() const { return isMinSignedValue(); }
455
 
456
  /// Convert APInt to a boolean value.
457
  ///
458
  /// This converts the APInt to a boolean value as a test against zero.
459
  bool getBoolValue() const { return !isZero(); }
460
 
461
  /// If this value is smaller than the specified limit, return it, otherwise
462
  /// return the limit value.  This causes the value to saturate to the limit.
463
  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
464
    return ugt(Limit) ? Limit : getZExtValue();
465
  }
466
 
467
  /// Check if the APInt consists of a repeated bit pattern.
468
  ///
469
  /// e.g. 0x01010101 satisfies isSplat(8).
470
  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
471
  /// width without remainder.
472
  bool isSplat(unsigned SplatSizeInBits) const;
473
 
474
  /// \returns true if this APInt value is a sequence of \param numBits ones
475
  /// starting at the least significant bit with the remainder zero.
476
  bool isMask(unsigned numBits) const {
477
    assert(numBits != 0 && "numBits must be non-zero");
478
    assert(numBits <= BitWidth && "numBits out of range");
479
    if (isSingleWord())
480
      return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
481
    unsigned Ones = countTrailingOnesSlowCase();
482
    return (numBits == Ones) &&
483
           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484
  }
485
 
486
  /// \returns true if this APInt is a non-empty sequence of ones starting at
487
  /// the least significant bit with the remainder zero.
488
  /// Ex. isMask(0x0000FFFFU) == true.
489
  bool isMask() const {
490
    if (isSingleWord())
491
      return isMask_64(U.VAL);
492
    unsigned Ones = countTrailingOnesSlowCase();
493
    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
494
  }
495
 
496
  /// Return true if this APInt value contains a non-empty sequence of ones with
497
  /// the remainder zero.
498
  bool isShiftedMask() const {
499
    if (isSingleWord())
500
      return isShiftedMask_64(U.VAL);
501
    unsigned Ones = countPopulationSlowCase();
502
    unsigned LeadZ = countLeadingZerosSlowCase();
503
    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
504
  }
505
 
506
  /// Return true if this APInt value contains a non-empty sequence of ones with
507
  /// the remainder zero. If true, \p MaskIdx will specify the index of the
508
  /// lowest set bit and \p MaskLen is updated to specify the length of the
509
  /// mask, else neither are updated.
510
  bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
511
    if (isSingleWord())
512
      return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
513
    unsigned Ones = countPopulationSlowCase();
514
    unsigned LeadZ = countLeadingZerosSlowCase();
515
    unsigned TrailZ = countTrailingZerosSlowCase();
516
    if ((Ones + LeadZ + TrailZ) != BitWidth)
517
      return false;
518
    MaskLen = Ones;
519
    MaskIdx = TrailZ;
520
    return true;
521
  }
522
 
523
  /// Compute an APInt containing numBits highbits from this APInt.
524
  ///
525
  /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
526
  /// bits and right shift to the least significant bit.
527
  ///
528
  /// \returns the high "numBits" bits of this APInt.
529
  APInt getHiBits(unsigned numBits) const;
530
 
531
  /// Compute an APInt containing numBits lowbits from this APInt.
532
  ///
533
  /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
534
  /// bits.
535
  ///
536
  /// \returns the low "numBits" bits of this APInt.
537
  APInt getLoBits(unsigned numBits) const;
538
 
539
  /// Determine if two APInts have the same value, after zero-extending
540
  /// one of them (if needed!) to ensure that the bit-widths match.
541
  static bool isSameValue(const APInt &I1, const APInt &I2) {
542
    if (I1.getBitWidth() == I2.getBitWidth())
543
      return I1 == I2;
544
 
545
    if (I1.getBitWidth() > I2.getBitWidth())
546
      return I1 == I2.zext(I1.getBitWidth());
547
 
548
    return I1.zext(I2.getBitWidth()) == I2;
549
  }
550
 
551
  /// Overload to compute a hash_code for an APInt value.
552
  friend hash_code hash_value(const APInt &Arg);
553
 
554
  /// This function returns a pointer to the internal storage of the APInt.
555
  /// This is useful for writing out the APInt in binary form without any
556
  /// conversions.
557
  const uint64_t *getRawData() const {
558
    if (isSingleWord())
559
      return &U.VAL;
560
    return &U.pVal[0];
561
  }
562
 
563
  /// @}
564
  /// \name Unary Operators
565
  /// @{
566
 
567
  /// Postfix increment operator.  Increment *this by 1.
568
  ///
569
  /// \returns a new APInt value representing the original value of *this.
570
  APInt operator++(int) {
571
    APInt API(*this);
572
    ++(*this);
573
    return API;
574
  }
575
 
576
  /// Prefix increment operator.
577
  ///
578
  /// \returns *this incremented by one
579
  APInt &operator++();
580
 
581
  /// Postfix decrement operator. Decrement *this by 1.
582
  ///
583
  /// \returns a new APInt value representing the original value of *this.
584
  APInt operator--(int) {
585
    APInt API(*this);
586
    --(*this);
587
    return API;
588
  }
589
 
590
  /// Prefix decrement operator.
591
  ///
592
  /// \returns *this decremented by one.
593
  APInt &operator--();
594
 
595
  /// Logical negation operation on this APInt returns true if zero, like normal
596
  /// integers.
597
  bool operator!() const { return isZero(); }
598
 
599
  /// @}
600
  /// \name Assignment Operators
601
  /// @{
602
 
603
  /// Copy assignment operator.
604
  ///
605
  /// \returns *this after assignment of RHS.
606
  APInt &operator=(const APInt &RHS) {
607
    // The common case (both source or dest being inline) doesn't require
608
    // allocation or deallocation.
609
    if (isSingleWord() && RHS.isSingleWord()) {
610
      U.VAL = RHS.U.VAL;
611
      BitWidth = RHS.BitWidth;
612
      return *this;
613
    }
614
 
615
    assignSlowCase(RHS);
616
    return *this;
617
  }
618
 
619
  /// Move assignment operator.
620
  APInt &operator=(APInt &&that) {
621
#ifdef EXPENSIVE_CHECKS
622
    // Some std::shuffle implementations still do self-assignment.
623
    if (this == &that)
624
      return *this;
625
#endif
626
    assert(this != &that && "Self-move not supported");
627
    if (!isSingleWord())
628
      delete[] U.pVal;
629
 
630
    // Use memcpy so that type based alias analysis sees both VAL and pVal
631
    // as modified.
632
    memcpy(&U, &that.U, sizeof(U));
633
 
634
    BitWidth = that.BitWidth;
635
    that.BitWidth = 0;
636
    return *this;
637
  }
638
 
639
  /// Assignment operator.
640
  ///
641
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
642
  /// the bit width, the excess bits are truncated. If the bit width is larger
643
  /// than 64, the value is zero filled in the unspecified high order bits.
644
  ///
645
  /// \returns *this after assignment of RHS value.
646
  APInt &operator=(uint64_t RHS) {
647
    if (isSingleWord()) {
648
      U.VAL = RHS;
649
      return clearUnusedBits();
650
    }
651
    U.pVal[0] = RHS;
652
    memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
653
    return *this;
654
  }
655
 
656
  /// Bitwise AND assignment operator.
657
  ///
658
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
659
  /// assigned to *this.
660
  ///
661
  /// \returns *this after ANDing with RHS.
662
  APInt &operator&=(const APInt &RHS) {
663
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
664
    if (isSingleWord())
665
      U.VAL &= RHS.U.VAL;
666
    else
667
      andAssignSlowCase(RHS);
668
    return *this;
669
  }
670
 
671
  /// Bitwise AND assignment operator.
672
  ///
673
  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
674
  /// logically zero-extended or truncated to match the bit-width of
675
  /// the LHS.
676
  APInt &operator&=(uint64_t RHS) {
677
    if (isSingleWord()) {
678
      U.VAL &= RHS;
679
      return *this;
680
    }
681
    U.pVal[0] &= RHS;
682
    memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
683
    return *this;
684
  }
685
 
686
  /// Bitwise OR assignment operator.
687
  ///
688
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
689
  /// assigned *this;
690
  ///
691
  /// \returns *this after ORing with RHS.
692
  APInt &operator|=(const APInt &RHS) {
693
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
694
    if (isSingleWord())
695
      U.VAL |= RHS.U.VAL;
696
    else
697
      orAssignSlowCase(RHS);
698
    return *this;
699
  }
700
 
701
  /// Bitwise OR assignment operator.
702
  ///
703
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
704
  /// logically zero-extended or truncated to match the bit-width of
705
  /// the LHS.
706
  APInt &operator|=(uint64_t RHS) {
707
    if (isSingleWord()) {
708
      U.VAL |= RHS;
709
      return clearUnusedBits();
710
    }
711
    U.pVal[0] |= RHS;
712
    return *this;
713
  }
714
 
715
  /// Bitwise XOR assignment operator.
716
  ///
717
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
718
  /// assigned to *this.
719
  ///
720
  /// \returns *this after XORing with RHS.
721
  APInt &operator^=(const APInt &RHS) {
722
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
723
    if (isSingleWord())
724
      U.VAL ^= RHS.U.VAL;
725
    else
726
      xorAssignSlowCase(RHS);
727
    return *this;
728
  }
729
 
730
  /// Bitwise XOR assignment operator.
731
  ///
732
  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
733
  /// logically zero-extended or truncated to match the bit-width of
734
  /// the LHS.
735
  APInt &operator^=(uint64_t RHS) {
736
    if (isSingleWord()) {
737
      U.VAL ^= RHS;
738
      return clearUnusedBits();
739
    }
740
    U.pVal[0] ^= RHS;
741
    return *this;
742
  }
743
 
744
  /// Multiplication assignment operator.
745
  ///
746
  /// Multiplies this APInt by RHS and assigns the result to *this.
747
  ///
748
  /// \returns *this
749
  APInt &operator*=(const APInt &RHS);
750
  APInt &operator*=(uint64_t RHS);
751
 
752
  /// Addition assignment operator.
753
  ///
754
  /// Adds RHS to *this and assigns the result to *this.
755
  ///
756
  /// \returns *this
757
  APInt &operator+=(const APInt &RHS);
758
  APInt &operator+=(uint64_t RHS);
759
 
760
  /// Subtraction assignment operator.
761
  ///
762
  /// Subtracts RHS from *this and assigns the result to *this.
763
  ///
764
  /// \returns *this
765
  APInt &operator-=(const APInt &RHS);
766
  APInt &operator-=(uint64_t RHS);
767
 
768
  /// Left-shift assignment function.
769
  ///
770
  /// Shifts *this left by shiftAmt and assigns the result to *this.
771
  ///
772
  /// \returns *this after shifting left by ShiftAmt
773
  APInt &operator<<=(unsigned ShiftAmt) {
774
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
775
    if (isSingleWord()) {
776
      if (ShiftAmt == BitWidth)
777
        U.VAL = 0;
778
      else
779
        U.VAL <<= ShiftAmt;
780
      return clearUnusedBits();
781
    }
782
    shlSlowCase(ShiftAmt);
783
    return *this;
784
  }
785
 
786
  /// Left-shift assignment function.
787
  ///
788
  /// Shifts *this left by shiftAmt and assigns the result to *this.
789
  ///
790
  /// \returns *this after shifting left by ShiftAmt
791
  APInt &operator<<=(const APInt &ShiftAmt);
792
 
793
  /// @}
794
  /// \name Binary Operators
795
  /// @{
796
 
797
  /// Multiplication operator.
798
  ///
799
  /// Multiplies this APInt by RHS and returns the result.
800
  APInt operator*(const APInt &RHS) const;
801
 
802
  /// Left logical shift operator.
803
  ///
804
  /// Shifts this APInt left by \p Bits and returns the result.
805
  APInt operator<<(unsigned Bits) const { return shl(Bits); }
806
 
807
  /// Left logical shift operator.
808
  ///
809
  /// Shifts this APInt left by \p Bits and returns the result.
810
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
811
 
812
  /// Arithmetic right-shift function.
813
  ///
814
  /// Arithmetic right-shift this APInt by shiftAmt.
815
  APInt ashr(unsigned ShiftAmt) const {
816
    APInt R(*this);
817
    R.ashrInPlace(ShiftAmt);
818
    return R;
819
  }
820
 
821
  /// Arithmetic right-shift this APInt by ShiftAmt in place.
822
  void ashrInPlace(unsigned ShiftAmt) {
823
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
824
    if (isSingleWord()) {
825
      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
826
      if (ShiftAmt == BitWidth)
827
        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
828
      else
829
        U.VAL = SExtVAL >> ShiftAmt;
830
      clearUnusedBits();
831
      return;
832
    }
833
    ashrSlowCase(ShiftAmt);
834
  }
835
 
836
  /// Logical right-shift function.
837
  ///
838
  /// Logical right-shift this APInt by shiftAmt.
839
  APInt lshr(unsigned shiftAmt) const {
840
    APInt R(*this);
841
    R.lshrInPlace(shiftAmt);
842
    return R;
843
  }
844
 
845
  /// Logical right-shift this APInt by ShiftAmt in place.
846
  void lshrInPlace(unsigned ShiftAmt) {
847
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
848
    if (isSingleWord()) {
849
      if (ShiftAmt == BitWidth)
850
        U.VAL = 0;
851
      else
852
        U.VAL >>= ShiftAmt;
853
      return;
854
    }
855
    lshrSlowCase(ShiftAmt);
856
  }
857
 
858
  /// Left-shift function.
859
  ///
860
  /// Left-shift this APInt by shiftAmt.
861
  APInt shl(unsigned shiftAmt) const {
862
    APInt R(*this);
863
    R <<= shiftAmt;
864
    return R;
865
  }
866
 
867
  /// relative logical shift right
868
  APInt relativeLShr(int RelativeShift) const {
869
    return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
870
  }
871
 
872
  /// relative logical shift left
873
  APInt relativeLShl(int RelativeShift) const {
874
    return relativeLShr(-RelativeShift);
875
  }
876
 
877
  /// relative arithmetic shift right
878
  APInt relativeAShr(int RelativeShift) const {
879
    return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
880
  }
881
 
882
  /// relative arithmetic shift left
883
  APInt relativeAShl(int RelativeShift) const {
884
    return relativeAShr(-RelativeShift);
885
  }
886
 
887
  /// Rotate left by rotateAmt.
888
  APInt rotl(unsigned rotateAmt) const;
889
 
890
  /// Rotate right by rotateAmt.
891
  APInt rotr(unsigned rotateAmt) const;
892
 
893
  /// Arithmetic right-shift function.
894
  ///
895
  /// Arithmetic right-shift this APInt by shiftAmt.
896
  APInt ashr(const APInt &ShiftAmt) const {
897
    APInt R(*this);
898
    R.ashrInPlace(ShiftAmt);
899
    return R;
900
  }
901
 
902
  /// Arithmetic right-shift this APInt by shiftAmt in place.
903
  void ashrInPlace(const APInt &shiftAmt);
904
 
905
  /// Logical right-shift function.
906
  ///
907
  /// Logical right-shift this APInt by shiftAmt.
908
  APInt lshr(const APInt &ShiftAmt) const {
909
    APInt R(*this);
910
    R.lshrInPlace(ShiftAmt);
911
    return R;
912
  }
913
 
914
  /// Logical right-shift this APInt by ShiftAmt in place.
915
  void lshrInPlace(const APInt &ShiftAmt);
916
 
917
  /// Left-shift function.
918
  ///
919
  /// Left-shift this APInt by shiftAmt.
920
  APInt shl(const APInt &ShiftAmt) const {
921
    APInt R(*this);
922
    R <<= ShiftAmt;
923
    return R;
924
  }
925
 
926
  /// Rotate left by rotateAmt.
927
  APInt rotl(const APInt &rotateAmt) const;
928
 
929
  /// Rotate right by rotateAmt.
930
  APInt rotr(const APInt &rotateAmt) const;
931
 
932
  /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
933
  /// equivalent to:
934
  ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
935
  APInt concat(const APInt &NewLSB) const {
936
    /// If the result will be small, then both the merged values are small.
937
    unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
938
    if (NewWidth <= APINT_BITS_PER_WORD)
939
      return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
940
    return concatSlowCase(NewLSB);
941
  }
942
 
943
  /// Unsigned division operation.
944
  ///
945
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
946
  /// RHS are treated as unsigned quantities for purposes of this division.
947
  ///
948
  /// \returns a new APInt value containing the division result, rounded towards
949
  /// zero.
950
  APInt udiv(const APInt &RHS) const;
951
  APInt udiv(uint64_t RHS) const;
952
 
953
  /// Signed division function for APInt.
954
  ///
955
  /// Signed divide this APInt by APInt RHS.
956
  ///
957
  /// The result is rounded towards zero.
958
  APInt sdiv(const APInt &RHS) const;
959
  APInt sdiv(int64_t RHS) const;
960
 
961
  /// Unsigned remainder operation.
962
  ///
963
  /// Perform an unsigned remainder operation on this APInt with RHS being the
964
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
965
  /// of this operation.
966
  ///
967
  /// \returns a new APInt value containing the remainder result
968
  APInt urem(const APInt &RHS) const;
969
  uint64_t urem(uint64_t RHS) const;
970
 
971
  /// Function for signed remainder operation.
972
  ///
973
  /// Signed remainder operation on APInt.
974
  ///
975
  /// Note that this is a true remainder operation and not a modulo operation
976
  /// because the sign follows the sign of the dividend which is *this.
977
  APInt srem(const APInt &RHS) const;
978
  int64_t srem(int64_t RHS) const;
979
 
980
  /// Dual division/remainder interface.
981
  ///
982
  /// Sometimes it is convenient to divide two APInt values and obtain both the
983
  /// quotient and remainder. This function does both operations in the same
984
  /// computation making it a little more efficient. The pair of input arguments
985
  /// may overlap with the pair of output arguments. It is safe to call
986
  /// udivrem(X, Y, X, Y), for example.
987
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
988
                      APInt &Remainder);
989
  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
990
                      uint64_t &Remainder);
991
 
992
  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
993
                      APInt &Remainder);
994
  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
995
                      int64_t &Remainder);
996
 
997
  // Operations that return overflow indicators.
998
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
999
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1000
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1001
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1002
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1003
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1004
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1005
  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1006
  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1007
 
1008
  // Operations that saturate
1009
  APInt sadd_sat(const APInt &RHS) const;
1010
  APInt uadd_sat(const APInt &RHS) const;
1011
  APInt ssub_sat(const APInt &RHS) const;
1012
  APInt usub_sat(const APInt &RHS) const;
1013
  APInt smul_sat(const APInt &RHS) const;
1014
  APInt umul_sat(const APInt &RHS) const;
1015
  APInt sshl_sat(const APInt &RHS) const;
1016
  APInt ushl_sat(const APInt &RHS) const;
1017
 
1018
  /// Array-indexing support.
1019
  ///
1020
  /// \returns the bit value at bitPosition
1021
  bool operator[](unsigned bitPosition) const {
1022
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1023
    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1024
  }
1025
 
1026
  /// @}
1027
  /// \name Comparison Operators
1028
  /// @{
1029
 
1030
  /// Equality operator.
1031
  ///
1032
  /// Compares this APInt with RHS for the validity of the equality
1033
  /// relationship.
1034
  bool operator==(const APInt &RHS) const {
1035
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1036
    if (isSingleWord())
1037
      return U.VAL == RHS.U.VAL;
1038
    return equalSlowCase(RHS);
1039
  }
1040
 
1041
  /// Equality operator.
1042
  ///
1043
  /// Compares this APInt with a uint64_t for the validity of the equality
1044
  /// relationship.
1045
  ///
1046
  /// \returns true if *this == Val
1047
  bool operator==(uint64_t Val) const {
1048
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1049
  }
1050
 
1051
  /// Equality comparison.
1052
  ///
1053
  /// Compares this APInt with RHS for the validity of the equality
1054
  /// relationship.
1055
  ///
1056
  /// \returns true if *this == Val
1057
  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1058
 
1059
  /// Inequality operator.
1060
  ///
1061
  /// Compares this APInt with RHS for the validity of the inequality
1062
  /// relationship.
1063
  ///
1064
  /// \returns true if *this != Val
1065
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1066
 
1067
  /// Inequality operator.
1068
  ///
1069
  /// Compares this APInt with a uint64_t for the validity of the inequality
1070
  /// relationship.
1071
  ///
1072
  /// \returns true if *this != Val
1073
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1074
 
1075
  /// Inequality comparison
1076
  ///
1077
  /// Compares this APInt with RHS for the validity of the inequality
1078
  /// relationship.
1079
  ///
1080
  /// \returns true if *this != Val
1081
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1082
 
1083
  /// Unsigned less than comparison
1084
  ///
1085
  /// Regards both *this and RHS as unsigned quantities and compares them for
1086
  /// the validity of the less-than relationship.
1087
  ///
1088
  /// \returns true if *this < RHS when both are considered unsigned.
1089
  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1090
 
1091
  /// Unsigned less than comparison
1092
  ///
1093
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1094
  /// the validity of the less-than relationship.
1095
  ///
1096
  /// \returns true if *this < RHS when considered unsigned.
1097
  bool ult(uint64_t RHS) const {
1098
    // Only need to check active bits if not a single word.
1099
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1100
  }
1101
 
1102
  /// Signed less than comparison
1103
  ///
1104
  /// Regards both *this and RHS as signed quantities and compares them for
1105
  /// validity of the less-than relationship.
1106
  ///
1107
  /// \returns true if *this < RHS when both are considered signed.
1108
  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1109
 
1110
  /// Signed less than comparison
1111
  ///
1112
  /// Regards both *this as a signed quantity and compares it with RHS for
1113
  /// the validity of the less-than relationship.
1114
  ///
1115
  /// \returns true if *this < RHS when considered signed.
1116
  bool slt(int64_t RHS) const {
1117
    return (!isSingleWord() && getSignificantBits() > 64)
1118
               ? isNegative()
1119
               : getSExtValue() < RHS;
1120
  }
1121
 
1122
  /// Unsigned less or equal comparison
1123
  ///
1124
  /// Regards both *this and RHS as unsigned quantities and compares them for
1125
  /// validity of the less-or-equal relationship.
1126
  ///
1127
  /// \returns true if *this <= RHS when both are considered unsigned.
1128
  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1129
 
1130
  /// Unsigned less or equal comparison
1131
  ///
1132
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1133
  /// the validity of the less-or-equal relationship.
1134
  ///
1135
  /// \returns true if *this <= RHS when considered unsigned.
1136
  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1137
 
1138
  /// Signed less or equal comparison
1139
  ///
1140
  /// Regards both *this and RHS as signed quantities and compares them for
1141
  /// validity of the less-or-equal relationship.
1142
  ///
1143
  /// \returns true if *this <= RHS when both are considered signed.
1144
  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1145
 
1146
  /// Signed less or equal comparison
1147
  ///
1148
  /// Regards both *this as a signed quantity and compares it with RHS for the
1149
  /// validity of the less-or-equal relationship.
1150
  ///
1151
  /// \returns true if *this <= RHS when considered signed.
1152
  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1153
 
1154
  /// Unsigned greater than comparison
1155
  ///
1156
  /// Regards both *this and RHS as unsigned quantities and compares them for
1157
  /// the validity of the greater-than relationship.
1158
  ///
1159
  /// \returns true if *this > RHS when both are considered unsigned.
1160
  bool ugt(const APInt &RHS) const { return !ule(RHS); }
1161
 
1162
  /// Unsigned greater than comparison
1163
  ///
1164
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1165
  /// the validity of the greater-than relationship.
1166
  ///
1167
  /// \returns true if *this > RHS when considered unsigned.
1168
  bool ugt(uint64_t RHS) const {
1169
    // Only need to check active bits if not a single word.
1170
    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1171
  }
1172
 
1173
  /// Signed greater than comparison
1174
  ///
1175
  /// Regards both *this and RHS as signed quantities and compares them for the
1176
  /// validity of the greater-than relationship.
1177
  ///
1178
  /// \returns true if *this > RHS when both are considered signed.
1179
  bool sgt(const APInt &RHS) const { return !sle(RHS); }
1180
 
1181
  /// Signed greater than comparison
1182
  ///
1183
  /// Regards both *this as a signed quantity and compares it with RHS for
1184
  /// the validity of the greater-than relationship.
1185
  ///
1186
  /// \returns true if *this > RHS when considered signed.
1187
  bool sgt(int64_t RHS) const {
1188
    return (!isSingleWord() && getSignificantBits() > 64)
1189
               ? !isNegative()
1190
               : getSExtValue() > RHS;
1191
  }
1192
 
1193
  /// Unsigned greater or equal comparison
1194
  ///
1195
  /// Regards both *this and RHS as unsigned quantities and compares them for
1196
  /// validity of the greater-or-equal relationship.
1197
  ///
1198
  /// \returns true if *this >= RHS when both are considered unsigned.
1199
  bool uge(const APInt &RHS) const { return !ult(RHS); }
1200
 
1201
  /// Unsigned greater or equal comparison
1202
  ///
1203
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1204
  /// the validity of the greater-or-equal relationship.
1205
  ///
1206
  /// \returns true if *this >= RHS when considered unsigned.
1207
  bool uge(uint64_t RHS) const { return !ult(RHS); }
1208
 
1209
  /// Signed greater or equal comparison
1210
  ///
1211
  /// Regards both *this and RHS as signed quantities and compares them for
1212
  /// validity of the greater-or-equal relationship.
1213
  ///
1214
  /// \returns true if *this >= RHS when both are considered signed.
1215
  bool sge(const APInt &RHS) const { return !slt(RHS); }
1216
 
1217
  /// Signed greater or equal comparison
1218
  ///
1219
  /// Regards both *this as a signed quantity and compares it with RHS for
1220
  /// the validity of the greater-or-equal relationship.
1221
  ///
1222
  /// \returns true if *this >= RHS when considered signed.
1223
  bool sge(int64_t RHS) const { return !slt(RHS); }
1224
 
1225
  /// This operation tests if there are any pairs of corresponding bits
1226
  /// between this APInt and RHS that are both set.
1227
  bool intersects(const APInt &RHS) const {
1228
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1229
    if (isSingleWord())
1230
      return (U.VAL & RHS.U.VAL) != 0;
1231
    return intersectsSlowCase(RHS);
1232
  }
1233
 
1234
  /// This operation checks that all bits set in this APInt are also set in RHS.
1235
  bool isSubsetOf(const APInt &RHS) const {
1236
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1237
    if (isSingleWord())
1238
      return (U.VAL & ~RHS.U.VAL) == 0;
1239
    return isSubsetOfSlowCase(RHS);
1240
  }
1241
 
1242
  /// @}
1243
  /// \name Resizing Operators
1244
  /// @{
1245
 
1246
  /// Truncate to new width.
1247
  ///
1248
  /// Truncate the APInt to a specified width. It is an error to specify a width
1249
  /// that is greater than the current width.
1250
  APInt trunc(unsigned width) const;
1251
 
1252
  /// Truncate to new width with unsigned saturation.
1253
  ///
1254
  /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1255
  /// the new bitwidth, then return truncated APInt. Else, return max value.
1256
  APInt truncUSat(unsigned width) const;
1257
 
1258
  /// Truncate to new width with signed saturation.
1259
  ///
1260
  /// If this APInt, treated as signed integer, can be losslessly truncated to
1261
  /// the new bitwidth, then return truncated APInt. Else, return either
1262
  /// signed min value if the APInt was negative, or signed max value.
1263
  APInt truncSSat(unsigned width) const;
1264
 
1265
  /// Sign extend to a new width.
1266
  ///
1267
  /// This operation sign extends the APInt to a new width. If the high order
1268
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1269
  /// It is an error to specify a width that is less than the
1270
  /// current width.
1271
  APInt sext(unsigned width) const;
1272
 
1273
  /// Zero extend to a new width.
1274
  ///
1275
  /// This operation zero extends the APInt to a new width. The high order bits
1276
  /// are filled with 0 bits.  It is an error to specify a width that is less
1277
  /// than the current width.
1278
  APInt zext(unsigned width) const;
1279
 
1280
  /// Sign extend or truncate to width
1281
  ///
1282
  /// Make this APInt have the bit width given by \p width. The value is sign
1283
  /// extended, truncated, or left alone to make it that width.
1284
  APInt sextOrTrunc(unsigned width) const;
1285
 
1286
  /// Zero extend or truncate to width
1287
  ///
1288
  /// Make this APInt have the bit width given by \p width. The value is zero
1289
  /// extended, truncated, or left alone to make it that width.
1290
  APInt zextOrTrunc(unsigned width) const;
1291
 
1292
  /// @}
1293
  /// \name Bit Manipulation Operators
1294
  /// @{
1295
 
1296
  /// Set every bit to 1.
1297
  void setAllBits() {
1298
    if (isSingleWord())
1299
      U.VAL = WORDTYPE_MAX;
1300
    else
1301
      // Set all the bits in all the words.
1302
      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1303
    // Clear the unused ones
1304
    clearUnusedBits();
1305
  }
1306
 
1307
  /// Set the given bit to 1 whose position is given as "bitPosition".
1308
  void setBit(unsigned BitPosition) {
1309
    assert(BitPosition < BitWidth && "BitPosition out of range");
1310
    WordType Mask = maskBit(BitPosition);
1311
    if (isSingleWord())
1312
      U.VAL |= Mask;
1313
    else
1314
      U.pVal[whichWord(BitPosition)] |= Mask;
1315
  }
1316
 
1317
  /// Set the sign bit to 1.
1318
  void setSignBit() { setBit(BitWidth - 1); }
1319
 
1320
  /// Set a given bit to a given value.
1321
  void setBitVal(unsigned BitPosition, bool BitValue) {
1322
    if (BitValue)
1323
      setBit(BitPosition);
1324
    else
1325
      clearBit(BitPosition);
1326
  }
1327
 
1328
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1329
  /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1330
  /// setBits when \p loBit < \p hiBit.
1331
  /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1332
  void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1333
    assert(hiBit <= BitWidth && "hiBit out of range");
1334
    assert(loBit <= BitWidth && "loBit out of range");
1335
    if (loBit < hiBit) {
1336
      setBits(loBit, hiBit);
1337
      return;
1338
    }
1339
    setLowBits(hiBit);
1340
    setHighBits(BitWidth - loBit);
1341
  }
1342
 
1343
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1344
  /// This function handles case when \p loBit <= \p hiBit.
1345
  void setBits(unsigned loBit, unsigned hiBit) {
1346
    assert(hiBit <= BitWidth && "hiBit out of range");
1347
    assert(loBit <= BitWidth && "loBit out of range");
1348
    assert(loBit <= hiBit && "loBit greater than hiBit");
1349
    if (loBit == hiBit)
1350
      return;
1351
    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1352
      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1353
      mask <<= loBit;
1354
      if (isSingleWord())
1355
        U.VAL |= mask;
1356
      else
1357
        U.pVal[0] |= mask;
1358
    } else {
1359
      setBitsSlowCase(loBit, hiBit);
1360
    }
1361
  }
1362
 
1363
  /// Set the top bits starting from loBit.
1364
  void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1365
 
1366
  /// Set the bottom loBits bits.
1367
  void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1368
 
1369
  /// Set the top hiBits bits.
1370
  void setHighBits(unsigned hiBits) {
1371
    return setBits(BitWidth - hiBits, BitWidth);
1372
  }
1373
 
1374
  /// Set every bit to 0.
1375
  void clearAllBits() {
1376
    if (isSingleWord())
1377
      U.VAL = 0;
1378
    else
1379
      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1380
  }
1381
 
1382
  /// Set a given bit to 0.
1383
  ///
1384
  /// Set the given bit to 0 whose position is given as "bitPosition".
1385
  void clearBit(unsigned BitPosition) {
1386
    assert(BitPosition < BitWidth && "BitPosition out of range");
1387
    WordType Mask = ~maskBit(BitPosition);
1388
    if (isSingleWord())
1389
      U.VAL &= Mask;
1390
    else
1391
      U.pVal[whichWord(BitPosition)] &= Mask;
1392
  }
1393
 
1394
  /// Set bottom loBits bits to 0.
1395
  void clearLowBits(unsigned loBits) {
1396
    assert(loBits <= BitWidth && "More bits than bitwidth");
1397
    APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1398
    *this &= Keep;
1399
  }
1400
 
1401
  /// Set the sign bit to 0.
1402
  void clearSignBit() { clearBit(BitWidth - 1); }
1403
 
1404
  /// Toggle every bit to its opposite value.
1405
  void flipAllBits() {
1406
    if (isSingleWord()) {
1407
      U.VAL ^= WORDTYPE_MAX;
1408
      clearUnusedBits();
1409
    } else {
1410
      flipAllBitsSlowCase();
1411
    }
1412
  }
1413
 
1414
  /// Toggles a given bit to its opposite value.
1415
  ///
1416
  /// Toggle a given bit to its opposite value whose position is given
1417
  /// as "bitPosition".
1418
  void flipBit(unsigned bitPosition);
1419
 
1420
  /// Negate this APInt in place.
1421
  void negate() {
1422
    flipAllBits();
1423
    ++(*this);
1424
  }
1425
 
1426
  /// Insert the bits from a smaller APInt starting at bitPosition.
1427
  void insertBits(const APInt &SubBits, unsigned bitPosition);
1428
  void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1429
 
1430
  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1431
  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1432
  uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1433
 
1434
  /// @}
1435
  /// \name Value Characterization Functions
1436
  /// @{
1437
 
1438
  /// Return the number of bits in the APInt.
1439
  unsigned getBitWidth() const { return BitWidth; }
1440
 
1441
  /// Get the number of words.
1442
  ///
1443
  /// Here one word's bitwidth equals to that of uint64_t.
1444
  ///
1445
  /// \returns the number of words to hold the integer value of this APInt.
1446
  unsigned getNumWords() const { return getNumWords(BitWidth); }
1447
 
1448
  /// Get the number of words.
1449
  ///
1450
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1451
  ///
1452
  /// \returns the number of words to hold the integer value with a given bit
1453
  /// width.
1454
  static unsigned getNumWords(unsigned BitWidth) {
1455
    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1456
  }
1457
 
1458
  /// Compute the number of active bits in the value
1459
  ///
1460
  /// This function returns the number of active bits which is defined as the
1461
  /// bit width minus the number of leading zeros. This is used in several
1462
  /// computations to see how "wide" the value is.
1463
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1464
 
1465
  /// Compute the number of active words in the value of this APInt.
1466
  ///
1467
  /// This is used in conjunction with getActiveData to extract the raw value of
1468
  /// the APInt.
1469
  unsigned getActiveWords() const {
1470
    unsigned numActiveBits = getActiveBits();
1471
    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1472
  }
1473
 
1474
  /// Get the minimum bit size for this signed APInt
1475
  ///
1476
  /// Computes the minimum bit width for this APInt while considering it to be a
1477
  /// signed (and probably negative) value. If the value is not negative, this
1478
  /// function returns the same value as getActiveBits()+1. Otherwise, it
1479
  /// returns the smallest bit width that will retain the negative value. For
1480
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1481
  /// for -1, this function will always return 1.
1482
  unsigned getSignificantBits() const {
1483
    return BitWidth - getNumSignBits() + 1;
1484
  }
1485
 
1486
  /// NOTE: This is soft-deprecated.  Please use `getSignificantBits()` instead.
1487
  unsigned getMinSignedBits() const { return getSignificantBits(); }
1488
 
1489
  /// Get zero extended value
1490
  ///
1491
  /// This method attempts to return the value of this APInt as a zero extended
1492
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1493
  /// uint64_t. Otherwise an assertion will result.
1494
  uint64_t getZExtValue() const {
1495
    if (isSingleWord())
1496
      return U.VAL;
1497
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1498
    return U.pVal[0];
1499
  }
1500
 
1501
  /// Get zero extended value if possible
1502
  ///
1503
  /// This method attempts to return the value of this APInt as a zero extended
1504
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1505
  /// uint64_t. Otherwise no value is returned.
1506
  std::optional<uint64_t> tryZExtValue() const {
1507
    return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1508
                                   : std::nullopt;
1509
  };
1510
 
1511
  /// Get sign extended value
1512
  ///
1513
  /// This method attempts to return the value of this APInt as a sign extended
1514
  /// int64_t. The bit width must be <= 64 or the value must fit within an
1515
  /// int64_t. Otherwise an assertion will result.
1516
  int64_t getSExtValue() const {
1517
    if (isSingleWord())
1518
      return SignExtend64(U.VAL, BitWidth);
1519
    assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1520
    return int64_t(U.pVal[0]);
1521
  }
1522
 
1523
  /// Get sign extended value if possible
1524
  ///
1525
  /// This method attempts to return the value of this APInt as a sign extended
1526
  /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1527
  /// int64_t. Otherwise no value is returned.
1528
  std::optional<int64_t> trySExtValue() const {
1529
    return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1530
                                        : std::nullopt;
1531
  };
1532
 
1533
  /// Get bits required for string value.
1534
  ///
1535
  /// This method determines how many bits are required to hold the APInt
1536
  /// equivalent of the string given by \p str.
1537
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1538
 
1539
  /// Get the bits that are sufficient to represent the string value. This may
1540
  /// over estimate the amount of bits required, but it does not require
1541
  /// parsing the value in the string.
1542
  static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1543
 
1544
  /// The APInt version of the countLeadingZeros functions in
1545
  ///   MathExtras.h.
1546
  ///
1547
  /// It counts the number of zeros from the most significant bit to the first
1548
  /// one bit.
1549
  ///
1550
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1551
  ///   zeros from the most significant bit to the first one bits.
1552
  unsigned countLeadingZeros() const {
1553
    if (isSingleWord()) {
1554
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1555
      return llvm::countLeadingZeros(U.VAL) - unusedBits;
1556
    }
1557
    return countLeadingZerosSlowCase();
1558
  }
1559
 
1560
  /// Count the number of leading one bits.
1561
  ///
1562
  /// This function is an APInt version of the countLeadingOnes
1563
  /// functions in MathExtras.h. It counts the number of ones from the most
1564
  /// significant bit to the first zero bit.
1565
  ///
1566
  /// \returns 0 if the high order bit is not set, otherwise returns the number
1567
  /// of 1 bits from the most significant to the least
1568
  unsigned countLeadingOnes() const {
1569
    if (isSingleWord()) {
1570
      if (LLVM_UNLIKELY(BitWidth == 0))
1571
        return 0;
1572
      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1573
    }
1574
    return countLeadingOnesSlowCase();
1575
  }
1576
 
1577
  /// Computes the number of leading bits of this APInt that are equal to its
1578
  /// sign bit.
1579
  unsigned getNumSignBits() const {
1580
    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1581
  }
1582
 
1583
  /// Count the number of trailing zero bits.
1584
  ///
1585
  /// This function is an APInt version of the countTrailingZeros
1586
  /// functions in MathExtras.h. It counts the number of zeros from the least
1587
  /// significant bit to the first set bit.
1588
  ///
1589
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1590
  /// zeros from the least significant bit to the first one bit.
1591
  unsigned countTrailingZeros() const {
1592
    if (isSingleWord()) {
1593
      unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1594
      return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1595
    }
1596
    return countTrailingZerosSlowCase();
1597
  }
1598
 
1599
  /// Count the number of trailing one bits.
1600
  ///
1601
  /// This function is an APInt version of the countTrailingOnes
1602
  /// functions in MathExtras.h. It counts the number of ones from the least
1603
  /// significant bit to the first zero bit.
1604
  ///
1605
  /// \returns BitWidth if the value is all ones, otherwise returns the number
1606
  /// of ones from the least significant bit to the first zero bit.
1607
  unsigned countTrailingOnes() const {
1608
    if (isSingleWord())
1609
      return llvm::countTrailingOnes(U.VAL);
1610
    return countTrailingOnesSlowCase();
1611
  }
1612
 
1613
  /// Count the number of bits set.
1614
  ///
1615
  /// This function is an APInt version of the countPopulation functions
1616
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1617
  ///
1618
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1619
  unsigned countPopulation() const {
1620
    if (isSingleWord())
1621
      return llvm::popcount(U.VAL);
1622
    return countPopulationSlowCase();
1623
  }
1624
 
1625
  /// @}
1626
  /// \name Conversion Functions
1627
  /// @{
1628
  void print(raw_ostream &OS, bool isSigned) const;
1629
 
1630
  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1631
  /// SmallString.
1632
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1633
                bool formatAsCLiteral = false) const;
1634
 
1635
  /// Considers the APInt to be unsigned and converts it into a string in the
1636
  /// radix given. The radix can be 2, 8, 10 16, or 36.
1637
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1638
    toString(Str, Radix, false, false);
1639
  }
1640
 
1641
  /// Considers the APInt to be signed and converts it into a string in the
1642
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1643
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1644
    toString(Str, Radix, true, false);
1645
  }
1646
 
1647
  /// \returns a byte-swapped representation of this APInt Value.
1648
  APInt byteSwap() const;
1649
 
1650
  /// \returns the value with the bit representation reversed of this APInt
1651
  /// Value.
1652
  APInt reverseBits() const;
1653
 
1654
  /// Converts this APInt to a double value.
1655
  double roundToDouble(bool isSigned) const;
1656
 
1657
  /// Converts this unsigned APInt to a double value.
1658
  double roundToDouble() const { return roundToDouble(false); }
1659
 
1660
  /// Converts this signed APInt to a double value.
1661
  double signedRoundToDouble() const { return roundToDouble(true); }
1662
 
1663
  /// Converts APInt bits to a double
1664
  ///
1665
  /// The conversion does not do a translation from integer to double, it just
1666
  /// re-interprets the bits as a double. Note that it is valid to do this on
1667
  /// any bit width. Exactly 64 bits will be translated.
1668
  double bitsToDouble() const { return BitsToDouble(getWord(0)); }
1669
 
1670
  /// Converts APInt bits to a float
1671
  ///
1672
  /// The conversion does not do a translation from integer to float, it just
1673
  /// re-interprets the bits as a float. Note that it is valid to do this on
1674
  /// any bit width. Exactly 32 bits will be translated.
1675
  float bitsToFloat() const {
1676
    return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1677
  }
1678
 
1679
  /// Converts a double to APInt bits.
1680
  ///
1681
  /// The conversion does not do a translation from double to integer, it just
1682
  /// re-interprets the bits of the double.
1683
  static APInt doubleToBits(double V) {
1684
    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1685
  }
1686
 
1687
  /// Converts a float to APInt bits.
1688
  ///
1689
  /// The conversion does not do a translation from float to integer, it just
1690
  /// re-interprets the bits of the float.
1691
  static APInt floatToBits(float V) {
1692
    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1693
  }
1694
 
1695
  /// @}
1696
  /// \name Mathematics Operations
1697
  /// @{
1698
 
1699
  /// \returns the floor log base 2 of this APInt.
1700
  unsigned logBase2() const { return getActiveBits() - 1; }
1701
 
1702
  /// \returns the ceil log base 2 of this APInt.
1703
  unsigned ceilLogBase2() const {
1704
    APInt temp(*this);
1705
    --temp;
1706
    return temp.getActiveBits();
1707
  }
1708
 
1709
  /// \returns the nearest log base 2 of this APInt. Ties round up.
1710
  ///
1711
  /// NOTE: When we have a BitWidth of 1, we define:
1712
  ///
1713
  ///   log2(0) = UINT32_MAX
1714
  ///   log2(1) = 0
1715
  ///
1716
  /// to get around any mathematical concerns resulting from
1717
  /// referencing 2 in a space where 2 does no exist.
1718
  unsigned nearestLogBase2() const;
1719
 
1720
  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1721
  /// otherwise
1722
  int32_t exactLogBase2() const {
1723
    if (!isPowerOf2())
1724
      return -1;
1725
    return logBase2();
1726
  }
1727
 
1728
  /// Compute the square root.
1729
  APInt sqrt() const;
1730
 
1731
  /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1732
  /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1733
  /// wide APInt) is unchanged due to how negation works.
1734
  APInt abs() const {
1735
    if (isNegative())
1736
      return -(*this);
1737
    return *this;
1738
  }
1739
 
1740
  /// \returns the multiplicative inverse for a given modulo.
1741
  APInt multiplicativeInverse(const APInt &modulo) const;
1742
 
1743
  /// @}
1744
  /// \name Building-block Operations for APInt and APFloat
1745
  /// @{
1746
 
1747
  // These building block operations operate on a representation of arbitrary
1748
  // precision, two's-complement, bignum integer values. They should be
1749
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1750
  // generally a pointer to the base of an array of integer parts, representing
1751
  // an unsigned bignum, and a count of how many parts there are.
1752
 
1753
  /// Sets the least significant part of a bignum to the input value, and zeroes
1754
  /// out higher parts.
1755
  static void tcSet(WordType *, WordType, unsigned);
1756
 
1757
  /// Assign one bignum to another.
1758
  static void tcAssign(WordType *, const WordType *, unsigned);
1759
 
1760
  /// Returns true if a bignum is zero, false otherwise.
1761
  static bool tcIsZero(const WordType *, unsigned);
1762
 
1763
  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1764
  static int tcExtractBit(const WordType *, unsigned bit);
1765
 
1766
  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1767
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1768
  /// significant bit of DST.  All high bits above srcBITS in DST are
1769
  /// zero-filled.
1770
  static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1771
                        unsigned srcBits, unsigned srcLSB);
1772
 
1773
  /// Set the given bit of a bignum.  Zero-based.
1774
  static void tcSetBit(WordType *, unsigned bit);
1775
 
1776
  /// Clear the given bit of a bignum.  Zero-based.
1777
  static void tcClearBit(WordType *, unsigned bit);
1778
 
1779
  /// Returns the bit number of the least or most significant set bit of a
1780
  /// number.  If the input number has no bits set -1U is returned.
1781
  static unsigned tcLSB(const WordType *, unsigned n);
1782
  static unsigned tcMSB(const WordType *parts, unsigned n);
1783
 
1784
  /// Negate a bignum in-place.
1785
  static void tcNegate(WordType *, unsigned);
1786
 
1787
  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1788
  static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1789
  /// DST += RHS.  Returns the carry flag.
1790
  static WordType tcAddPart(WordType *, WordType, unsigned);
1791
 
1792
  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1793
  static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1794
                             unsigned);
1795
  /// DST -= RHS.  Returns the carry flag.
1796
  static WordType tcSubtractPart(WordType *, WordType, unsigned);
1797
 
1798
  /// DST += SRC * MULTIPLIER + PART   if add is true
1799
  /// DST  = SRC * MULTIPLIER + PART   if add is false
1800
  ///
1801
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1802
  /// start at the same point, i.e. DST == SRC.
1803
  ///
1804
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1805
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1806
  /// result, and if all of the omitted higher parts were zero return zero,
1807
  /// otherwise overflow occurred and return one.
1808
  static int tcMultiplyPart(WordType *dst, const WordType *src,
1809
                            WordType multiplier, WordType carry,
1810
                            unsigned srcParts, unsigned dstParts, bool add);
1811
 
1812
  /// DST = LHS * RHS, where DST has the same width as the operands and is
1813
  /// filled with the least significant parts of the result.  Returns one if
1814
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1815
  /// operands.
1816
  static int tcMultiply(WordType *, const WordType *, const WordType *,
1817
                        unsigned);
1818
 
1819
  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1820
  /// operands. No overflow occurs. DST must be disjoint from both operands.
1821
  static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1822
                             unsigned, unsigned);
1823
 
1824
  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1825
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1826
  /// REMAINDER to the remainder, return zero.  i.e.
1827
  ///
1828
  ///  OLD_LHS = RHS * LHS + REMAINDER
1829
  ///
1830
  /// SCRATCH is a bignum of the same size as the operands and result for use by
1831
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1832
  /// REMAINDER and SCRATCH must be distinct.
1833
  static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1834
                      WordType *scratch, unsigned parts);
1835
 
1836
  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1837
  /// restrictions on Count.
1838
  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1839
 
1840
  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1841
  /// restrictions on Count.
1842
  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1843
 
1844
  /// Comparison (unsigned) of two bignums.
1845
  static int tcCompare(const WordType *, const WordType *, unsigned);
1846
 
1847
  /// Increment a bignum in-place.  Return the carry flag.
1848
  static WordType tcIncrement(WordType *dst, unsigned parts) {
1849
    return tcAddPart(dst, 1, parts);
1850
  }
1851
 
1852
  /// Decrement a bignum in-place.  Return the borrow flag.
1853
  static WordType tcDecrement(WordType *dst, unsigned parts) {
1854
    return tcSubtractPart(dst, 1, parts);
1855
  }
1856
 
1857
  /// Used to insert APInt objects, or objects that contain APInt objects, into
1858
  ///  FoldingSets.
1859
  void Profile(FoldingSetNodeID &id) const;
1860
 
1861
  /// debug method
1862
  void dump() const;
1863
 
1864
  /// Returns whether this instance allocated memory.
1865
  bool needsCleanup() const { return !isSingleWord(); }
1866
 
1867
private:
1868
  /// This union is used to store the integer value. When the
1869
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1870
  union {
1871
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1872
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
1873
  } U;
1874
 
1875
  unsigned BitWidth = 1; ///< The number of bits in this APInt.
1876
 
1877
  friend struct DenseMapInfo<APInt, void>;
1878
  friend class APSInt;
1879
 
1880
  /// This constructor is used only internally for speed of construction of
1881
  /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1882
  /// is not public.
1883
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1884
 
1885
  /// Determine which word a bit is in.
1886
  ///
1887
  /// \returns the word position for the specified bit position.
1888
  static unsigned whichWord(unsigned bitPosition) {
1889
    return bitPosition / APINT_BITS_PER_WORD;
1890
  }
1891
 
1892
  /// Determine which bit in a word the specified bit position is in.
1893
  static unsigned whichBit(unsigned bitPosition) {
1894
    return bitPosition % APINT_BITS_PER_WORD;
1895
  }
1896
 
1897
  /// Get a single bit mask.
1898
  ///
1899
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1900
  /// This method generates and returns a uint64_t (word) mask for a single
1901
  /// bit at a specific bit position. This is used to mask the bit in the
1902
  /// corresponding word.
1903
  static uint64_t maskBit(unsigned bitPosition) {
1904
    return 1ULL << whichBit(bitPosition);
1905
  }
1906
 
1907
  /// Clear unused high order bits
1908
  ///
1909
  /// This method is used internally to clear the top "N" bits in the high order
1910
  /// word that are not used by the APInt. This is needed after the most
1911
  /// significant word is assigned a value to ensure that those bits are
1912
  /// zero'd out.
1913
  APInt &clearUnusedBits() {
1914
    // Compute how many bits are used in the final word.
1915
    unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1916
 
1917
    // Mask out the high bits.
1918
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1919
    if (LLVM_UNLIKELY(BitWidth == 0))
1920
      mask = 0;
1921
 
1922
    if (isSingleWord())
1923
      U.VAL &= mask;
1924
    else
1925
      U.pVal[getNumWords() - 1] &= mask;
1926
    return *this;
1927
  }
1928
 
1929
  /// Get the word corresponding to a bit position
1930
  /// \returns the corresponding word for the specified bit position.
1931
  uint64_t getWord(unsigned bitPosition) const {
1932
    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1933
  }
1934
 
1935
  /// Utility method to change the bit width of this APInt to new bit width,
1936
  /// allocating and/or deallocating as necessary. There is no guarantee on the
1937
  /// value of any bits upon return. Caller should populate the bits after.
1938
  void reallocate(unsigned NewBitWidth);
1939
 
1940
  /// Convert a char array into an APInt
1941
  ///
1942
  /// \param radix 2, 8, 10, 16, or 36
1943
  /// Converts a string into a number.  The string must be non-empty
1944
  /// and well-formed as a number of the given base. The bit-width
1945
  /// must be sufficient to hold the result.
1946
  ///
1947
  /// This is used by the constructors that take string arguments.
1948
  ///
1949
  /// StringRef::getAsInteger is superficially similar but (1) does
1950
  /// not assume that the string is well-formed and (2) grows the
1951
  /// result to hold the input.
1952
  void fromString(unsigned numBits, StringRef str, uint8_t radix);
1953
 
1954
  /// An internal division function for dividing APInts.
1955
  ///
1956
  /// This is used by the toString method to divide by the radix. It simply
1957
  /// provides a more convenient form of divide for internal use since KnuthDiv
1958
  /// has specific constraints on its inputs. If those constraints are not met
1959
  /// then it provides a simpler form of divide.
1960
  static void divide(const WordType *LHS, unsigned lhsWords,
1961
                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1962
                     WordType *Remainder);
1963
 
1964
  /// out-of-line slow case for inline constructor
1965
  void initSlowCase(uint64_t val, bool isSigned);
1966
 
1967
  /// shared code between two array constructors
1968
  void initFromArray(ArrayRef<uint64_t> array);
1969
 
1970
  /// out-of-line slow case for inline copy constructor
1971
  void initSlowCase(const APInt &that);
1972
 
1973
  /// out-of-line slow case for shl
1974
  void shlSlowCase(unsigned ShiftAmt);
1975
 
1976
  /// out-of-line slow case for lshr.
1977
  void lshrSlowCase(unsigned ShiftAmt);
1978
 
1979
  /// out-of-line slow case for ashr.
1980
  void ashrSlowCase(unsigned ShiftAmt);
1981
 
1982
  /// out-of-line slow case for operator=
1983
  void assignSlowCase(const APInt &RHS);
1984
 
1985
  /// out-of-line slow case for operator==
1986
  bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1987
 
1988
  /// out-of-line slow case for countLeadingZeros
1989
  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1990
 
1991
  /// out-of-line slow case for countLeadingOnes.
1992
  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1993
 
1994
  /// out-of-line slow case for countTrailingZeros.
1995
  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1996
 
1997
  /// out-of-line slow case for countTrailingOnes
1998
  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1999
 
2000
  /// out-of-line slow case for countPopulation
2001
  unsigned countPopulationSlowCase() const LLVM_READONLY;
2002
 
2003
  /// out-of-line slow case for intersects.
2004
  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2005
 
2006
  /// out-of-line slow case for isSubsetOf.
2007
  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2008
 
2009
  /// out-of-line slow case for setBits.
2010
  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2011
 
2012
  /// out-of-line slow case for flipAllBits.
2013
  void flipAllBitsSlowCase();
2014
 
2015
  /// out-of-line slow case for concat.
2016
  APInt concatSlowCase(const APInt &NewLSB) const;
2017
 
2018
  /// out-of-line slow case for operator&=.
2019
  void andAssignSlowCase(const APInt &RHS);
2020
 
2021
  /// out-of-line slow case for operator|=.
2022
  void orAssignSlowCase(const APInt &RHS);
2023
 
2024
  /// out-of-line slow case for operator^=.
2025
  void xorAssignSlowCase(const APInt &RHS);
2026
 
2027
  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2028
  /// to, or greater than RHS.
2029
  int compare(const APInt &RHS) const LLVM_READONLY;
2030
 
2031
  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2032
  /// to, or greater than RHS.
2033
  int compareSigned(const APInt &RHS) const LLVM_READONLY;
2034
 
2035
  /// @}
2036
};
2037
 
2038
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2039
 
2040
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2041
 
2042
/// Unary bitwise complement operator.
2043
///
2044
/// \returns an APInt that is the bitwise complement of \p v.
2045
inline APInt operator~(APInt v) {
2046
  v.flipAllBits();
2047
  return v;
2048
}
2049
 
2050
inline APInt operator&(APInt a, const APInt &b) {
2051
  a &= b;
2052
  return a;
2053
}
2054
 
2055
inline APInt operator&(const APInt &a, APInt &&b) {
2056
  b &= a;
2057
  return std::move(b);
2058
}
2059
 
2060
inline APInt operator&(APInt a, uint64_t RHS) {
2061
  a &= RHS;
2062
  return a;
2063
}
2064
 
2065
inline APInt operator&(uint64_t LHS, APInt b) {
2066
  b &= LHS;
2067
  return b;
2068
}
2069
 
2070
inline APInt operator|(APInt a, const APInt &b) {
2071
  a |= b;
2072
  return a;
2073
}
2074
 
2075
inline APInt operator|(const APInt &a, APInt &&b) {
2076
  b |= a;
2077
  return std::move(b);
2078
}
2079
 
2080
inline APInt operator|(APInt a, uint64_t RHS) {
2081
  a |= RHS;
2082
  return a;
2083
}
2084
 
2085
inline APInt operator|(uint64_t LHS, APInt b) {
2086
  b |= LHS;
2087
  return b;
2088
}
2089
 
2090
inline APInt operator^(APInt a, const APInt &b) {
2091
  a ^= b;
2092
  return a;
2093
}
2094
 
2095
inline APInt operator^(const APInt &a, APInt &&b) {
2096
  b ^= a;
2097
  return std::move(b);
2098
}
2099
 
2100
inline APInt operator^(APInt a, uint64_t RHS) {
2101
  a ^= RHS;
2102
  return a;
2103
}
2104
 
2105
inline APInt operator^(uint64_t LHS, APInt b) {
2106
  b ^= LHS;
2107
  return b;
2108
}
2109
 
2110
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2111
  I.print(OS, true);
2112
  return OS;
2113
}
2114
 
2115
inline APInt operator-(APInt v) {
2116
  v.negate();
2117
  return v;
2118
}
2119
 
2120
inline APInt operator+(APInt a, const APInt &b) {
2121
  a += b;
2122
  return a;
2123
}
2124
 
2125
inline APInt operator+(const APInt &a, APInt &&b) {
2126
  b += a;
2127
  return std::move(b);
2128
}
2129
 
2130
inline APInt operator+(APInt a, uint64_t RHS) {
2131
  a += RHS;
2132
  return a;
2133
}
2134
 
2135
inline APInt operator+(uint64_t LHS, APInt b) {
2136
  b += LHS;
2137
  return b;
2138
}
2139
 
2140
inline APInt operator-(APInt a, const APInt &b) {
2141
  a -= b;
2142
  return a;
2143
}
2144
 
2145
inline APInt operator-(const APInt &a, APInt &&b) {
2146
  b.negate();
2147
  b += a;
2148
  return std::move(b);
2149
}
2150
 
2151
inline APInt operator-(APInt a, uint64_t RHS) {
2152
  a -= RHS;
2153
  return a;
2154
}
2155
 
2156
inline APInt operator-(uint64_t LHS, APInt b) {
2157
  b.negate();
2158
  b += LHS;
2159
  return b;
2160
}
2161
 
2162
inline APInt operator*(APInt a, uint64_t RHS) {
2163
  a *= RHS;
2164
  return a;
2165
}
2166
 
2167
inline APInt operator*(uint64_t LHS, APInt b) {
2168
  b *= LHS;
2169
  return b;
2170
}
2171
 
2172
namespace APIntOps {
2173
 
2174
/// Determine the smaller of two APInts considered to be signed.
2175
inline const APInt &smin(const APInt &A, const APInt &B) {
2176
  return A.slt(B) ? A : B;
2177
}
2178
 
2179
/// Determine the larger of two APInts considered to be signed.
2180
inline const APInt &smax(const APInt &A, const APInt &B) {
2181
  return A.sgt(B) ? A : B;
2182
}
2183
 
2184
/// Determine the smaller of two APInts considered to be unsigned.
2185
inline const APInt &umin(const APInt &A, const APInt &B) {
2186
  return A.ult(B) ? A : B;
2187
}
2188
 
2189
/// Determine the larger of two APInts considered to be unsigned.
2190
inline const APInt &umax(const APInt &A, const APInt &B) {
2191
  return A.ugt(B) ? A : B;
2192
}
2193
 
2194
/// Compute GCD of two unsigned APInt values.
2195
///
2196
/// This function returns the greatest common divisor of the two APInt values
2197
/// using Stein's algorithm.
2198
///
2199
/// \returns the greatest common divisor of A and B.
2200
APInt GreatestCommonDivisor(APInt A, APInt B);
2201
 
2202
/// Converts the given APInt to a double value.
2203
///
2204
/// Treats the APInt as an unsigned value for conversion purposes.
2205
inline double RoundAPIntToDouble(const APInt &APIVal) {
2206
  return APIVal.roundToDouble();
2207
}
2208
 
2209
/// Converts the given APInt to a double value.
2210
///
2211
/// Treats the APInt as a signed value for conversion purposes.
2212
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2213
  return APIVal.signedRoundToDouble();
2214
}
2215
 
2216
/// Converts the given APInt to a float value.
2217
inline float RoundAPIntToFloat(const APInt &APIVal) {
2218
  return float(RoundAPIntToDouble(APIVal));
2219
}
2220
 
2221
/// Converts the given APInt to a float value.
2222
///
2223
/// Treats the APInt as a signed value for conversion purposes.
2224
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2225
  return float(APIVal.signedRoundToDouble());
2226
}
2227
 
2228
/// Converts the given double value into a APInt.
2229
///
2230
/// This function convert a double value to an APInt value.
2231
APInt RoundDoubleToAPInt(double Double, unsigned width);
2232
 
2233
/// Converts a float value into a APInt.
2234
///
2235
/// Converts a float value into an APInt value.
2236
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2237
  return RoundDoubleToAPInt(double(Float), width);
2238
}
2239
 
2240
/// Return A unsign-divided by B, rounded by the given rounding mode.
2241
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2242
 
2243
/// Return A sign-divided by B, rounded by the given rounding mode.
2244
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2245
 
2246
/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2247
/// (e.g. 32 for i32).
2248
/// This function finds the smallest number n, such that
2249
/// (a) n >= 0 and q(n) = 0, or
2250
/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2251
///     integers, belong to two different intervals [Rk, Rk+R),
2252
///     where R = 2^BW, and k is an integer.
2253
/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2254
/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2255
/// subtraction (treated as addition of negated numbers) would always
2256
/// count as an overflow, but here we want to allow values to decrease
2257
/// and increase as long as they are within the same interval.
2258
/// Specifically, adding of two negative numbers should not cause an
2259
/// overflow (as long as the magnitude does not exceed the bit width).
2260
/// On the other hand, given a positive number, adding a negative
2261
/// number to it can give a negative result, which would cause the
2262
/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2263
/// treated as a special case of an overflow.
2264
///
2265
/// This function returns std::nullopt if after finding k that minimizes the
2266
/// positive solution to q(n) = kR, both solutions are contained between
2267
/// two consecutive integers.
2268
///
2269
/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2270
/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2271
/// virtue of *signed* overflow. This function will *not* find such an n,
2272
/// however it may find a value of n satisfying the inequalities due to
2273
/// an *unsigned* overflow (if the values are treated as unsigned).
2274
/// To find a solution for a signed overflow, treat it as a problem of
2275
/// finding an unsigned overflow with a range with of BW-1.
2276
///
2277
/// The returned value may have a different bit width from the input
2278
/// coefficients.
2279
std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2280
                                                unsigned RangeWidth);
2281
 
2282
/// Compare two values, and if they are different, return the position of the
2283
/// most significant bit that is different in the values.
2284
std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2285
                                                       const APInt &B);
2286
 
2287
/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2288
/// by \param A to \param NewBitWidth bits.
2289
///
2290
/// MatchAnyBits: (Default)
2291
/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2292
/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2293
///
2294
/// MatchAllBits:
2295
/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2296
/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2297
/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2298
APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2299
                   bool MatchAllBits = false);
2300
} // namespace APIntOps
2301
 
2302
// See friend declaration above. This additional declaration is required in
2303
// order to compile LLVM with IBM xlC compiler.
2304
hash_code hash_value(const APInt &Arg);
2305
 
2306
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2307
/// with the integer held in IntVal.
2308
void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2309
 
2310
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2311
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2312
void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2313
 
2314
/// Provide DenseMapInfo for APInt.
2315
template <> struct DenseMapInfo<APInt, void> {
2316
  static inline APInt getEmptyKey() {
2317
    APInt V(nullptr, 0);
2318
    V.U.VAL = ~0ULL;
2319
    return V;
2320
  }
2321
 
2322
  static inline APInt getTombstoneKey() {
2323
    APInt V(nullptr, 0);
2324
    V.U.VAL = ~1ULL;
2325
    return V;
2326
  }
2327
 
2328
  static unsigned getHashValue(const APInt &Key);
2329
 
2330
  static bool isEqual(const APInt &LHS, const APInt &RHS) {
2331
    return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2332
  }
2333
};
2334
 
2335
} // namespace llvm
2336
 
2337
#endif