Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the data structures and types used in C++
10
// overload resolution.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_CLANG_SEMA_OVERLOAD_H
15
#define LLVM_CLANG_SEMA_OVERLOAD_H
16
 
17
#include "clang/AST/Decl.h"
18
#include "clang/AST/DeclAccessPair.h"
19
#include "clang/AST/DeclBase.h"
20
#include "clang/AST/DeclCXX.h"
21
#include "clang/AST/DeclTemplate.h"
22
#include "clang/AST/Expr.h"
23
#include "clang/AST/Type.h"
24
#include "clang/Basic/LLVM.h"
25
#include "clang/Basic/SourceLocation.h"
26
#include "clang/Sema/SemaFixItUtils.h"
27
#include "clang/Sema/TemplateDeduction.h"
28
#include "llvm/ADT/ArrayRef.h"
29
#include "llvm/ADT/STLExtras.h"
30
#include "llvm/ADT/SmallPtrSet.h"
31
#include "llvm/ADT/SmallVector.h"
32
#include "llvm/ADT/StringRef.h"
33
#include "llvm/Support/AlignOf.h"
34
#include "llvm/Support/Allocator.h"
35
#include "llvm/Support/Casting.h"
36
#include "llvm/Support/ErrorHandling.h"
37
#include <cassert>
38
#include <cstddef>
39
#include <cstdint>
40
#include <utility>
41
 
42
namespace clang {
43
 
44
class APValue;
45
class ASTContext;
46
class Sema;
47
 
48
  /// OverloadingResult - Capture the result of performing overload
49
  /// resolution.
50
  enum OverloadingResult {
51
    /// Overload resolution succeeded.
52
    OR_Success,
53
 
54
    /// No viable function found.
55
    OR_No_Viable_Function,
56
 
57
    /// Ambiguous candidates found.
58
    OR_Ambiguous,
59
 
60
    /// Succeeded, but refers to a deleted function.
61
    OR_Deleted
62
  };
63
 
64
  enum OverloadCandidateDisplayKind {
65
    /// Requests that all candidates be shown.  Viable candidates will
66
    /// be printed first.
67
    OCD_AllCandidates,
68
 
69
    /// Requests that only viable candidates be shown.
70
    OCD_ViableCandidates,
71
 
72
    /// Requests that only tied-for-best candidates be shown.
73
    OCD_AmbiguousCandidates
74
  };
75
 
76
  /// The parameter ordering that will be used for the candidate. This is
77
  /// used to represent C++20 binary operator rewrites that reverse the order
78
  /// of the arguments. If the parameter ordering is Reversed, the Args list is
79
  /// reversed (but obviously the ParamDecls for the function are not).
80
  ///
81
  /// After forming an OverloadCandidate with reversed parameters, the list
82
  /// of conversions will (as always) be indexed by argument, so will be
83
  /// in reverse parameter order.
84
  enum class OverloadCandidateParamOrder : char { Normal, Reversed };
85
 
86
  /// The kinds of rewrite we perform on overload candidates. Note that the
87
  /// values here are chosen to serve as both bitflags and as a rank (lower
88
  /// values are preferred by overload resolution).
89
  enum OverloadCandidateRewriteKind : unsigned {
90
    /// Candidate is not a rewritten candidate.
91
    CRK_None = 0x0,
92
 
93
    /// Candidate is a rewritten candidate with a different operator name.
94
    CRK_DifferentOperator = 0x1,
95
 
96
    /// Candidate is a rewritten candidate with a reversed order of parameters.
97
    CRK_Reversed = 0x2,
98
  };
99
 
100
  /// ImplicitConversionKind - The kind of implicit conversion used to
101
  /// convert an argument to a parameter's type. The enumerator values
102
  /// match with the table titled 'Conversions' in [over.ics.scs] and are listed
103
  /// such that better conversion kinds have smaller values.
104
  enum ImplicitConversionKind {
105
    /// Identity conversion (no conversion)
106
    ICK_Identity = 0,
107
 
108
    /// Lvalue-to-rvalue conversion (C++ [conv.lval])
109
    ICK_Lvalue_To_Rvalue,
110
 
111
    /// Array-to-pointer conversion (C++ [conv.array])
112
    ICK_Array_To_Pointer,
113
 
114
    /// Function-to-pointer (C++ [conv.array])
115
    ICK_Function_To_Pointer,
116
 
117
    /// Function pointer conversion (C++17 [conv.fctptr])
118
    ICK_Function_Conversion,
119
 
120
    /// Qualification conversions (C++ [conv.qual])
121
    ICK_Qualification,
122
 
123
    /// Integral promotions (C++ [conv.prom])
124
    ICK_Integral_Promotion,
125
 
126
    /// Floating point promotions (C++ [conv.fpprom])
127
    ICK_Floating_Promotion,
128
 
129
    /// Complex promotions (Clang extension)
130
    ICK_Complex_Promotion,
131
 
132
    /// Integral conversions (C++ [conv.integral])
133
    ICK_Integral_Conversion,
134
 
135
    /// Floating point conversions (C++ [conv.double]
136
    ICK_Floating_Conversion,
137
 
138
    /// Complex conversions (C99 6.3.1.6)
139
    ICK_Complex_Conversion,
140
 
141
    /// Floating-integral conversions (C++ [conv.fpint])
142
    ICK_Floating_Integral,
143
 
144
    /// Pointer conversions (C++ [conv.ptr])
145
    ICK_Pointer_Conversion,
146
 
147
    /// Pointer-to-member conversions (C++ [conv.mem])
148
    ICK_Pointer_Member,
149
 
150
    /// Boolean conversions (C++ [conv.bool])
151
    ICK_Boolean_Conversion,
152
 
153
    /// Conversions between compatible types in C99
154
    ICK_Compatible_Conversion,
155
 
156
    /// Derived-to-base (C++ [over.best.ics])
157
    ICK_Derived_To_Base,
158
 
159
    /// Vector conversions
160
    ICK_Vector_Conversion,
161
 
162
    /// Arm SVE Vector conversions
163
    ICK_SVE_Vector_Conversion,
164
 
165
    /// A vector splat from an arithmetic type
166
    ICK_Vector_Splat,
167
 
168
    /// Complex-real conversions (C99 6.3.1.7)
169
    ICK_Complex_Real,
170
 
171
    /// Block Pointer conversions
172
    ICK_Block_Pointer_Conversion,
173
 
174
    /// Transparent Union Conversions
175
    ICK_TransparentUnionConversion,
176
 
177
    /// Objective-C ARC writeback conversion
178
    ICK_Writeback_Conversion,
179
 
180
    /// Zero constant to event (OpenCL1.2 6.12.10)
181
    ICK_Zero_Event_Conversion,
182
 
183
    /// Zero constant to queue
184
    ICK_Zero_Queue_Conversion,
185
 
186
    /// Conversions allowed in C, but not C++
187
    ICK_C_Only_Conversion,
188
 
189
    /// C-only conversion between pointers with incompatible types
190
    ICK_Incompatible_Pointer_Conversion,
191
 
192
    /// The number of conversion kinds
193
    ICK_Num_Conversion_Kinds,
194
  };
195
 
196
  /// ImplicitConversionRank - The rank of an implicit conversion
197
  /// kind. The enumerator values match with Table 9 of (C++
198
  /// 13.3.3.1.1) and are listed such that better conversion ranks
199
  /// have smaller values.
200
  enum ImplicitConversionRank {
201
    /// Exact Match
202
    ICR_Exact_Match = 0,
203
 
204
    /// Promotion
205
    ICR_Promotion,
206
 
207
    /// Conversion
208
    ICR_Conversion,
209
 
210
    /// OpenCL Scalar Widening
211
    ICR_OCL_Scalar_Widening,
212
 
213
    /// Complex <-> Real conversion
214
    ICR_Complex_Real_Conversion,
215
 
216
    /// ObjC ARC writeback conversion
217
    ICR_Writeback_Conversion,
218
 
219
    /// Conversion only allowed in the C standard (e.g. void* to char*).
220
    ICR_C_Conversion,
221
 
222
    /// Conversion not allowed by the C standard, but that we accept as an
223
    /// extension anyway.
224
    ICR_C_Conversion_Extension
225
  };
226
 
227
  ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
228
 
229
  /// NarrowingKind - The kind of narrowing conversion being performed by a
230
  /// standard conversion sequence according to C++11 [dcl.init.list]p7.
231
  enum NarrowingKind {
232
    /// Not a narrowing conversion.
233
    NK_Not_Narrowing,
234
 
235
    /// A narrowing conversion by virtue of the source and destination types.
236
    NK_Type_Narrowing,
237
 
238
    /// A narrowing conversion, because a constant expression got narrowed.
239
    NK_Constant_Narrowing,
240
 
241
    /// A narrowing conversion, because a non-constant-expression variable might
242
    /// have got narrowed.
243
    NK_Variable_Narrowing,
244
 
245
    /// Cannot tell whether this is a narrowing conversion because the
246
    /// expression is value-dependent.
247
    NK_Dependent_Narrowing,
248
  };
249
 
250
  /// StandardConversionSequence - represents a standard conversion
251
  /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
252
  /// contains between zero and three conversions. If a particular
253
  /// conversion is not needed, it will be set to the identity conversion
254
  /// (ICK_Identity). Note that the three conversions are
255
  /// specified as separate members (rather than in an array) so that
256
  /// we can keep the size of a standard conversion sequence to a
257
  /// single word.
258
  class StandardConversionSequence {
259
  public:
260
    /// First -- The first conversion can be an lvalue-to-rvalue
261
    /// conversion, array-to-pointer conversion, or
262
    /// function-to-pointer conversion.
263
    ImplicitConversionKind First : 8;
264
 
265
    /// Second - The second conversion can be an integral promotion,
266
    /// floating point promotion, integral conversion, floating point
267
    /// conversion, floating-integral conversion, pointer conversion,
268
    /// pointer-to-member conversion, or boolean conversion.
269
    ImplicitConversionKind Second : 8;
270
 
271
    /// Third - The third conversion can be a qualification conversion
272
    /// or a function conversion.
273
    ImplicitConversionKind Third : 8;
274
 
275
    /// Whether this is the deprecated conversion of a
276
    /// string literal to a pointer to non-const character data
277
    /// (C++ 4.2p2).
278
    unsigned DeprecatedStringLiteralToCharPtr : 1;
279
 
280
    /// Whether the qualification conversion involves a change in the
281
    /// Objective-C lifetime (for automatic reference counting).
282
    unsigned QualificationIncludesObjCLifetime : 1;
283
 
284
    /// IncompatibleObjC - Whether this is an Objective-C conversion
285
    /// that we should warn about (if we actually use it).
286
    unsigned IncompatibleObjC : 1;
287
 
288
    /// ReferenceBinding - True when this is a reference binding
289
    /// (C++ [over.ics.ref]).
290
    unsigned ReferenceBinding : 1;
291
 
292
    /// DirectBinding - True when this is a reference binding that is a
293
    /// direct binding (C++ [dcl.init.ref]).
294
    unsigned DirectBinding : 1;
295
 
296
    /// Whether this is an lvalue reference binding (otherwise, it's
297
    /// an rvalue reference binding).
298
    unsigned IsLvalueReference : 1;
299
 
300
    /// Whether we're binding to a function lvalue.
301
    unsigned BindsToFunctionLvalue : 1;
302
 
303
    /// Whether we're binding to an rvalue.
304
    unsigned BindsToRvalue : 1;
305
 
306
    /// Whether this binds an implicit object argument to a
307
    /// non-static member function without a ref-qualifier.
308
    unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
309
 
310
    /// Whether this binds a reference to an object with a different
311
    /// Objective-C lifetime qualifier.
312
    unsigned ObjCLifetimeConversionBinding : 1;
313
 
314
    /// FromType - The type that this conversion is converting
315
    /// from. This is an opaque pointer that can be translated into a
316
    /// QualType.
317
    void *FromTypePtr;
318
 
319
    /// ToType - The types that this conversion is converting to in
320
    /// each step. This is an opaque pointer that can be translated
321
    /// into a QualType.
322
    void *ToTypePtrs[3];
323
 
324
    /// CopyConstructor - The copy constructor that is used to perform
325
    /// this conversion, when the conversion is actually just the
326
    /// initialization of an object via copy constructor. Such
327
    /// conversions are either identity conversions or derived-to-base
328
    /// conversions.
329
    CXXConstructorDecl *CopyConstructor;
330
    DeclAccessPair FoundCopyConstructor;
331
 
332
    void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
333
 
334
    void setToType(unsigned Idx, QualType T) {
335
      assert(Idx < 3 && "To type index is out of range");
336
      ToTypePtrs[Idx] = T.getAsOpaquePtr();
337
    }
338
 
339
    void setAllToTypes(QualType T) {
340
      ToTypePtrs[0] = T.getAsOpaquePtr();
341
      ToTypePtrs[1] = ToTypePtrs[0];
342
      ToTypePtrs[2] = ToTypePtrs[0];
343
    }
344
 
345
    QualType getFromType() const {
346
      return QualType::getFromOpaquePtr(FromTypePtr);
347
    }
348
 
349
    QualType getToType(unsigned Idx) const {
350
      assert(Idx < 3 && "To type index is out of range");
351
      return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
352
    }
353
 
354
    void setAsIdentityConversion();
355
 
356
    bool isIdentityConversion() const {
357
      return Second == ICK_Identity && Third == ICK_Identity;
358
    }
359
 
360
    ImplicitConversionRank getRank() const;
361
    NarrowingKind
362
    getNarrowingKind(ASTContext &Context, const Expr *Converted,
363
                     APValue &ConstantValue, QualType &ConstantType,
364
                     bool IgnoreFloatToIntegralConversion = false) const;
365
    bool isPointerConversionToBool() const;
366
    bool isPointerConversionToVoidPointer(ASTContext& Context) const;
367
    void dump() const;
368
  };
369
 
370
  /// UserDefinedConversionSequence - Represents a user-defined
371
  /// conversion sequence (C++ 13.3.3.1.2).
372
  struct UserDefinedConversionSequence {
373
    /// Represents the standard conversion that occurs before
374
    /// the actual user-defined conversion.
375
    ///
376
    /// C++11 13.3.3.1.2p1:
377
    ///   If the user-defined conversion is specified by a constructor
378
    ///   (12.3.1), the initial standard conversion sequence converts
379
    ///   the source type to the type required by the argument of the
380
    ///   constructor. If the user-defined conversion is specified by
381
    ///   a conversion function (12.3.2), the initial standard
382
    ///   conversion sequence converts the source type to the implicit
383
    ///   object parameter of the conversion function.
384
    StandardConversionSequence Before;
385
 
386
    /// EllipsisConversion - When this is true, it means user-defined
387
    /// conversion sequence starts with a ... (ellipsis) conversion, instead of
388
    /// a standard conversion. In this case, 'Before' field must be ignored.
389
    // FIXME. I much rather put this as the first field. But there seems to be
390
    // a gcc code gen. bug which causes a crash in a test. Putting it here seems
391
    // to work around the crash.
392
    bool EllipsisConversion : 1;
393
 
394
    /// HadMultipleCandidates - When this is true, it means that the
395
    /// conversion function was resolved from an overloaded set having
396
    /// size greater than 1.
397
    bool HadMultipleCandidates : 1;
398
 
399
    /// After - Represents the standard conversion that occurs after
400
    /// the actual user-defined conversion.
401
    StandardConversionSequence After;
402
 
403
    /// ConversionFunction - The function that will perform the
404
    /// user-defined conversion. Null if the conversion is an
405
    /// aggregate initialization from an initializer list.
406
    FunctionDecl* ConversionFunction;
407
 
408
    /// The declaration that we found via name lookup, which might be
409
    /// the same as \c ConversionFunction or it might be a using declaration
410
    /// that refers to \c ConversionFunction.
411
    DeclAccessPair FoundConversionFunction;
412
 
413
    void dump() const;
414
  };
415
 
416
  /// Represents an ambiguous user-defined conversion sequence.
417
  struct AmbiguousConversionSequence {
418
    using ConversionSet =
419
        SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
420
 
421
    void *FromTypePtr;
422
    void *ToTypePtr;
423
    char Buffer[sizeof(ConversionSet)];
424
 
425
    QualType getFromType() const {
426
      return QualType::getFromOpaquePtr(FromTypePtr);
427
    }
428
 
429
    QualType getToType() const {
430
      return QualType::getFromOpaquePtr(ToTypePtr);
431
    }
432
 
433
    void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
434
    void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
435
 
436
    ConversionSet &conversions() {
437
      return *reinterpret_cast<ConversionSet*>(Buffer);
438
    }
439
 
440
    const ConversionSet &conversions() const {
441
      return *reinterpret_cast<const ConversionSet*>(Buffer);
442
    }
443
 
444
    void addConversion(NamedDecl *Found, FunctionDecl *D) {
445
      conversions().push_back(std::make_pair(Found, D));
446
    }
447
 
448
    using iterator = ConversionSet::iterator;
449
 
450
    iterator begin() { return conversions().begin(); }
451
    iterator end() { return conversions().end(); }
452
 
453
    using const_iterator = ConversionSet::const_iterator;
454
 
455
    const_iterator begin() const { return conversions().begin(); }
456
    const_iterator end() const { return conversions().end(); }
457
 
458
    void construct();
459
    void destruct();
460
    void copyFrom(const AmbiguousConversionSequence &);
461
  };
462
 
463
  /// BadConversionSequence - Records information about an invalid
464
  /// conversion sequence.
465
  struct BadConversionSequence {
466
    enum FailureKind {
467
      no_conversion,
468
      unrelated_class,
469
      bad_qualifiers,
470
      lvalue_ref_to_rvalue,
471
      rvalue_ref_to_lvalue,
472
      too_few_initializers,
473
      too_many_initializers,
474
    };
475
 
476
    // This can be null, e.g. for implicit object arguments.
477
    Expr *FromExpr;
478
 
479
    FailureKind Kind;
480
 
481
  private:
482
    // The type we're converting from (an opaque QualType).
483
    void *FromTy;
484
 
485
    // The type we're converting to (an opaque QualType).
486
    void *ToTy;
487
 
488
  public:
489
    void init(FailureKind K, Expr *From, QualType To) {
490
      init(K, From->getType(), To);
491
      FromExpr = From;
492
    }
493
 
494
    void init(FailureKind K, QualType From, QualType To) {
495
      Kind = K;
496
      FromExpr = nullptr;
497
      setFromType(From);
498
      setToType(To);
499
    }
500
 
501
    QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
502
    QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
503
 
504
    void setFromExpr(Expr *E) {
505
      FromExpr = E;
506
      setFromType(E->getType());
507
    }
508
 
509
    void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
510
    void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
511
  };
512
 
513
  /// ImplicitConversionSequence - Represents an implicit conversion
514
  /// sequence, which may be a standard conversion sequence
515
  /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
516
  /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
517
  class ImplicitConversionSequence {
518
  public:
519
    /// Kind - The kind of implicit conversion sequence. BadConversion
520
    /// specifies that there is no conversion from the source type to
521
    /// the target type.  AmbiguousConversion represents the unique
522
    /// ambiguous conversion (C++0x [over.best.ics]p10).
523
    /// StaticObjectArgumentConversion represents the conversion rules for
524
    /// the synthesized first argument of calls to static member functions
525
    /// ([over.best.ics.general]p8).
526
    enum Kind {
527
      StandardConversion = 0,
528
      StaticObjectArgumentConversion,
529
      UserDefinedConversion,
530
      AmbiguousConversion,
531
      EllipsisConversion,
532
      BadConversion
533
    };
534
 
535
  private:
536
    enum {
537
      Uninitialized = BadConversion + 1
538
    };
539
 
540
    /// ConversionKind - The kind of implicit conversion sequence.
541
    unsigned ConversionKind : 31;
542
 
543
    // Whether the initializer list was of an incomplete array.
544
    unsigned InitializerListOfIncompleteArray : 1;
545
 
546
    /// When initializing an array or std::initializer_list from an
547
    /// initializer-list, this is the array or std::initializer_list type being
548
    /// initialized. The remainder of the conversion sequence, including ToType,
549
    /// describe the worst conversion of an initializer to an element of the
550
    /// array or std::initializer_list. (Note, 'worst' is not well defined.)
551
    QualType InitializerListContainerType;
552
 
553
    void setKind(Kind K) {
554
      destruct();
555
      ConversionKind = K;
556
    }
557
 
558
    void destruct() {
559
      if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
560
    }
561
 
562
  public:
563
    union {
564
      /// When ConversionKind == StandardConversion, provides the
565
      /// details of the standard conversion sequence.
566
      StandardConversionSequence Standard;
567
 
568
      /// When ConversionKind == UserDefinedConversion, provides the
569
      /// details of the user-defined conversion sequence.
570
      UserDefinedConversionSequence UserDefined;
571
 
572
      /// When ConversionKind == AmbiguousConversion, provides the
573
      /// details of the ambiguous conversion.
574
      AmbiguousConversionSequence Ambiguous;
575
 
576
      /// When ConversionKind == BadConversion, provides the details
577
      /// of the bad conversion.
578
      BadConversionSequence Bad;
579
    };
580
 
581
    ImplicitConversionSequence()
582
        : ConversionKind(Uninitialized),
583
          InitializerListOfIncompleteArray(false) {
584
      Standard.setAsIdentityConversion();
585
    }
586
 
587
    ImplicitConversionSequence(const ImplicitConversionSequence &Other)
588
        : ConversionKind(Other.ConversionKind),
589
          InitializerListOfIncompleteArray(
590
              Other.InitializerListOfIncompleteArray),
591
          InitializerListContainerType(Other.InitializerListContainerType) {
592
      switch (ConversionKind) {
593
      case Uninitialized: break;
594
      case StandardConversion: Standard = Other.Standard; break;
595
      case StaticObjectArgumentConversion:
596
        break;
597
      case UserDefinedConversion: UserDefined = Other.UserDefined; break;
598
      case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
599
      case EllipsisConversion: break;
600
      case BadConversion: Bad = Other.Bad; break;
601
      }
602
    }
603
 
604
    ImplicitConversionSequence &
605
    operator=(const ImplicitConversionSequence &Other) {
606
      destruct();
607
      new (this) ImplicitConversionSequence(Other);
608
      return *this;
609
    }
610
 
611
    ~ImplicitConversionSequence() {
612
      destruct();
613
    }
614
 
615
    Kind getKind() const {
616
      assert(isInitialized() && "querying uninitialized conversion");
617
      return Kind(ConversionKind);
618
    }
619
 
620
    /// Return a ranking of the implicit conversion sequence
621
    /// kind, where smaller ranks represent better conversion
622
    /// sequences.
623
    ///
624
    /// In particular, this routine gives user-defined conversion
625
    /// sequences and ambiguous conversion sequences the same rank,
626
    /// per C++ [over.best.ics]p10.
627
    unsigned getKindRank() const {
628
      switch (getKind()) {
629
      case StandardConversion:
630
      case StaticObjectArgumentConversion:
631
        return 0;
632
 
633
      case UserDefinedConversion:
634
      case AmbiguousConversion:
635
        return 1;
636
 
637
      case EllipsisConversion:
638
        return 2;
639
 
640
      case BadConversion:
641
        return 3;
642
      }
643
 
644
      llvm_unreachable("Invalid ImplicitConversionSequence::Kind!");
645
    }
646
 
647
    bool isBad() const { return getKind() == BadConversion; }
648
    bool isStandard() const { return getKind() == StandardConversion; }
649
    bool isStaticObjectArgument() const {
650
      return getKind() == StaticObjectArgumentConversion;
651
    }
652
    bool isEllipsis() const { return getKind() == EllipsisConversion; }
653
    bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
654
    bool isUserDefined() const { return getKind() == UserDefinedConversion; }
655
    bool isFailure() const { return isBad() || isAmbiguous(); }
656
 
657
    /// Determines whether this conversion sequence has been
658
    /// initialized.  Most operations should never need to query
659
    /// uninitialized conversions and should assert as above.
660
    bool isInitialized() const { return ConversionKind != Uninitialized; }
661
 
662
    /// Sets this sequence as a bad conversion for an explicit argument.
663
    void setBad(BadConversionSequence::FailureKind Failure,
664
                Expr *FromExpr, QualType ToType) {
665
      setKind(BadConversion);
666
      Bad.init(Failure, FromExpr, ToType);
667
    }
668
 
669
    /// Sets this sequence as a bad conversion for an implicit argument.
670
    void setBad(BadConversionSequence::FailureKind Failure,
671
                QualType FromType, QualType ToType) {
672
      setKind(BadConversion);
673
      Bad.init(Failure, FromType, ToType);
674
    }
675
 
676
    void setStandard() { setKind(StandardConversion); }
677
    void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); }
678
    void setEllipsis() { setKind(EllipsisConversion); }
679
    void setUserDefined() { setKind(UserDefinedConversion); }
680
 
681
    void setAmbiguous() {
682
      if (ConversionKind == AmbiguousConversion) return;
683
      ConversionKind = AmbiguousConversion;
684
      Ambiguous.construct();
685
    }
686
 
687
    void setAsIdentityConversion(QualType T) {
688
      setStandard();
689
      Standard.setAsIdentityConversion();
690
      Standard.setFromType(T);
691
      Standard.setAllToTypes(T);
692
    }
693
 
694
    // True iff this is a conversion sequence from an initializer list to an
695
    // array or std::initializer.
696
    bool hasInitializerListContainerType() const {
697
      return !InitializerListContainerType.isNull();
698
    }
699
    void setInitializerListContainerType(QualType T, bool IA) {
700
      InitializerListContainerType = T;
701
      InitializerListOfIncompleteArray = IA;
702
    }
703
    bool isInitializerListOfIncompleteArray() const {
704
      return InitializerListOfIncompleteArray;
705
    }
706
    QualType getInitializerListContainerType() const {
707
      assert(hasInitializerListContainerType() &&
708
             "not initializer list container");
709
      return InitializerListContainerType;
710
    }
711
 
712
    /// Form an "implicit" conversion sequence from nullptr_t to bool, for a
713
    /// direct-initialization of a bool object from nullptr_t.
714
    static ImplicitConversionSequence getNullptrToBool(QualType SourceType,
715
                                                       QualType DestType,
716
                                                       bool NeedLValToRVal) {
717
      ImplicitConversionSequence ICS;
718
      ICS.setStandard();
719
      ICS.Standard.setAsIdentityConversion();
720
      ICS.Standard.setFromType(SourceType);
721
      if (NeedLValToRVal)
722
        ICS.Standard.First = ICK_Lvalue_To_Rvalue;
723
      ICS.Standard.setToType(0, SourceType);
724
      ICS.Standard.Second = ICK_Boolean_Conversion;
725
      ICS.Standard.setToType(1, DestType);
726
      ICS.Standard.setToType(2, DestType);
727
      return ICS;
728
    }
729
 
730
    // The result of a comparison between implicit conversion
731
    // sequences. Use Sema::CompareImplicitConversionSequences to
732
    // actually perform the comparison.
733
    enum CompareKind {
734
      Better = -1,
735
      Indistinguishable = 0,
736
      Worse = 1
737
    };
738
 
739
    void DiagnoseAmbiguousConversion(Sema &S,
740
                                     SourceLocation CaretLoc,
741
                                     const PartialDiagnostic &PDiag) const;
742
 
743
    void dump() const;
744
  };
745
 
746
  enum OverloadFailureKind {
747
    ovl_fail_too_many_arguments,
748
    ovl_fail_too_few_arguments,
749
    ovl_fail_bad_conversion,
750
    ovl_fail_bad_deduction,
751
 
752
    /// This conversion candidate was not considered because it
753
    /// duplicates the work of a trivial or derived-to-base
754
    /// conversion.
755
    ovl_fail_trivial_conversion,
756
 
757
    /// This conversion candidate was not considered because it is
758
    /// an illegal instantiation of a constructor temploid: it is
759
    /// callable with one argument, we only have one argument, and
760
    /// its first parameter type is exactly the type of the class.
761
    ///
762
    /// Defining such a constructor directly is illegal, and
763
    /// template-argument deduction is supposed to ignore such
764
    /// instantiations, but we can still get one with the right
765
    /// kind of implicit instantiation.
766
    ovl_fail_illegal_constructor,
767
 
768
    /// This conversion candidate is not viable because its result
769
    /// type is not implicitly convertible to the desired type.
770
    ovl_fail_bad_final_conversion,
771
 
772
    /// This conversion function template specialization candidate is not
773
    /// viable because the final conversion was not an exact match.
774
    ovl_fail_final_conversion_not_exact,
775
 
776
    /// (CUDA) This candidate was not viable because the callee
777
    /// was not accessible from the caller's target (i.e. host->device,
778
    /// global->host, device->host).
779
    ovl_fail_bad_target,
780
 
781
    /// This candidate function was not viable because an enable_if
782
    /// attribute disabled it.
783
    ovl_fail_enable_if,
784
 
785
    /// This candidate constructor or conversion function is explicit but
786
    /// the context doesn't permit explicit functions.
787
    ovl_fail_explicit,
788
 
789
    /// This candidate was not viable because its address could not be taken.
790
    ovl_fail_addr_not_available,
791
 
792
    /// This inherited constructor is not viable because it would slice the
793
    /// argument.
794
    ovl_fail_inhctor_slice,
795
 
796
    /// This candidate was not viable because it is a non-default multiversioned
797
    /// function.
798
    ovl_non_default_multiversion_function,
799
 
800
    /// This constructor/conversion candidate fail due to an address space
801
    /// mismatch between the object being constructed and the overload
802
    /// candidate.
803
    ovl_fail_object_addrspace_mismatch,
804
 
805
    /// This candidate was not viable because its associated constraints were
806
    /// not satisfied.
807
    ovl_fail_constraints_not_satisfied,
808
 
809
    /// This candidate was not viable because it has internal linkage and is
810
    /// from a different module unit than the use.
811
    ovl_fail_module_mismatched,
812
  };
813
 
814
  /// A list of implicit conversion sequences for the arguments of an
815
  /// OverloadCandidate.
816
  using ConversionSequenceList =
817
      llvm::MutableArrayRef<ImplicitConversionSequence>;
818
 
819
  /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
820
  struct OverloadCandidate {
821
    /// Function - The actual function that this candidate
822
    /// represents. When NULL, this is a built-in candidate
823
    /// (C++ [over.oper]) or a surrogate for a conversion to a
824
    /// function pointer or reference (C++ [over.call.object]).
825
    FunctionDecl *Function;
826
 
827
    /// FoundDecl - The original declaration that was looked up /
828
    /// invented / otherwise found, together with its access.
829
    /// Might be a UsingShadowDecl or a FunctionTemplateDecl.
830
    DeclAccessPair FoundDecl;
831
 
832
    /// BuiltinParamTypes - Provides the parameter types of a built-in overload
833
    /// candidate. Only valid when Function is NULL.
834
    QualType BuiltinParamTypes[3];
835
 
836
    /// Surrogate - The conversion function for which this candidate
837
    /// is a surrogate, but only if IsSurrogate is true.
838
    CXXConversionDecl *Surrogate;
839
 
840
    /// The conversion sequences used to convert the function arguments
841
    /// to the function parameters. Note that these are indexed by argument,
842
    /// so may not match the parameter order of Function.
843
    ConversionSequenceList Conversions;
844
 
845
    /// The FixIt hints which can be used to fix the Bad candidate.
846
    ConversionFixItGenerator Fix;
847
 
848
    /// Viable - True to indicate that this overload candidate is viable.
849
    bool Viable : 1;
850
 
851
    /// Whether this candidate is the best viable function, or tied for being
852
    /// the best viable function.
853
    ///
854
    /// For an ambiguous overload resolution, indicates whether this candidate
855
    /// was part of the ambiguity kernel: the minimal non-empty set of viable
856
    /// candidates such that all elements of the ambiguity kernel are better
857
    /// than all viable candidates not in the ambiguity kernel.
858
    bool Best : 1;
859
 
860
    /// IsSurrogate - True to indicate that this candidate is a
861
    /// surrogate for a conversion to a function pointer or reference
862
    /// (C++ [over.call.object]).
863
    bool IsSurrogate : 1;
864
 
865
    /// IgnoreObjectArgument - True to indicate that the first
866
    /// argument's conversion, which for this function represents the
867
    /// implicit object argument, should be ignored. This will be true
868
    /// when the candidate is a static member function (where the
869
    /// implicit object argument is just a placeholder) or a
870
    /// non-static member function when the call doesn't have an
871
    /// object argument.
872
    bool IgnoreObjectArgument : 1;
873
 
874
    /// True if the candidate was found using ADL.
875
    CallExpr::ADLCallKind IsADLCandidate : 1;
876
 
877
    /// Whether this is a rewritten candidate, and if so, of what kind?
878
    unsigned RewriteKind : 2;
879
 
880
    /// FailureKind - The reason why this candidate is not viable.
881
    /// Actually an OverloadFailureKind.
882
    unsigned char FailureKind;
883
 
884
    /// The number of call arguments that were explicitly provided,
885
    /// to be used while performing partial ordering of function templates.
886
    unsigned ExplicitCallArguments;
887
 
888
    union {
889
      DeductionFailureInfo DeductionFailure;
890
 
891
      /// FinalConversion - For a conversion function (where Function is
892
      /// a CXXConversionDecl), the standard conversion that occurs
893
      /// after the call to the overload candidate to convert the result
894
      /// of calling the conversion function to the required type.
895
      StandardConversionSequence FinalConversion;
896
    };
897
 
898
    /// Get RewriteKind value in OverloadCandidateRewriteKind type (This
899
    /// function is to workaround the spurious GCC bitfield enum warning)
900
    OverloadCandidateRewriteKind getRewriteKind() const {
901
      return static_cast<OverloadCandidateRewriteKind>(RewriteKind);
902
    }
903
 
904
    bool isReversed() const { return getRewriteKind() & CRK_Reversed; }
905
 
906
    /// hasAmbiguousConversion - Returns whether this overload
907
    /// candidate requires an ambiguous conversion or not.
908
    bool hasAmbiguousConversion() const {
909
      for (auto &C : Conversions) {
910
        if (!C.isInitialized()) return false;
911
        if (C.isAmbiguous()) return true;
912
      }
913
      return false;
914
    }
915
 
916
    bool TryToFixBadConversion(unsigned Idx, Sema &S) {
917
      bool CanFix = Fix.tryToFixConversion(
918
                      Conversions[Idx].Bad.FromExpr,
919
                      Conversions[Idx].Bad.getFromType(),
920
                      Conversions[Idx].Bad.getToType(), S);
921
 
922
      // If at least one conversion fails, the candidate cannot be fixed.
923
      if (!CanFix)
924
        Fix.clear();
925
 
926
      return CanFix;
927
    }
928
 
929
    unsigned getNumParams() const {
930
      if (IsSurrogate) {
931
        QualType STy = Surrogate->getConversionType();
932
        while (STy->isPointerType() || STy->isReferenceType())
933
          STy = STy->getPointeeType();
934
        return STy->castAs<FunctionProtoType>()->getNumParams();
935
      }
936
      if (Function)
937
        return Function->getNumParams();
938
      return ExplicitCallArguments;
939
    }
940
 
941
    bool NotValidBecauseConstraintExprHasError() const;
942
 
943
  private:
944
    friend class OverloadCandidateSet;
945
    OverloadCandidate()
946
        : IsSurrogate(false), IsADLCandidate(CallExpr::NotADL), RewriteKind(CRK_None) {}
947
  };
948
 
949
  /// OverloadCandidateSet - A set of overload candidates, used in C++
950
  /// overload resolution (C++ 13.3).
951
  class OverloadCandidateSet {
952
  public:
953
    enum CandidateSetKind {
954
      /// Normal lookup.
955
      CSK_Normal,
956
 
957
      /// C++ [over.match.oper]:
958
      /// Lookup of operator function candidates in a call using operator
959
      /// syntax. Candidates that have no parameters of class type will be
960
      /// skipped unless there is a parameter of (reference to) enum type and
961
      /// the corresponding argument is of the same enum type.
962
      CSK_Operator,
963
 
964
      /// C++ [over.match.copy]:
965
      /// Copy-initialization of an object of class type by user-defined
966
      /// conversion.
967
      CSK_InitByUserDefinedConversion,
968
 
969
      /// C++ [over.match.ctor], [over.match.list]
970
      /// Initialization of an object of class type by constructor,
971
      /// using either a parenthesized or braced list of arguments.
972
      CSK_InitByConstructor,
973
    };
974
 
975
    /// Information about operator rewrites to consider when adding operator
976
    /// functions to a candidate set.
977
    struct OperatorRewriteInfo {
978
      OperatorRewriteInfo()
979
          : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {}
980
      OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc,
981
                          bool AllowRewritten)
982
          : OriginalOperator(Op), OpLoc(OpLoc),
983
            AllowRewrittenCandidates(AllowRewritten) {}
984
 
985
      /// The original operator as written in the source.
986
      OverloadedOperatorKind OriginalOperator;
987
      /// The source location of the operator.
988
      SourceLocation OpLoc;
989
      /// Whether we should include rewritten candidates in the overload set.
990
      bool AllowRewrittenCandidates;
991
 
992
      /// Would use of this function result in a rewrite using a different
993
      /// operator?
994
      bool isRewrittenOperator(const FunctionDecl *FD) {
995
        return OriginalOperator &&
996
               FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator;
997
      }
998
 
999
      bool isAcceptableCandidate(const FunctionDecl *FD) {
1000
        if (!OriginalOperator)
1001
          return true;
1002
 
1003
        // For an overloaded operator, we can have candidates with a different
1004
        // name in our unqualified lookup set. Make sure we only consider the
1005
        // ones we're supposed to.
1006
        OverloadedOperatorKind OO =
1007
            FD->getDeclName().getCXXOverloadedOperator();
1008
        return OO && (OO == OriginalOperator ||
1009
                      (AllowRewrittenCandidates &&
1010
                       OO == getRewrittenOverloadedOperator(OriginalOperator)));
1011
      }
1012
 
1013
      /// Determine the kind of rewrite that should be performed for this
1014
      /// candidate.
1015
      OverloadCandidateRewriteKind
1016
      getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) {
1017
        OverloadCandidateRewriteKind CRK = CRK_None;
1018
        if (isRewrittenOperator(FD))
1019
          CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator);
1020
        if (PO == OverloadCandidateParamOrder::Reversed)
1021
          CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed);
1022
        return CRK;
1023
      }
1024
      /// Determines whether this operator could be implemented by a function
1025
      /// with reversed parameter order.
1026
      bool isReversible() {
1027
        return AllowRewrittenCandidates && OriginalOperator &&
1028
               (getRewrittenOverloadedOperator(OriginalOperator) != OO_None ||
1029
                allowsReversed(OriginalOperator));
1030
      }
1031
 
1032
      /// Determine whether reversing parameter order is allowed for operator
1033
      /// Op.
1034
      bool allowsReversed(OverloadedOperatorKind Op);
1035
 
1036
      /// Determine whether we should add a rewritten candidate for \p FD with
1037
      /// reversed parameter order.
1038
      /// \param OriginalArgs are the original non reversed arguments.
1039
      bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs,
1040
                             FunctionDecl *FD);
1041
    };
1042
 
1043
  private:
1044
    SmallVector<OverloadCandidate, 16> Candidates;
1045
    llvm::SmallPtrSet<uintptr_t, 16> Functions;
1046
 
1047
    // Allocator for ConversionSequenceLists. We store the first few of these
1048
    // inline to avoid allocation for small sets.
1049
    llvm::BumpPtrAllocator SlabAllocator;
1050
 
1051
    SourceLocation Loc;
1052
    CandidateSetKind Kind;
1053
    OperatorRewriteInfo RewriteInfo;
1054
 
1055
    constexpr static unsigned NumInlineBytes =
1056
        24 * sizeof(ImplicitConversionSequence);
1057
    unsigned NumInlineBytesUsed = 0;
1058
    alignas(void *) char InlineSpace[NumInlineBytes];
1059
 
1060
    // Address space of the object being constructed.
1061
    LangAS DestAS = LangAS::Default;
1062
 
1063
    /// If we have space, allocates from inline storage. Otherwise, allocates
1064
    /// from the slab allocator.
1065
    /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
1066
    /// instead.
1067
    /// FIXME: Now that this only allocates ImplicitConversionSequences, do we
1068
    /// want to un-generalize this?
1069
    template <typename T>
1070
    T *slabAllocate(unsigned N) {
1071
      // It's simpler if this doesn't need to consider alignment.
1072
      static_assert(alignof(T) == alignof(void *),
1073
                    "Only works for pointer-aligned types.");
1074
      static_assert(std::is_trivial<T>::value ||
1075
                        std::is_same<ImplicitConversionSequence, T>::value,
1076
                    "Add destruction logic to OverloadCandidateSet::clear().");
1077
 
1078
      unsigned NBytes = sizeof(T) * N;
1079
      if (NBytes > NumInlineBytes - NumInlineBytesUsed)
1080
        return SlabAllocator.Allocate<T>(N);
1081
      char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
1082
      assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
1083
             "Misaligned storage!");
1084
 
1085
      NumInlineBytesUsed += NBytes;
1086
      return reinterpret_cast<T *>(FreeSpaceStart);
1087
    }
1088
 
1089
    void destroyCandidates();
1090
 
1091
  public:
1092
    OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK,
1093
                         OperatorRewriteInfo RewriteInfo = {})
1094
        : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {}
1095
    OverloadCandidateSet(const OverloadCandidateSet &) = delete;
1096
    OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
1097
    ~OverloadCandidateSet() { destroyCandidates(); }
1098
 
1099
    SourceLocation getLocation() const { return Loc; }
1100
    CandidateSetKind getKind() const { return Kind; }
1101
    OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; }
1102
 
1103
    /// Whether diagnostics should be deferred.
1104
    bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc);
1105
 
1106
    /// Determine when this overload candidate will be new to the
1107
    /// overload set.
1108
    bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO =
1109
                                     OverloadCandidateParamOrder::Normal) {
1110
      uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl());
1111
      Key |= static_cast<uintptr_t>(PO);
1112
      return Functions.insert(Key).second;
1113
    }
1114
 
1115
    /// Exclude a function from being considered by overload resolution.
1116
    void exclude(Decl *F) {
1117
      isNewCandidate(F, OverloadCandidateParamOrder::Normal);
1118
      isNewCandidate(F, OverloadCandidateParamOrder::Reversed);
1119
    }
1120
 
1121
    /// Clear out all of the candidates.
1122
    void clear(CandidateSetKind CSK);
1123
 
1124
    using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
1125
 
1126
    iterator begin() { return Candidates.begin(); }
1127
    iterator end() { return Candidates.end(); }
1128
 
1129
    size_t size() const { return Candidates.size(); }
1130
    bool empty() const { return Candidates.empty(); }
1131
 
1132
    /// Allocate storage for conversion sequences for NumConversions
1133
    /// conversions.
1134
    ConversionSequenceList
1135
    allocateConversionSequences(unsigned NumConversions) {
1136
      ImplicitConversionSequence *Conversions =
1137
          slabAllocate<ImplicitConversionSequence>(NumConversions);
1138
 
1139
      // Construct the new objects.
1140
      for (unsigned I = 0; I != NumConversions; ++I)
1141
        new (&Conversions[I]) ImplicitConversionSequence();
1142
 
1143
      return ConversionSequenceList(Conversions, NumConversions);
1144
    }
1145
 
1146
    /// Add a new candidate with NumConversions conversion sequence slots
1147
    /// to the overload set.
1148
    OverloadCandidate &
1149
    addCandidate(unsigned NumConversions = 0,
1150
                 ConversionSequenceList Conversions = std::nullopt) {
1151
      assert((Conversions.empty() || Conversions.size() == NumConversions) &&
1152
             "preallocated conversion sequence has wrong length");
1153
 
1154
      Candidates.push_back(OverloadCandidate());
1155
      OverloadCandidate &C = Candidates.back();
1156
      C.Conversions = Conversions.empty()
1157
                          ? allocateConversionSequences(NumConversions)
1158
                          : Conversions;
1159
      return C;
1160
    }
1161
 
1162
    /// Find the best viable function on this overload set, if it exists.
1163
    OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
1164
                                         OverloadCandidateSet::iterator& Best);
1165
 
1166
    SmallVector<OverloadCandidate *, 32> CompleteCandidates(
1167
        Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
1168
        SourceLocation OpLoc = SourceLocation(),
1169
        llvm::function_ref<bool(OverloadCandidate &)> Filter =
1170
            [](OverloadCandidate &) { return true; });
1171
 
1172
    void NoteCandidates(
1173
        PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
1174
        ArrayRef<Expr *> Args, StringRef Opc = "",
1175
        SourceLocation Loc = SourceLocation(),
1176
        llvm::function_ref<bool(OverloadCandidate &)> Filter =
1177
            [](OverloadCandidate &) { return true; });
1178
 
1179
    void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
1180
                        ArrayRef<OverloadCandidate *> Cands,
1181
                        StringRef Opc = "",
1182
                        SourceLocation OpLoc = SourceLocation());
1183
 
1184
    LangAS getDestAS() { return DestAS; }
1185
 
1186
    void setDestAS(LangAS AS) {
1187
      assert((Kind == CSK_InitByConstructor ||
1188
              Kind == CSK_InitByUserDefinedConversion) &&
1189
             "can't set the destination address space when not constructing an "
1190
             "object");
1191
      DestAS = AS;
1192
    }
1193
 
1194
  };
1195
 
1196
  bool isBetterOverloadCandidate(Sema &S,
1197
                                 const OverloadCandidate &Cand1,
1198
                                 const OverloadCandidate &Cand2,
1199
                                 SourceLocation Loc,
1200
                                 OverloadCandidateSet::CandidateSetKind Kind);
1201
 
1202
  struct ConstructorInfo {
1203
    DeclAccessPair FoundDecl;
1204
    CXXConstructorDecl *Constructor;
1205
    FunctionTemplateDecl *ConstructorTmpl;
1206
 
1207
    explicit operator bool() const { return Constructor; }
1208
  };
1209
 
1210
  // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
1211
  // that takes one of these.
1212
  inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
1213
    if (isa<UsingDecl>(ND))
1214
      return ConstructorInfo{};
1215
 
1216
    // For constructors, the access check is performed against the underlying
1217
    // declaration, not the found declaration.
1218
    auto *D = ND->getUnderlyingDecl();
1219
    ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
1220
                            nullptr};
1221
    Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
1222
    if (Info.ConstructorTmpl)
1223
      D = Info.ConstructorTmpl->getTemplatedDecl();
1224
    Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
1225
    return Info;
1226
  }
1227
 
1228
  // Returns false if signature help is relevant despite number of arguments
1229
  // exceeding parameters. Specifically, it returns false when
1230
  // PartialOverloading is true and one of the following:
1231
  // * Function is variadic
1232
  // * Function is template variadic
1233
  // * Function is an instantiation of template variadic function
1234
  // The last case may seem strange. The idea is that if we added one more
1235
  // argument, we'd end up with a function similar to Function. Since, in the
1236
  // context of signature help and/or code completion, we do not know what the
1237
  // type of the next argument (that the user is typing) will be, this is as
1238
  // good candidate as we can get, despite the fact that it takes one less
1239
  // parameter.
1240
  bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function);
1241
 
1242
} // namespace clang
1243
 
1244
#endif // LLVM_CLANG_SEMA_OVERLOAD_H