Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //== RangedConstraintManager.h ----------------------------------*- C++ -*--==// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // Ranged constraint manager, built on SimpleConstraintManager. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H |
||
14 | #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H |
||
15 | |||
16 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
||
17 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
||
18 | #include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h" |
||
19 | #include "llvm/ADT/APSInt.h" |
||
20 | #include "llvm/Support/Allocator.h" |
||
21 | |||
22 | namespace clang { |
||
23 | |||
24 | namespace ento { |
||
25 | |||
26 | /// A Range represents the closed range [from, to]. The caller must |
||
27 | /// guarantee that from <= to. Note that Range is immutable, so as not |
||
28 | /// to subvert RangeSet's immutability. |
||
29 | class Range { |
||
30 | public: |
||
31 | Range(const llvm::APSInt &From, const llvm::APSInt &To) : Impl(&From, &To) { |
||
32 | assert(From <= To); |
||
33 | } |
||
34 | |||
35 | Range(const llvm::APSInt &Point) : Range(Point, Point) {} |
||
36 | |||
37 | bool Includes(const llvm::APSInt &Point) const { |
||
38 | return From() <= Point && Point <= To(); |
||
39 | } |
||
40 | const llvm::APSInt &From() const { return *Impl.first; } |
||
41 | const llvm::APSInt &To() const { return *Impl.second; } |
||
42 | const llvm::APSInt *getConcreteValue() const { |
||
43 | return &From() == &To() ? &From() : nullptr; |
||
44 | } |
||
45 | |||
46 | void Profile(llvm::FoldingSetNodeID &ID) const { |
||
47 | ID.AddPointer(&From()); |
||
48 | ID.AddPointer(&To()); |
||
49 | } |
||
50 | void dump(raw_ostream &OS) const; |
||
51 | void dump() const; |
||
52 | |||
53 | // In order to keep non-overlapping ranges sorted, we can compare only From |
||
54 | // points. |
||
55 | bool operator<(const Range &RHS) const { return From() < RHS.From(); } |
||
56 | |||
57 | bool operator==(const Range &RHS) const { return Impl == RHS.Impl; } |
||
58 | bool operator!=(const Range &RHS) const { return !operator==(RHS); } |
||
59 | |||
60 | private: |
||
61 | std::pair<const llvm::APSInt *, const llvm::APSInt *> Impl; |
||
62 | }; |
||
63 | |||
64 | /// @class RangeSet is a persistent set of non-overlapping ranges. |
||
65 | /// |
||
66 | /// New RangeSet objects can be ONLY produced by RangeSet::Factory object, which |
||
67 | /// also supports the most common operations performed on range sets. |
||
68 | /// |
||
69 | /// Empty set corresponds to an overly constrained symbol meaning that there |
||
70 | /// are no possible values for that symbol. |
||
71 | class RangeSet { |
||
72 | public: |
||
73 | class Factory; |
||
74 | |||
75 | private: |
||
76 | // We use llvm::SmallVector as the underlying container for the following |
||
77 | // reasons: |
||
78 | // |
||
79 | // * Range sets are usually very simple, 1 or 2 ranges. |
||
80 | // That's why llvm::ImmutableSet is not perfect. |
||
81 | // |
||
82 | // * Ranges in sets are NOT overlapping, so it is natural to keep them |
||
83 | // sorted for efficient operations and queries. For this reason, |
||
84 | // llvm::SmallSet doesn't fit the requirements, it is not sorted when it |
||
85 | // is a vector. |
||
86 | // |
||
87 | // * Range set operations usually a bit harder than add/remove a range. |
||
88 | // Complex operations might do many of those for just one range set. |
||
89 | // Formerly it used to be llvm::ImmutableSet, which is inefficient for our |
||
90 | // purposes as we want to make these operations BOTH immutable AND |
||
91 | // efficient. |
||
92 | // |
||
93 | // * Iteration over ranges is widespread and a more cache-friendly |
||
94 | // structure is preferred. |
||
95 | using ImplType = llvm::SmallVector<Range, 4>; |
||
96 | |||
97 | struct ContainerType : public ImplType, public llvm::FoldingSetNode { |
||
98 | void Profile(llvm::FoldingSetNodeID &ID) const { |
||
99 | for (const Range &It : *this) { |
||
100 | It.Profile(ID); |
||
101 | } |
||
102 | } |
||
103 | }; |
||
104 | // This is a non-owning pointer to an actual container. |
||
105 | // The memory is fully managed by the factory and is alive as long as the |
||
106 | // factory itself is alive. |
||
107 | // It is a pointer as opposed to a reference, so we can easily reassign |
||
108 | // RangeSet objects. |
||
109 | using UnderlyingType = const ContainerType *; |
||
110 | UnderlyingType Impl; |
||
111 | |||
112 | public: |
||
113 | using const_iterator = ImplType::const_iterator; |
||
114 | |||
115 | const_iterator begin() const { return Impl->begin(); } |
||
116 | const_iterator end() const { return Impl->end(); } |
||
117 | size_t size() const { return Impl->size(); } |
||
118 | |||
119 | bool isEmpty() const { return Impl->empty(); } |
||
120 | |||
121 | class Factory { |
||
122 | public: |
||
123 | Factory(BasicValueFactory &BV) : ValueFactory(BV) {} |
||
124 | |||
125 | /// Create a new set with all ranges from both LHS and RHS. |
||
126 | /// Possible intersections are not checked here. |
||
127 | /// |
||
128 | /// Complexity: O(N + M) |
||
129 | /// where N = size(LHS), M = size(RHS) |
||
130 | RangeSet add(RangeSet LHS, RangeSet RHS); |
||
131 | /// Create a new set with all ranges from the original set plus the new one. |
||
132 | /// Possible intersections are not checked here. |
||
133 | /// |
||
134 | /// Complexity: O(N) |
||
135 | /// where N = size(Original) |
||
136 | RangeSet add(RangeSet Original, Range Element); |
||
137 | /// Create a new set with all ranges from the original set plus the point. |
||
138 | /// Possible intersections are not checked here. |
||
139 | /// |
||
140 | /// Complexity: O(N) |
||
141 | /// where N = size(Original) |
||
142 | RangeSet add(RangeSet Original, const llvm::APSInt &Point); |
||
143 | /// Create a new set which is a union of two given ranges. |
||
144 | /// Possible intersections are not checked here. |
||
145 | /// |
||
146 | /// Complexity: O(N + M) |
||
147 | /// where N = size(LHS), M = size(RHS) |
||
148 | RangeSet unite(RangeSet LHS, RangeSet RHS); |
||
149 | /// Create a new set by uniting given range set with the given range. |
||
150 | /// All intersections and adjacent ranges are handled here. |
||
151 | /// |
||
152 | /// Complexity: O(N) |
||
153 | /// where N = size(Original) |
||
154 | RangeSet unite(RangeSet Original, Range Element); |
||
155 | /// Create a new set by uniting given range set with the given point. |
||
156 | /// All intersections and adjacent ranges are handled here. |
||
157 | /// |
||
158 | /// Complexity: O(N) |
||
159 | /// where N = size(Original) |
||
160 | RangeSet unite(RangeSet Original, llvm::APSInt Point); |
||
161 | /// Create a new set by uniting given range set with the given range |
||
162 | /// between points. All intersections and adjacent ranges are handled here. |
||
163 | /// |
||
164 | /// Complexity: O(N) |
||
165 | /// where N = size(Original) |
||
166 | RangeSet unite(RangeSet Original, llvm::APSInt From, llvm::APSInt To); |
||
167 | |||
168 | RangeSet getEmptySet() { return &EmptySet; } |
||
169 | |||
170 | /// Create a new set with just one range. |
||
171 | /// @{ |
||
172 | RangeSet getRangeSet(Range Origin); |
||
173 | RangeSet getRangeSet(const llvm::APSInt &From, const llvm::APSInt &To) { |
||
174 | return getRangeSet(Range(From, To)); |
||
175 | } |
||
176 | RangeSet getRangeSet(const llvm::APSInt &Origin) { |
||
177 | return getRangeSet(Origin, Origin); |
||
178 | } |
||
179 | /// @} |
||
180 | |||
181 | /// Intersect the given range sets. |
||
182 | /// |
||
183 | /// Complexity: O(N + M) |
||
184 | /// where N = size(LHS), M = size(RHS) |
||
185 | RangeSet intersect(RangeSet LHS, RangeSet RHS); |
||
186 | /// Intersect the given set with the closed range [Lower, Upper]. |
||
187 | /// |
||
188 | /// Unlike the Range type, this range uses modular arithmetic, corresponding |
||
189 | /// to the common treatment of C integer overflow. Thus, if the Lower bound |
||
190 | /// is greater than the Upper bound, the range is taken to wrap around. This |
||
191 | /// is equivalent to taking the intersection with the two ranges [Min, |
||
192 | /// Upper] and [Lower, Max], or, alternatively, /removing/ all integers |
||
193 | /// between Upper and Lower. |
||
194 | /// |
||
195 | /// Complexity: O(N) |
||
196 | /// where N = size(What) |
||
197 | RangeSet intersect(RangeSet What, llvm::APSInt Lower, llvm::APSInt Upper); |
||
198 | /// Intersect the given range with the given point. |
||
199 | /// |
||
200 | /// The result can be either an empty set or a set containing the given |
||
201 | /// point depending on whether the point is in the range set. |
||
202 | /// |
||
203 | /// Complexity: O(logN) |
||
204 | /// where N = size(What) |
||
205 | RangeSet intersect(RangeSet What, llvm::APSInt Point); |
||
206 | |||
207 | /// Delete the given point from the range set. |
||
208 | /// |
||
209 | /// Complexity: O(N) |
||
210 | /// where N = size(From) |
||
211 | RangeSet deletePoint(RangeSet From, const llvm::APSInt &Point); |
||
212 | /// Negate the given range set. |
||
213 | /// |
||
214 | /// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus |
||
215 | /// operation under the values of the type. |
||
216 | /// |
||
217 | /// We also handle MIN because applying unary minus to MIN does not change |
||
218 | /// it. |
||
219 | /// Example 1: |
||
220 | /// char x = -128; // -128 is a MIN value in a range of 'char' |
||
221 | /// char y = -x; // y: -128 |
||
222 | /// |
||
223 | /// Example 2: |
||
224 | /// unsigned char x = 0; // 0 is a MIN value in a range of 'unsigned char' |
||
225 | /// unsigned char y = -x; // y: 0 |
||
226 | /// |
||
227 | /// And it makes us to separate the range |
||
228 | /// like [MIN, N] to [MIN, MIN] U [-N, MAX]. |
||
229 | /// For instance, whole range is {-128..127} and subrange is [-128,-126], |
||
230 | /// thus [-128,-127,-126,...] negates to [-128,...,126,127]. |
||
231 | /// |
||
232 | /// Negate restores disrupted ranges on bounds, |
||
233 | /// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B]. |
||
234 | /// |
||
235 | /// Negate is a self-inverse function, i.e. negate(negate(R)) == R. |
||
236 | /// |
||
237 | /// Complexity: O(N) |
||
238 | /// where N = size(What) |
||
239 | RangeSet negate(RangeSet What); |
||
240 | /// Performs promotions, truncations and conversions of the given set. |
||
241 | /// |
||
242 | /// This function is optimized for each of the six cast cases: |
||
243 | /// - noop |
||
244 | /// - conversion |
||
245 | /// - truncation |
||
246 | /// - truncation-conversion |
||
247 | /// - promotion |
||
248 | /// - promotion-conversion |
||
249 | /// |
||
250 | /// NOTE: This function is NOT self-inverse for truncations, because of |
||
251 | /// the higher bits loss: |
||
252 | /// - castTo(castTo(OrigRangeOfInt, char), int) != OrigRangeOfInt. |
||
253 | /// - castTo(castTo(OrigRangeOfChar, int), char) == OrigRangeOfChar. |
||
254 | /// But it is self-inverse for all the rest casts. |
||
255 | /// |
||
256 | /// Complexity: |
||
257 | /// - Noop O(1); |
||
258 | /// - Truncation O(N^2); |
||
259 | /// - Another case O(N); |
||
260 | /// where N = size(What) |
||
261 | RangeSet castTo(RangeSet What, APSIntType Ty); |
||
262 | RangeSet castTo(RangeSet What, QualType T); |
||
263 | |||
264 | /// Return associated value factory. |
||
265 | BasicValueFactory &getValueFactory() const { return ValueFactory; } |
||
266 | |||
267 | private: |
||
268 | /// Return a persistent version of the given container. |
||
269 | RangeSet makePersistent(ContainerType &&From); |
||
270 | /// Construct a new persistent version of the given container. |
||
271 | ContainerType *construct(ContainerType &&From); |
||
272 | |||
273 | RangeSet intersect(const ContainerType &LHS, const ContainerType &RHS); |
||
274 | /// NOTE: This function relies on the fact that all values in the |
||
275 | /// containers are persistent (created via BasicValueFactory::getValue). |
||
276 | ContainerType unite(const ContainerType &LHS, const ContainerType &RHS); |
||
277 | |||
278 | /// This is a helper function for `castTo` method. Implies not to be used |
||
279 | /// separately. |
||
280 | /// Performs a truncation case of a cast operation. |
||
281 | ContainerType truncateTo(RangeSet What, APSIntType Ty); |
||
282 | |||
283 | /// This is a helper function for `castTo` method. Implies not to be used |
||
284 | /// separately. |
||
285 | /// Performs a conversion case and a promotion-conversion case for signeds |
||
286 | /// of a cast operation. |
||
287 | ContainerType convertTo(RangeSet What, APSIntType Ty); |
||
288 | |||
289 | /// This is a helper function for `castTo` method. Implies not to be used |
||
290 | /// separately. |
||
291 | /// Performs a promotion for unsigneds only. |
||
292 | ContainerType promoteTo(RangeSet What, APSIntType Ty); |
||
293 | |||
294 | // Many operations include producing new APSInt values and that's why |
||
295 | // we need this factory. |
||
296 | BasicValueFactory &ValueFactory; |
||
297 | // Allocator for all the created containers. |
||
298 | // Containers might own their own memory and that's why it is specific |
||
299 | // for the type, so it calls container destructors upon deletion. |
||
300 | llvm::SpecificBumpPtrAllocator<ContainerType> Arena; |
||
301 | // Usually we deal with the same ranges and range sets over and over. |
||
302 | // Here we track all created containers and try not to repeat ourselves. |
||
303 | llvm::FoldingSet<ContainerType> Cache; |
||
304 | static ContainerType EmptySet; |
||
305 | }; |
||
306 | |||
307 | RangeSet(const RangeSet &) = default; |
||
308 | RangeSet &operator=(const RangeSet &) = default; |
||
309 | RangeSet(RangeSet &&) = default; |
||
310 | RangeSet &operator=(RangeSet &&) = default; |
||
311 | ~RangeSet() = default; |
||
312 | |||
313 | /// Construct a new RangeSet representing '{ [From, To] }'. |
||
314 | RangeSet(Factory &F, const llvm::APSInt &From, const llvm::APSInt &To) |
||
315 | : RangeSet(F.getRangeSet(From, To)) {} |
||
316 | |||
317 | /// Construct a new RangeSet representing the given point as a range. |
||
318 | RangeSet(Factory &F, const llvm::APSInt &Point) |
||
319 | : RangeSet(F.getRangeSet(Point)) {} |
||
320 | |||
321 | static void Profile(llvm::FoldingSetNodeID &ID, const RangeSet &RS) { |
||
322 | ID.AddPointer(RS.Impl); |
||
323 | } |
||
324 | |||
325 | /// Profile - Generates a hash profile of this RangeSet for use |
||
326 | /// by FoldingSet. |
||
327 | void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, *this); } |
||
328 | |||
329 | /// getConcreteValue - If a symbol is constrained to equal a specific integer |
||
330 | /// constant then this method returns that value. Otherwise, it returns |
||
331 | /// NULL. |
||
332 | const llvm::APSInt *getConcreteValue() const { |
||
333 | return Impl->size() == 1 ? begin()->getConcreteValue() : nullptr; |
||
334 | } |
||
335 | |||
336 | /// Get the minimal value covered by the ranges in the set. |
||
337 | /// |
||
338 | /// Complexity: O(1) |
||
339 | const llvm::APSInt &getMinValue() const; |
||
340 | /// Get the maximal value covered by the ranges in the set. |
||
341 | /// |
||
342 | /// Complexity: O(1) |
||
343 | const llvm::APSInt &getMaxValue() const; |
||
344 | |||
345 | bool isUnsigned() const; |
||
346 | uint32_t getBitWidth() const; |
||
347 | APSIntType getAPSIntType() const; |
||
348 | |||
349 | /// Test whether the given point is contained by any of the ranges. |
||
350 | /// |
||
351 | /// Complexity: O(logN) |
||
352 | /// where N = size(this) |
||
353 | bool contains(llvm::APSInt Point) const { return containsImpl(Point); } |
||
354 | |||
355 | bool containsZero() const { |
||
356 | APSIntType T{getMinValue()}; |
||
357 | return contains(T.getZeroValue()); |
||
358 | } |
||
359 | |||
360 | /// Test if the range is the [0,0] range. |
||
361 | /// |
||
362 | /// Complexity: O(1) |
||
363 | bool encodesFalseRange() const { |
||
364 | const llvm::APSInt *Constant = getConcreteValue(); |
||
365 | return Constant && Constant->isZero(); |
||
366 | } |
||
367 | |||
368 | /// Test if the range doesn't contain zero. |
||
369 | /// |
||
370 | /// Complexity: O(logN) |
||
371 | /// where N = size(this) |
||
372 | bool encodesTrueRange() const { return !containsZero(); } |
||
373 | |||
374 | void dump(raw_ostream &OS) const; |
||
375 | void dump() const; |
||
376 | |||
377 | bool operator==(const RangeSet &Other) const { return *Impl == *Other.Impl; } |
||
378 | bool operator!=(const RangeSet &Other) const { return !(*this == Other); } |
||
379 | |||
380 | private: |
||
381 | /* implicit */ RangeSet(ContainerType *RawContainer) : Impl(RawContainer) {} |
||
382 | /* implicit */ RangeSet(UnderlyingType Ptr) : Impl(Ptr) {} |
||
383 | |||
384 | /// Pin given points to the type represented by the current range set. |
||
385 | /// |
||
386 | /// This makes parameter points to be in-out parameters. |
||
387 | /// In order to maintain consistent types across all of the ranges in the set |
||
388 | /// and to keep all the operations to compare ONLY points of the same type, we |
||
389 | /// need to pin every point before any operation. |
||
390 | /// |
||
391 | /// @Returns true if the given points can be converted to the target type |
||
392 | /// without changing the values (i.e. trivially) and false otherwise. |
||
393 | /// @{ |
||
394 | bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const; |
||
395 | bool pin(llvm::APSInt &Point) const; |
||
396 | /// @} |
||
397 | |||
398 | // This version of this function modifies its arguments (pins it). |
||
399 | bool containsImpl(llvm::APSInt &Point) const; |
||
400 | |||
401 | friend class Factory; |
||
402 | }; |
||
403 | |||
404 | using ConstraintMap = llvm::ImmutableMap<SymbolRef, RangeSet>; |
||
405 | ConstraintMap getConstraintMap(ProgramStateRef State); |
||
406 | |||
407 | class RangedConstraintManager : public SimpleConstraintManager { |
||
408 | public: |
||
409 | RangedConstraintManager(ExprEngine *EE, SValBuilder &SB) |
||
410 | : SimpleConstraintManager(EE, SB) {} |
||
411 | |||
412 | ~RangedConstraintManager() override; |
||
413 | |||
414 | //===------------------------------------------------------------------===// |
||
415 | // Implementation for interface from SimpleConstraintManager. |
||
416 | //===------------------------------------------------------------------===// |
||
417 | |||
418 | ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym, |
||
419 | bool Assumption) override; |
||
420 | |||
421 | ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State, SymbolRef Sym, |
||
422 | const llvm::APSInt &From, |
||
423 | const llvm::APSInt &To, |
||
424 | bool InRange) override; |
||
425 | |||
426 | ProgramStateRef assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym, |
||
427 | bool Assumption) override; |
||
428 | |||
429 | protected: |
||
430 | /// Assume a constraint between a symbolic expression and a concrete integer. |
||
431 | virtual ProgramStateRef assumeSymRel(ProgramStateRef State, SymbolRef Sym, |
||
432 | BinaryOperator::Opcode op, |
||
433 | const llvm::APSInt &Int); |
||
434 | |||
435 | //===------------------------------------------------------------------===// |
||
436 | // Interface that subclasses must implement. |
||
437 | //===------------------------------------------------------------------===// |
||
438 | |||
439 | // Each of these is of the form "$Sym+Adj <> V", where "<>" is the comparison |
||
440 | // operation for the method being invoked. |
||
441 | |||
442 | virtual ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, |
||
443 | const llvm::APSInt &V, |
||
444 | const llvm::APSInt &Adjustment) = 0; |
||
445 | |||
446 | virtual ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, |
||
447 | const llvm::APSInt &V, |
||
448 | const llvm::APSInt &Adjustment) = 0; |
||
449 | |||
450 | virtual ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, |
||
451 | const llvm::APSInt &V, |
||
452 | const llvm::APSInt &Adjustment) = 0; |
||
453 | |||
454 | virtual ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, |
||
455 | const llvm::APSInt &V, |
||
456 | const llvm::APSInt &Adjustment) = 0; |
||
457 | |||
458 | virtual ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, |
||
459 | const llvm::APSInt &V, |
||
460 | const llvm::APSInt &Adjustment) = 0; |
||
461 | |||
462 | virtual ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, |
||
463 | const llvm::APSInt &V, |
||
464 | const llvm::APSInt &Adjustment) = 0; |
||
465 | |||
466 | virtual ProgramStateRef assumeSymWithinInclusiveRange( |
||
467 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
||
468 | const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0; |
||
469 | |||
470 | virtual ProgramStateRef assumeSymOutsideInclusiveRange( |
||
471 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
||
472 | const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0; |
||
473 | |||
474 | //===------------------------------------------------------------------===// |
||
475 | // Internal implementation. |
||
476 | //===------------------------------------------------------------------===// |
||
477 | private: |
||
478 | static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment); |
||
479 | }; |
||
480 | |||
481 | /// Try to simplify a given symbolic expression based on the constraints in |
||
482 | /// State. This is needed because the Environment bindings are not getting |
||
483 | /// updated when a new constraint is added to the State. If the symbol is |
||
484 | /// simplified to a non-symbol (e.g. to a constant) then the original symbol |
||
485 | /// is returned. We use this function in the family of assumeSymNE/EQ/LT/../GE |
||
486 | /// functions where we can work only with symbols. Use the other function |
||
487 | /// (simplifyToSVal) if you are interested in a simplification that may yield |
||
488 | /// a concrete constant value. |
||
489 | SymbolRef simplify(ProgramStateRef State, SymbolRef Sym); |
||
490 | |||
491 | /// Try to simplify a given symbolic expression's associated `SVal` based on the |
||
492 | /// constraints in State. This is very similar to `simplify`, but this function |
||
493 | /// always returns the simplified SVal. The simplified SVal might be a single |
||
494 | /// constant (i.e. `ConcreteInt`). |
||
495 | SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym); |
||
496 | |||
497 | } // namespace ento |
||
498 | } // namespace clang |
||
499 | |||
500 | REGISTER_FACTORY_WITH_PROGRAMSTATE(ConstraintMap) |
||
501 | |||
502 | #endif |