Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// This file declares a class to represent arbitrary precision floating point |
||
11 | /// values and provide a variety of arithmetic operations on them. |
||
12 | /// |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_ADT_APFLOAT_H |
||
16 | #define LLVM_ADT_APFLOAT_H |
||
17 | |||
18 | #include "llvm/ADT/APInt.h" |
||
19 | #include "llvm/ADT/ArrayRef.h" |
||
20 | #include "llvm/ADT/FloatingPointMode.h" |
||
21 | #include "llvm/Support/ErrorHandling.h" |
||
22 | #include <memory> |
||
23 | |||
24 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ |
||
25 | do { \ |
||
26 | if (usesLayout<IEEEFloat>(getSemantics())) \ |
||
27 | return U.IEEE.METHOD_CALL; \ |
||
28 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ |
||
29 | return U.Double.METHOD_CALL; \ |
||
30 | llvm_unreachable("Unexpected semantics"); \ |
||
31 | } while (false) |
||
32 | |||
33 | namespace llvm { |
||
34 | |||
35 | struct fltSemantics; |
||
36 | class APSInt; |
||
37 | class StringRef; |
||
38 | class APFloat; |
||
39 | class raw_ostream; |
||
40 | |||
41 | template <typename T> class Expected; |
||
42 | template <typename T> class SmallVectorImpl; |
||
43 | |||
44 | /// Enum that represents what fraction of the LSB truncated bits of an fp number |
||
45 | /// represent. |
||
46 | /// |
||
47 | /// This essentially combines the roles of guard and sticky bits. |
||
48 | enum lostFraction { // Example of truncated bits: |
||
49 | lfExactlyZero, // 000000 |
||
50 | lfLessThanHalf, // 0xxxxx x's not all zero |
||
51 | lfExactlyHalf, // 100000 |
||
52 | lfMoreThanHalf // 1xxxxx x's not all zero |
||
53 | }; |
||
54 | |||
55 | /// A self-contained host- and target-independent arbitrary-precision |
||
56 | /// floating-point software implementation. |
||
57 | /// |
||
58 | /// APFloat uses bignum integer arithmetic as provided by static functions in |
||
59 | /// the APInt class. The library will work with bignum integers whose parts are |
||
60 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. |
||
61 | /// |
||
62 | /// Written for clarity rather than speed, in particular with a view to use in |
||
63 | /// the front-end of a cross compiler so that target arithmetic can be correctly |
||
64 | /// performed on the host. Performance should nonetheless be reasonable, |
||
65 | /// particularly for its intended use. It may be useful as a base |
||
66 | /// implementation for a run-time library during development of a faster |
||
67 | /// target-specific one. |
||
68 | /// |
||
69 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all |
||
70 | /// implemented operations. Currently implemented operations are add, subtract, |
||
71 | /// multiply, divide, fused-multiply-add, conversion-to-float, |
||
72 | /// conversion-to-integer and conversion-from-integer. New rounding modes |
||
73 | /// (e.g. away from zero) can be added with three or four lines of code. |
||
74 | /// |
||
75 | /// Four formats are built-in: IEEE single precision, double precision, |
||
76 | /// quadruple precision, and x87 80-bit extended double (when operating with |
||
77 | /// full extended precision). Adding a new format that obeys IEEE semantics |
||
78 | /// only requires adding two lines of code: a declaration and definition of the |
||
79 | /// format. |
||
80 | /// |
||
81 | /// All operations return the status of that operation as an exception bit-mask, |
||
82 | /// so multiple operations can be done consecutively with their results or-ed |
||
83 | /// together. The returned status can be useful for compiler diagnostics; e.g., |
||
84 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, |
||
85 | /// and compiler optimizers can determine what exceptions would be raised by |
||
86 | /// folding operations and optimize, or perhaps not optimize, accordingly. |
||
87 | /// |
||
88 | /// At present, underflow tininess is detected after rounding; it should be |
||
89 | /// straight forward to add support for the before-rounding case too. |
||
90 | /// |
||
91 | /// The library reads hexadecimal floating point numbers as per C99, and |
||
92 | /// correctly rounds if necessary according to the specified rounding mode. |
||
93 | /// Syntax is required to have been validated by the caller. It also converts |
||
94 | /// floating point numbers to hexadecimal text as per the C99 %a and %A |
||
95 | /// conversions. The output precision (or alternatively the natural minimal |
||
96 | /// precision) can be specified; if the requested precision is less than the |
||
97 | /// natural precision the output is correctly rounded for the specified rounding |
||
98 | /// mode. |
||
99 | /// |
||
100 | /// It also reads decimal floating point numbers and correctly rounds according |
||
101 | /// to the specified rounding mode. |
||
102 | /// |
||
103 | /// Conversion to decimal text is not currently implemented. |
||
104 | /// |
||
105 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit |
||
106 | /// signed exponent, and the significand as an array of integer parts. After |
||
107 | /// normalization of a number of precision P the exponent is within the range of |
||
108 | /// the format, and if the number is not denormal the P-th bit of the |
||
109 | /// significand is set as an explicit integer bit. For denormals the most |
||
110 | /// significant bit is shifted right so that the exponent is maintained at the |
||
111 | /// format's minimum, so that the smallest denormal has just the least |
||
112 | /// significant bit of the significand set. The sign of zeroes and infinities |
||
113 | /// is significant; the exponent and significand of such numbers is not stored, |
||
114 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 |
||
115 | /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and |
||
116 | /// significand are deterministic, although not really meaningful, and preserved |
||
117 | /// in non-conversion operations. The exponent is implicitly all 1 bits. |
||
118 | /// |
||
119 | /// APFloat does not provide any exception handling beyond default exception |
||
120 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause |
||
121 | /// by encoding Signaling NaNs with the first bit of its trailing significand as |
||
122 | /// 0. |
||
123 | /// |
||
124 | /// TODO |
||
125 | /// ==== |
||
126 | /// |
||
127 | /// Some features that may or may not be worth adding: |
||
128 | /// |
||
129 | /// Binary to decimal conversion (hard). |
||
130 | /// |
||
131 | /// Optional ability to detect underflow tininess before rounding. |
||
132 | /// |
||
133 | /// New formats: x87 in single and double precision mode (IEEE apart from |
||
134 | /// extended exponent range) (hard). |
||
135 | /// |
||
136 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. |
||
137 | /// |
||
138 | |||
139 | // This is the common type definitions shared by APFloat and its internal |
||
140 | // implementation classes. This struct should not define any non-static data |
||
141 | // members. |
||
142 | struct APFloatBase { |
||
143 | typedef APInt::WordType integerPart; |
||
144 | static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; |
||
145 | |||
146 | /// A signed type to represent a floating point numbers unbiased exponent. |
||
147 | typedef int32_t ExponentType; |
||
148 | |||
149 | /// \name Floating Point Semantics. |
||
150 | /// @{ |
||
151 | enum Semantics { |
||
152 | S_IEEEhalf, |
||
153 | S_BFloat, |
||
154 | S_IEEEsingle, |
||
155 | S_IEEEdouble, |
||
156 | S_IEEEquad, |
||
157 | S_PPCDoubleDouble, |
||
158 | // 8-bit floating point number following IEEE-754 conventions with bit |
||
159 | // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433. |
||
160 | S_Float8E5M2, |
||
161 | // 8-bit floating point number mostly following IEEE-754 conventions with |
||
162 | // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433. |
||
163 | // Unlike IEEE-754 types, there are no infinity values, and NaN is |
||
164 | // represented with the exponent and mantissa bits set to all 1s. |
||
165 | S_Float8E4M3FN, |
||
166 | S_x87DoubleExtended, |
||
167 | S_MaxSemantics = S_x87DoubleExtended, |
||
168 | }; |
||
169 | |||
170 | static const llvm::fltSemantics &EnumToSemantics(Semantics S); |
||
171 | static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem); |
||
172 | |||
173 | static const fltSemantics &IEEEhalf() LLVM_READNONE; |
||
174 | static const fltSemantics &BFloat() LLVM_READNONE; |
||
175 | static const fltSemantics &IEEEsingle() LLVM_READNONE; |
||
176 | static const fltSemantics &IEEEdouble() LLVM_READNONE; |
||
177 | static const fltSemantics &IEEEquad() LLVM_READNONE; |
||
178 | static const fltSemantics &PPCDoubleDouble() LLVM_READNONE; |
||
179 | static const fltSemantics &Float8E5M2() LLVM_READNONE; |
||
180 | static const fltSemantics &Float8E4M3FN() LLVM_READNONE; |
||
181 | static const fltSemantics &x87DoubleExtended() LLVM_READNONE; |
||
182 | |||
183 | /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with |
||
184 | /// anything real. |
||
185 | static const fltSemantics &Bogus() LLVM_READNONE; |
||
186 | |||
187 | /// @} |
||
188 | |||
189 | /// IEEE-754R 5.11: Floating Point Comparison Relations. |
||
190 | enum cmpResult { |
||
191 | cmpLessThan, |
||
192 | cmpEqual, |
||
193 | cmpGreaterThan, |
||
194 | cmpUnordered |
||
195 | }; |
||
196 | |||
197 | /// IEEE-754R 4.3: Rounding-direction attributes. |
||
198 | using roundingMode = llvm::RoundingMode; |
||
199 | |||
200 | static constexpr roundingMode rmNearestTiesToEven = |
||
201 | RoundingMode::NearestTiesToEven; |
||
202 | static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive; |
||
203 | static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative; |
||
204 | static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero; |
||
205 | static constexpr roundingMode rmNearestTiesToAway = |
||
206 | RoundingMode::NearestTiesToAway; |
||
207 | |||
208 | /// IEEE-754R 7: Default exception handling. |
||
209 | /// |
||
210 | /// opUnderflow or opOverflow are always returned or-ed with opInexact. |
||
211 | /// |
||
212 | /// APFloat models this behavior specified by IEEE-754: |
||
213 | /// "For operations producing results in floating-point format, the default |
||
214 | /// result of an operation that signals the invalid operation exception |
||
215 | /// shall be a quiet NaN." |
||
216 | enum opStatus { |
||
217 | opOK = 0x00, |
||
218 | opInvalidOp = 0x01, |
||
219 | opDivByZero = 0x02, |
||
220 | opOverflow = 0x04, |
||
221 | opUnderflow = 0x08, |
||
222 | opInexact = 0x10 |
||
223 | }; |
||
224 | |||
225 | /// Category of internally-represented number. |
||
226 | enum fltCategory { |
||
227 | fcInfinity, |
||
228 | fcNaN, |
||
229 | fcNormal, |
||
230 | fcZero |
||
231 | }; |
||
232 | |||
233 | /// Convenience enum used to construct an uninitialized APFloat. |
||
234 | enum uninitializedTag { |
||
235 | uninitialized |
||
236 | }; |
||
237 | |||
238 | /// Enumeration of \c ilogb error results. |
||
239 | enum IlogbErrorKinds { |
||
240 | IEK_Zero = INT_MIN + 1, |
||
241 | IEK_NaN = INT_MIN, |
||
242 | IEK_Inf = INT_MAX |
||
243 | }; |
||
244 | |||
245 | static unsigned int semanticsPrecision(const fltSemantics &); |
||
246 | static ExponentType semanticsMinExponent(const fltSemantics &); |
||
247 | static ExponentType semanticsMaxExponent(const fltSemantics &); |
||
248 | static unsigned int semanticsSizeInBits(const fltSemantics &); |
||
249 | |||
250 | /// Returns the size of the floating point number (in bits) in the given |
||
251 | /// semantics. |
||
252 | static unsigned getSizeInBits(const fltSemantics &Sem); |
||
253 | }; |
||
254 | |||
255 | namespace detail { |
||
256 | |||
257 | class IEEEFloat final : public APFloatBase { |
||
258 | public: |
||
259 | /// \name Constructors |
||
260 | /// @{ |
||
261 | |||
262 | IEEEFloat(const fltSemantics &); // Default construct to +0.0 |
||
263 | IEEEFloat(const fltSemantics &, integerPart); |
||
264 | IEEEFloat(const fltSemantics &, uninitializedTag); |
||
265 | IEEEFloat(const fltSemantics &, const APInt &); |
||
266 | explicit IEEEFloat(double d); |
||
267 | explicit IEEEFloat(float f); |
||
268 | IEEEFloat(const IEEEFloat &); |
||
269 | IEEEFloat(IEEEFloat &&); |
||
270 | ~IEEEFloat(); |
||
271 | |||
272 | /// @} |
||
273 | |||
274 | /// Returns whether this instance allocated memory. |
||
275 | bool needsCleanup() const { return partCount() > 1; } |
||
276 | |||
277 | /// \name Convenience "constructors" |
||
278 | /// @{ |
||
279 | |||
280 | /// @} |
||
281 | |||
282 | /// \name Arithmetic |
||
283 | /// @{ |
||
284 | |||
285 | opStatus add(const IEEEFloat &, roundingMode); |
||
286 | opStatus subtract(const IEEEFloat &, roundingMode); |
||
287 | opStatus multiply(const IEEEFloat &, roundingMode); |
||
288 | opStatus divide(const IEEEFloat &, roundingMode); |
||
289 | /// IEEE remainder. |
||
290 | opStatus remainder(const IEEEFloat &); |
||
291 | /// C fmod, or llvm frem. |
||
292 | opStatus mod(const IEEEFloat &); |
||
293 | opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); |
||
294 | opStatus roundToIntegral(roundingMode); |
||
295 | /// IEEE-754R 5.3.1: nextUp/nextDown. |
||
296 | opStatus next(bool nextDown); |
||
297 | |||
298 | /// @} |
||
299 | |||
300 | /// \name Sign operations. |
||
301 | /// @{ |
||
302 | |||
303 | void changeSign(); |
||
304 | |||
305 | /// @} |
||
306 | |||
307 | /// \name Conversions |
||
308 | /// @{ |
||
309 | |||
310 | opStatus convert(const fltSemantics &, roundingMode, bool *); |
||
311 | opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool, |
||
312 | roundingMode, bool *) const; |
||
313 | opStatus convertFromAPInt(const APInt &, bool, roundingMode); |
||
314 | opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, |
||
315 | bool, roundingMode); |
||
316 | opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, |
||
317 | bool, roundingMode); |
||
318 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
||
319 | APInt bitcastToAPInt() const; |
||
320 | double convertToDouble() const; |
||
321 | float convertToFloat() const; |
||
322 | |||
323 | /// @} |
||
324 | |||
325 | /// The definition of equality is not straightforward for floating point, so |
||
326 | /// we won't use operator==. Use one of the following, or write whatever it |
||
327 | /// is you really mean. |
||
328 | bool operator==(const IEEEFloat &) const = delete; |
||
329 | |||
330 | /// IEEE comparison with another floating point number (NaNs compare |
||
331 | /// unordered, 0==-0). |
||
332 | cmpResult compare(const IEEEFloat &) const; |
||
333 | |||
334 | /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). |
||
335 | bool bitwiseIsEqual(const IEEEFloat &) const; |
||
336 | |||
337 | /// Write out a hexadecimal representation of the floating point value to DST, |
||
338 | /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. |
||
339 | /// Return the number of characters written, excluding the terminating NUL. |
||
340 | unsigned int convertToHexString(char *dst, unsigned int hexDigits, |
||
341 | bool upperCase, roundingMode) const; |
||
342 | |||
343 | /// \name IEEE-754R 5.7.2 General operations. |
||
344 | /// @{ |
||
345 | |||
346 | /// IEEE-754R isSignMinus: Returns true if and only if the current value is |
||
347 | /// negative. |
||
348 | /// |
||
349 | /// This applies to zeros and NaNs as well. |
||
350 | bool isNegative() const { return sign; } |
||
351 | |||
352 | /// IEEE-754R isNormal: Returns true if and only if the current value is normal. |
||
353 | /// |
||
354 | /// This implies that the current value of the float is not zero, subnormal, |
||
355 | /// infinite, or NaN following the definition of normality from IEEE-754R. |
||
356 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
||
357 | |||
358 | /// Returns true if and only if the current value is zero, subnormal, or |
||
359 | /// normal. |
||
360 | /// |
||
361 | /// This means that the value is not infinite or NaN. |
||
362 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
||
363 | |||
364 | /// Returns true if and only if the float is plus or minus zero. |
||
365 | bool isZero() const { return category == fcZero; } |
||
366 | |||
367 | /// IEEE-754R isSubnormal(): Returns true if and only if the float is a |
||
368 | /// denormal. |
||
369 | bool isDenormal() const; |
||
370 | |||
371 | /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. |
||
372 | bool isInfinity() const { return category == fcInfinity; } |
||
373 | |||
374 | /// Returns true if and only if the float is a quiet or signaling NaN. |
||
375 | bool isNaN() const { return category == fcNaN; } |
||
376 | |||
377 | /// Returns true if and only if the float is a signaling NaN. |
||
378 | bool isSignaling() const; |
||
379 | |||
380 | /// @} |
||
381 | |||
382 | /// \name Simple Queries |
||
383 | /// @{ |
||
384 | |||
385 | fltCategory getCategory() const { return category; } |
||
386 | const fltSemantics &getSemantics() const { return *semantics; } |
||
387 | bool isNonZero() const { return category != fcZero; } |
||
388 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
||
389 | bool isPosZero() const { return isZero() && !isNegative(); } |
||
390 | bool isNegZero() const { return isZero() && isNegative(); } |
||
391 | |||
392 | /// Returns true if and only if the number has the smallest possible non-zero |
||
393 | /// magnitude in the current semantics. |
||
394 | bool isSmallest() const; |
||
395 | |||
396 | /// Returns true if this is the smallest (by magnitude) normalized finite |
||
397 | /// number in the given semantics. |
||
398 | bool isSmallestNormalized() const; |
||
399 | |||
400 | /// Returns true if and only if the number has the largest possible finite |
||
401 | /// magnitude in the current semantics. |
||
402 | bool isLargest() const; |
||
403 | |||
404 | /// Returns true if and only if the number is an exact integer. |
||
405 | bool isInteger() const; |
||
406 | |||
407 | /// @} |
||
408 | |||
409 | IEEEFloat &operator=(const IEEEFloat &); |
||
410 | IEEEFloat &operator=(IEEEFloat &&); |
||
411 | |||
412 | /// Overload to compute a hash code for an APFloat value. |
||
413 | /// |
||
414 | /// Note that the use of hash codes for floating point values is in general |
||
415 | /// frought with peril. Equality is hard to define for these values. For |
||
416 | /// example, should negative and positive zero hash to different codes? Are |
||
417 | /// they equal or not? This hash value implementation specifically |
||
418 | /// emphasizes producing different codes for different inputs in order to |
||
419 | /// be used in canonicalization and memoization. As such, equality is |
||
420 | /// bitwiseIsEqual, and 0 != -0. |
||
421 | friend hash_code hash_value(const IEEEFloat &Arg); |
||
422 | |||
423 | /// Converts this value into a decimal string. |
||
424 | /// |
||
425 | /// \param FormatPrecision The maximum number of digits of |
||
426 | /// precision to output. If there are fewer digits available, |
||
427 | /// zero padding will not be used unless the value is |
||
428 | /// integral and small enough to be expressed in |
||
429 | /// FormatPrecision digits. 0 means to use the natural |
||
430 | /// precision of the number. |
||
431 | /// \param FormatMaxPadding The maximum number of zeros to |
||
432 | /// consider inserting before falling back to scientific |
||
433 | /// notation. 0 means to always use scientific notation. |
||
434 | /// |
||
435 | /// \param TruncateZero Indicate whether to remove the trailing zero in |
||
436 | /// fraction part or not. Also setting this parameter to false forcing |
||
437 | /// producing of output more similar to default printf behavior. |
||
438 | /// Specifically the lower e is used as exponent delimiter and exponent |
||
439 | /// always contains no less than two digits. |
||
440 | /// |
||
441 | /// Number Precision MaxPadding Result |
||
442 | /// ------ --------- ---------- ------ |
||
443 | /// 1.01E+4 5 2 10100 |
||
444 | /// 1.01E+4 4 2 1.01E+4 |
||
445 | /// 1.01E+4 5 1 1.01E+4 |
||
446 | /// 1.01E-2 5 2 0.0101 |
||
447 | /// 1.01E-2 4 2 0.0101 |
||
448 | /// 1.01E-2 4 1 1.01E-2 |
||
449 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
||
450 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; |
||
451 | |||
452 | /// If this value has an exact multiplicative inverse, store it in inv and |
||
453 | /// return true. |
||
454 | bool getExactInverse(APFloat *inv) const; |
||
455 | |||
456 | /// Returns the exponent of the internal representation of the APFloat. |
||
457 | /// |
||
458 | /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). |
||
459 | /// For special APFloat values, this returns special error codes: |
||
460 | /// |
||
461 | /// NaN -> \c IEK_NaN |
||
462 | /// 0 -> \c IEK_Zero |
||
463 | /// Inf -> \c IEK_Inf |
||
464 | /// |
||
465 | friend int ilogb(const IEEEFloat &Arg); |
||
466 | |||
467 | /// Returns: X * 2^Exp for integral exponents. |
||
468 | friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); |
||
469 | |||
470 | friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); |
||
471 | |||
472 | /// \name Special value setters. |
||
473 | /// @{ |
||
474 | |||
475 | void makeLargest(bool Neg = false); |
||
476 | void makeSmallest(bool Neg = false); |
||
477 | void makeNaN(bool SNaN = false, bool Neg = false, |
||
478 | const APInt *fill = nullptr); |
||
479 | void makeInf(bool Neg = false); |
||
480 | void makeZero(bool Neg = false); |
||
481 | void makeQuiet(); |
||
482 | |||
483 | /// Returns the smallest (by magnitude) normalized finite number in the given |
||
484 | /// semantics. |
||
485 | /// |
||
486 | /// \param Negative - True iff the number should be negative |
||
487 | void makeSmallestNormalized(bool Negative = false); |
||
488 | |||
489 | /// @} |
||
490 | |||
491 | cmpResult compareAbsoluteValue(const IEEEFloat &) const; |
||
492 | |||
493 | private: |
||
494 | /// \name Simple Queries |
||
495 | /// @{ |
||
496 | |||
497 | integerPart *significandParts(); |
||
498 | const integerPart *significandParts() const; |
||
499 | unsigned int partCount() const; |
||
500 | |||
501 | /// @} |
||
502 | |||
503 | /// \name Significand operations. |
||
504 | /// @{ |
||
505 | |||
506 | integerPart addSignificand(const IEEEFloat &); |
||
507 | integerPart subtractSignificand(const IEEEFloat &, integerPart); |
||
508 | lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); |
||
509 | lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat); |
||
510 | lostFraction multiplySignificand(const IEEEFloat&); |
||
511 | lostFraction divideSignificand(const IEEEFloat &); |
||
512 | void incrementSignificand(); |
||
513 | void initialize(const fltSemantics *); |
||
514 | void shiftSignificandLeft(unsigned int); |
||
515 | lostFraction shiftSignificandRight(unsigned int); |
||
516 | unsigned int significandLSB() const; |
||
517 | unsigned int significandMSB() const; |
||
518 | void zeroSignificand(); |
||
519 | /// Return true if the significand excluding the integral bit is all ones. |
||
520 | bool isSignificandAllOnes() const; |
||
521 | bool isSignificandAllOnesExceptLSB() const; |
||
522 | /// Return true if the significand excluding the integral bit is all zeros. |
||
523 | bool isSignificandAllZeros() const; |
||
524 | bool isSignificandAllZerosExceptMSB() const; |
||
525 | |||
526 | /// @} |
||
527 | |||
528 | /// \name Arithmetic on special values. |
||
529 | /// @{ |
||
530 | |||
531 | opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); |
||
532 | opStatus divideSpecials(const IEEEFloat &); |
||
533 | opStatus multiplySpecials(const IEEEFloat &); |
||
534 | opStatus modSpecials(const IEEEFloat &); |
||
535 | opStatus remainderSpecials(const IEEEFloat&); |
||
536 | |||
537 | /// @} |
||
538 | |||
539 | /// \name Miscellany |
||
540 | /// @{ |
||
541 | |||
542 | bool convertFromStringSpecials(StringRef str); |
||
543 | opStatus normalize(roundingMode, lostFraction); |
||
544 | opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); |
||
545 | opStatus handleOverflow(roundingMode); |
||
546 | bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; |
||
547 | opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>, |
||
548 | unsigned int, bool, roundingMode, |
||
549 | bool *) const; |
||
550 | opStatus convertFromUnsignedParts(const integerPart *, unsigned int, |
||
551 | roundingMode); |
||
552 | Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode); |
||
553 | Expected<opStatus> convertFromDecimalString(StringRef, roundingMode); |
||
554 | char *convertNormalToHexString(char *, unsigned int, bool, |
||
555 | roundingMode) const; |
||
556 | opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, |
||
557 | roundingMode); |
||
558 | ExponentType exponentNaN() const; |
||
559 | ExponentType exponentInf() const; |
||
560 | ExponentType exponentZero() const; |
||
561 | |||
562 | /// @} |
||
563 | |||
564 | APInt convertHalfAPFloatToAPInt() const; |
||
565 | APInt convertBFloatAPFloatToAPInt() const; |
||
566 | APInt convertFloatAPFloatToAPInt() const; |
||
567 | APInt convertDoubleAPFloatToAPInt() const; |
||
568 | APInt convertQuadrupleAPFloatToAPInt() const; |
||
569 | APInt convertF80LongDoubleAPFloatToAPInt() const; |
||
570 | APInt convertPPCDoubleDoubleAPFloatToAPInt() const; |
||
571 | APInt convertFloat8E5M2APFloatToAPInt() const; |
||
572 | APInt convertFloat8E4M3FNAPFloatToAPInt() const; |
||
573 | void initFromAPInt(const fltSemantics *Sem, const APInt &api); |
||
574 | void initFromHalfAPInt(const APInt &api); |
||
575 | void initFromBFloatAPInt(const APInt &api); |
||
576 | void initFromFloatAPInt(const APInt &api); |
||
577 | void initFromDoubleAPInt(const APInt &api); |
||
578 | void initFromQuadrupleAPInt(const APInt &api); |
||
579 | void initFromF80LongDoubleAPInt(const APInt &api); |
||
580 | void initFromPPCDoubleDoubleAPInt(const APInt &api); |
||
581 | void initFromFloat8E5M2APInt(const APInt &api); |
||
582 | void initFromFloat8E4M3FNAPInt(const APInt &api); |
||
583 | |||
584 | void assign(const IEEEFloat &); |
||
585 | void copySignificand(const IEEEFloat &); |
||
586 | void freeSignificand(); |
||
587 | |||
588 | /// Note: this must be the first data member. |
||
589 | /// The semantics that this value obeys. |
||
590 | const fltSemantics *semantics; |
||
591 | |||
592 | /// A binary fraction with an explicit integer bit. |
||
593 | /// |
||
594 | /// The significand must be at least one bit wider than the target precision. |
||
595 | union Significand { |
||
596 | integerPart part; |
||
597 | integerPart *parts; |
||
598 | } significand; |
||
599 | |||
600 | /// The signed unbiased exponent of the value. |
||
601 | ExponentType exponent; |
||
602 | |||
603 | /// What kind of floating point number this is. |
||
604 | /// |
||
605 | /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. |
||
606 | /// Using the extra bit keeps it from failing under VisualStudio. |
||
607 | fltCategory category : 3; |
||
608 | |||
609 | /// Sign bit of the number. |
||
610 | unsigned int sign : 1; |
||
611 | }; |
||
612 | |||
613 | hash_code hash_value(const IEEEFloat &Arg); |
||
614 | int ilogb(const IEEEFloat &Arg); |
||
615 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); |
||
616 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); |
||
617 | |||
618 | // This mode implements more precise float in terms of two APFloats. |
||
619 | // The interface and layout is designed for arbitrary underlying semantics, |
||
620 | // though currently only PPCDoubleDouble semantics are supported, whose |
||
621 | // corresponding underlying semantics are IEEEdouble. |
||
622 | class DoubleAPFloat final : public APFloatBase { |
||
623 | // Note: this must be the first data member. |
||
624 | const fltSemantics *Semantics; |
||
625 | std::unique_ptr<APFloat[]> Floats; |
||
626 | |||
627 | opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, |
||
628 | const APFloat &cc, roundingMode RM); |
||
629 | |||
630 | opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, |
||
631 | DoubleAPFloat &Out, roundingMode RM); |
||
632 | |||
633 | public: |
||
634 | DoubleAPFloat(const fltSemantics &S); |
||
635 | DoubleAPFloat(const fltSemantics &S, uninitializedTag); |
||
636 | DoubleAPFloat(const fltSemantics &S, integerPart); |
||
637 | DoubleAPFloat(const fltSemantics &S, const APInt &I); |
||
638 | DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); |
||
639 | DoubleAPFloat(const DoubleAPFloat &RHS); |
||
640 | DoubleAPFloat(DoubleAPFloat &&RHS); |
||
641 | |||
642 | DoubleAPFloat &operator=(const DoubleAPFloat &RHS); |
||
643 | |||
644 | DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { |
||
645 | if (this != &RHS) { |
||
646 | this->~DoubleAPFloat(); |
||
647 | new (this) DoubleAPFloat(std::move(RHS)); |
||
648 | } |
||
649 | return *this; |
||
650 | } |
||
651 | |||
652 | bool needsCleanup() const { return Floats != nullptr; } |
||
653 | |||
654 | APFloat &getFirst() { return Floats[0]; } |
||
655 | const APFloat &getFirst() const { return Floats[0]; } |
||
656 | APFloat &getSecond() { return Floats[1]; } |
||
657 | const APFloat &getSecond() const { return Floats[1]; } |
||
658 | |||
659 | opStatus add(const DoubleAPFloat &RHS, roundingMode RM); |
||
660 | opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); |
||
661 | opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); |
||
662 | opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); |
||
663 | opStatus remainder(const DoubleAPFloat &RHS); |
||
664 | opStatus mod(const DoubleAPFloat &RHS); |
||
665 | opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, |
||
666 | const DoubleAPFloat &Addend, roundingMode RM); |
||
667 | opStatus roundToIntegral(roundingMode RM); |
||
668 | void changeSign(); |
||
669 | cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; |
||
670 | |||
671 | fltCategory getCategory() const; |
||
672 | bool isNegative() const; |
||
673 | |||
674 | void makeInf(bool Neg); |
||
675 | void makeZero(bool Neg); |
||
676 | void makeLargest(bool Neg); |
||
677 | void makeSmallest(bool Neg); |
||
678 | void makeSmallestNormalized(bool Neg); |
||
679 | void makeNaN(bool SNaN, bool Neg, const APInt *fill); |
||
680 | |||
681 | cmpResult compare(const DoubleAPFloat &RHS) const; |
||
682 | bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; |
||
683 | APInt bitcastToAPInt() const; |
||
684 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
||
685 | opStatus next(bool nextDown); |
||
686 | |||
687 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
||
688 | unsigned int Width, bool IsSigned, roundingMode RM, |
||
689 | bool *IsExact) const; |
||
690 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); |
||
691 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
||
692 | unsigned int InputSize, bool IsSigned, |
||
693 | roundingMode RM); |
||
694 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
||
695 | unsigned int InputSize, bool IsSigned, |
||
696 | roundingMode RM); |
||
697 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
||
698 | bool UpperCase, roundingMode RM) const; |
||
699 | |||
700 | bool isDenormal() const; |
||
701 | bool isSmallest() const; |
||
702 | bool isSmallestNormalized() const; |
||
703 | bool isLargest() const; |
||
704 | bool isInteger() const; |
||
705 | |||
706 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, |
||
707 | unsigned FormatMaxPadding, bool TruncateZero = true) const; |
||
708 | |||
709 | bool getExactInverse(APFloat *inv) const; |
||
710 | |||
711 | friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode); |
||
712 | friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); |
||
713 | friend hash_code hash_value(const DoubleAPFloat &Arg); |
||
714 | }; |
||
715 | |||
716 | hash_code hash_value(const DoubleAPFloat &Arg); |
||
717 | |||
718 | } // End detail namespace |
||
719 | |||
720 | // This is a interface class that is currently forwarding functionalities from |
||
721 | // detail::IEEEFloat. |
||
722 | class APFloat : public APFloatBase { |
||
723 | typedef detail::IEEEFloat IEEEFloat; |
||
724 | typedef detail::DoubleAPFloat DoubleAPFloat; |
||
725 | |||
726 | static_assert(std::is_standard_layout<IEEEFloat>::value); |
||
727 | |||
728 | union Storage { |
||
729 | const fltSemantics *semantics; |
||
730 | IEEEFloat IEEE; |
||
731 | DoubleAPFloat Double; |
||
732 | |||
733 | explicit Storage(IEEEFloat F, const fltSemantics &S); |
||
734 | explicit Storage(DoubleAPFloat F, const fltSemantics &S) |
||
735 | : Double(std::move(F)) { |
||
736 | assert(&S == &PPCDoubleDouble()); |
||
737 | } |
||
738 | |||
739 | template <typename... ArgTypes> |
||
740 | Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { |
||
741 | if (usesLayout<IEEEFloat>(Semantics)) { |
||
742 | new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); |
||
743 | return; |
||
744 | } |
||
745 | if (usesLayout<DoubleAPFloat>(Semantics)) { |
||
746 | new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); |
||
747 | return; |
||
748 | } |
||
749 | llvm_unreachable("Unexpected semantics"); |
||
750 | } |
||
751 | |||
752 | ~Storage() { |
||
753 | if (usesLayout<IEEEFloat>(*semantics)) { |
||
754 | IEEE.~IEEEFloat(); |
||
755 | return; |
||
756 | } |
||
757 | if (usesLayout<DoubleAPFloat>(*semantics)) { |
||
758 | Double.~DoubleAPFloat(); |
||
759 | return; |
||
760 | } |
||
761 | llvm_unreachable("Unexpected semantics"); |
||
762 | } |
||
763 | |||
764 | Storage(const Storage &RHS) { |
||
765 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
766 | new (this) IEEEFloat(RHS.IEEE); |
||
767 | return; |
||
768 | } |
||
769 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
770 | new (this) DoubleAPFloat(RHS.Double); |
||
771 | return; |
||
772 | } |
||
773 | llvm_unreachable("Unexpected semantics"); |
||
774 | } |
||
775 | |||
776 | Storage(Storage &&RHS) { |
||
777 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
778 | new (this) IEEEFloat(std::move(RHS.IEEE)); |
||
779 | return; |
||
780 | } |
||
781 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
782 | new (this) DoubleAPFloat(std::move(RHS.Double)); |
||
783 | return; |
||
784 | } |
||
785 | llvm_unreachable("Unexpected semantics"); |
||
786 | } |
||
787 | |||
788 | Storage &operator=(const Storage &RHS) { |
||
789 | if (usesLayout<IEEEFloat>(*semantics) && |
||
790 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
791 | IEEE = RHS.IEEE; |
||
792 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
||
793 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
794 | Double = RHS.Double; |
||
795 | } else if (this != &RHS) { |
||
796 | this->~Storage(); |
||
797 | new (this) Storage(RHS); |
||
798 | } |
||
799 | return *this; |
||
800 | } |
||
801 | |||
802 | Storage &operator=(Storage &&RHS) { |
||
803 | if (usesLayout<IEEEFloat>(*semantics) && |
||
804 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
805 | IEEE = std::move(RHS.IEEE); |
||
806 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
||
807 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
808 | Double = std::move(RHS.Double); |
||
809 | } else if (this != &RHS) { |
||
810 | this->~Storage(); |
||
811 | new (this) Storage(std::move(RHS)); |
||
812 | } |
||
813 | return *this; |
||
814 | } |
||
815 | } U; |
||
816 | |||
817 | template <typename T> static bool usesLayout(const fltSemantics &Semantics) { |
||
818 | static_assert(std::is_same<T, IEEEFloat>::value || |
||
819 | std::is_same<T, DoubleAPFloat>::value); |
||
820 | if (std::is_same<T, DoubleAPFloat>::value) { |
||
821 | return &Semantics == &PPCDoubleDouble(); |
||
822 | } |
||
823 | return &Semantics != &PPCDoubleDouble(); |
||
824 | } |
||
825 | |||
826 | IEEEFloat &getIEEE() { |
||
827 | if (usesLayout<IEEEFloat>(*U.semantics)) |
||
828 | return U.IEEE; |
||
829 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
||
830 | return U.Double.getFirst().U.IEEE; |
||
831 | llvm_unreachable("Unexpected semantics"); |
||
832 | } |
||
833 | |||
834 | const IEEEFloat &getIEEE() const { |
||
835 | if (usesLayout<IEEEFloat>(*U.semantics)) |
||
836 | return U.IEEE; |
||
837 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
||
838 | return U.Double.getFirst().U.IEEE; |
||
839 | llvm_unreachable("Unexpected semantics"); |
||
840 | } |
||
841 | |||
842 | void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } |
||
843 | |||
844 | void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } |
||
845 | |||
846 | void makeNaN(bool SNaN, bool Neg, const APInt *fill) { |
||
847 | APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); |
||
848 | } |
||
849 | |||
850 | void makeLargest(bool Neg) { |
||
851 | APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); |
||
852 | } |
||
853 | |||
854 | void makeSmallest(bool Neg) { |
||
855 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); |
||
856 | } |
||
857 | |||
858 | void makeSmallestNormalized(bool Neg) { |
||
859 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); |
||
860 | } |
||
861 | |||
862 | explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} |
||
863 | explicit APFloat(DoubleAPFloat F, const fltSemantics &S) |
||
864 | : U(std::move(F), S) {} |
||
865 | |||
866 | cmpResult compareAbsoluteValue(const APFloat &RHS) const { |
||
867 | assert(&getSemantics() == &RHS.getSemantics() && |
||
868 | "Should only compare APFloats with the same semantics"); |
||
869 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
870 | return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); |
||
871 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
872 | return U.Double.compareAbsoluteValue(RHS.U.Double); |
||
873 | llvm_unreachable("Unexpected semantics"); |
||
874 | } |
||
875 | |||
876 | public: |
||
877 | APFloat(const fltSemantics &Semantics) : U(Semantics) {} |
||
878 | APFloat(const fltSemantics &Semantics, StringRef S); |
||
879 | APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} |
||
880 | template <typename T, |
||
881 | typename = std::enable_if_t<std::is_floating_point<T>::value>> |
||
882 | APFloat(const fltSemantics &Semantics, T V) = delete; |
||
883 | // TODO: Remove this constructor. This isn't faster than the first one. |
||
884 | APFloat(const fltSemantics &Semantics, uninitializedTag) |
||
885 | : U(Semantics, uninitialized) {} |
||
886 | APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} |
||
887 | explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} |
||
888 | explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} |
||
889 | APFloat(const APFloat &RHS) = default; |
||
890 | APFloat(APFloat &&RHS) = default; |
||
891 | |||
892 | ~APFloat() = default; |
||
893 | |||
894 | bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } |
||
895 | |||
896 | /// Factory for Positive and Negative Zero. |
||
897 | /// |
||
898 | /// \param Negative True iff the number should be negative. |
||
899 | static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { |
||
900 | APFloat Val(Sem, uninitialized); |
||
901 | Val.makeZero(Negative); |
||
902 | return Val; |
||
903 | } |
||
904 | |||
905 | /// Factory for Positive and Negative Infinity. |
||
906 | /// |
||
907 | /// \param Negative True iff the number should be negative. |
||
908 | static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { |
||
909 | APFloat Val(Sem, uninitialized); |
||
910 | Val.makeInf(Negative); |
||
911 | return Val; |
||
912 | } |
||
913 | |||
914 | /// Factory for NaN values. |
||
915 | /// |
||
916 | /// \param Negative - True iff the NaN generated should be negative. |
||
917 | /// \param payload - The unspecified fill bits for creating the NaN, 0 by |
||
918 | /// default. The value is truncated as necessary. |
||
919 | static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, |
||
920 | uint64_t payload = 0) { |
||
921 | if (payload) { |
||
922 | APInt intPayload(64, payload); |
||
923 | return getQNaN(Sem, Negative, &intPayload); |
||
924 | } else { |
||
925 | return getQNaN(Sem, Negative, nullptr); |
||
926 | } |
||
927 | } |
||
928 | |||
929 | /// Factory for QNaN values. |
||
930 | static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, |
||
931 | const APInt *payload = nullptr) { |
||
932 | APFloat Val(Sem, uninitialized); |
||
933 | Val.makeNaN(false, Negative, payload); |
||
934 | return Val; |
||
935 | } |
||
936 | |||
937 | /// Factory for SNaN values. |
||
938 | static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, |
||
939 | const APInt *payload = nullptr) { |
||
940 | APFloat Val(Sem, uninitialized); |
||
941 | Val.makeNaN(true, Negative, payload); |
||
942 | return Val; |
||
943 | } |
||
944 | |||
945 | /// Returns the largest finite number in the given semantics. |
||
946 | /// |
||
947 | /// \param Negative - True iff the number should be negative |
||
948 | static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { |
||
949 | APFloat Val(Sem, uninitialized); |
||
950 | Val.makeLargest(Negative); |
||
951 | return Val; |
||
952 | } |
||
953 | |||
954 | /// Returns the smallest (by magnitude) finite number in the given semantics. |
||
955 | /// Might be denormalized, which implies a relative loss of precision. |
||
956 | /// |
||
957 | /// \param Negative - True iff the number should be negative |
||
958 | static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { |
||
959 | APFloat Val(Sem, uninitialized); |
||
960 | Val.makeSmallest(Negative); |
||
961 | return Val; |
||
962 | } |
||
963 | |||
964 | /// Returns the smallest (by magnitude) normalized finite number in the given |
||
965 | /// semantics. |
||
966 | /// |
||
967 | /// \param Negative - True iff the number should be negative |
||
968 | static APFloat getSmallestNormalized(const fltSemantics &Sem, |
||
969 | bool Negative = false) { |
||
970 | APFloat Val(Sem, uninitialized); |
||
971 | Val.makeSmallestNormalized(Negative); |
||
972 | return Val; |
||
973 | } |
||
974 | |||
975 | /// Returns a float which is bitcasted from an all one value int. |
||
976 | /// |
||
977 | /// \param Semantics - type float semantics |
||
978 | static APFloat getAllOnesValue(const fltSemantics &Semantics); |
||
979 | |||
980 | /// Used to insert APFloat objects, or objects that contain APFloat objects, |
||
981 | /// into FoldingSets. |
||
982 | void Profile(FoldingSetNodeID &NID) const; |
||
983 | |||
984 | opStatus add(const APFloat &RHS, roundingMode RM) { |
||
985 | assert(&getSemantics() == &RHS.getSemantics() && |
||
986 | "Should only call on two APFloats with the same semantics"); |
||
987 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
988 | return U.IEEE.add(RHS.U.IEEE, RM); |
||
989 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
990 | return U.Double.add(RHS.U.Double, RM); |
||
991 | llvm_unreachable("Unexpected semantics"); |
||
992 | } |
||
993 | opStatus subtract(const APFloat &RHS, roundingMode RM) { |
||
994 | assert(&getSemantics() == &RHS.getSemantics() && |
||
995 | "Should only call on two APFloats with the same semantics"); |
||
996 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
997 | return U.IEEE.subtract(RHS.U.IEEE, RM); |
||
998 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
999 | return U.Double.subtract(RHS.U.Double, RM); |
||
1000 | llvm_unreachable("Unexpected semantics"); |
||
1001 | } |
||
1002 | opStatus multiply(const APFloat &RHS, roundingMode RM) { |
||
1003 | assert(&getSemantics() == &RHS.getSemantics() && |
||
1004 | "Should only call on two APFloats with the same semantics"); |
||
1005 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1006 | return U.IEEE.multiply(RHS.U.IEEE, RM); |
||
1007 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1008 | return U.Double.multiply(RHS.U.Double, RM); |
||
1009 | llvm_unreachable("Unexpected semantics"); |
||
1010 | } |
||
1011 | opStatus divide(const APFloat &RHS, roundingMode RM) { |
||
1012 | assert(&getSemantics() == &RHS.getSemantics() && |
||
1013 | "Should only call on two APFloats with the same semantics"); |
||
1014 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1015 | return U.IEEE.divide(RHS.U.IEEE, RM); |
||
1016 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1017 | return U.Double.divide(RHS.U.Double, RM); |
||
1018 | llvm_unreachable("Unexpected semantics"); |
||
1019 | } |
||
1020 | opStatus remainder(const APFloat &RHS) { |
||
1021 | assert(&getSemantics() == &RHS.getSemantics() && |
||
1022 | "Should only call on two APFloats with the same semantics"); |
||
1023 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1024 | return U.IEEE.remainder(RHS.U.IEEE); |
||
1025 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1026 | return U.Double.remainder(RHS.U.Double); |
||
1027 | llvm_unreachable("Unexpected semantics"); |
||
1028 | } |
||
1029 | opStatus mod(const APFloat &RHS) { |
||
1030 | assert(&getSemantics() == &RHS.getSemantics() && |
||
1031 | "Should only call on two APFloats with the same semantics"); |
||
1032 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1033 | return U.IEEE.mod(RHS.U.IEEE); |
||
1034 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1035 | return U.Double.mod(RHS.U.Double); |
||
1036 | llvm_unreachable("Unexpected semantics"); |
||
1037 | } |
||
1038 | opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, |
||
1039 | roundingMode RM) { |
||
1040 | assert(&getSemantics() == &Multiplicand.getSemantics() && |
||
1041 | "Should only call on APFloats with the same semantics"); |
||
1042 | assert(&getSemantics() == &Addend.getSemantics() && |
||
1043 | "Should only call on APFloats with the same semantics"); |
||
1044 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1045 | return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); |
||
1046 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1047 | return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, |
||
1048 | RM); |
||
1049 | llvm_unreachable("Unexpected semantics"); |
||
1050 | } |
||
1051 | opStatus roundToIntegral(roundingMode RM) { |
||
1052 | APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); |
||
1053 | } |
||
1054 | |||
1055 | // TODO: bool parameters are not readable and a source of bugs. |
||
1056 | // Do something. |
||
1057 | opStatus next(bool nextDown) { |
||
1058 | APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); |
||
1059 | } |
||
1060 | |||
1061 | /// Negate an APFloat. |
||
1062 | APFloat operator-() const { |
||
1063 | APFloat Result(*this); |
||
1064 | Result.changeSign(); |
||
1065 | return Result; |
||
1066 | } |
||
1067 | |||
1068 | /// Add two APFloats, rounding ties to the nearest even. |
||
1069 | /// No error checking. |
||
1070 | APFloat operator+(const APFloat &RHS) const { |
||
1071 | APFloat Result(*this); |
||
1072 | (void)Result.add(RHS, rmNearestTiesToEven); |
||
1073 | return Result; |
||
1074 | } |
||
1075 | |||
1076 | /// Subtract two APFloats, rounding ties to the nearest even. |
||
1077 | /// No error checking. |
||
1078 | APFloat operator-(const APFloat &RHS) const { |
||
1079 | APFloat Result(*this); |
||
1080 | (void)Result.subtract(RHS, rmNearestTiesToEven); |
||
1081 | return Result; |
||
1082 | } |
||
1083 | |||
1084 | /// Multiply two APFloats, rounding ties to the nearest even. |
||
1085 | /// No error checking. |
||
1086 | APFloat operator*(const APFloat &RHS) const { |
||
1087 | APFloat Result(*this); |
||
1088 | (void)Result.multiply(RHS, rmNearestTiesToEven); |
||
1089 | return Result; |
||
1090 | } |
||
1091 | |||
1092 | /// Divide the first APFloat by the second, rounding ties to the nearest even. |
||
1093 | /// No error checking. |
||
1094 | APFloat operator/(const APFloat &RHS) const { |
||
1095 | APFloat Result(*this); |
||
1096 | (void)Result.divide(RHS, rmNearestTiesToEven); |
||
1097 | return Result; |
||
1098 | } |
||
1099 | |||
1100 | void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } |
||
1101 | void clearSign() { |
||
1102 | if (isNegative()) |
||
1103 | changeSign(); |
||
1104 | } |
||
1105 | void copySign(const APFloat &RHS) { |
||
1106 | if (isNegative() != RHS.isNegative()) |
||
1107 | changeSign(); |
||
1108 | } |
||
1109 | |||
1110 | /// A static helper to produce a copy of an APFloat value with its sign |
||
1111 | /// copied from some other APFloat. |
||
1112 | static APFloat copySign(APFloat Value, const APFloat &Sign) { |
||
1113 | Value.copySign(Sign); |
||
1114 | return Value; |
||
1115 | } |
||
1116 | |||
1117 | opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, |
||
1118 | bool *losesInfo); |
||
1119 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
||
1120 | unsigned int Width, bool IsSigned, roundingMode RM, |
||
1121 | bool *IsExact) const { |
||
1122 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
1123 | convertToInteger(Input, Width, IsSigned, RM, IsExact)); |
||
1124 | } |
||
1125 | opStatus convertToInteger(APSInt &Result, roundingMode RM, |
||
1126 | bool *IsExact) const; |
||
1127 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, |
||
1128 | roundingMode RM) { |
||
1129 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); |
||
1130 | } |
||
1131 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
||
1132 | unsigned int InputSize, bool IsSigned, |
||
1133 | roundingMode RM) { |
||
1134 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
1135 | convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); |
||
1136 | } |
||
1137 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
||
1138 | unsigned int InputSize, bool IsSigned, |
||
1139 | roundingMode RM) { |
||
1140 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
1141 | convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); |
||
1142 | } |
||
1143 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
||
1144 | APInt bitcastToAPInt() const { |
||
1145 | APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); |
||
1146 | } |
||
1147 | |||
1148 | /// Converts this APFloat to host double value. |
||
1149 | /// |
||
1150 | /// \pre The APFloat must be built using semantics, that can be represented by |
||
1151 | /// the host double type without loss of precision. It can be IEEEdouble and |
||
1152 | /// shorter semantics, like IEEEsingle and others. |
||
1153 | double convertToDouble() const; |
||
1154 | |||
1155 | /// Converts this APFloat to host float value. |
||
1156 | /// |
||
1157 | /// \pre The APFloat must be built using semantics, that can be represented by |
||
1158 | /// the host float type without loss of precision. It can be IEEEsingle and |
||
1159 | /// shorter semantics, like IEEEhalf. |
||
1160 | float convertToFloat() const; |
||
1161 | |||
1162 | bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; } |
||
1163 | |||
1164 | bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; } |
||
1165 | |||
1166 | bool operator<(const APFloat &RHS) const { |
||
1167 | return compare(RHS) == cmpLessThan; |
||
1168 | } |
||
1169 | |||
1170 | bool operator>(const APFloat &RHS) const { |
||
1171 | return compare(RHS) == cmpGreaterThan; |
||
1172 | } |
||
1173 | |||
1174 | bool operator<=(const APFloat &RHS) const { |
||
1175 | cmpResult Res = compare(RHS); |
||
1176 | return Res == cmpLessThan || Res == cmpEqual; |
||
1177 | } |
||
1178 | |||
1179 | bool operator>=(const APFloat &RHS) const { |
||
1180 | cmpResult Res = compare(RHS); |
||
1181 | return Res == cmpGreaterThan || Res == cmpEqual; |
||
1182 | } |
||
1183 | |||
1184 | cmpResult compare(const APFloat &RHS) const { |
||
1185 | assert(&getSemantics() == &RHS.getSemantics() && |
||
1186 | "Should only compare APFloats with the same semantics"); |
||
1187 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1188 | return U.IEEE.compare(RHS.U.IEEE); |
||
1189 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1190 | return U.Double.compare(RHS.U.Double); |
||
1191 | llvm_unreachable("Unexpected semantics"); |
||
1192 | } |
||
1193 | |||
1194 | bool bitwiseIsEqual(const APFloat &RHS) const { |
||
1195 | if (&getSemantics() != &RHS.getSemantics()) |
||
1196 | return false; |
||
1197 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
1198 | return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); |
||
1199 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
1200 | return U.Double.bitwiseIsEqual(RHS.U.Double); |
||
1201 | llvm_unreachable("Unexpected semantics"); |
||
1202 | } |
||
1203 | |||
1204 | /// We don't rely on operator== working on double values, as |
||
1205 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
||
1206 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
||
1207 | /// two floating point values. |
||
1208 | /// |
||
1209 | /// We leave the version with the double argument here because it's just so |
||
1210 | /// convenient to write "2.0" and the like. Without this function we'd |
||
1211 | /// have to duplicate its logic everywhere it's called. |
||
1212 | bool isExactlyValue(double V) const { |
||
1213 | bool ignored; |
||
1214 | APFloat Tmp(V); |
||
1215 | Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
||
1216 | return bitwiseIsEqual(Tmp); |
||
1217 | } |
||
1218 | |||
1219 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
||
1220 | bool UpperCase, roundingMode RM) const { |
||
1221 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
1222 | convertToHexString(DST, HexDigits, UpperCase, RM)); |
||
1223 | } |
||
1224 | |||
1225 | bool isZero() const { return getCategory() == fcZero; } |
||
1226 | bool isInfinity() const { return getCategory() == fcInfinity; } |
||
1227 | bool isNaN() const { return getCategory() == fcNaN; } |
||
1228 | |||
1229 | bool isNegative() const { return getIEEE().isNegative(); } |
||
1230 | bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } |
||
1231 | bool isSignaling() const { return getIEEE().isSignaling(); } |
||
1232 | |||
1233 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
||
1234 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
||
1235 | |||
1236 | fltCategory getCategory() const { return getIEEE().getCategory(); } |
||
1237 | const fltSemantics &getSemantics() const { return *U.semantics; } |
||
1238 | bool isNonZero() const { return !isZero(); } |
||
1239 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
||
1240 | bool isPosZero() const { return isZero() && !isNegative(); } |
||
1241 | bool isNegZero() const { return isZero() && isNegative(); } |
||
1242 | bool isPosInfinity() const { return isInfinity() && !isNegative(); } |
||
1243 | bool isNegInfinity() const { return isInfinity() && isNegative(); } |
||
1244 | bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } |
||
1245 | bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } |
||
1246 | bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } |
||
1247 | bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); } |
||
1248 | |||
1249 | bool isSmallestNormalized() const { |
||
1250 | APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized()); |
||
1251 | } |
||
1252 | |||
1253 | APFloat &operator=(const APFloat &RHS) = default; |
||
1254 | APFloat &operator=(APFloat &&RHS) = default; |
||
1255 | |||
1256 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
||
1257 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { |
||
1258 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
1259 | toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); |
||
1260 | } |
||
1261 | |||
1262 | void print(raw_ostream &) const; |
||
1263 | void dump() const; |
||
1264 | |||
1265 | bool getExactInverse(APFloat *inv) const { |
||
1266 | APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); |
||
1267 | } |
||
1268 | |||
1269 | friend hash_code hash_value(const APFloat &Arg); |
||
1270 | friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } |
||
1271 | friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); |
||
1272 | friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); |
||
1273 | friend IEEEFloat; |
||
1274 | friend DoubleAPFloat; |
||
1275 | }; |
||
1276 | |||
1277 | /// See friend declarations above. |
||
1278 | /// |
||
1279 | /// These additional declarations are required in order to compile LLVM with IBM |
||
1280 | /// xlC compiler. |
||
1281 | hash_code hash_value(const APFloat &Arg); |
||
1282 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { |
||
1283 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
||
1284 | return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); |
||
1285 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
||
1286 | return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); |
||
1287 | llvm_unreachable("Unexpected semantics"); |
||
1288 | } |
||
1289 | |||
1290 | /// Equivalent of C standard library function. |
||
1291 | /// |
||
1292 | /// While the C standard says Exp is an unspecified value for infinity and nan, |
||
1293 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. |
||
1294 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { |
||
1295 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
||
1296 | return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); |
||
1297 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
||
1298 | return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); |
||
1299 | llvm_unreachable("Unexpected semantics"); |
||
1300 | } |
||
1301 | /// Returns the absolute value of the argument. |
||
1302 | inline APFloat abs(APFloat X) { |
||
1303 | X.clearSign(); |
||
1304 | return X; |
||
1305 | } |
||
1306 | |||
1307 | /// Returns the negated value of the argument. |
||
1308 | inline APFloat neg(APFloat X) { |
||
1309 | X.changeSign(); |
||
1310 | return X; |
||
1311 | } |
||
1312 | |||
1313 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if |
||
1314 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
||
1315 | LLVM_READONLY |
||
1316 | inline APFloat minnum(const APFloat &A, const APFloat &B) { |
||
1317 | if (A.isNaN()) |
||
1318 | return B; |
||
1319 | if (B.isNaN()) |
||
1320 | return A; |
||
1321 | return B < A ? B : A; |
||
1322 | } |
||
1323 | |||
1324 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if |
||
1325 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
||
1326 | LLVM_READONLY |
||
1327 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { |
||
1328 | if (A.isNaN()) |
||
1329 | return B; |
||
1330 | if (B.isNaN()) |
||
1331 | return A; |
||
1332 | return A < B ? B : A; |
||
1333 | } |
||
1334 | |||
1335 | /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2 |
||
1336 | /// arguments, propagating NaNs and treating -0 as less than +0. |
||
1337 | LLVM_READONLY |
||
1338 | inline APFloat minimum(const APFloat &A, const APFloat &B) { |
||
1339 | if (A.isNaN()) |
||
1340 | return A; |
||
1341 | if (B.isNaN()) |
||
1342 | return B; |
||
1343 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
||
1344 | return A.isNegative() ? A : B; |
||
1345 | return B < A ? B : A; |
||
1346 | } |
||
1347 | |||
1348 | /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2 |
||
1349 | /// arguments, propagating NaNs and treating -0 as less than +0. |
||
1350 | LLVM_READONLY |
||
1351 | inline APFloat maximum(const APFloat &A, const APFloat &B) { |
||
1352 | if (A.isNaN()) |
||
1353 | return A; |
||
1354 | if (B.isNaN()) |
||
1355 | return B; |
||
1356 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
||
1357 | return A.isNegative() ? B : A; |
||
1358 | return A < B ? B : A; |
||
1359 | } |
||
1360 | |||
1361 | } // namespace llvm |
||
1362 | |||
1363 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
||
1364 | #endif // LLVM_ADT_APFLOAT_H |