Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file declares a class to represent arbitrary precision floating point
11
/// values and provide a variety of arithmetic operations on them.
12
///
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_ADT_APFLOAT_H
16
#define LLVM_ADT_APFLOAT_H
17
 
18
#include "llvm/ADT/APInt.h"
19
#include "llvm/ADT/ArrayRef.h"
20
#include "llvm/ADT/FloatingPointMode.h"
21
#include "llvm/Support/ErrorHandling.h"
22
#include <memory>
23
 
24
#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
25
  do {                                                                         \
26
    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
27
      return U.IEEE.METHOD_CALL;                                               \
28
    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
29
      return U.Double.METHOD_CALL;                                             \
30
    llvm_unreachable("Unexpected semantics");                                  \
31
  } while (false)
32
 
33
namespace llvm {
34
 
35
struct fltSemantics;
36
class APSInt;
37
class StringRef;
38
class APFloat;
39
class raw_ostream;
40
 
41
template <typename T> class Expected;
42
template <typename T> class SmallVectorImpl;
43
 
44
/// Enum that represents what fraction of the LSB truncated bits of an fp number
45
/// represent.
46
///
47
/// This essentially combines the roles of guard and sticky bits.
48
enum lostFraction { // Example of truncated bits:
49
  lfExactlyZero,    // 000000
50
  lfLessThanHalf,   // 0xxxxx  x's not all zero
51
  lfExactlyHalf,    // 100000
52
  lfMoreThanHalf    // 1xxxxx  x's not all zero
53
};
54
 
55
/// A self-contained host- and target-independent arbitrary-precision
56
/// floating-point software implementation.
57
///
58
/// APFloat uses bignum integer arithmetic as provided by static functions in
59
/// the APInt class.  The library will work with bignum integers whose parts are
60
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
61
///
62
/// Written for clarity rather than speed, in particular with a view to use in
63
/// the front-end of a cross compiler so that target arithmetic can be correctly
64
/// performed on the host.  Performance should nonetheless be reasonable,
65
/// particularly for its intended use.  It may be useful as a base
66
/// implementation for a run-time library during development of a faster
67
/// target-specific one.
68
///
69
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
70
/// implemented operations.  Currently implemented operations are add, subtract,
71
/// multiply, divide, fused-multiply-add, conversion-to-float,
72
/// conversion-to-integer and conversion-from-integer.  New rounding modes
73
/// (e.g. away from zero) can be added with three or four lines of code.
74
///
75
/// Four formats are built-in: IEEE single precision, double precision,
76
/// quadruple precision, and x87 80-bit extended double (when operating with
77
/// full extended precision).  Adding a new format that obeys IEEE semantics
78
/// only requires adding two lines of code: a declaration and definition of the
79
/// format.
80
///
81
/// All operations return the status of that operation as an exception bit-mask,
82
/// so multiple operations can be done consecutively with their results or-ed
83
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
84
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
85
/// and compiler optimizers can determine what exceptions would be raised by
86
/// folding operations and optimize, or perhaps not optimize, accordingly.
87
///
88
/// At present, underflow tininess is detected after rounding; it should be
89
/// straight forward to add support for the before-rounding case too.
90
///
91
/// The library reads hexadecimal floating point numbers as per C99, and
92
/// correctly rounds if necessary according to the specified rounding mode.
93
/// Syntax is required to have been validated by the caller.  It also converts
94
/// floating point numbers to hexadecimal text as per the C99 %a and %A
95
/// conversions.  The output precision (or alternatively the natural minimal
96
/// precision) can be specified; if the requested precision is less than the
97
/// natural precision the output is correctly rounded for the specified rounding
98
/// mode.
99
///
100
/// It also reads decimal floating point numbers and correctly rounds according
101
/// to the specified rounding mode.
102
///
103
/// Conversion to decimal text is not currently implemented.
104
///
105
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
106
/// signed exponent, and the significand as an array of integer parts.  After
107
/// normalization of a number of precision P the exponent is within the range of
108
/// the format, and if the number is not denormal the P-th bit of the
109
/// significand is set as an explicit integer bit.  For denormals the most
110
/// significant bit is shifted right so that the exponent is maintained at the
111
/// format's minimum, so that the smallest denormal has just the least
112
/// significant bit of the significand set.  The sign of zeroes and infinities
113
/// is significant; the exponent and significand of such numbers is not stored,
114
/// but has a known implicit (deterministic) value: 0 for the significands, 0
115
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
116
/// significand are deterministic, although not really meaningful, and preserved
117
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
118
///
119
/// APFloat does not provide any exception handling beyond default exception
120
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
121
/// by encoding Signaling NaNs with the first bit of its trailing significand as
122
/// 0.
123
///
124
/// TODO
125
/// ====
126
///
127
/// Some features that may or may not be worth adding:
128
///
129
/// Binary to decimal conversion (hard).
130
///
131
/// Optional ability to detect underflow tininess before rounding.
132
///
133
/// New formats: x87 in single and double precision mode (IEEE apart from
134
/// extended exponent range) (hard).
135
///
136
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
137
///
138
 
139
// This is the common type definitions shared by APFloat and its internal
140
// implementation classes. This struct should not define any non-static data
141
// members.
142
struct APFloatBase {
143
  typedef APInt::WordType integerPart;
144
  static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
145
 
146
  /// A signed type to represent a floating point numbers unbiased exponent.
147
  typedef int32_t ExponentType;
148
 
149
  /// \name Floating Point Semantics.
150
  /// @{
151
  enum Semantics {
152
    S_IEEEhalf,
153
    S_BFloat,
154
    S_IEEEsingle,
155
    S_IEEEdouble,
156
    S_IEEEquad,
157
    S_PPCDoubleDouble,
158
    // 8-bit floating point number following IEEE-754 conventions with bit
159
    // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
160
    S_Float8E5M2,
161
    // 8-bit floating point number mostly following IEEE-754 conventions with
162
    // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
163
    // Unlike IEEE-754 types, there are no infinity values, and NaN is
164
    // represented with the exponent and mantissa bits set to all 1s.
165
    S_Float8E4M3FN,
166
    S_x87DoubleExtended,
167
    S_MaxSemantics = S_x87DoubleExtended,
168
  };
169
 
170
  static const llvm::fltSemantics &EnumToSemantics(Semantics S);
171
  static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
172
 
173
  static const fltSemantics &IEEEhalf() LLVM_READNONE;
174
  static const fltSemantics &BFloat() LLVM_READNONE;
175
  static const fltSemantics &IEEEsingle() LLVM_READNONE;
176
  static const fltSemantics &IEEEdouble() LLVM_READNONE;
177
  static const fltSemantics &IEEEquad() LLVM_READNONE;
178
  static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
179
  static const fltSemantics &Float8E5M2() LLVM_READNONE;
180
  static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
181
  static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
182
 
183
  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
184
  /// anything real.
185
  static const fltSemantics &Bogus() LLVM_READNONE;
186
 
187
  /// @}
188
 
189
  /// IEEE-754R 5.11: Floating Point Comparison Relations.
190
  enum cmpResult {
191
    cmpLessThan,
192
    cmpEqual,
193
    cmpGreaterThan,
194
    cmpUnordered
195
  };
196
 
197
  /// IEEE-754R 4.3: Rounding-direction attributes.
198
  using roundingMode = llvm::RoundingMode;
199
 
200
  static constexpr roundingMode rmNearestTiesToEven =
201
                                                RoundingMode::NearestTiesToEven;
202
  static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
203
  static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
204
  static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
205
  static constexpr roundingMode rmNearestTiesToAway =
206
                                                RoundingMode::NearestTiesToAway;
207
 
208
  /// IEEE-754R 7: Default exception handling.
209
  ///
210
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
211
  ///
212
  /// APFloat models this behavior specified by IEEE-754:
213
  ///   "For operations producing results in floating-point format, the default
214
  ///    result of an operation that signals the invalid operation exception
215
  ///    shall be a quiet NaN."
216
  enum opStatus {
217
    opOK = 0x00,
218
    opInvalidOp = 0x01,
219
    opDivByZero = 0x02,
220
    opOverflow = 0x04,
221
    opUnderflow = 0x08,
222
    opInexact = 0x10
223
  };
224
 
225
  /// Category of internally-represented number.
226
  enum fltCategory {
227
    fcInfinity,
228
    fcNaN,
229
    fcNormal,
230
    fcZero
231
  };
232
 
233
  /// Convenience enum used to construct an uninitialized APFloat.
234
  enum uninitializedTag {
235
    uninitialized
236
  };
237
 
238
  /// Enumeration of \c ilogb error results.
239
  enum IlogbErrorKinds {
240
    IEK_Zero = INT_MIN + 1,
241
    IEK_NaN = INT_MIN,
242
    IEK_Inf = INT_MAX
243
  };
244
 
245
  static unsigned int semanticsPrecision(const fltSemantics &);
246
  static ExponentType semanticsMinExponent(const fltSemantics &);
247
  static ExponentType semanticsMaxExponent(const fltSemantics &);
248
  static unsigned int semanticsSizeInBits(const fltSemantics &);
249
 
250
  /// Returns the size of the floating point number (in bits) in the given
251
  /// semantics.
252
  static unsigned getSizeInBits(const fltSemantics &Sem);
253
};
254
 
255
namespace detail {
256
 
257
class IEEEFloat final : public APFloatBase {
258
public:
259
  /// \name Constructors
260
  /// @{
261
 
262
  IEEEFloat(const fltSemantics &); // Default construct to +0.0
263
  IEEEFloat(const fltSemantics &, integerPart);
264
  IEEEFloat(const fltSemantics &, uninitializedTag);
265
  IEEEFloat(const fltSemantics &, const APInt &);
266
  explicit IEEEFloat(double d);
267
  explicit IEEEFloat(float f);
268
  IEEEFloat(const IEEEFloat &);
269
  IEEEFloat(IEEEFloat &&);
270
  ~IEEEFloat();
271
 
272
  /// @}
273
 
274
  /// Returns whether this instance allocated memory.
275
  bool needsCleanup() const { return partCount() > 1; }
276
 
277
  /// \name Convenience "constructors"
278
  /// @{
279
 
280
  /// @}
281
 
282
  /// \name Arithmetic
283
  /// @{
284
 
285
  opStatus add(const IEEEFloat &, roundingMode);
286
  opStatus subtract(const IEEEFloat &, roundingMode);
287
  opStatus multiply(const IEEEFloat &, roundingMode);
288
  opStatus divide(const IEEEFloat &, roundingMode);
289
  /// IEEE remainder.
290
  opStatus remainder(const IEEEFloat &);
291
  /// C fmod, or llvm frem.
292
  opStatus mod(const IEEEFloat &);
293
  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
294
  opStatus roundToIntegral(roundingMode);
295
  /// IEEE-754R 5.3.1: nextUp/nextDown.
296
  opStatus next(bool nextDown);
297
 
298
  /// @}
299
 
300
  /// \name Sign operations.
301
  /// @{
302
 
303
  void changeSign();
304
 
305
  /// @}
306
 
307
  /// \name Conversions
308
  /// @{
309
 
310
  opStatus convert(const fltSemantics &, roundingMode, bool *);
311
  opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
312
                            roundingMode, bool *) const;
313
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
314
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
315
                                          bool, roundingMode);
316
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
317
                                          bool, roundingMode);
318
  Expected<opStatus> convertFromString(StringRef, roundingMode);
319
  APInt bitcastToAPInt() const;
320
  double convertToDouble() const;
321
  float convertToFloat() const;
322
 
323
  /// @}
324
 
325
  /// The definition of equality is not straightforward for floating point, so
326
  /// we won't use operator==.  Use one of the following, or write whatever it
327
  /// is you really mean.
328
  bool operator==(const IEEEFloat &) const = delete;
329
 
330
  /// IEEE comparison with another floating point number (NaNs compare
331
  /// unordered, 0==-0).
332
  cmpResult compare(const IEEEFloat &) const;
333
 
334
  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
335
  bool bitwiseIsEqual(const IEEEFloat &) const;
336
 
337
  /// Write out a hexadecimal representation of the floating point value to DST,
338
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
339
  /// Return the number of characters written, excluding the terminating NUL.
340
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
341
                                  bool upperCase, roundingMode) const;
342
 
343
  /// \name IEEE-754R 5.7.2 General operations.
344
  /// @{
345
 
346
  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
347
  /// negative.
348
  ///
349
  /// This applies to zeros and NaNs as well.
350
  bool isNegative() const { return sign; }
351
 
352
  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
353
  ///
354
  /// This implies that the current value of the float is not zero, subnormal,
355
  /// infinite, or NaN following the definition of normality from IEEE-754R.
356
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
357
 
358
  /// Returns true if and only if the current value is zero, subnormal, or
359
  /// normal.
360
  ///
361
  /// This means that the value is not infinite or NaN.
362
  bool isFinite() const { return !isNaN() && !isInfinity(); }
363
 
364
  /// Returns true if and only if the float is plus or minus zero.
365
  bool isZero() const { return category == fcZero; }
366
 
367
  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
368
  /// denormal.
369
  bool isDenormal() const;
370
 
371
  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
372
  bool isInfinity() const { return category == fcInfinity; }
373
 
374
  /// Returns true if and only if the float is a quiet or signaling NaN.
375
  bool isNaN() const { return category == fcNaN; }
376
 
377
  /// Returns true if and only if the float is a signaling NaN.
378
  bool isSignaling() const;
379
 
380
  /// @}
381
 
382
  /// \name Simple Queries
383
  /// @{
384
 
385
  fltCategory getCategory() const { return category; }
386
  const fltSemantics &getSemantics() const { return *semantics; }
387
  bool isNonZero() const { return category != fcZero; }
388
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
389
  bool isPosZero() const { return isZero() && !isNegative(); }
390
  bool isNegZero() const { return isZero() && isNegative(); }
391
 
392
  /// Returns true if and only if the number has the smallest possible non-zero
393
  /// magnitude in the current semantics.
394
  bool isSmallest() const;
395
 
396
  /// Returns true if this is the smallest (by magnitude) normalized finite
397
  /// number in the given semantics.
398
  bool isSmallestNormalized() const;
399
 
400
  /// Returns true if and only if the number has the largest possible finite
401
  /// magnitude in the current semantics.
402
  bool isLargest() const;
403
 
404
  /// Returns true if and only if the number is an exact integer.
405
  bool isInteger() const;
406
 
407
  /// @}
408
 
409
  IEEEFloat &operator=(const IEEEFloat &);
410
  IEEEFloat &operator=(IEEEFloat &&);
411
 
412
  /// Overload to compute a hash code for an APFloat value.
413
  ///
414
  /// Note that the use of hash codes for floating point values is in general
415
  /// frought with peril. Equality is hard to define for these values. For
416
  /// example, should negative and positive zero hash to different codes? Are
417
  /// they equal or not? This hash value implementation specifically
418
  /// emphasizes producing different codes for different inputs in order to
419
  /// be used in canonicalization and memoization. As such, equality is
420
  /// bitwiseIsEqual, and 0 != -0.
421
  friend hash_code hash_value(const IEEEFloat &Arg);
422
 
423
  /// Converts this value into a decimal string.
424
  ///
425
  /// \param FormatPrecision The maximum number of digits of
426
  ///   precision to output.  If there are fewer digits available,
427
  ///   zero padding will not be used unless the value is
428
  ///   integral and small enough to be expressed in
429
  ///   FormatPrecision digits.  0 means to use the natural
430
  ///   precision of the number.
431
  /// \param FormatMaxPadding The maximum number of zeros to
432
  ///   consider inserting before falling back to scientific
433
  ///   notation.  0 means to always use scientific notation.
434
  ///
435
  /// \param TruncateZero Indicate whether to remove the trailing zero in
436
  ///   fraction part or not. Also setting this parameter to false forcing
437
  ///   producing of output more similar to default printf behavior.
438
  ///   Specifically the lower e is used as exponent delimiter and exponent
439
  ///   always contains no less than two digits.
440
  ///
441
  /// Number       Precision    MaxPadding      Result
442
  /// ------       ---------    ----------      ------
443
  /// 1.01E+4              5             2       10100
444
  /// 1.01E+4              4             2       1.01E+4
445
  /// 1.01E+4              5             1       1.01E+4
446
  /// 1.01E-2              5             2       0.0101
447
  /// 1.01E-2              4             2       0.0101
448
  /// 1.01E-2              4             1       1.01E-2
449
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
450
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
451
 
452
  /// If this value has an exact multiplicative inverse, store it in inv and
453
  /// return true.
454
  bool getExactInverse(APFloat *inv) const;
455
 
456
  /// Returns the exponent of the internal representation of the APFloat.
457
  ///
458
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
459
  /// For special APFloat values, this returns special error codes:
460
  ///
461
  ///   NaN -> \c IEK_NaN
462
  ///   0   -> \c IEK_Zero
463
  ///   Inf -> \c IEK_Inf
464
  ///
465
  friend int ilogb(const IEEEFloat &Arg);
466
 
467
  /// Returns: X * 2^Exp for integral exponents.
468
  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
469
 
470
  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
471
 
472
  /// \name Special value setters.
473
  /// @{
474
 
475
  void makeLargest(bool Neg = false);
476
  void makeSmallest(bool Neg = false);
477
  void makeNaN(bool SNaN = false, bool Neg = false,
478
               const APInt *fill = nullptr);
479
  void makeInf(bool Neg = false);
480
  void makeZero(bool Neg = false);
481
  void makeQuiet();
482
 
483
  /// Returns the smallest (by magnitude) normalized finite number in the given
484
  /// semantics.
485
  ///
486
  /// \param Negative - True iff the number should be negative
487
  void makeSmallestNormalized(bool Negative = false);
488
 
489
  /// @}
490
 
491
  cmpResult compareAbsoluteValue(const IEEEFloat &) const;
492
 
493
private:
494
  /// \name Simple Queries
495
  /// @{
496
 
497
  integerPart *significandParts();
498
  const integerPart *significandParts() const;
499
  unsigned int partCount() const;
500
 
501
  /// @}
502
 
503
  /// \name Significand operations.
504
  /// @{
505
 
506
  integerPart addSignificand(const IEEEFloat &);
507
  integerPart subtractSignificand(const IEEEFloat &, integerPart);
508
  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
509
  lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
510
  lostFraction multiplySignificand(const IEEEFloat&);
511
  lostFraction divideSignificand(const IEEEFloat &);
512
  void incrementSignificand();
513
  void initialize(const fltSemantics *);
514
  void shiftSignificandLeft(unsigned int);
515
  lostFraction shiftSignificandRight(unsigned int);
516
  unsigned int significandLSB() const;
517
  unsigned int significandMSB() const;
518
  void zeroSignificand();
519
  /// Return true if the significand excluding the integral bit is all ones.
520
  bool isSignificandAllOnes() const;
521
  bool isSignificandAllOnesExceptLSB() const;
522
  /// Return true if the significand excluding the integral bit is all zeros.
523
  bool isSignificandAllZeros() const;
524
  bool isSignificandAllZerosExceptMSB() const;
525
 
526
  /// @}
527
 
528
  /// \name Arithmetic on special values.
529
  /// @{
530
 
531
  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
532
  opStatus divideSpecials(const IEEEFloat &);
533
  opStatus multiplySpecials(const IEEEFloat &);
534
  opStatus modSpecials(const IEEEFloat &);
535
  opStatus remainderSpecials(const IEEEFloat&);
536
 
537
  /// @}
538
 
539
  /// \name Miscellany
540
  /// @{
541
 
542
  bool convertFromStringSpecials(StringRef str);
543
  opStatus normalize(roundingMode, lostFraction);
544
  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
545
  opStatus handleOverflow(roundingMode);
546
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
547
  opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
548
                                        unsigned int, bool, roundingMode,
549
                                        bool *) const;
550
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
551
                                    roundingMode);
552
  Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
553
  Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
554
  char *convertNormalToHexString(char *, unsigned int, bool,
555
                                 roundingMode) const;
556
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
557
                                        roundingMode);
558
  ExponentType exponentNaN() const;
559
  ExponentType exponentInf() const;
560
  ExponentType exponentZero() const;
561
 
562
  /// @}
563
 
564
  APInt convertHalfAPFloatToAPInt() const;
565
  APInt convertBFloatAPFloatToAPInt() const;
566
  APInt convertFloatAPFloatToAPInt() const;
567
  APInt convertDoubleAPFloatToAPInt() const;
568
  APInt convertQuadrupleAPFloatToAPInt() const;
569
  APInt convertF80LongDoubleAPFloatToAPInt() const;
570
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
571
  APInt convertFloat8E5M2APFloatToAPInt() const;
572
  APInt convertFloat8E4M3FNAPFloatToAPInt() const;
573
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
574
  void initFromHalfAPInt(const APInt &api);
575
  void initFromBFloatAPInt(const APInt &api);
576
  void initFromFloatAPInt(const APInt &api);
577
  void initFromDoubleAPInt(const APInt &api);
578
  void initFromQuadrupleAPInt(const APInt &api);
579
  void initFromF80LongDoubleAPInt(const APInt &api);
580
  void initFromPPCDoubleDoubleAPInt(const APInt &api);
581
  void initFromFloat8E5M2APInt(const APInt &api);
582
  void initFromFloat8E4M3FNAPInt(const APInt &api);
583
 
584
  void assign(const IEEEFloat &);
585
  void copySignificand(const IEEEFloat &);
586
  void freeSignificand();
587
 
588
  /// Note: this must be the first data member.
589
  /// The semantics that this value obeys.
590
  const fltSemantics *semantics;
591
 
592
  /// A binary fraction with an explicit integer bit.
593
  ///
594
  /// The significand must be at least one bit wider than the target precision.
595
  union Significand {
596
    integerPart part;
597
    integerPart *parts;
598
  } significand;
599
 
600
  /// The signed unbiased exponent of the value.
601
  ExponentType exponent;
602
 
603
  /// What kind of floating point number this is.
604
  ///
605
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
606
  /// Using the extra bit keeps it from failing under VisualStudio.
607
  fltCategory category : 3;
608
 
609
  /// Sign bit of the number.
610
  unsigned int sign : 1;
611
};
612
 
613
hash_code hash_value(const IEEEFloat &Arg);
614
int ilogb(const IEEEFloat &Arg);
615
IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
616
IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
617
 
618
// This mode implements more precise float in terms of two APFloats.
619
// The interface and layout is designed for arbitrary underlying semantics,
620
// though currently only PPCDoubleDouble semantics are supported, whose
621
// corresponding underlying semantics are IEEEdouble.
622
class DoubleAPFloat final : public APFloatBase {
623
  // Note: this must be the first data member.
624
  const fltSemantics *Semantics;
625
  std::unique_ptr<APFloat[]> Floats;
626
 
627
  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
628
                   const APFloat &cc, roundingMode RM);
629
 
630
  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
631
                          DoubleAPFloat &Out, roundingMode RM);
632
 
633
public:
634
  DoubleAPFloat(const fltSemantics &S);
635
  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
636
  DoubleAPFloat(const fltSemantics &S, integerPart);
637
  DoubleAPFloat(const fltSemantics &S, const APInt &I);
638
  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
639
  DoubleAPFloat(const DoubleAPFloat &RHS);
640
  DoubleAPFloat(DoubleAPFloat &&RHS);
641
 
642
  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
643
 
644
  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
645
    if (this != &RHS) {
646
      this->~DoubleAPFloat();
647
      new (this) DoubleAPFloat(std::move(RHS));
648
    }
649
    return *this;
650
  }
651
 
652
  bool needsCleanup() const { return Floats != nullptr; }
653
 
654
  APFloat &getFirst() { return Floats[0]; }
655
  const APFloat &getFirst() const { return Floats[0]; }
656
  APFloat &getSecond() { return Floats[1]; }
657
  const APFloat &getSecond() const { return Floats[1]; }
658
 
659
  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
660
  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
661
  opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
662
  opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
663
  opStatus remainder(const DoubleAPFloat &RHS);
664
  opStatus mod(const DoubleAPFloat &RHS);
665
  opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
666
                            const DoubleAPFloat &Addend, roundingMode RM);
667
  opStatus roundToIntegral(roundingMode RM);
668
  void changeSign();
669
  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
670
 
671
  fltCategory getCategory() const;
672
  bool isNegative() const;
673
 
674
  void makeInf(bool Neg);
675
  void makeZero(bool Neg);
676
  void makeLargest(bool Neg);
677
  void makeSmallest(bool Neg);
678
  void makeSmallestNormalized(bool Neg);
679
  void makeNaN(bool SNaN, bool Neg, const APInt *fill);
680
 
681
  cmpResult compare(const DoubleAPFloat &RHS) const;
682
  bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
683
  APInt bitcastToAPInt() const;
684
  Expected<opStatus> convertFromString(StringRef, roundingMode);
685
  opStatus next(bool nextDown);
686
 
687
  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
688
                            unsigned int Width, bool IsSigned, roundingMode RM,
689
                            bool *IsExact) const;
690
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
691
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
692
                                          unsigned int InputSize, bool IsSigned,
693
                                          roundingMode RM);
694
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
695
                                          unsigned int InputSize, bool IsSigned,
696
                                          roundingMode RM);
697
  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
698
                                  bool UpperCase, roundingMode RM) const;
699
 
700
  bool isDenormal() const;
701
  bool isSmallest() const;
702
  bool isSmallestNormalized() const;
703
  bool isLargest() const;
704
  bool isInteger() const;
705
 
706
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
707
                unsigned FormatMaxPadding, bool TruncateZero = true) const;
708
 
709
  bool getExactInverse(APFloat *inv) const;
710
 
711
  friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
712
  friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
713
  friend hash_code hash_value(const DoubleAPFloat &Arg);
714
};
715
 
716
hash_code hash_value(const DoubleAPFloat &Arg);
717
 
718
} // End detail namespace
719
 
720
// This is a interface class that is currently forwarding functionalities from
721
// detail::IEEEFloat.
722
class APFloat : public APFloatBase {
723
  typedef detail::IEEEFloat IEEEFloat;
724
  typedef detail::DoubleAPFloat DoubleAPFloat;
725
 
726
  static_assert(std::is_standard_layout<IEEEFloat>::value);
727
 
728
  union Storage {
729
    const fltSemantics *semantics;
730
    IEEEFloat IEEE;
731
    DoubleAPFloat Double;
732
 
733
    explicit Storage(IEEEFloat F, const fltSemantics &S);
734
    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
735
        : Double(std::move(F)) {
736
      assert(&S == &PPCDoubleDouble());
737
    }
738
 
739
    template <typename... ArgTypes>
740
    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
741
      if (usesLayout<IEEEFloat>(Semantics)) {
742
        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
743
        return;
744
      }
745
      if (usesLayout<DoubleAPFloat>(Semantics)) {
746
        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
747
        return;
748
      }
749
      llvm_unreachable("Unexpected semantics");
750
    }
751
 
752
    ~Storage() {
753
      if (usesLayout<IEEEFloat>(*semantics)) {
754
        IEEE.~IEEEFloat();
755
        return;
756
      }
757
      if (usesLayout<DoubleAPFloat>(*semantics)) {
758
        Double.~DoubleAPFloat();
759
        return;
760
      }
761
      llvm_unreachable("Unexpected semantics");
762
    }
763
 
764
    Storage(const Storage &RHS) {
765
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
766
        new (this) IEEEFloat(RHS.IEEE);
767
        return;
768
      }
769
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
770
        new (this) DoubleAPFloat(RHS.Double);
771
        return;
772
      }
773
      llvm_unreachable("Unexpected semantics");
774
    }
775
 
776
    Storage(Storage &&RHS) {
777
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
778
        new (this) IEEEFloat(std::move(RHS.IEEE));
779
        return;
780
      }
781
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
782
        new (this) DoubleAPFloat(std::move(RHS.Double));
783
        return;
784
      }
785
      llvm_unreachable("Unexpected semantics");
786
    }
787
 
788
    Storage &operator=(const Storage &RHS) {
789
      if (usesLayout<IEEEFloat>(*semantics) &&
790
          usesLayout<IEEEFloat>(*RHS.semantics)) {
791
        IEEE = RHS.IEEE;
792
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
793
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
794
        Double = RHS.Double;
795
      } else if (this != &RHS) {
796
        this->~Storage();
797
        new (this) Storage(RHS);
798
      }
799
      return *this;
800
    }
801
 
802
    Storage &operator=(Storage &&RHS) {
803
      if (usesLayout<IEEEFloat>(*semantics) &&
804
          usesLayout<IEEEFloat>(*RHS.semantics)) {
805
        IEEE = std::move(RHS.IEEE);
806
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
807
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
808
        Double = std::move(RHS.Double);
809
      } else if (this != &RHS) {
810
        this->~Storage();
811
        new (this) Storage(std::move(RHS));
812
      }
813
      return *this;
814
    }
815
  } U;
816
 
817
  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
818
    static_assert(std::is_same<T, IEEEFloat>::value ||
819
                  std::is_same<T, DoubleAPFloat>::value);
820
    if (std::is_same<T, DoubleAPFloat>::value) {
821
      return &Semantics == &PPCDoubleDouble();
822
    }
823
    return &Semantics != &PPCDoubleDouble();
824
  }
825
 
826
  IEEEFloat &getIEEE() {
827
    if (usesLayout<IEEEFloat>(*U.semantics))
828
      return U.IEEE;
829
    if (usesLayout<DoubleAPFloat>(*U.semantics))
830
      return U.Double.getFirst().U.IEEE;
831
    llvm_unreachable("Unexpected semantics");
832
  }
833
 
834
  const IEEEFloat &getIEEE() const {
835
    if (usesLayout<IEEEFloat>(*U.semantics))
836
      return U.IEEE;
837
    if (usesLayout<DoubleAPFloat>(*U.semantics))
838
      return U.Double.getFirst().U.IEEE;
839
    llvm_unreachable("Unexpected semantics");
840
  }
841
 
842
  void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
843
 
844
  void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
845
 
846
  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
847
    APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
848
  }
849
 
850
  void makeLargest(bool Neg) {
851
    APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
852
  }
853
 
854
  void makeSmallest(bool Neg) {
855
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
856
  }
857
 
858
  void makeSmallestNormalized(bool Neg) {
859
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
860
  }
861
 
862
  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
863
  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
864
      : U(std::move(F), S) {}
865
 
866
  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
867
    assert(&getSemantics() == &RHS.getSemantics() &&
868
           "Should only compare APFloats with the same semantics");
869
    if (usesLayout<IEEEFloat>(getSemantics()))
870
      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
871
    if (usesLayout<DoubleAPFloat>(getSemantics()))
872
      return U.Double.compareAbsoluteValue(RHS.U.Double);
873
    llvm_unreachable("Unexpected semantics");
874
  }
875
 
876
public:
877
  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
878
  APFloat(const fltSemantics &Semantics, StringRef S);
879
  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
880
  template <typename T,
881
            typename = std::enable_if_t<std::is_floating_point<T>::value>>
882
  APFloat(const fltSemantics &Semantics, T V) = delete;
883
  // TODO: Remove this constructor. This isn't faster than the first one.
884
  APFloat(const fltSemantics &Semantics, uninitializedTag)
885
      : U(Semantics, uninitialized) {}
886
  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
887
  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
888
  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
889
  APFloat(const APFloat &RHS) = default;
890
  APFloat(APFloat &&RHS) = default;
891
 
892
  ~APFloat() = default;
893
 
894
  bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
895
 
896
  /// Factory for Positive and Negative Zero.
897
  ///
898
  /// \param Negative True iff the number should be negative.
899
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
900
    APFloat Val(Sem, uninitialized);
901
    Val.makeZero(Negative);
902
    return Val;
903
  }
904
 
905
  /// Factory for Positive and Negative Infinity.
906
  ///
907
  /// \param Negative True iff the number should be negative.
908
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
909
    APFloat Val(Sem, uninitialized);
910
    Val.makeInf(Negative);
911
    return Val;
912
  }
913
 
914
  /// Factory for NaN values.
915
  ///
916
  /// \param Negative - True iff the NaN generated should be negative.
917
  /// \param payload - The unspecified fill bits for creating the NaN, 0 by
918
  /// default.  The value is truncated as necessary.
919
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
920
                        uint64_t payload = 0) {
921
    if (payload) {
922
      APInt intPayload(64, payload);
923
      return getQNaN(Sem, Negative, &intPayload);
924
    } else {
925
      return getQNaN(Sem, Negative, nullptr);
926
    }
927
  }
928
 
929
  /// Factory for QNaN values.
930
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
931
                         const APInt *payload = nullptr) {
932
    APFloat Val(Sem, uninitialized);
933
    Val.makeNaN(false, Negative, payload);
934
    return Val;
935
  }
936
 
937
  /// Factory for SNaN values.
938
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
939
                         const APInt *payload = nullptr) {
940
    APFloat Val(Sem, uninitialized);
941
    Val.makeNaN(true, Negative, payload);
942
    return Val;
943
  }
944
 
945
  /// Returns the largest finite number in the given semantics.
946
  ///
947
  /// \param Negative - True iff the number should be negative
948
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
949
    APFloat Val(Sem, uninitialized);
950
    Val.makeLargest(Negative);
951
    return Val;
952
  }
953
 
954
  /// Returns the smallest (by magnitude) finite number in the given semantics.
955
  /// Might be denormalized, which implies a relative loss of precision.
956
  ///
957
  /// \param Negative - True iff the number should be negative
958
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
959
    APFloat Val(Sem, uninitialized);
960
    Val.makeSmallest(Negative);
961
    return Val;
962
  }
963
 
964
  /// Returns the smallest (by magnitude) normalized finite number in the given
965
  /// semantics.
966
  ///
967
  /// \param Negative - True iff the number should be negative
968
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
969
                                       bool Negative = false) {
970
    APFloat Val(Sem, uninitialized);
971
    Val.makeSmallestNormalized(Negative);
972
    return Val;
973
  }
974
 
975
  /// Returns a float which is bitcasted from an all one value int.
976
  ///
977
  /// \param Semantics - type float semantics
978
  static APFloat getAllOnesValue(const fltSemantics &Semantics);
979
 
980
  /// Used to insert APFloat objects, or objects that contain APFloat objects,
981
  /// into FoldingSets.
982
  void Profile(FoldingSetNodeID &NID) const;
983
 
984
  opStatus add(const APFloat &RHS, roundingMode RM) {
985
    assert(&getSemantics() == &RHS.getSemantics() &&
986
           "Should only call on two APFloats with the same semantics");
987
    if (usesLayout<IEEEFloat>(getSemantics()))
988
      return U.IEEE.add(RHS.U.IEEE, RM);
989
    if (usesLayout<DoubleAPFloat>(getSemantics()))
990
      return U.Double.add(RHS.U.Double, RM);
991
    llvm_unreachable("Unexpected semantics");
992
  }
993
  opStatus subtract(const APFloat &RHS, roundingMode RM) {
994
    assert(&getSemantics() == &RHS.getSemantics() &&
995
           "Should only call on two APFloats with the same semantics");
996
    if (usesLayout<IEEEFloat>(getSemantics()))
997
      return U.IEEE.subtract(RHS.U.IEEE, RM);
998
    if (usesLayout<DoubleAPFloat>(getSemantics()))
999
      return U.Double.subtract(RHS.U.Double, RM);
1000
    llvm_unreachable("Unexpected semantics");
1001
  }
1002
  opStatus multiply(const APFloat &RHS, roundingMode RM) {
1003
    assert(&getSemantics() == &RHS.getSemantics() &&
1004
           "Should only call on two APFloats with the same semantics");
1005
    if (usesLayout<IEEEFloat>(getSemantics()))
1006
      return U.IEEE.multiply(RHS.U.IEEE, RM);
1007
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1008
      return U.Double.multiply(RHS.U.Double, RM);
1009
    llvm_unreachable("Unexpected semantics");
1010
  }
1011
  opStatus divide(const APFloat &RHS, roundingMode RM) {
1012
    assert(&getSemantics() == &RHS.getSemantics() &&
1013
           "Should only call on two APFloats with the same semantics");
1014
    if (usesLayout<IEEEFloat>(getSemantics()))
1015
      return U.IEEE.divide(RHS.U.IEEE, RM);
1016
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1017
      return U.Double.divide(RHS.U.Double, RM);
1018
    llvm_unreachable("Unexpected semantics");
1019
  }
1020
  opStatus remainder(const APFloat &RHS) {
1021
    assert(&getSemantics() == &RHS.getSemantics() &&
1022
           "Should only call on two APFloats with the same semantics");
1023
    if (usesLayout<IEEEFloat>(getSemantics()))
1024
      return U.IEEE.remainder(RHS.U.IEEE);
1025
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1026
      return U.Double.remainder(RHS.U.Double);
1027
    llvm_unreachable("Unexpected semantics");
1028
  }
1029
  opStatus mod(const APFloat &RHS) {
1030
    assert(&getSemantics() == &RHS.getSemantics() &&
1031
           "Should only call on two APFloats with the same semantics");
1032
    if (usesLayout<IEEEFloat>(getSemantics()))
1033
      return U.IEEE.mod(RHS.U.IEEE);
1034
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1035
      return U.Double.mod(RHS.U.Double);
1036
    llvm_unreachable("Unexpected semantics");
1037
  }
1038
  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1039
                            roundingMode RM) {
1040
    assert(&getSemantics() == &Multiplicand.getSemantics() &&
1041
           "Should only call on APFloats with the same semantics");
1042
    assert(&getSemantics() == &Addend.getSemantics() &&
1043
           "Should only call on APFloats with the same semantics");
1044
    if (usesLayout<IEEEFloat>(getSemantics()))
1045
      return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1046
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1047
      return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1048
                                       RM);
1049
    llvm_unreachable("Unexpected semantics");
1050
  }
1051
  opStatus roundToIntegral(roundingMode RM) {
1052
    APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1053
  }
1054
 
1055
  // TODO: bool parameters are not readable and a source of bugs.
1056
  // Do something.
1057
  opStatus next(bool nextDown) {
1058
    APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1059
  }
1060
 
1061
  /// Negate an APFloat.
1062
  APFloat operator-() const {
1063
    APFloat Result(*this);
1064
    Result.changeSign();
1065
    return Result;
1066
  }
1067
 
1068
  /// Add two APFloats, rounding ties to the nearest even.
1069
  /// No error checking.
1070
  APFloat operator+(const APFloat &RHS) const {
1071
    APFloat Result(*this);
1072
    (void)Result.add(RHS, rmNearestTiesToEven);
1073
    return Result;
1074
  }
1075
 
1076
  /// Subtract two APFloats, rounding ties to the nearest even.
1077
  /// No error checking.
1078
  APFloat operator-(const APFloat &RHS) const {
1079
    APFloat Result(*this);
1080
    (void)Result.subtract(RHS, rmNearestTiesToEven);
1081
    return Result;
1082
  }
1083
 
1084
  /// Multiply two APFloats, rounding ties to the nearest even.
1085
  /// No error checking.
1086
  APFloat operator*(const APFloat &RHS) const {
1087
    APFloat Result(*this);
1088
    (void)Result.multiply(RHS, rmNearestTiesToEven);
1089
    return Result;
1090
  }
1091
 
1092
  /// Divide the first APFloat by the second, rounding ties to the nearest even.
1093
  /// No error checking.
1094
  APFloat operator/(const APFloat &RHS) const {
1095
    APFloat Result(*this);
1096
    (void)Result.divide(RHS, rmNearestTiesToEven);
1097
    return Result;
1098
  }
1099
 
1100
  void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
1101
  void clearSign() {
1102
    if (isNegative())
1103
      changeSign();
1104
  }
1105
  void copySign(const APFloat &RHS) {
1106
    if (isNegative() != RHS.isNegative())
1107
      changeSign();
1108
  }
1109
 
1110
  /// A static helper to produce a copy of an APFloat value with its sign
1111
  /// copied from some other APFloat.
1112
  static APFloat copySign(APFloat Value, const APFloat &Sign) {
1113
    Value.copySign(Sign);
1114
    return Value;
1115
  }
1116
 
1117
  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1118
                   bool *losesInfo);
1119
  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1120
                            unsigned int Width, bool IsSigned, roundingMode RM,
1121
                            bool *IsExact) const {
1122
    APFLOAT_DISPATCH_ON_SEMANTICS(
1123
        convertToInteger(Input, Width, IsSigned, RM, IsExact));
1124
  }
1125
  opStatus convertToInteger(APSInt &Result, roundingMode RM,
1126
                            bool *IsExact) const;
1127
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1128
                            roundingMode RM) {
1129
    APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1130
  }
1131
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
1132
                                          unsigned int InputSize, bool IsSigned,
1133
                                          roundingMode RM) {
1134
    APFLOAT_DISPATCH_ON_SEMANTICS(
1135
        convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1136
  }
1137
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1138
                                          unsigned int InputSize, bool IsSigned,
1139
                                          roundingMode RM) {
1140
    APFLOAT_DISPATCH_ON_SEMANTICS(
1141
        convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1142
  }
1143
  Expected<opStatus> convertFromString(StringRef, roundingMode);
1144
  APInt bitcastToAPInt() const {
1145
    APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1146
  }
1147
 
1148
  /// Converts this APFloat to host double value.
1149
  ///
1150
  /// \pre The APFloat must be built using semantics, that can be represented by
1151
  /// the host double type without loss of precision. It can be IEEEdouble and
1152
  /// shorter semantics, like IEEEsingle and others.
1153
  double convertToDouble() const;
1154
 
1155
  /// Converts this APFloat to host float value.
1156
  ///
1157
  /// \pre The APFloat must be built using semantics, that can be represented by
1158
  /// the host float type without loss of precision. It can be IEEEsingle and
1159
  /// shorter semantics, like IEEEhalf.
1160
  float convertToFloat() const;
1161
 
1162
  bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1163
 
1164
  bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1165
 
1166
  bool operator<(const APFloat &RHS) const {
1167
    return compare(RHS) == cmpLessThan;
1168
  }
1169
 
1170
  bool operator>(const APFloat &RHS) const {
1171
    return compare(RHS) == cmpGreaterThan;
1172
  }
1173
 
1174
  bool operator<=(const APFloat &RHS) const {
1175
    cmpResult Res = compare(RHS);
1176
    return Res == cmpLessThan || Res == cmpEqual;
1177
  }
1178
 
1179
  bool operator>=(const APFloat &RHS) const {
1180
    cmpResult Res = compare(RHS);
1181
    return Res == cmpGreaterThan || Res == cmpEqual;
1182
  }
1183
 
1184
  cmpResult compare(const APFloat &RHS) const {
1185
    assert(&getSemantics() == &RHS.getSemantics() &&
1186
           "Should only compare APFloats with the same semantics");
1187
    if (usesLayout<IEEEFloat>(getSemantics()))
1188
      return U.IEEE.compare(RHS.U.IEEE);
1189
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1190
      return U.Double.compare(RHS.U.Double);
1191
    llvm_unreachable("Unexpected semantics");
1192
  }
1193
 
1194
  bool bitwiseIsEqual(const APFloat &RHS) const {
1195
    if (&getSemantics() != &RHS.getSemantics())
1196
      return false;
1197
    if (usesLayout<IEEEFloat>(getSemantics()))
1198
      return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1199
    if (usesLayout<DoubleAPFloat>(getSemantics()))
1200
      return U.Double.bitwiseIsEqual(RHS.U.Double);
1201
    llvm_unreachable("Unexpected semantics");
1202
  }
1203
 
1204
  /// We don't rely on operator== working on double values, as
1205
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1206
  /// As such, this method can be used to do an exact bit-for-bit comparison of
1207
  /// two floating point values.
1208
  ///
1209
  /// We leave the version with the double argument here because it's just so
1210
  /// convenient to write "2.0" and the like.  Without this function we'd
1211
  /// have to duplicate its logic everywhere it's called.
1212
  bool isExactlyValue(double V) const {
1213
    bool ignored;
1214
    APFloat Tmp(V);
1215
    Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1216
    return bitwiseIsEqual(Tmp);
1217
  }
1218
 
1219
  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1220
                                  bool UpperCase, roundingMode RM) const {
1221
    APFLOAT_DISPATCH_ON_SEMANTICS(
1222
        convertToHexString(DST, HexDigits, UpperCase, RM));
1223
  }
1224
 
1225
  bool isZero() const { return getCategory() == fcZero; }
1226
  bool isInfinity() const { return getCategory() == fcInfinity; }
1227
  bool isNaN() const { return getCategory() == fcNaN; }
1228
 
1229
  bool isNegative() const { return getIEEE().isNegative(); }
1230
  bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
1231
  bool isSignaling() const { return getIEEE().isSignaling(); }
1232
 
1233
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
1234
  bool isFinite() const { return !isNaN() && !isInfinity(); }
1235
 
1236
  fltCategory getCategory() const { return getIEEE().getCategory(); }
1237
  const fltSemantics &getSemantics() const { return *U.semantics; }
1238
  bool isNonZero() const { return !isZero(); }
1239
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
1240
  bool isPosZero() const { return isZero() && !isNegative(); }
1241
  bool isNegZero() const { return isZero() && isNegative(); }
1242
  bool isPosInfinity() const { return isInfinity() && !isNegative(); }
1243
  bool isNegInfinity() const { return isInfinity() && isNegative(); }
1244
  bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
1245
  bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
1246
  bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1247
  bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1248
 
1249
  bool isSmallestNormalized() const {
1250
    APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
1251
  }
1252
 
1253
  APFloat &operator=(const APFloat &RHS) = default;
1254
  APFloat &operator=(APFloat &&RHS) = default;
1255
 
1256
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1257
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1258
    APFLOAT_DISPATCH_ON_SEMANTICS(
1259
        toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1260
  }
1261
 
1262
  void print(raw_ostream &) const;
1263
  void dump() const;
1264
 
1265
  bool getExactInverse(APFloat *inv) const {
1266
    APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1267
  }
1268
 
1269
  friend hash_code hash_value(const APFloat &Arg);
1270
  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1271
  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1272
  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1273
  friend IEEEFloat;
1274
  friend DoubleAPFloat;
1275
};
1276
 
1277
/// See friend declarations above.
1278
///
1279
/// These additional declarations are required in order to compile LLVM with IBM
1280
/// xlC compiler.
1281
hash_code hash_value(const APFloat &Arg);
1282
inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1283
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1284
    return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1285
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1286
    return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1287
  llvm_unreachable("Unexpected semantics");
1288
}
1289
 
1290
/// Equivalent of C standard library function.
1291
///
1292
/// While the C standard says Exp is an unspecified value for infinity and nan,
1293
/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
1294
inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1295
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1296
    return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1297
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1298
    return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1299
  llvm_unreachable("Unexpected semantics");
1300
}
1301
/// Returns the absolute value of the argument.
1302
inline APFloat abs(APFloat X) {
1303
  X.clearSign();
1304
  return X;
1305
}
1306
 
1307
/// Returns the negated value of the argument.
1308
inline APFloat neg(APFloat X) {
1309
  X.changeSign();
1310
  return X;
1311
}
1312
 
1313
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1314
/// both are not NaN. If either argument is a NaN, returns the other argument.
1315
LLVM_READONLY
1316
inline APFloat minnum(const APFloat &A, const APFloat &B) {
1317
  if (A.isNaN())
1318
    return B;
1319
  if (B.isNaN())
1320
    return A;
1321
  return B < A ? B : A;
1322
}
1323
 
1324
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1325
/// both are not NaN. If either argument is a NaN, returns the other argument.
1326
LLVM_READONLY
1327
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1328
  if (A.isNaN())
1329
    return B;
1330
  if (B.isNaN())
1331
    return A;
1332
  return A < B ? B : A;
1333
}
1334
 
1335
/// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
1336
/// arguments, propagating NaNs and treating -0 as less than +0.
1337
LLVM_READONLY
1338
inline APFloat minimum(const APFloat &A, const APFloat &B) {
1339
  if (A.isNaN())
1340
    return A;
1341
  if (B.isNaN())
1342
    return B;
1343
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1344
    return A.isNegative() ? A : B;
1345
  return B < A ? B : A;
1346
}
1347
 
1348
/// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
1349
/// arguments, propagating NaNs and treating -0 as less than +0.
1350
LLVM_READONLY
1351
inline APFloat maximum(const APFloat &A, const APFloat &B) {
1352
  if (A.isNaN())
1353
    return A;
1354
  if (B.isNaN())
1355
    return B;
1356
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1357
    return A.isNegative() ? B : A;
1358
  return A < B ? B : A;
1359
}
1360
 
1361
} // namespace llvm
1362
 
1363
#undef APFLOAT_DISPATCH_ON_SEMANTICS
1364
#endif // LLVM_ADT_APFLOAT_H