Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//== RangedConstraintManager.h ----------------------------------*- C++ -*--==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  Ranged constraint manager, built on SimpleConstraintManager.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H
14
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H
15
 
16
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18
#include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h"
19
#include "llvm/ADT/APSInt.h"
20
#include "llvm/Support/Allocator.h"
21
 
22
namespace clang {
23
 
24
namespace ento {
25
 
26
/// A Range represents the closed range [from, to].  The caller must
27
/// guarantee that from <= to.  Note that Range is immutable, so as not
28
/// to subvert RangeSet's immutability.
29
class Range {
30
public:
31
  Range(const llvm::APSInt &From, const llvm::APSInt &To) : Impl(&From, &To) {
32
    assert(From <= To);
33
  }
34
 
35
  Range(const llvm::APSInt &Point) : Range(Point, Point) {}
36
 
37
  bool Includes(const llvm::APSInt &Point) const {
38
    return From() <= Point && Point <= To();
39
  }
40
  const llvm::APSInt &From() const { return *Impl.first; }
41
  const llvm::APSInt &To() const { return *Impl.second; }
42
  const llvm::APSInt *getConcreteValue() const {
43
    return &From() == &To() ? &From() : nullptr;
44
  }
45
 
46
  void Profile(llvm::FoldingSetNodeID &ID) const {
47
    ID.AddPointer(&From());
48
    ID.AddPointer(&To());
49
  }
50
  void dump(raw_ostream &OS) const;
51
  void dump() const;
52
 
53
  // In order to keep non-overlapping ranges sorted, we can compare only From
54
  // points.
55
  bool operator<(const Range &RHS) const { return From() < RHS.From(); }
56
 
57
  bool operator==(const Range &RHS) const { return Impl == RHS.Impl; }
58
  bool operator!=(const Range &RHS) const { return !operator==(RHS); }
59
 
60
private:
61
  std::pair<const llvm::APSInt *, const llvm::APSInt *> Impl;
62
};
63
 
64
/// @class RangeSet is a persistent set of non-overlapping ranges.
65
///
66
/// New RangeSet objects can be ONLY produced by RangeSet::Factory object, which
67
/// also supports the most common operations performed on range sets.
68
///
69
/// Empty set corresponds to an overly constrained symbol meaning that there
70
/// are no possible values for that symbol.
71
class RangeSet {
72
public:
73
  class Factory;
74
 
75
private:
76
  // We use llvm::SmallVector as the underlying container for the following
77
  // reasons:
78
  //
79
  //   * Range sets are usually very simple, 1 or 2 ranges.
80
  //     That's why llvm::ImmutableSet is not perfect.
81
  //
82
  //   * Ranges in sets are NOT overlapping, so it is natural to keep them
83
  //     sorted for efficient operations and queries.  For this reason,
84
  //     llvm::SmallSet doesn't fit the requirements, it is not sorted when it
85
  //     is a vector.
86
  //
87
  //   * Range set operations usually a bit harder than add/remove a range.
88
  //     Complex operations might do many of those for just one range set.
89
  //     Formerly it used to be llvm::ImmutableSet, which is inefficient for our
90
  //     purposes as we want to make these operations BOTH immutable AND
91
  //     efficient.
92
  //
93
  //   * Iteration over ranges is widespread and a more cache-friendly
94
  //     structure is preferred.
95
  using ImplType = llvm::SmallVector<Range, 4>;
96
 
97
  struct ContainerType : public ImplType, public llvm::FoldingSetNode {
98
    void Profile(llvm::FoldingSetNodeID &ID) const {
99
      for (const Range &It : *this) {
100
        It.Profile(ID);
101
      }
102
    }
103
  };
104
  // This is a non-owning pointer to an actual container.
105
  // The memory is fully managed by the factory and is alive as long as the
106
  // factory itself is alive.
107
  // It is a pointer as opposed to a reference, so we can easily reassign
108
  // RangeSet objects.
109
  using UnderlyingType = const ContainerType *;
110
  UnderlyingType Impl;
111
 
112
public:
113
  using const_iterator = ImplType::const_iterator;
114
 
115
  const_iterator begin() const { return Impl->begin(); }
116
  const_iterator end() const { return Impl->end(); }
117
  size_t size() const { return Impl->size(); }
118
 
119
  bool isEmpty() const { return Impl->empty(); }
120
 
121
  class Factory {
122
  public:
123
    Factory(BasicValueFactory &BV) : ValueFactory(BV) {}
124
 
125
    /// Create a new set with all ranges from both LHS and RHS.
126
    /// Possible intersections are not checked here.
127
    ///
128
    /// Complexity: O(N + M)
129
    ///             where N = size(LHS), M = size(RHS)
130
    RangeSet add(RangeSet LHS, RangeSet RHS);
131
    /// Create a new set with all ranges from the original set plus the new one.
132
    /// Possible intersections are not checked here.
133
    ///
134
    /// Complexity: O(N)
135
    ///             where N = size(Original)
136
    RangeSet add(RangeSet Original, Range Element);
137
    /// Create a new set with all ranges from the original set plus the point.
138
    /// Possible intersections are not checked here.
139
    ///
140
    /// Complexity: O(N)
141
    ///             where N = size(Original)
142
    RangeSet add(RangeSet Original, const llvm::APSInt &Point);
143
    /// Create a new set which is a union of two given ranges.
144
    /// Possible intersections are not checked here.
145
    ///
146
    /// Complexity: O(N + M)
147
    ///             where N = size(LHS), M = size(RHS)
148
    RangeSet unite(RangeSet LHS, RangeSet RHS);
149
    /// Create a new set by uniting given range set with the given range.
150
    /// All intersections and adjacent ranges are handled here.
151
    ///
152
    /// Complexity: O(N)
153
    ///             where N = size(Original)
154
    RangeSet unite(RangeSet Original, Range Element);
155
    /// Create a new set by uniting given range set with the given point.
156
    /// All intersections and adjacent ranges are handled here.
157
    ///
158
    /// Complexity: O(N)
159
    ///             where N = size(Original)
160
    RangeSet unite(RangeSet Original, llvm::APSInt Point);
161
    /// Create a new set by uniting given range set with the given range
162
    /// between points. All intersections and adjacent ranges are handled here.
163
    ///
164
    /// Complexity: O(N)
165
    ///             where N = size(Original)
166
    RangeSet unite(RangeSet Original, llvm::APSInt From, llvm::APSInt To);
167
 
168
    RangeSet getEmptySet() { return &EmptySet; }
169
 
170
    /// Create a new set with just one range.
171
    /// @{
172
    RangeSet getRangeSet(Range Origin);
173
    RangeSet getRangeSet(const llvm::APSInt &From, const llvm::APSInt &To) {
174
      return getRangeSet(Range(From, To));
175
    }
176
    RangeSet getRangeSet(const llvm::APSInt &Origin) {
177
      return getRangeSet(Origin, Origin);
178
    }
179
    /// @}
180
 
181
    /// Intersect the given range sets.
182
    ///
183
    /// Complexity: O(N + M)
184
    ///             where N = size(LHS), M = size(RHS)
185
    RangeSet intersect(RangeSet LHS, RangeSet RHS);
186
    /// Intersect the given set with the closed range [Lower, Upper].
187
    ///
188
    /// Unlike the Range type, this range uses modular arithmetic, corresponding
189
    /// to the common treatment of C integer overflow. Thus, if the Lower bound
190
    /// is greater than the Upper bound, the range is taken to wrap around. This
191
    /// is equivalent to taking the intersection with the two ranges [Min,
192
    /// Upper] and [Lower, Max], or, alternatively, /removing/ all integers
193
    /// between Upper and Lower.
194
    ///
195
    /// Complexity: O(N)
196
    ///             where N = size(What)
197
    RangeSet intersect(RangeSet What, llvm::APSInt Lower, llvm::APSInt Upper);
198
    /// Intersect the given range with the given point.
199
    ///
200
    /// The result can be either an empty set or a set containing the given
201
    /// point depending on whether the point is in the range set.
202
    ///
203
    /// Complexity: O(logN)
204
    ///             where N = size(What)
205
    RangeSet intersect(RangeSet What, llvm::APSInt Point);
206
 
207
    /// Delete the given point from the range set.
208
    ///
209
    /// Complexity: O(N)
210
    ///             where N = size(From)
211
    RangeSet deletePoint(RangeSet From, const llvm::APSInt &Point);
212
    /// Negate the given range set.
213
    ///
214
    /// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus
215
    /// operation under the values of the type.
216
    ///
217
    /// We also handle MIN because applying unary minus to MIN does not change
218
    /// it.
219
    /// Example 1:
220
    /// char x = -128;        // -128 is a MIN value in a range of 'char'
221
    /// char y = -x;          // y: -128
222
    ///
223
    /// Example 2:
224
    /// unsigned char x = 0;  // 0 is a MIN value in a range of 'unsigned char'
225
    /// unsigned char y = -x; // y: 0
226
    ///
227
    /// And it makes us to separate the range
228
    /// like [MIN, N] to [MIN, MIN] U [-N, MAX].
229
    /// For instance, whole range is {-128..127} and subrange is [-128,-126],
230
    /// thus [-128,-127,-126,...] negates to [-128,...,126,127].
231
    ///
232
    /// Negate restores disrupted ranges on bounds,
233
    /// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B].
234
    ///
235
    /// Negate is a self-inverse function, i.e. negate(negate(R)) == R.
236
    ///
237
    /// Complexity: O(N)
238
    ///             where N = size(What)
239
    RangeSet negate(RangeSet What);
240
    /// Performs promotions, truncations and conversions of the given set.
241
    ///
242
    /// This function is optimized for each of the six cast cases:
243
    /// - noop
244
    /// - conversion
245
    /// - truncation
246
    /// - truncation-conversion
247
    /// - promotion
248
    /// - promotion-conversion
249
    ///
250
    /// NOTE: This function is NOT self-inverse for truncations, because of
251
    ///       the higher bits loss:
252
    ///     - castTo(castTo(OrigRangeOfInt, char), int) != OrigRangeOfInt.
253
    ///     - castTo(castTo(OrigRangeOfChar, int), char) == OrigRangeOfChar.
254
    ///       But it is self-inverse for all the rest casts.
255
    ///
256
    /// Complexity:
257
    ///     - Noop                               O(1);
258
    ///     - Truncation                         O(N^2);
259
    ///     - Another case                       O(N);
260
    ///     where N = size(What)
261
    RangeSet castTo(RangeSet What, APSIntType Ty);
262
    RangeSet castTo(RangeSet What, QualType T);
263
 
264
    /// Return associated value factory.
265
    BasicValueFactory &getValueFactory() const { return ValueFactory; }
266
 
267
  private:
268
    /// Return a persistent version of the given container.
269
    RangeSet makePersistent(ContainerType &&From);
270
    /// Construct a new persistent version of the given container.
271
    ContainerType *construct(ContainerType &&From);
272
 
273
    RangeSet intersect(const ContainerType &LHS, const ContainerType &RHS);
274
    /// NOTE: This function relies on the fact that all values in the
275
    /// containers are persistent (created via BasicValueFactory::getValue).
276
    ContainerType unite(const ContainerType &LHS, const ContainerType &RHS);
277
 
278
    /// This is a helper function for `castTo` method. Implies not to be used
279
    /// separately.
280
    /// Performs a truncation case of a cast operation.
281
    ContainerType truncateTo(RangeSet What, APSIntType Ty);
282
 
283
    /// This is a helper function for `castTo` method. Implies not to be used
284
    /// separately.
285
    /// Performs a conversion case and a promotion-conversion case for signeds
286
    /// of a cast operation.
287
    ContainerType convertTo(RangeSet What, APSIntType Ty);
288
 
289
    /// This is a helper function for `castTo` method. Implies not to be used
290
    /// separately.
291
    /// Performs a promotion for unsigneds only.
292
    ContainerType promoteTo(RangeSet What, APSIntType Ty);
293
 
294
    // Many operations include producing new APSInt values and that's why
295
    // we need this factory.
296
    BasicValueFactory &ValueFactory;
297
    // Allocator for all the created containers.
298
    // Containers might own their own memory and that's why it is specific
299
    // for the type, so it calls container destructors upon deletion.
300
    llvm::SpecificBumpPtrAllocator<ContainerType> Arena;
301
    // Usually we deal with the same ranges and range sets over and over.
302
    // Here we track all created containers and try not to repeat ourselves.
303
    llvm::FoldingSet<ContainerType> Cache;
304
    static ContainerType EmptySet;
305
  };
306
 
307
  RangeSet(const RangeSet &) = default;
308
  RangeSet &operator=(const RangeSet &) = default;
309
  RangeSet(RangeSet &&) = default;
310
  RangeSet &operator=(RangeSet &&) = default;
311
  ~RangeSet() = default;
312
 
313
  /// Construct a new RangeSet representing '{ [From, To] }'.
314
  RangeSet(Factory &F, const llvm::APSInt &From, const llvm::APSInt &To)
315
      : RangeSet(F.getRangeSet(From, To)) {}
316
 
317
  /// Construct a new RangeSet representing the given point as a range.
318
  RangeSet(Factory &F, const llvm::APSInt &Point)
319
      : RangeSet(F.getRangeSet(Point)) {}
320
 
321
  static void Profile(llvm::FoldingSetNodeID &ID, const RangeSet &RS) {
322
    ID.AddPointer(RS.Impl);
323
  }
324
 
325
  /// Profile - Generates a hash profile of this RangeSet for use
326
  ///  by FoldingSet.
327
  void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, *this); }
328
 
329
  /// getConcreteValue - If a symbol is constrained to equal a specific integer
330
  ///  constant then this method returns that value.  Otherwise, it returns
331
  ///  NULL.
332
  const llvm::APSInt *getConcreteValue() const {
333
    return Impl->size() == 1 ? begin()->getConcreteValue() : nullptr;
334
  }
335
 
336
  /// Get the minimal value covered by the ranges in the set.
337
  ///
338
  /// Complexity: O(1)
339
  const llvm::APSInt &getMinValue() const;
340
  /// Get the maximal value covered by the ranges in the set.
341
  ///
342
  /// Complexity: O(1)
343
  const llvm::APSInt &getMaxValue() const;
344
 
345
  bool isUnsigned() const;
346
  uint32_t getBitWidth() const;
347
  APSIntType getAPSIntType() const;
348
 
349
  /// Test whether the given point is contained by any of the ranges.
350
  ///
351
  /// Complexity: O(logN)
352
  ///             where N = size(this)
353
  bool contains(llvm::APSInt Point) const { return containsImpl(Point); }
354
 
355
  bool containsZero() const {
356
    APSIntType T{getMinValue()};
357
    return contains(T.getZeroValue());
358
  }
359
 
360
  /// Test if the range is the [0,0] range.
361
  ///
362
  /// Complexity: O(1)
363
  bool encodesFalseRange() const {
364
    const llvm::APSInt *Constant = getConcreteValue();
365
    return Constant && Constant->isZero();
366
  }
367
 
368
  /// Test if the range doesn't contain zero.
369
  ///
370
  /// Complexity: O(logN)
371
  ///             where N = size(this)
372
  bool encodesTrueRange() const { return !containsZero(); }
373
 
374
  void dump(raw_ostream &OS) const;
375
  void dump() const;
376
 
377
  bool operator==(const RangeSet &Other) const { return *Impl == *Other.Impl; }
378
  bool operator!=(const RangeSet &Other) const { return !(*this == Other); }
379
 
380
private:
381
  /* implicit */ RangeSet(ContainerType *RawContainer) : Impl(RawContainer) {}
382
  /* implicit */ RangeSet(UnderlyingType Ptr) : Impl(Ptr) {}
383
 
384
  /// Pin given points to the type represented by the current range set.
385
  ///
386
  /// This makes parameter points to be in-out parameters.
387
  /// In order to maintain consistent types across all of the ranges in the set
388
  /// and to keep all the operations to compare ONLY points of the same type, we
389
  /// need to pin every point before any operation.
390
  ///
391
  /// @Returns true if the given points can be converted to the target type
392
  ///          without changing the values (i.e. trivially) and false otherwise.
393
  /// @{
394
  bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const;
395
  bool pin(llvm::APSInt &Point) const;
396
  /// @}
397
 
398
  // This version of this function modifies its arguments (pins it).
399
  bool containsImpl(llvm::APSInt &Point) const;
400
 
401
  friend class Factory;
402
};
403
 
404
using ConstraintMap = llvm::ImmutableMap<SymbolRef, RangeSet>;
405
ConstraintMap getConstraintMap(ProgramStateRef State);
406
 
407
class RangedConstraintManager : public SimpleConstraintManager {
408
public:
409
  RangedConstraintManager(ExprEngine *EE, SValBuilder &SB)
410
      : SimpleConstraintManager(EE, SB) {}
411
 
412
  ~RangedConstraintManager() override;
413
 
414
  //===------------------------------------------------------------------===//
415
  // Implementation for interface from SimpleConstraintManager.
416
  //===------------------------------------------------------------------===//
417
 
418
  ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym,
419
                            bool Assumption) override;
420
 
421
  ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State, SymbolRef Sym,
422
                                          const llvm::APSInt &From,
423
                                          const llvm::APSInt &To,
424
                                          bool InRange) override;
425
 
426
  ProgramStateRef assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym,
427
                                       bool Assumption) override;
428
 
429
protected:
430
  /// Assume a constraint between a symbolic expression and a concrete integer.
431
  virtual ProgramStateRef assumeSymRel(ProgramStateRef State, SymbolRef Sym,
432
                                       BinaryOperator::Opcode op,
433
                                       const llvm::APSInt &Int);
434
 
435
  //===------------------------------------------------------------------===//
436
  // Interface that subclasses must implement.
437
  //===------------------------------------------------------------------===//
438
 
439
  // Each of these is of the form "$Sym+Adj <> V", where "<>" is the comparison
440
  // operation for the method being invoked.
441
 
442
  virtual ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
443
                                      const llvm::APSInt &V,
444
                                      const llvm::APSInt &Adjustment) = 0;
445
 
446
  virtual ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
447
                                      const llvm::APSInt &V,
448
                                      const llvm::APSInt &Adjustment) = 0;
449
 
450
  virtual ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
451
                                      const llvm::APSInt &V,
452
                                      const llvm::APSInt &Adjustment) = 0;
453
 
454
  virtual ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
455
                                      const llvm::APSInt &V,
456
                                      const llvm::APSInt &Adjustment) = 0;
457
 
458
  virtual ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
459
                                      const llvm::APSInt &V,
460
                                      const llvm::APSInt &Adjustment) = 0;
461
 
462
  virtual ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
463
                                      const llvm::APSInt &V,
464
                                      const llvm::APSInt &Adjustment) = 0;
465
 
466
  virtual ProgramStateRef assumeSymWithinInclusiveRange(
467
      ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
468
      const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0;
469
 
470
  virtual ProgramStateRef assumeSymOutsideInclusiveRange(
471
      ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
472
      const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0;
473
 
474
  //===------------------------------------------------------------------===//
475
  // Internal implementation.
476
  //===------------------------------------------------------------------===//
477
private:
478
  static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment);
479
};
480
 
481
/// Try to simplify a given symbolic expression based on the constraints in
482
/// State. This is needed because the Environment bindings are not getting
483
/// updated when a new constraint is added to the State. If the symbol is
484
/// simplified to a non-symbol (e.g. to a constant) then the original symbol
485
/// is returned. We use this function in the family of assumeSymNE/EQ/LT/../GE
486
/// functions where we can work only with symbols. Use the other function
487
/// (simplifyToSVal) if you are interested in a simplification that may yield
488
/// a concrete constant value.
489
SymbolRef simplify(ProgramStateRef State, SymbolRef Sym);
490
 
491
/// Try to simplify a given symbolic expression's associated `SVal` based on the
492
/// constraints in State. This is very similar to `simplify`, but this function
493
/// always returns the simplified SVal. The simplified SVal might be a single
494
/// constant (i.e. `ConcreteInt`).
495
SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym);
496
 
497
} // namespace ento
498
} // namespace clang
499
 
500
REGISTER_FACTORY_WITH_PROGRAMSTATE(ConstraintMap)
501
 
502
#endif