Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines FunctionScopeInfo and its subclasses, which contain
10
// information about a single function, block, lambda, or method body.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15
#define LLVM_CLANG_SEMA_SCOPEINFO_H
16
 
17
#include "clang/AST/Expr.h"
18
#include "clang/AST/ExprCXX.h"
19
#include "clang/AST/Type.h"
20
#include "clang/Basic/CapturedStmt.h"
21
#include "clang/Basic/LLVM.h"
22
#include "clang/Basic/PartialDiagnostic.h"
23
#include "clang/Basic/SourceLocation.h"
24
#include "clang/Sema/CleanupInfo.h"
25
#include "clang/Sema/DeclSpec.h"
26
#include "llvm/ADT/DenseMap.h"
27
#include "llvm/ADT/DenseMapInfo.h"
28
#include "llvm/ADT/MapVector.h"
29
#include "llvm/ADT/PointerIntPair.h"
30
#include "llvm/ADT/SmallPtrSet.h"
31
#include "llvm/ADT/SmallSet.h"
32
#include "llvm/ADT/SmallVector.h"
33
#include "llvm/ADT/StringRef.h"
34
#include "llvm/ADT/StringSwitch.h"
35
#include "llvm/ADT/TinyPtrVector.h"
36
#include "llvm/Support/Casting.h"
37
#include "llvm/Support/ErrorHandling.h"
38
#include <algorithm>
39
#include <cassert>
40
#include <utility>
41
 
42
namespace clang {
43
 
44
class BlockDecl;
45
class CapturedDecl;
46
class CXXMethodDecl;
47
class CXXRecordDecl;
48
class ImplicitParamDecl;
49
class NamedDecl;
50
class ObjCIvarRefExpr;
51
class ObjCMessageExpr;
52
class ObjCPropertyDecl;
53
class ObjCPropertyRefExpr;
54
class ParmVarDecl;
55
class RecordDecl;
56
class ReturnStmt;
57
class Scope;
58
class Stmt;
59
class SwitchStmt;
60
class TemplateParameterList;
61
class VarDecl;
62
 
63
namespace sema {
64
 
65
/// Contains information about the compound statement currently being
66
/// parsed.
67
class CompoundScopeInfo {
68
public:
69
  /// Whether this compound stamement contains `for' or `while' loops
70
  /// with empty bodies.
71
  bool HasEmptyLoopBodies = false;
72
 
73
  /// Whether this compound statement corresponds to a GNU statement
74
  /// expression.
75
  bool IsStmtExpr;
76
 
77
  /// FP options at the beginning of the compound statement, prior to
78
  /// any pragma.
79
  FPOptions InitialFPFeatures;
80
 
81
  CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO)
82
      : IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
83
 
84
  void setHasEmptyLoopBodies() {
85
    HasEmptyLoopBodies = true;
86
  }
87
};
88
 
89
class PossiblyUnreachableDiag {
90
public:
91
  PartialDiagnostic PD;
92
  SourceLocation Loc;
93
  llvm::TinyPtrVector<const Stmt*> Stmts;
94
 
95
  PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
96
                          ArrayRef<const Stmt *> Stmts)
97
      : PD(PD), Loc(Loc), Stmts(Stmts) {}
98
};
99
 
100
/// Retains information about a function, method, or block that is
101
/// currently being parsed.
102
class FunctionScopeInfo {
103
protected:
104
  enum ScopeKind {
105
    SK_Function,
106
    SK_Block,
107
    SK_Lambda,
108
    SK_CapturedRegion
109
  };
110
 
111
public:
112
  /// What kind of scope we are describing.
113
  ScopeKind Kind : 3;
114
 
115
  /// Whether this function contains a VLA, \@try, try, C++
116
  /// initializer, or anything else that can't be jumped past.
117
  bool HasBranchProtectedScope : 1;
118
 
119
  /// Whether this function contains any switches or direct gotos.
120
  bool HasBranchIntoScope : 1;
121
 
122
  /// Whether this function contains any indirect gotos.
123
  bool HasIndirectGoto : 1;
124
 
125
  /// Whether this function contains any statement marked with
126
  /// \c [[clang::musttail]].
127
  bool HasMustTail : 1;
128
 
129
  /// Whether a statement was dropped because it was invalid.
130
  bool HasDroppedStmt : 1;
131
 
132
  /// True if current scope is for OpenMP declare reduction combiner.
133
  bool HasOMPDeclareReductionCombiner : 1;
134
 
135
  /// Whether there is a fallthrough statement in this function.
136
  bool HasFallthroughStmt : 1;
137
 
138
  /// Whether this function uses constrained floating point intrinsics
139
  bool UsesFPIntrin : 1;
140
 
141
  /// Whether we make reference to a declaration that could be
142
  /// unavailable.
143
  bool HasPotentialAvailabilityViolations : 1;
144
 
145
  /// A flag that is set when parsing a method that must call super's
146
  /// implementation, such as \c -dealloc, \c -finalize, or any method marked
147
  /// with \c __attribute__((objc_requires_super)).
148
  bool ObjCShouldCallSuper : 1;
149
 
150
  /// True when this is a method marked as a designated initializer.
151
  bool ObjCIsDesignatedInit : 1;
152
 
153
  /// This starts true for a method marked as designated initializer and will
154
  /// be set to false if there is an invocation to a designated initializer of
155
  /// the super class.
156
  bool ObjCWarnForNoDesignatedInitChain : 1;
157
 
158
  /// True when this is an initializer method not marked as a designated
159
  /// initializer within a class that has at least one initializer marked as a
160
  /// designated initializer.
161
  bool ObjCIsSecondaryInit : 1;
162
 
163
  /// This starts true for a secondary initializer method and will be set to
164
  /// false if there is an invocation of an initializer on 'self'.
165
  bool ObjCWarnForNoInitDelegation : 1;
166
 
167
  /// True only when this function has not already built, or attempted
168
  /// to build, the initial and final coroutine suspend points
169
  bool NeedsCoroutineSuspends : 1;
170
 
171
  /// An enumeration represeting the kind of the first coroutine statement
172
  /// in the function. One of co_return, co_await, or co_yield.
173
  unsigned char FirstCoroutineStmtKind : 2;
174
 
175
  /// First coroutine statement in the current function.
176
  /// (ex co_return, co_await, co_yield)
177
  SourceLocation FirstCoroutineStmtLoc;
178
 
179
  /// First 'return' statement in the current function.
180
  SourceLocation FirstReturnLoc;
181
 
182
  /// First C++ 'try' or ObjC @try statement in the current function.
183
  SourceLocation FirstCXXOrObjCTryLoc;
184
  enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
185
 
186
  /// First SEH '__try' statement in the current function.
187
  SourceLocation FirstSEHTryLoc;
188
 
189
private:
190
  /// Used to determine if errors occurred in this function or block.
191
  DiagnosticErrorTrap ErrorTrap;
192
 
193
public:
194
  /// A SwitchStmt, along with a flag indicating if its list of case statements
195
  /// is incomplete (because we dropped an invalid one while parsing).
196
  using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
197
 
198
  /// SwitchStack - This is the current set of active switch statements in the
199
  /// block.
200
  SmallVector<SwitchInfo, 8> SwitchStack;
201
 
202
  /// The list of return statements that occur within the function or
203
  /// block, if there is any chance of applying the named return value
204
  /// optimization, or if we need to infer a return type.
205
  SmallVector<ReturnStmt*, 4> Returns;
206
 
207
  /// The promise object for this coroutine, if any.
208
  VarDecl *CoroutinePromise = nullptr;
209
 
210
  /// A mapping between the coroutine function parameters that were moved
211
  /// to the coroutine frame, and their move statements.
212
  llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
213
 
214
  /// The initial and final coroutine suspend points.
215
  std::pair<Stmt *, Stmt *> CoroutineSuspends;
216
 
217
  /// The stack of currently active compound stamement scopes in the
218
  /// function.
219
  SmallVector<CompoundScopeInfo, 4> CompoundScopes;
220
 
221
  /// The set of blocks that are introduced in this function.
222
  llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
223
 
224
  /// The set of __block variables that are introduced in this function.
225
  llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
226
 
227
  /// A list of PartialDiagnostics created but delayed within the
228
  /// current function scope.  These diagnostics are vetted for reachability
229
  /// prior to being emitted.
230
  SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
231
 
232
  /// A list of parameters which have the nonnull attribute and are
233
  /// modified in the function.
234
  llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
235
 
236
  /// The set of GNU address of label extension "&&label".
237
  llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
238
 
239
public:
240
  /// Represents a simple identification of a weak object.
241
  ///
242
  /// Part of the implementation of -Wrepeated-use-of-weak.
243
  ///
244
  /// This is used to determine if two weak accesses refer to the same object.
245
  /// Here are some examples of how various accesses are "profiled":
246
  ///
247
  /// Access Expression |     "Base" Decl     |          "Property" Decl
248
  /// :---------------: | :-----------------: | :------------------------------:
249
  /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
250
  /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
251
  /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
252
  /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
253
  /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
254
  /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
255
  /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
256
  /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
257
  /// weakVar           | 0 (known)           | weakVar (VarDecl)
258
  /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
259
  ///
260
  /// Objects are identified with only two Decls to make it reasonably fast to
261
  /// compare them.
262
  class WeakObjectProfileTy {
263
    /// The base object decl, as described in the class documentation.
264
    ///
265
    /// The extra flag is "true" if the Base and Property are enough to uniquely
266
    /// identify the object in memory.
267
    ///
268
    /// \sa isExactProfile()
269
    using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
270
    BaseInfoTy Base;
271
 
272
    /// The "property" decl, as described in the class documentation.
273
    ///
274
    /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
275
    /// case of "implicit" properties (regular methods accessed via dot syntax).
276
    const NamedDecl *Property = nullptr;
277
 
278
    /// Used to find the proper base profile for a given base expression.
279
    static BaseInfoTy getBaseInfo(const Expr *BaseE);
280
 
281
    inline WeakObjectProfileTy();
282
    static inline WeakObjectProfileTy getSentinel();
283
 
284
  public:
285
    WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
286
    WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
287
    WeakObjectProfileTy(const DeclRefExpr *RE);
288
    WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
289
 
290
    const NamedDecl *getBase() const { return Base.getPointer(); }
291
    const NamedDecl *getProperty() const { return Property; }
292
 
293
    /// Returns true if the object base specifies a known object in memory,
294
    /// rather than, say, an instance variable or property of another object.
295
    ///
296
    /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
297
    /// considered an exact profile if \c foo is a local variable, even if
298
    /// another variable \c foo2 refers to the same object as \c foo.
299
    ///
300
    /// For increased precision, accesses with base variables that are
301
    /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
302
    /// be exact, though this is not true for arbitrary variables
303
    /// (foo.prop1.prop2).
304
    bool isExactProfile() const {
305
      return Base.getInt();
306
    }
307
 
308
    bool operator==(const WeakObjectProfileTy &Other) const {
309
      return Base == Other.Base && Property == Other.Property;
310
    }
311
 
312
    // For use in DenseMap.
313
    // We can't specialize the usual llvm::DenseMapInfo at the end of the file
314
    // because by that point the DenseMap in FunctionScopeInfo has already been
315
    // instantiated.
316
    class DenseMapInfo {
317
    public:
318
      static inline WeakObjectProfileTy getEmptyKey() {
319
        return WeakObjectProfileTy();
320
      }
321
 
322
      static inline WeakObjectProfileTy getTombstoneKey() {
323
        return WeakObjectProfileTy::getSentinel();
324
      }
325
 
326
      static unsigned getHashValue(const WeakObjectProfileTy &Val) {
327
        using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
328
 
329
        return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
330
                                                           Val.Property));
331
      }
332
 
333
      static bool isEqual(const WeakObjectProfileTy &LHS,
334
                          const WeakObjectProfileTy &RHS) {
335
        return LHS == RHS;
336
      }
337
    };
338
  };
339
 
340
  /// Represents a single use of a weak object.
341
  ///
342
  /// Stores both the expression and whether the access is potentially unsafe
343
  /// (i.e. it could potentially be warned about).
344
  ///
345
  /// Part of the implementation of -Wrepeated-use-of-weak.
346
  class WeakUseTy {
347
    llvm::PointerIntPair<const Expr *, 1, bool> Rep;
348
 
349
  public:
350
    WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
351
 
352
    const Expr *getUseExpr() const { return Rep.getPointer(); }
353
    bool isUnsafe() const { return Rep.getInt(); }
354
    void markSafe() { Rep.setInt(false); }
355
 
356
    bool operator==(const WeakUseTy &Other) const {
357
      return Rep == Other.Rep;
358
    }
359
  };
360
 
361
  /// Used to collect uses of a particular weak object in a function body.
362
  ///
363
  /// Part of the implementation of -Wrepeated-use-of-weak.
364
  using WeakUseVector = SmallVector<WeakUseTy, 4>;
365
 
366
  /// Used to collect all uses of weak objects in a function body.
367
  ///
368
  /// Part of the implementation of -Wrepeated-use-of-weak.
369
  using WeakObjectUseMap =
370
      llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
371
                          WeakObjectProfileTy::DenseMapInfo>;
372
 
373
private:
374
  /// Used to collect all uses of weak objects in this function body.
375
  ///
376
  /// Part of the implementation of -Wrepeated-use-of-weak.
377
  WeakObjectUseMap WeakObjectUses;
378
 
379
protected:
380
  FunctionScopeInfo(const FunctionScopeInfo&) = default;
381
 
382
public:
383
  FunctionScopeInfo(DiagnosticsEngine &Diag)
384
      : Kind(SK_Function), HasBranchProtectedScope(false),
385
        HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
386
        HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
387
        HasFallthroughStmt(false), UsesFPIntrin(false),
388
        HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
389
        ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
390
        ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
391
        NeedsCoroutineSuspends(true), ErrorTrap(Diag) {}
392
 
393
  virtual ~FunctionScopeInfo();
394
 
395
  /// Determine whether an unrecoverable error has occurred within this
396
  /// function. Note that this may return false even if the function body is
397
  /// invalid, because the errors may be suppressed if they're caused by prior
398
  /// invalid declarations.
399
  ///
400
  /// FIXME: Migrate the caller of this to use containsErrors() instead once
401
  /// it's ready.
402
  bool hasUnrecoverableErrorOccurred() const {
403
    return ErrorTrap.hasUnrecoverableErrorOccurred();
404
  }
405
 
406
  /// Record that a weak object was accessed.
407
  ///
408
  /// Part of the implementation of -Wrepeated-use-of-weak.
409
  template <typename ExprT>
410
  inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
411
 
412
  void recordUseOfWeak(const ObjCMessageExpr *Msg,
413
                       const ObjCPropertyDecl *Prop);
414
 
415
  /// Record that a given expression is a "safe" access of a weak object (e.g.
416
  /// assigning it to a strong variable.)
417
  ///
418
  /// Part of the implementation of -Wrepeated-use-of-weak.
419
  void markSafeWeakUse(const Expr *E);
420
 
421
  const WeakObjectUseMap &getWeakObjectUses() const {
422
    return WeakObjectUses;
423
  }
424
 
425
  void setHasBranchIntoScope() {
426
    HasBranchIntoScope = true;
427
  }
428
 
429
  void setHasBranchProtectedScope() {
430
    HasBranchProtectedScope = true;
431
  }
432
 
433
  void setHasIndirectGoto() {
434
    HasIndirectGoto = true;
435
  }
436
 
437
  void setHasMustTail() { HasMustTail = true; }
438
 
439
  void setHasDroppedStmt() {
440
    HasDroppedStmt = true;
441
  }
442
 
443
  void setHasOMPDeclareReductionCombiner() {
444
    HasOMPDeclareReductionCombiner = true;
445
  }
446
 
447
  void setHasFallthroughStmt() {
448
    HasFallthroughStmt = true;
449
  }
450
 
451
  void setUsesFPIntrin() {
452
    UsesFPIntrin = true;
453
  }
454
 
455
  void setHasCXXTry(SourceLocation TryLoc) {
456
    setHasBranchProtectedScope();
457
    FirstCXXOrObjCTryLoc = TryLoc;
458
    FirstTryType = TryLocIsCXX;
459
  }
460
 
461
  void setHasObjCTry(SourceLocation TryLoc) {
462
    setHasBranchProtectedScope();
463
    FirstCXXOrObjCTryLoc = TryLoc;
464
    FirstTryType = TryLocIsObjC;
465
  }
466
 
467
  void setHasSEHTry(SourceLocation TryLoc) {
468
    setHasBranchProtectedScope();
469
    FirstSEHTryLoc = TryLoc;
470
  }
471
 
472
  bool NeedsScopeChecking() const {
473
    return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
474
                               (HasBranchProtectedScope && HasBranchIntoScope));
475
  }
476
 
477
  // Add a block introduced in this function.
478
  void addBlock(const BlockDecl *BD) {
479
    Blocks.insert(BD);
480
  }
481
 
482
  // Add a __block variable introduced in this function.
483
  void addByrefBlockVar(VarDecl *VD) {
484
    ByrefBlockVars.push_back(VD);
485
  }
486
 
487
  bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
488
 
489
  void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
490
    assert(FirstCoroutineStmtLoc.isInvalid() &&
491
                   "first coroutine statement location already set");
492
    FirstCoroutineStmtLoc = Loc;
493
    FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
494
            .Case("co_return", 0)
495
            .Case("co_await", 1)
496
            .Case("co_yield", 2);
497
  }
498
 
499
  StringRef getFirstCoroutineStmtKeyword() const {
500
    assert(FirstCoroutineStmtLoc.isValid()
501
                   && "no coroutine statement available");
502
    switch (FirstCoroutineStmtKind) {
503
    case 0: return "co_return";
504
    case 1: return "co_await";
505
    case 2: return "co_yield";
506
    default:
507
      llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
508
    };
509
  }
510
 
511
  void setNeedsCoroutineSuspends(bool value = true) {
512
    assert((!value || CoroutineSuspends.first == nullptr) &&
513
            "we already have valid suspend points");
514
    NeedsCoroutineSuspends = value;
515
  }
516
 
517
  bool hasInvalidCoroutineSuspends() const {
518
    return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
519
  }
520
 
521
  void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
522
    assert(Initial && Final && "suspend points cannot be null");
523
    assert(CoroutineSuspends.first == nullptr && "suspend points already set");
524
    NeedsCoroutineSuspends = false;
525
    CoroutineSuspends.first = Initial;
526
    CoroutineSuspends.second = Final;
527
  }
528
 
529
  /// Clear out the information in this function scope, making it
530
  /// suitable for reuse.
531
  void Clear();
532
 
533
  bool isPlainFunction() const { return Kind == SK_Function; }
534
};
535
 
536
class Capture {
537
  // There are three categories of capture: capturing 'this', capturing
538
  // local variables, and C++1y initialized captures (which can have an
539
  // arbitrary initializer, and don't really capture in the traditional
540
  // sense at all).
541
  //
542
  // There are three ways to capture a local variable:
543
  //  - capture by copy in the C++11 sense,
544
  //  - capture by reference in the C++11 sense, and
545
  //  - __block capture.
546
  // Lambdas explicitly specify capture by copy or capture by reference.
547
  // For blocks, __block capture applies to variables with that annotation,
548
  // variables of reference type are captured by reference, and other
549
  // variables are captured by copy.
550
  enum CaptureKind {
551
    Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
552
  };
553
 
554
  union {
555
    /// If Kind == Cap_VLA, the captured type.
556
    const VariableArrayType *CapturedVLA;
557
 
558
    /// Otherwise, the captured variable (if any).
559
    ValueDecl *CapturedVar;
560
  };
561
 
562
  /// The source location at which the first capture occurred.
563
  SourceLocation Loc;
564
 
565
  /// The location of the ellipsis that expands a parameter pack.
566
  SourceLocation EllipsisLoc;
567
 
568
  /// The type as it was captured, which is the type of the non-static data
569
  /// member that would hold the capture.
570
  QualType CaptureType;
571
 
572
  /// The CaptureKind of this capture.
573
  unsigned Kind : 2;
574
 
575
  /// Whether this is a nested capture (a capture of an enclosing capturing
576
  /// scope's capture).
577
  unsigned Nested : 1;
578
 
579
  /// Whether this is a capture of '*this'.
580
  unsigned CapturesThis : 1;
581
 
582
  /// Whether an explicit capture has been odr-used in the body of the
583
  /// lambda.
584
  unsigned ODRUsed : 1;
585
 
586
  /// Whether an explicit capture has been non-odr-used in the body of
587
  /// the lambda.
588
  unsigned NonODRUsed : 1;
589
 
590
  /// Whether the capture is invalid (a capture was required but the entity is
591
  /// non-capturable).
592
  unsigned Invalid : 1;
593
 
594
public:
595
  Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested,
596
          SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
597
          bool Invalid)
598
      : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
599
        CaptureType(CaptureType), Kind(Block   ? Cap_Block
600
                                       : ByRef ? Cap_ByRef
601
                                               : Cap_ByCopy),
602
        Nested(IsNested), CapturesThis(false), ODRUsed(false),
603
        NonODRUsed(false), Invalid(Invalid) {}
604
 
605
  enum IsThisCapture { ThisCapture };
606
  Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
607
          QualType CaptureType, const bool ByCopy, bool Invalid)
608
      : Loc(Loc), CaptureType(CaptureType),
609
        Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
610
        CapturesThis(true), ODRUsed(false), NonODRUsed(false),
611
        Invalid(Invalid) {}
612
 
613
  enum IsVLACapture { VLACapture };
614
  Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
615
          SourceLocation Loc, QualType CaptureType)
616
      : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
617
        Nested(IsNested), CapturesThis(false), ODRUsed(false),
618
        NonODRUsed(false), Invalid(false) {}
619
 
620
  bool isThisCapture() const { return CapturesThis; }
621
  bool isVariableCapture() const {
622
    return !isThisCapture() && !isVLATypeCapture();
623
  }
624
 
625
  bool isCopyCapture() const { return Kind == Cap_ByCopy; }
626
  bool isReferenceCapture() const { return Kind == Cap_ByRef; }
627
  bool isBlockCapture() const { return Kind == Cap_Block; }
628
  bool isVLATypeCapture() const { return Kind == Cap_VLA; }
629
 
630
  bool isNested() const { return Nested; }
631
 
632
  bool isInvalid() const { return Invalid; }
633
 
634
  /// Determine whether this capture is an init-capture.
635
  bool isInitCapture() const;
636
 
637
  bool isODRUsed() const { return ODRUsed; }
638
  bool isNonODRUsed() const { return NonODRUsed; }
639
  void markUsed(bool IsODRUse) {
640
    if (IsODRUse)
641
      ODRUsed = true;
642
    else
643
      NonODRUsed = true;
644
  }
645
 
646
  ValueDecl *getVariable() const {
647
    assert(isVariableCapture());
648
    return CapturedVar;
649
  }
650
 
651
  const VariableArrayType *getCapturedVLAType() const {
652
    assert(isVLATypeCapture());
653
    return CapturedVLA;
654
  }
655
 
656
  /// Retrieve the location at which this variable was captured.
657
  SourceLocation getLocation() const { return Loc; }
658
 
659
  /// Retrieve the source location of the ellipsis, whose presence
660
  /// indicates that the capture is a pack expansion.
661
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
662
 
663
  /// Retrieve the capture type for this capture, which is effectively
664
  /// the type of the non-static data member in the lambda/block structure
665
  /// that would store this capture.
666
  QualType getCaptureType() const { return CaptureType; }
667
};
668
 
669
class CapturingScopeInfo : public FunctionScopeInfo {
670
protected:
671
  CapturingScopeInfo(const CapturingScopeInfo&) = default;
672
 
673
public:
674
  enum ImplicitCaptureStyle {
675
    ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
676
    ImpCap_CapturedRegion
677
  };
678
 
679
  ImplicitCaptureStyle ImpCaptureStyle;
680
 
681
  CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
682
      : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
683
 
684
  /// CaptureMap - A map of captured variables to (index+1) into Captures.
685
  llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
686
 
687
  /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
688
  /// zero if 'this' is not captured.
689
  unsigned CXXThisCaptureIndex = 0;
690
 
691
  /// Captures - The captures.
692
  SmallVector<Capture, 4> Captures;
693
 
694
  /// - Whether the target type of return statements in this context
695
  /// is deduced (e.g. a lambda or block with omitted return type).
696
  bool HasImplicitReturnType = false;
697
 
698
  /// ReturnType - The target type of return statements in this context,
699
  /// or null if unknown.
700
  QualType ReturnType;
701
 
702
  void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested,
703
                  SourceLocation Loc, SourceLocation EllipsisLoc,
704
                  QualType CaptureType, bool Invalid) {
705
    Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
706
                               EllipsisLoc, CaptureType, Invalid));
707
    CaptureMap[Var] = Captures.size();
708
  }
709
 
710
  void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
711
                         QualType CaptureType) {
712
    Captures.push_back(Capture(Capture::VLACapture, VLAType,
713
                               /*FIXME: IsNested*/ false, Loc, CaptureType));
714
  }
715
 
716
  void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
717
                      bool ByCopy);
718
 
719
  /// Determine whether the C++ 'this' is captured.
720
  bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
721
 
722
  /// Retrieve the capture of C++ 'this', if it has been captured.
723
  Capture &getCXXThisCapture() {
724
    assert(isCXXThisCaptured() && "this has not been captured");
725
    return Captures[CXXThisCaptureIndex - 1];
726
  }
727
 
728
  /// Determine whether the given variable has been captured.
729
  bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
730
 
731
  /// Determine whether the given variable-array type has been captured.
732
  bool isVLATypeCaptured(const VariableArrayType *VAT) const;
733
 
734
  /// Retrieve the capture of the given variable, if it has been
735
  /// captured already.
736
  Capture &getCapture(ValueDecl *Var) {
737
    assert(isCaptured(Var) && "Variable has not been captured");
738
    return Captures[CaptureMap[Var] - 1];
739
  }
740
 
741
  const Capture &getCapture(ValueDecl *Var) const {
742
    llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known =
743
        CaptureMap.find(Var);
744
    assert(Known != CaptureMap.end() && "Variable has not been captured");
745
    return Captures[Known->second - 1];
746
  }
747
 
748
  static bool classof(const FunctionScopeInfo *FSI) {
749
    return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
750
                                 || FSI->Kind == SK_CapturedRegion;
751
  }
752
};
753
 
754
/// Retains information about a block that is currently being parsed.
755
class BlockScopeInfo final : public CapturingScopeInfo {
756
public:
757
  BlockDecl *TheDecl;
758
 
759
  /// TheScope - This is the scope for the block itself, which contains
760
  /// arguments etc.
761
  Scope *TheScope;
762
 
763
  /// BlockType - The function type of the block, if one was given.
764
  /// Its return type may be BuiltinType::Dependent.
765
  QualType FunctionType;
766
 
767
  BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
768
      : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
769
        TheScope(BlockScope) {
770
    Kind = SK_Block;
771
  }
772
 
773
  ~BlockScopeInfo() override;
774
 
775
  static bool classof(const FunctionScopeInfo *FSI) {
776
    return FSI->Kind == SK_Block;
777
  }
778
};
779
 
780
/// Retains information about a captured region.
781
class CapturedRegionScopeInfo final : public CapturingScopeInfo {
782
public:
783
  /// The CapturedDecl for this statement.
784
  CapturedDecl *TheCapturedDecl;
785
 
786
  /// The captured record type.
787
  RecordDecl *TheRecordDecl;
788
 
789
  /// This is the enclosing scope of the captured region.
790
  Scope *TheScope;
791
 
792
  /// The implicit parameter for the captured variables.
793
  ImplicitParamDecl *ContextParam;
794
 
795
  /// The kind of captured region.
796
  unsigned short CapRegionKind;
797
 
798
  unsigned short OpenMPLevel;
799
  unsigned short OpenMPCaptureLevel;
800
 
801
  CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
802
                          RecordDecl *RD, ImplicitParamDecl *Context,
803
                          CapturedRegionKind K, unsigned OpenMPLevel,
804
                          unsigned OpenMPCaptureLevel)
805
      : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
806
        TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
807
        ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
808
        OpenMPCaptureLevel(OpenMPCaptureLevel) {
809
    Kind = SK_CapturedRegion;
810
  }
811
 
812
  ~CapturedRegionScopeInfo() override;
813
 
814
  /// A descriptive name for the kind of captured region this is.
815
  StringRef getRegionName() const {
816
    switch (CapRegionKind) {
817
    case CR_Default:
818
      return "default captured statement";
819
    case CR_ObjCAtFinally:
820
      return "Objective-C @finally statement";
821
    case CR_OpenMP:
822
      return "OpenMP region";
823
    }
824
    llvm_unreachable("Invalid captured region kind!");
825
  }
826
 
827
  static bool classof(const FunctionScopeInfo *FSI) {
828
    return FSI->Kind == SK_CapturedRegion;
829
  }
830
};
831
 
832
class LambdaScopeInfo final :
833
    public CapturingScopeInfo, public InventedTemplateParameterInfo {
834
public:
835
  /// The class that describes the lambda.
836
  CXXRecordDecl *Lambda = nullptr;
837
 
838
  /// The lambda's compiler-generated \c operator().
839
  CXXMethodDecl *CallOperator = nullptr;
840
 
841
  /// Source range covering the lambda introducer [...].
842
  SourceRange IntroducerRange;
843
 
844
  /// Source location of the '&' or '=' specifying the default capture
845
  /// type, if any.
846
  SourceLocation CaptureDefaultLoc;
847
 
848
  /// The number of captures in the \c Captures list that are
849
  /// explicit captures.
850
  unsigned NumExplicitCaptures = 0;
851
 
852
  /// Whether this is a mutable lambda.
853
  bool Mutable = false;
854
 
855
  /// Whether the (empty) parameter list is explicit.
856
  bool ExplicitParams = false;
857
 
858
  /// Whether any of the capture expressions requires cleanups.
859
  CleanupInfo Cleanup;
860
 
861
  /// Whether the lambda contains an unexpanded parameter pack.
862
  bool ContainsUnexpandedParameterPack = false;
863
 
864
  /// Packs introduced by this lambda, if any.
865
  SmallVector<NamedDecl*, 4> LocalPacks;
866
 
867
  /// Source range covering the explicit template parameter list (if it exists).
868
  SourceRange ExplicitTemplateParamsRange;
869
 
870
  /// The requires-clause immediately following the explicit template parameter
871
  /// list, if any. (Note that there may be another requires-clause included as
872
  /// part of the lambda-declarator.)
873
  ExprResult RequiresClause;
874
 
875
  /// If this is a generic lambda, and the template parameter
876
  /// list has been created (from the TemplateParams) then store
877
  /// a reference to it (cache it to avoid reconstructing it).
878
  TemplateParameterList *GLTemplateParameterList = nullptr;
879
 
880
  /// Contains all variable-referring-expressions (i.e. DeclRefExprs
881
  ///  or MemberExprs) that refer to local variables in a generic lambda
882
  ///  or a lambda in a potentially-evaluated-if-used context.
883
  ///
884
  ///  Potentially capturable variables of a nested lambda that might need
885
  ///   to be captured by the lambda are housed here.
886
  ///  This is specifically useful for generic lambdas or
887
  ///  lambdas within a potentially evaluated-if-used context.
888
  ///  If an enclosing variable is named in an expression of a lambda nested
889
  ///  within a generic lambda, we don't always know whether the variable
890
  ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
891
  ///  until its instantiation. But we still need to capture it in the
892
  ///  enclosing lambda if all intervening lambdas can capture the variable.
893
  llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
894
 
895
  /// Contains all variable-referring-expressions that refer
896
  ///  to local variables that are usable as constant expressions and
897
  ///  do not involve an odr-use (they may still need to be captured
898
  ///  if the enclosing full-expression is instantiation dependent).
899
  llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
900
 
901
  /// A map of explicit capture indices to their introducer source ranges.
902
  llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
903
 
904
  /// Contains all of the variables defined in this lambda that shadow variables
905
  /// that were defined in parent contexts. Used to avoid warnings when the
906
  /// shadowed variables are uncaptured by this lambda.
907
  struct ShadowedOuterDecl {
908
    const VarDecl *VD;
909
    const VarDecl *ShadowedDecl;
910
  };
911
  llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
912
 
913
  SourceLocation PotentialThisCaptureLocation;
914
 
915
  LambdaScopeInfo(DiagnosticsEngine &Diag)
916
      : CapturingScopeInfo(Diag, ImpCap_None) {
917
    Kind = SK_Lambda;
918
  }
919
 
920
  /// Note when all explicit captures have been added.
921
  void finishedExplicitCaptures() {
922
    NumExplicitCaptures = Captures.size();
923
  }
924
 
925
  static bool classof(const FunctionScopeInfo *FSI) {
926
    return FSI->Kind == SK_Lambda;
927
  }
928
 
929
  /// Is this scope known to be for a generic lambda? (This will be false until
930
  /// we parse a template parameter list or the first 'auto'-typed parameter).
931
  bool isGenericLambda() const {
932
    return !TemplateParams.empty() || GLTemplateParameterList;
933
  }
934
 
935
  /// Add a variable that might potentially be captured by the
936
  /// lambda and therefore the enclosing lambdas.
937
  ///
938
  /// This is also used by enclosing lambda's to speculatively capture
939
  /// variables that nested lambda's - depending on their enclosing
940
  /// specialization - might need to capture.
941
  /// Consider:
942
  /// void f(int, int); <-- don't capture
943
  /// void f(const int&, double); <-- capture
944
  /// void foo() {
945
  ///   const int x = 10;
946
  ///   auto L = [=](auto a) { // capture 'x'
947
  ///      return [=](auto b) {
948
  ///        f(x, a);  // we may or may not need to capture 'x'
949
  ///      };
950
  ///   };
951
  /// }
952
  void addPotentialCapture(Expr *VarExpr) {
953
    assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
954
           isa<FunctionParmPackExpr>(VarExpr));
955
    PotentiallyCapturingExprs.push_back(VarExpr);
956
  }
957
 
958
  void addPotentialThisCapture(SourceLocation Loc) {
959
    PotentialThisCaptureLocation = Loc;
960
  }
961
 
962
  bool hasPotentialThisCapture() const {
963
    return PotentialThisCaptureLocation.isValid();
964
  }
965
 
966
  /// Mark a variable's reference in a lambda as non-odr using.
967
  ///
968
  /// For generic lambdas, if a variable is named in a potentially evaluated
969
  /// expression, where the enclosing full expression is dependent then we
970
  /// must capture the variable (given a default capture).
971
  /// This is accomplished by recording all references to variables
972
  /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
973
  /// PotentialCaptures. All such variables have to be captured by that lambda,
974
  /// except for as described below.
975
  /// If that variable is usable as a constant expression and is named in a
976
  /// manner that does not involve its odr-use (e.g. undergoes
977
  /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
978
  /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
979
  /// if we can determine that the full expression is not instantiation-
980
  /// dependent, then we can entirely avoid its capture.
981
  ///
982
  ///   const int n = 0;
983
  ///   [&] (auto x) {
984
  ///     (void)+n + x;
985
  ///   };
986
  /// Interestingly, this strategy would involve a capture of n, even though
987
  /// it's obviously not odr-used here, because the full-expression is
988
  /// instantiation-dependent.  It could be useful to avoid capturing such
989
  /// variables, even when they are referred to in an instantiation-dependent
990
  /// expression, if we can unambiguously determine that they shall never be
991
  /// odr-used.  This would involve removal of the variable-referring-expression
992
  /// from the array of PotentialCaptures during the lvalue-to-rvalue
993
  /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
994
  /// capture such variables.
995
  /// Before anyone is tempted to implement a strategy for not-capturing 'n',
996
  /// consider the insightful warning in:
997
  ///    /cfe-commits/Week-of-Mon-20131104/092596.html
998
  /// "The problem is that the set of captures for a lambda is part of the ABI
999
  ///  (since lambda layout can be made visible through inline functions and the
1000
  ///  like), and there are no guarantees as to which cases we'll manage to build
1001
  ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
1002
  ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
1003
  ///  building such a node. So we need a rule that anyone can implement and get
1004
  ///  exactly the same result".
1005
  void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
1006
    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1007
           isa<MemberExpr>(CapturingVarExpr) ||
1008
           isa<FunctionParmPackExpr>(CapturingVarExpr));
1009
    NonODRUsedCapturingExprs.insert(CapturingVarExpr);
1010
  }
1011
  bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
1012
    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1013
           isa<MemberExpr>(CapturingVarExpr) ||
1014
           isa<FunctionParmPackExpr>(CapturingVarExpr));
1015
    return NonODRUsedCapturingExprs.count(CapturingVarExpr);
1016
  }
1017
  void removePotentialCapture(Expr *E) {
1018
    llvm::erase_value(PotentiallyCapturingExprs, E);
1019
  }
1020
  void clearPotentialCaptures() {
1021
    PotentiallyCapturingExprs.clear();
1022
    PotentialThisCaptureLocation = SourceLocation();
1023
  }
1024
  unsigned getNumPotentialVariableCaptures() const {
1025
    return PotentiallyCapturingExprs.size();
1026
  }
1027
 
1028
  bool hasPotentialCaptures() const {
1029
    return getNumPotentialVariableCaptures() ||
1030
                                  PotentialThisCaptureLocation.isValid();
1031
  }
1032
 
1033
  void visitPotentialCaptures(
1034
      llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
1035
};
1036
 
1037
FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
1038
    : Base(nullptr, false) {}
1039
 
1040
FunctionScopeInfo::WeakObjectProfileTy
1041
FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1042
  FunctionScopeInfo::WeakObjectProfileTy Result;
1043
  Result.Base.setInt(true);
1044
  return Result;
1045
}
1046
 
1047
template <typename ExprT>
1048
void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1049
  assert(E);
1050
  WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1051
  Uses.push_back(WeakUseTy(E, IsRead));
1052
}
1053
 
1054
inline void CapturingScopeInfo::addThisCapture(bool isNested,
1055
                                               SourceLocation Loc,
1056
                                               QualType CaptureType,
1057
                                               bool ByCopy) {
1058
  Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1059
                             ByCopy, /*Invalid*/ false));
1060
  CXXThisCaptureIndex = Captures.size();
1061
}
1062
 
1063
} // namespace sema
1064
 
1065
} // namespace clang
1066
 
1067
#endif // LLVM_CLANG_SEMA_SCOPEINFO_H