Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the CFG and CFGBuilder classes for representing and |
||
10 | // building Control-Flow Graphs (CFGs) from ASTs. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_CLANG_ANALYSIS_CFG_H |
||
15 | #define LLVM_CLANG_ANALYSIS_CFG_H |
||
16 | |||
17 | #include "clang/Analysis/Support/BumpVector.h" |
||
18 | #include "clang/Analysis/ConstructionContext.h" |
||
19 | #include "clang/AST/ExprCXX.h" |
||
20 | #include "clang/AST/ExprObjC.h" |
||
21 | #include "clang/Basic/LLVM.h" |
||
22 | #include "llvm/ADT/DenseMap.h" |
||
23 | #include "llvm/ADT/GraphTraits.h" |
||
24 | #include "llvm/ADT/PointerIntPair.h" |
||
25 | #include "llvm/ADT/iterator_range.h" |
||
26 | #include "llvm/Support/Allocator.h" |
||
27 | #include "llvm/Support/raw_ostream.h" |
||
28 | #include <bitset> |
||
29 | #include <cassert> |
||
30 | #include <cstddef> |
||
31 | #include <iterator> |
||
32 | #include <memory> |
||
33 | #include <optional> |
||
34 | #include <vector> |
||
35 | |||
36 | namespace clang { |
||
37 | |||
38 | class ASTContext; |
||
39 | class BinaryOperator; |
||
40 | class CFG; |
||
41 | class CXXBaseSpecifier; |
||
42 | class CXXBindTemporaryExpr; |
||
43 | class CXXCtorInitializer; |
||
44 | class CXXDeleteExpr; |
||
45 | class CXXDestructorDecl; |
||
46 | class CXXNewExpr; |
||
47 | class CXXRecordDecl; |
||
48 | class Decl; |
||
49 | class FieldDecl; |
||
50 | class LangOptions; |
||
51 | class VarDecl; |
||
52 | |||
53 | /// Represents a top-level expression in a basic block. |
||
54 | class CFGElement { |
||
55 | public: |
||
56 | enum Kind { |
||
57 | // main kind |
||
58 | Initializer, |
||
59 | ScopeBegin, |
||
60 | ScopeEnd, |
||
61 | NewAllocator, |
||
62 | LifetimeEnds, |
||
63 | LoopExit, |
||
64 | // stmt kind |
||
65 | Statement, |
||
66 | Constructor, |
||
67 | CXXRecordTypedCall, |
||
68 | STMT_BEGIN = Statement, |
||
69 | STMT_END = CXXRecordTypedCall, |
||
70 | // dtor kind |
||
71 | AutomaticObjectDtor, |
||
72 | DeleteDtor, |
||
73 | BaseDtor, |
||
74 | MemberDtor, |
||
75 | TemporaryDtor, |
||
76 | DTOR_BEGIN = AutomaticObjectDtor, |
||
77 | DTOR_END = TemporaryDtor |
||
78 | }; |
||
79 | |||
80 | protected: |
||
81 | // The int bits are used to mark the kind. |
||
82 | llvm::PointerIntPair<void *, 2> Data1; |
||
83 | llvm::PointerIntPair<void *, 2> Data2; |
||
84 | |||
85 | CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr) |
||
86 | : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3), |
||
87 | Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) { |
||
88 | assert(getKind() == kind); |
||
89 | } |
||
90 | |||
91 | CFGElement() = default; |
||
92 | |||
93 | public: |
||
94 | /// Convert to the specified CFGElement type, asserting that this |
||
95 | /// CFGElement is of the desired type. |
||
96 | template<typename T> |
||
97 | T castAs() const { |
||
98 | assert(T::isKind(*this)); |
||
99 | T t; |
||
100 | CFGElement& e = t; |
||
101 | e = *this; |
||
102 | return t; |
||
103 | } |
||
104 | |||
105 | /// Convert to the specified CFGElement type, returning std::nullopt if this |
||
106 | /// CFGElement is not of the desired type. |
||
107 | template <typename T> std::optional<T> getAs() const { |
||
108 | if (!T::isKind(*this)) |
||
109 | return std::nullopt; |
||
110 | T t; |
||
111 | CFGElement& e = t; |
||
112 | e = *this; |
||
113 | return t; |
||
114 | } |
||
115 | |||
116 | Kind getKind() const { |
||
117 | unsigned x = Data2.getInt(); |
||
118 | x <<= 2; |
||
119 | x |= Data1.getInt(); |
||
120 | return (Kind) x; |
||
121 | } |
||
122 | |||
123 | void dumpToStream(llvm::raw_ostream &OS) const; |
||
124 | |||
125 | void dump() const { |
||
126 | dumpToStream(llvm::errs()); |
||
127 | } |
||
128 | }; |
||
129 | |||
130 | class CFGStmt : public CFGElement { |
||
131 | public: |
||
132 | explicit CFGStmt(const Stmt *S, Kind K = Statement) : CFGElement(K, S) { |
||
133 | assert(isKind(*this)); |
||
134 | } |
||
135 | |||
136 | const Stmt *getStmt() const { |
||
137 | return static_cast<const Stmt *>(Data1.getPointer()); |
||
138 | } |
||
139 | |||
140 | private: |
||
141 | friend class CFGElement; |
||
142 | |||
143 | static bool isKind(const CFGElement &E) { |
||
144 | return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END; |
||
145 | } |
||
146 | |||
147 | protected: |
||
148 | CFGStmt() = default; |
||
149 | }; |
||
150 | |||
151 | /// Represents C++ constructor call. Maintains information necessary to figure |
||
152 | /// out what memory is being initialized by the constructor expression. For now |
||
153 | /// this is only used by the analyzer's CFG. |
||
154 | class CFGConstructor : public CFGStmt { |
||
155 | public: |
||
156 | explicit CFGConstructor(const CXXConstructExpr *CE, |
||
157 | const ConstructionContext *C) |
||
158 | : CFGStmt(CE, Constructor) { |
||
159 | assert(C); |
||
160 | Data2.setPointer(const_cast<ConstructionContext *>(C)); |
||
161 | } |
||
162 | |||
163 | const ConstructionContext *getConstructionContext() const { |
||
164 | return static_cast<ConstructionContext *>(Data2.getPointer()); |
||
165 | } |
||
166 | |||
167 | private: |
||
168 | friend class CFGElement; |
||
169 | |||
170 | CFGConstructor() = default; |
||
171 | |||
172 | static bool isKind(const CFGElement &E) { |
||
173 | return E.getKind() == Constructor; |
||
174 | } |
||
175 | }; |
||
176 | |||
177 | /// Represents a function call that returns a C++ object by value. This, like |
||
178 | /// constructor, requires a construction context in order to understand the |
||
179 | /// storage of the returned object . In C such tracking is not necessary because |
||
180 | /// no additional effort is required for destroying the object or modeling copy |
||
181 | /// elision. Like CFGConstructor, this element is for now only used by the |
||
182 | /// analyzer's CFG. |
||
183 | class CFGCXXRecordTypedCall : public CFGStmt { |
||
184 | public: |
||
185 | /// Returns true when call expression \p CE needs to be represented |
||
186 | /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt. |
||
187 | static bool isCXXRecordTypedCall(const Expr *E) { |
||
188 | assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)); |
||
189 | // There is no such thing as reference-type expression. If the function |
||
190 | // returns a reference, it'll return the respective lvalue or xvalue |
||
191 | // instead, and we're only interested in objects. |
||
192 | return !E->isGLValue() && |
||
193 | E->getType().getCanonicalType()->getAsCXXRecordDecl(); |
||
194 | } |
||
195 | |||
196 | explicit CFGCXXRecordTypedCall(const Expr *E, const ConstructionContext *C) |
||
197 | : CFGStmt(E, CXXRecordTypedCall) { |
||
198 | assert(isCXXRecordTypedCall(E)); |
||
199 | assert(C && (isa<TemporaryObjectConstructionContext>(C) || |
||
200 | // These are possible in C++17 due to mandatory copy elision. |
||
201 | isa<ReturnedValueConstructionContext>(C) || |
||
202 | isa<VariableConstructionContext>(C) || |
||
203 | isa<ConstructorInitializerConstructionContext>(C) || |
||
204 | isa<ArgumentConstructionContext>(C) || |
||
205 | isa<LambdaCaptureConstructionContext>(C))); |
||
206 | Data2.setPointer(const_cast<ConstructionContext *>(C)); |
||
207 | } |
||
208 | |||
209 | const ConstructionContext *getConstructionContext() const { |
||
210 | return static_cast<ConstructionContext *>(Data2.getPointer()); |
||
211 | } |
||
212 | |||
213 | private: |
||
214 | friend class CFGElement; |
||
215 | |||
216 | CFGCXXRecordTypedCall() = default; |
||
217 | |||
218 | static bool isKind(const CFGElement &E) { |
||
219 | return E.getKind() == CXXRecordTypedCall; |
||
220 | } |
||
221 | }; |
||
222 | |||
223 | /// Represents C++ base or member initializer from constructor's initialization |
||
224 | /// list. |
||
225 | class CFGInitializer : public CFGElement { |
||
226 | public: |
||
227 | explicit CFGInitializer(const CXXCtorInitializer *initializer) |
||
228 | : CFGElement(Initializer, initializer) {} |
||
229 | |||
230 | CXXCtorInitializer* getInitializer() const { |
||
231 | return static_cast<CXXCtorInitializer*>(Data1.getPointer()); |
||
232 | } |
||
233 | |||
234 | private: |
||
235 | friend class CFGElement; |
||
236 | |||
237 | CFGInitializer() = default; |
||
238 | |||
239 | static bool isKind(const CFGElement &E) { |
||
240 | return E.getKind() == Initializer; |
||
241 | } |
||
242 | }; |
||
243 | |||
244 | /// Represents C++ allocator call. |
||
245 | class CFGNewAllocator : public CFGElement { |
||
246 | public: |
||
247 | explicit CFGNewAllocator(const CXXNewExpr *S) |
||
248 | : CFGElement(NewAllocator, S) {} |
||
249 | |||
250 | // Get the new expression. |
||
251 | const CXXNewExpr *getAllocatorExpr() const { |
||
252 | return static_cast<CXXNewExpr *>(Data1.getPointer()); |
||
253 | } |
||
254 | |||
255 | private: |
||
256 | friend class CFGElement; |
||
257 | |||
258 | CFGNewAllocator() = default; |
||
259 | |||
260 | static bool isKind(const CFGElement &elem) { |
||
261 | return elem.getKind() == NewAllocator; |
||
262 | } |
||
263 | }; |
||
264 | |||
265 | /// Represents the point where a loop ends. |
||
266 | /// This element is only produced when building the CFG for the static |
||
267 | /// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag. |
||
268 | /// |
||
269 | /// Note: a loop exit element can be reached even when the loop body was never |
||
270 | /// entered. |
||
271 | class CFGLoopExit : public CFGElement { |
||
272 | public: |
||
273 | explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {} |
||
274 | |||
275 | const Stmt *getLoopStmt() const { |
||
276 | return static_cast<Stmt *>(Data1.getPointer()); |
||
277 | } |
||
278 | |||
279 | private: |
||
280 | friend class CFGElement; |
||
281 | |||
282 | CFGLoopExit() = default; |
||
283 | |||
284 | static bool isKind(const CFGElement &elem) { |
||
285 | return elem.getKind() == LoopExit; |
||
286 | } |
||
287 | }; |
||
288 | |||
289 | /// Represents the point where the lifetime of an automatic object ends |
||
290 | class CFGLifetimeEnds : public CFGElement { |
||
291 | public: |
||
292 | explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt) |
||
293 | : CFGElement(LifetimeEnds, var, stmt) {} |
||
294 | |||
295 | const VarDecl *getVarDecl() const { |
||
296 | return static_cast<VarDecl *>(Data1.getPointer()); |
||
297 | } |
||
298 | |||
299 | const Stmt *getTriggerStmt() const { |
||
300 | return static_cast<Stmt *>(Data2.getPointer()); |
||
301 | } |
||
302 | |||
303 | private: |
||
304 | friend class CFGElement; |
||
305 | |||
306 | CFGLifetimeEnds() = default; |
||
307 | |||
308 | static bool isKind(const CFGElement &elem) { |
||
309 | return elem.getKind() == LifetimeEnds; |
||
310 | } |
||
311 | }; |
||
312 | |||
313 | /// Represents beginning of a scope implicitly generated |
||
314 | /// by the compiler on encountering a CompoundStmt |
||
315 | class CFGScopeBegin : public CFGElement { |
||
316 | public: |
||
317 | CFGScopeBegin() {} |
||
318 | CFGScopeBegin(const VarDecl *VD, const Stmt *S) |
||
319 | : CFGElement(ScopeBegin, VD, S) {} |
||
320 | |||
321 | // Get statement that triggered a new scope. |
||
322 | const Stmt *getTriggerStmt() const { |
||
323 | return static_cast<Stmt*>(Data2.getPointer()); |
||
324 | } |
||
325 | |||
326 | // Get VD that triggered a new scope. |
||
327 | const VarDecl *getVarDecl() const { |
||
328 | return static_cast<VarDecl *>(Data1.getPointer()); |
||
329 | } |
||
330 | |||
331 | private: |
||
332 | friend class CFGElement; |
||
333 | static bool isKind(const CFGElement &E) { |
||
334 | Kind kind = E.getKind(); |
||
335 | return kind == ScopeBegin; |
||
336 | } |
||
337 | }; |
||
338 | |||
339 | /// Represents end of a scope implicitly generated by |
||
340 | /// the compiler after the last Stmt in a CompoundStmt's body |
||
341 | class CFGScopeEnd : public CFGElement { |
||
342 | public: |
||
343 | CFGScopeEnd() {} |
||
344 | CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {} |
||
345 | |||
346 | const VarDecl *getVarDecl() const { |
||
347 | return static_cast<VarDecl *>(Data1.getPointer()); |
||
348 | } |
||
349 | |||
350 | const Stmt *getTriggerStmt() const { |
||
351 | return static_cast<Stmt *>(Data2.getPointer()); |
||
352 | } |
||
353 | |||
354 | private: |
||
355 | friend class CFGElement; |
||
356 | static bool isKind(const CFGElement &E) { |
||
357 | Kind kind = E.getKind(); |
||
358 | return kind == ScopeEnd; |
||
359 | } |
||
360 | }; |
||
361 | |||
362 | /// Represents C++ object destructor implicitly generated by compiler on various |
||
363 | /// occasions. |
||
364 | class CFGImplicitDtor : public CFGElement { |
||
365 | protected: |
||
366 | CFGImplicitDtor() = default; |
||
367 | |||
368 | CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr) |
||
369 | : CFGElement(kind, data1, data2) { |
||
370 | assert(kind >= DTOR_BEGIN && kind <= DTOR_END); |
||
371 | } |
||
372 | |||
373 | public: |
||
374 | const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const; |
||
375 | bool isNoReturn(ASTContext &astContext) const; |
||
376 | |||
377 | private: |
||
378 | friend class CFGElement; |
||
379 | |||
380 | static bool isKind(const CFGElement &E) { |
||
381 | Kind kind = E.getKind(); |
||
382 | return kind >= DTOR_BEGIN && kind <= DTOR_END; |
||
383 | } |
||
384 | }; |
||
385 | |||
386 | /// Represents C++ object destructor implicitly generated for automatic object |
||
387 | /// or temporary bound to const reference at the point of leaving its local |
||
388 | /// scope. |
||
389 | class CFGAutomaticObjDtor: public CFGImplicitDtor { |
||
390 | public: |
||
391 | CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt) |
||
392 | : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {} |
||
393 | |||
394 | const VarDecl *getVarDecl() const { |
||
395 | return static_cast<VarDecl*>(Data1.getPointer()); |
||
396 | } |
||
397 | |||
398 | // Get statement end of which triggered the destructor call. |
||
399 | const Stmt *getTriggerStmt() const { |
||
400 | return static_cast<Stmt*>(Data2.getPointer()); |
||
401 | } |
||
402 | |||
403 | private: |
||
404 | friend class CFGElement; |
||
405 | |||
406 | CFGAutomaticObjDtor() = default; |
||
407 | |||
408 | static bool isKind(const CFGElement &elem) { |
||
409 | return elem.getKind() == AutomaticObjectDtor; |
||
410 | } |
||
411 | }; |
||
412 | |||
413 | /// Represents C++ object destructor generated from a call to delete. |
||
414 | class CFGDeleteDtor : public CFGImplicitDtor { |
||
415 | public: |
||
416 | CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE) |
||
417 | : CFGImplicitDtor(DeleteDtor, RD, DE) {} |
||
418 | |||
419 | const CXXRecordDecl *getCXXRecordDecl() const { |
||
420 | return static_cast<CXXRecordDecl*>(Data1.getPointer()); |
||
421 | } |
||
422 | |||
423 | // Get Delete expression which triggered the destructor call. |
||
424 | const CXXDeleteExpr *getDeleteExpr() const { |
||
425 | return static_cast<CXXDeleteExpr *>(Data2.getPointer()); |
||
426 | } |
||
427 | |||
428 | private: |
||
429 | friend class CFGElement; |
||
430 | |||
431 | CFGDeleteDtor() = default; |
||
432 | |||
433 | static bool isKind(const CFGElement &elem) { |
||
434 | return elem.getKind() == DeleteDtor; |
||
435 | } |
||
436 | }; |
||
437 | |||
438 | /// Represents C++ object destructor implicitly generated for base object in |
||
439 | /// destructor. |
||
440 | class CFGBaseDtor : public CFGImplicitDtor { |
||
441 | public: |
||
442 | CFGBaseDtor(const CXXBaseSpecifier *base) |
||
443 | : CFGImplicitDtor(BaseDtor, base) {} |
||
444 | |||
445 | const CXXBaseSpecifier *getBaseSpecifier() const { |
||
446 | return static_cast<const CXXBaseSpecifier*>(Data1.getPointer()); |
||
447 | } |
||
448 | |||
449 | private: |
||
450 | friend class CFGElement; |
||
451 | |||
452 | CFGBaseDtor() = default; |
||
453 | |||
454 | static bool isKind(const CFGElement &E) { |
||
455 | return E.getKind() == BaseDtor; |
||
456 | } |
||
457 | }; |
||
458 | |||
459 | /// Represents C++ object destructor implicitly generated for member object in |
||
460 | /// destructor. |
||
461 | class CFGMemberDtor : public CFGImplicitDtor { |
||
462 | public: |
||
463 | CFGMemberDtor(const FieldDecl *field) |
||
464 | : CFGImplicitDtor(MemberDtor, field, nullptr) {} |
||
465 | |||
466 | const FieldDecl *getFieldDecl() const { |
||
467 | return static_cast<const FieldDecl*>(Data1.getPointer()); |
||
468 | } |
||
469 | |||
470 | private: |
||
471 | friend class CFGElement; |
||
472 | |||
473 | CFGMemberDtor() = default; |
||
474 | |||
475 | static bool isKind(const CFGElement &E) { |
||
476 | return E.getKind() == MemberDtor; |
||
477 | } |
||
478 | }; |
||
479 | |||
480 | /// Represents C++ object destructor implicitly generated at the end of full |
||
481 | /// expression for temporary object. |
||
482 | class CFGTemporaryDtor : public CFGImplicitDtor { |
||
483 | public: |
||
484 | CFGTemporaryDtor(const CXXBindTemporaryExpr *expr) |
||
485 | : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {} |
||
486 | |||
487 | const CXXBindTemporaryExpr *getBindTemporaryExpr() const { |
||
488 | return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer()); |
||
489 | } |
||
490 | |||
491 | private: |
||
492 | friend class CFGElement; |
||
493 | |||
494 | CFGTemporaryDtor() = default; |
||
495 | |||
496 | static bool isKind(const CFGElement &E) { |
||
497 | return E.getKind() == TemporaryDtor; |
||
498 | } |
||
499 | }; |
||
500 | |||
501 | /// Represents CFGBlock terminator statement. |
||
502 | /// |
||
503 | class CFGTerminator { |
||
504 | public: |
||
505 | enum Kind { |
||
506 | /// A branch that corresponds to a statement in the code, |
||
507 | /// such as an if-statement. |
||
508 | StmtBranch, |
||
509 | /// A branch in control flow of destructors of temporaries. In this case |
||
510 | /// terminator statement is the same statement that branches control flow |
||
511 | /// in evaluation of matching full expression. |
||
512 | TemporaryDtorsBranch, |
||
513 | /// A shortcut around virtual base initializers. It gets taken when |
||
514 | /// virtual base classes have already been initialized by the constructor |
||
515 | /// of the most derived class while we're in the base class. |
||
516 | VirtualBaseBranch, |
||
517 | |||
518 | /// Number of different kinds, for assertions. We subtract 1 so that |
||
519 | /// to keep receiving compiler warnings when we don't cover all enum values |
||
520 | /// in a switch. |
||
521 | NumKindsMinusOne = VirtualBaseBranch |
||
522 | }; |
||
523 | |||
524 | private: |
||
525 | static constexpr int KindBits = 2; |
||
526 | static_assert((1 << KindBits) > NumKindsMinusOne, |
||
527 | "Not enough room for kind!"); |
||
528 | llvm::PointerIntPair<Stmt *, KindBits> Data; |
||
529 | |||
530 | public: |
||
531 | CFGTerminator() { assert(!isValid()); } |
||
532 | CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {} |
||
533 | |||
534 | bool isValid() const { return Data.getOpaqueValue() != nullptr; } |
||
535 | Stmt *getStmt() { return Data.getPointer(); } |
||
536 | const Stmt *getStmt() const { return Data.getPointer(); } |
||
537 | Kind getKind() const { return static_cast<Kind>(Data.getInt()); } |
||
538 | |||
539 | bool isStmtBranch() const { |
||
540 | return getKind() == StmtBranch; |
||
541 | } |
||
542 | bool isTemporaryDtorsBranch() const { |
||
543 | return getKind() == TemporaryDtorsBranch; |
||
544 | } |
||
545 | bool isVirtualBaseBranch() const { |
||
546 | return getKind() == VirtualBaseBranch; |
||
547 | } |
||
548 | }; |
||
549 | |||
550 | /// Represents a single basic block in a source-level CFG. |
||
551 | /// It consists of: |
||
552 | /// |
||
553 | /// (1) A set of statements/expressions (which may contain subexpressions). |
||
554 | /// (2) A "terminator" statement (not in the set of statements). |
||
555 | /// (3) A list of successors and predecessors. |
||
556 | /// |
||
557 | /// Terminator: The terminator represents the type of control-flow that occurs |
||
558 | /// at the end of the basic block. The terminator is a Stmt* referring to an |
||
559 | /// AST node that has control-flow: if-statements, breaks, loops, etc. |
||
560 | /// If the control-flow is conditional, the condition expression will appear |
||
561 | /// within the set of statements in the block (usually the last statement). |
||
562 | /// |
||
563 | /// Predecessors: the order in the set of predecessors is arbitrary. |
||
564 | /// |
||
565 | /// Successors: the order in the set of successors is NOT arbitrary. We |
||
566 | /// currently have the following orderings based on the terminator: |
||
567 | /// |
||
568 | /// Terminator | Successor Ordering |
||
569 | /// ------------------|------------------------------------ |
||
570 | /// if | Then Block; Else Block |
||
571 | /// ? operator | LHS expression; RHS expression |
||
572 | /// logical and/or | expression that consumes the op, RHS |
||
573 | /// vbase inits | already handled by the most derived class; not yet |
||
574 | /// |
||
575 | /// But note that any of that may be NULL in case of optimized-out edges. |
||
576 | class CFGBlock { |
||
577 | class ElementList { |
||
578 | using ImplTy = BumpVector<CFGElement>; |
||
579 | |||
580 | ImplTy Impl; |
||
581 | |||
582 | public: |
||
583 | ElementList(BumpVectorContext &C) : Impl(C, 4) {} |
||
584 | |||
585 | using iterator = std::reverse_iterator<ImplTy::iterator>; |
||
586 | using const_iterator = std::reverse_iterator<ImplTy::const_iterator>; |
||
587 | using reverse_iterator = ImplTy::iterator; |
||
588 | using const_reverse_iterator = ImplTy::const_iterator; |
||
589 | using const_reference = ImplTy::const_reference; |
||
590 | |||
591 | void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); } |
||
592 | |||
593 | reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E, |
||
594 | BumpVectorContext &C) { |
||
595 | return Impl.insert(I, Cnt, E, C); |
||
596 | } |
||
597 | |||
598 | const_reference front() const { return Impl.back(); } |
||
599 | const_reference back() const { return Impl.front(); } |
||
600 | |||
601 | iterator begin() { return Impl.rbegin(); } |
||
602 | iterator end() { return Impl.rend(); } |
||
603 | const_iterator begin() const { return Impl.rbegin(); } |
||
604 | const_iterator end() const { return Impl.rend(); } |
||
605 | reverse_iterator rbegin() { return Impl.begin(); } |
||
606 | reverse_iterator rend() { return Impl.end(); } |
||
607 | const_reverse_iterator rbegin() const { return Impl.begin(); } |
||
608 | const_reverse_iterator rend() const { return Impl.end(); } |
||
609 | |||
610 | CFGElement operator[](size_t i) const { |
||
611 | assert(i < Impl.size()); |
||
612 | return Impl[Impl.size() - 1 - i]; |
||
613 | } |
||
614 | |||
615 | size_t size() const { return Impl.size(); } |
||
616 | bool empty() const { return Impl.empty(); } |
||
617 | }; |
||
618 | |||
619 | /// A convenience class for comparing CFGElements, since methods of CFGBlock |
||
620 | /// like operator[] return CFGElements by value. This is practically a wrapper |
||
621 | /// around a (CFGBlock, Index) pair. |
||
622 | template <bool IsConst> class ElementRefImpl { |
||
623 | |||
624 | template <bool IsOtherConst> friend class ElementRefImpl; |
||
625 | |||
626 | using CFGBlockPtr = |
||
627 | std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>; |
||
628 | |||
629 | using CFGElementPtr = |
||
630 | std::conditional_t<IsConst, const CFGElement *, CFGElement *>; |
||
631 | |||
632 | protected: |
||
633 | CFGBlockPtr Parent; |
||
634 | size_t Index; |
||
635 | |||
636 | public: |
||
637 | ElementRefImpl(CFGBlockPtr Parent, size_t Index) |
||
638 | : Parent(Parent), Index(Index) {} |
||
639 | |||
640 | template <bool IsOtherConst> |
||
641 | ElementRefImpl(ElementRefImpl<IsOtherConst> Other) |
||
642 | : ElementRefImpl(Other.Parent, Other.Index) {} |
||
643 | |||
644 | size_t getIndexInBlock() const { return Index; } |
||
645 | |||
646 | CFGBlockPtr getParent() { return Parent; } |
||
647 | CFGBlockPtr getParent() const { return Parent; } |
||
648 | |||
649 | bool operator<(ElementRefImpl Other) const { |
||
650 | return std::make_pair(Parent, Index) < |
||
651 | std::make_pair(Other.Parent, Other.Index); |
||
652 | } |
||
653 | |||
654 | bool operator==(ElementRefImpl Other) const { |
||
655 | return Parent == Other.Parent && Index == Other.Index; |
||
656 | } |
||
657 | |||
658 | bool operator!=(ElementRefImpl Other) const { return !(*this == Other); } |
||
659 | CFGElement operator*() const { return (*Parent)[Index]; } |
||
660 | CFGElementPtr operator->() const { return &*(Parent->begin() + Index); } |
||
661 | |||
662 | void dumpToStream(llvm::raw_ostream &OS) const { |
||
663 | OS << getIndexInBlock() + 1 << ": "; |
||
664 | (*this)->dumpToStream(OS); |
||
665 | } |
||
666 | |||
667 | void dump() const { |
||
668 | dumpToStream(llvm::errs()); |
||
669 | } |
||
670 | }; |
||
671 | |||
672 | template <bool IsReverse, bool IsConst> class ElementRefIterator { |
||
673 | |||
674 | template <bool IsOtherReverse, bool IsOtherConst> |
||
675 | friend class ElementRefIterator; |
||
676 | |||
677 | using CFGBlockRef = |
||
678 | std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>; |
||
679 | |||
680 | using UnderlayingIteratorTy = std::conditional_t< |
||
681 | IsConst, |
||
682 | std::conditional_t<IsReverse, ElementList::const_reverse_iterator, |
||
683 | ElementList::const_iterator>, |
||
684 | std::conditional_t<IsReverse, ElementList::reverse_iterator, |
||
685 | ElementList::iterator>>; |
||
686 | |||
687 | using IteratorTraits = typename std::iterator_traits<UnderlayingIteratorTy>; |
||
688 | using ElementRef = typename CFGBlock::ElementRefImpl<IsConst>; |
||
689 | |||
690 | public: |
||
691 | using difference_type = typename IteratorTraits::difference_type; |
||
692 | using value_type = ElementRef; |
||
693 | using pointer = ElementRef *; |
||
694 | using iterator_category = typename IteratorTraits::iterator_category; |
||
695 | |||
696 | private: |
||
697 | CFGBlockRef Parent; |
||
698 | UnderlayingIteratorTy Pos; |
||
699 | |||
700 | public: |
||
701 | ElementRefIterator(CFGBlockRef Parent, UnderlayingIteratorTy Pos) |
||
702 | : Parent(Parent), Pos(Pos) {} |
||
703 | |||
704 | template <bool IsOtherConst> |
||
705 | ElementRefIterator(ElementRefIterator<false, IsOtherConst> E) |
||
706 | : ElementRefIterator(E.Parent, E.Pos.base()) {} |
||
707 | |||
708 | template <bool IsOtherConst> |
||
709 | ElementRefIterator(ElementRefIterator<true, IsOtherConst> E) |
||
710 | : ElementRefIterator(E.Parent, std::make_reverse_iterator(E.Pos)) {} |
||
711 | |||
712 | bool operator<(ElementRefIterator Other) const { |
||
713 | assert(Parent == Other.Parent); |
||
714 | return Pos < Other.Pos; |
||
715 | } |
||
716 | |||
717 | bool operator==(ElementRefIterator Other) const { |
||
718 | return Parent == Other.Parent && Pos == Other.Pos; |
||
719 | } |
||
720 | |||
721 | bool operator!=(ElementRefIterator Other) const { |
||
722 | return !(*this == Other); |
||
723 | } |
||
724 | |||
725 | private: |
||
726 | template <bool IsOtherConst> |
||
727 | static size_t |
||
728 | getIndexInBlock(CFGBlock::ElementRefIterator<true, IsOtherConst> E) { |
||
729 | return E.Parent->size() - (E.Pos - E.Parent->rbegin()) - 1; |
||
730 | } |
||
731 | |||
732 | template <bool IsOtherConst> |
||
733 | static size_t |
||
734 | getIndexInBlock(CFGBlock::ElementRefIterator<false, IsOtherConst> E) { |
||
735 | return E.Pos - E.Parent->begin(); |
||
736 | } |
||
737 | |||
738 | public: |
||
739 | value_type operator*() { return {Parent, getIndexInBlock(*this)}; } |
||
740 | |||
741 | difference_type operator-(ElementRefIterator Other) const { |
||
742 | return Pos - Other.Pos; |
||
743 | } |
||
744 | |||
745 | ElementRefIterator operator++() { |
||
746 | ++this->Pos; |
||
747 | return *this; |
||
748 | } |
||
749 | ElementRefIterator operator++(int) { |
||
750 | ElementRefIterator Ret = *this; |
||
751 | ++*this; |
||
752 | return Ret; |
||
753 | } |
||
754 | ElementRefIterator operator+(size_t count) { |
||
755 | this->Pos += count; |
||
756 | return *this; |
||
757 | } |
||
758 | ElementRefIterator operator-(size_t count) { |
||
759 | this->Pos -= count; |
||
760 | return *this; |
||
761 | } |
||
762 | }; |
||
763 | |||
764 | public: |
||
765 | /// The set of statements in the basic block. |
||
766 | ElementList Elements; |
||
767 | |||
768 | /// An (optional) label that prefixes the executable statements in the block. |
||
769 | /// When this variable is non-NULL, it is either an instance of LabelStmt, |
||
770 | /// SwitchCase or CXXCatchStmt. |
||
771 | Stmt *Label = nullptr; |
||
772 | |||
773 | /// The terminator for a basic block that indicates the type of control-flow |
||
774 | /// that occurs between a block and its successors. |
||
775 | CFGTerminator Terminator; |
||
776 | |||
777 | /// Some blocks are used to represent the "loop edge" to the start of a loop |
||
778 | /// from within the loop body. This Stmt* will be refer to the loop statement |
||
779 | /// for such blocks (and be null otherwise). |
||
780 | const Stmt *LoopTarget = nullptr; |
||
781 | |||
782 | /// A numerical ID assigned to a CFGBlock during construction of the CFG. |
||
783 | unsigned BlockID; |
||
784 | |||
785 | public: |
||
786 | /// This class represents a potential adjacent block in the CFG. It encodes |
||
787 | /// whether or not the block is actually reachable, or can be proved to be |
||
788 | /// trivially unreachable. For some cases it allows one to encode scenarios |
||
789 | /// where a block was substituted because the original (now alternate) block |
||
790 | /// is unreachable. |
||
791 | class AdjacentBlock { |
||
792 | enum Kind { |
||
793 | AB_Normal, |
||
794 | AB_Unreachable, |
||
795 | AB_Alternate |
||
796 | }; |
||
797 | |||
798 | CFGBlock *ReachableBlock; |
||
799 | llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock; |
||
800 | |||
801 | public: |
||
802 | /// Construct an AdjacentBlock with a possibly unreachable block. |
||
803 | AdjacentBlock(CFGBlock *B, bool IsReachable); |
||
804 | |||
805 | /// Construct an AdjacentBlock with a reachable block and an alternate |
||
806 | /// unreachable block. |
||
807 | AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock); |
||
808 | |||
809 | /// Get the reachable block, if one exists. |
||
810 | CFGBlock *getReachableBlock() const { |
||
811 | return ReachableBlock; |
||
812 | } |
||
813 | |||
814 | /// Get the potentially unreachable block. |
||
815 | CFGBlock *getPossiblyUnreachableBlock() const { |
||
816 | return UnreachableBlock.getPointer(); |
||
817 | } |
||
818 | |||
819 | /// Provide an implicit conversion to CFGBlock* so that |
||
820 | /// AdjacentBlock can be substituted for CFGBlock*. |
||
821 | operator CFGBlock*() const { |
||
822 | return getReachableBlock(); |
||
823 | } |
||
824 | |||
825 | CFGBlock& operator *() const { |
||
826 | return *getReachableBlock(); |
||
827 | } |
||
828 | |||
829 | CFGBlock* operator ->() const { |
||
830 | return getReachableBlock(); |
||
831 | } |
||
832 | |||
833 | bool isReachable() const { |
||
834 | Kind K = (Kind) UnreachableBlock.getInt(); |
||
835 | return K == AB_Normal || K == AB_Alternate; |
||
836 | } |
||
837 | }; |
||
838 | |||
839 | private: |
||
840 | /// Keep track of the predecessor / successor CFG blocks. |
||
841 | using AdjacentBlocks = BumpVector<AdjacentBlock>; |
||
842 | AdjacentBlocks Preds; |
||
843 | AdjacentBlocks Succs; |
||
844 | |||
845 | /// This bit is set when the basic block contains a function call |
||
846 | /// or implicit destructor that is attributed as 'noreturn'. In that case, |
||
847 | /// control cannot technically ever proceed past this block. All such blocks |
||
848 | /// will have a single immediate successor: the exit block. This allows them |
||
849 | /// to be easily reached from the exit block and using this bit quickly |
||
850 | /// recognized without scanning the contents of the block. |
||
851 | /// |
||
852 | /// Optimization Note: This bit could be profitably folded with Terminator's |
||
853 | /// storage if the memory usage of CFGBlock becomes an issue. |
||
854 | unsigned HasNoReturnElement : 1; |
||
855 | |||
856 | /// The parent CFG that owns this CFGBlock. |
||
857 | CFG *Parent; |
||
858 | |||
859 | public: |
||
860 | explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent) |
||
861 | : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1), |
||
862 | Succs(C, 1), HasNoReturnElement(false), Parent(parent) {} |
||
863 | |||
864 | // Statement iterators |
||
865 | using iterator = ElementList::iterator; |
||
866 | using const_iterator = ElementList::const_iterator; |
||
867 | using reverse_iterator = ElementList::reverse_iterator; |
||
868 | using const_reverse_iterator = ElementList::const_reverse_iterator; |
||
869 | |||
870 | size_t getIndexInCFG() const; |
||
871 | |||
872 | CFGElement front() const { return Elements.front(); } |
||
873 | CFGElement back() const { return Elements.back(); } |
||
874 | |||
875 | iterator begin() { return Elements.begin(); } |
||
876 | iterator end() { return Elements.end(); } |
||
877 | const_iterator begin() const { return Elements.begin(); } |
||
878 | const_iterator end() const { return Elements.end(); } |
||
879 | |||
880 | reverse_iterator rbegin() { return Elements.rbegin(); } |
||
881 | reverse_iterator rend() { return Elements.rend(); } |
||
882 | const_reverse_iterator rbegin() const { return Elements.rbegin(); } |
||
883 | const_reverse_iterator rend() const { return Elements.rend(); } |
||
884 | |||
885 | using CFGElementRef = ElementRefImpl<false>; |
||
886 | using ConstCFGElementRef = ElementRefImpl<true>; |
||
887 | |||
888 | using ref_iterator = ElementRefIterator<false, false>; |
||
889 | using ref_iterator_range = llvm::iterator_range<ref_iterator>; |
||
890 | using const_ref_iterator = ElementRefIterator<false, true>; |
||
891 | using const_ref_iterator_range = llvm::iterator_range<const_ref_iterator>; |
||
892 | |||
893 | using reverse_ref_iterator = ElementRefIterator<true, false>; |
||
894 | using reverse_ref_iterator_range = llvm::iterator_range<reverse_ref_iterator>; |
||
895 | |||
896 | using const_reverse_ref_iterator = ElementRefIterator<true, true>; |
||
897 | using const_reverse_ref_iterator_range = |
||
898 | llvm::iterator_range<const_reverse_ref_iterator>; |
||
899 | |||
900 | ref_iterator ref_begin() { return {this, begin()}; } |
||
901 | ref_iterator ref_end() { return {this, end()}; } |
||
902 | const_ref_iterator ref_begin() const { return {this, begin()}; } |
||
903 | const_ref_iterator ref_end() const { return {this, end()}; } |
||
904 | |||
905 | reverse_ref_iterator rref_begin() { return {this, rbegin()}; } |
||
906 | reverse_ref_iterator rref_end() { return {this, rend()}; } |
||
907 | const_reverse_ref_iterator rref_begin() const { return {this, rbegin()}; } |
||
908 | const_reverse_ref_iterator rref_end() const { return {this, rend()}; } |
||
909 | |||
910 | ref_iterator_range refs() { return {ref_begin(), ref_end()}; } |
||
911 | const_ref_iterator_range refs() const { return {ref_begin(), ref_end()}; } |
||
912 | reverse_ref_iterator_range rrefs() { return {rref_begin(), rref_end()}; } |
||
913 | const_reverse_ref_iterator_range rrefs() const { |
||
914 | return {rref_begin(), rref_end()}; |
||
915 | } |
||
916 | |||
917 | unsigned size() const { return Elements.size(); } |
||
918 | bool empty() const { return Elements.empty(); } |
||
919 | |||
920 | CFGElement operator[](size_t i) const { return Elements[i]; } |
||
921 | |||
922 | // CFG iterators |
||
923 | using pred_iterator = AdjacentBlocks::iterator; |
||
924 | using const_pred_iterator = AdjacentBlocks::const_iterator; |
||
925 | using pred_reverse_iterator = AdjacentBlocks::reverse_iterator; |
||
926 | using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator; |
||
927 | using pred_range = llvm::iterator_range<pred_iterator>; |
||
928 | using pred_const_range = llvm::iterator_range<const_pred_iterator>; |
||
929 | |||
930 | using succ_iterator = AdjacentBlocks::iterator; |
||
931 | using const_succ_iterator = AdjacentBlocks::const_iterator; |
||
932 | using succ_reverse_iterator = AdjacentBlocks::reverse_iterator; |
||
933 | using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator; |
||
934 | using succ_range = llvm::iterator_range<succ_iterator>; |
||
935 | using succ_const_range = llvm::iterator_range<const_succ_iterator>; |
||
936 | |||
937 | pred_iterator pred_begin() { return Preds.begin(); } |
||
938 | pred_iterator pred_end() { return Preds.end(); } |
||
939 | const_pred_iterator pred_begin() const { return Preds.begin(); } |
||
940 | const_pred_iterator pred_end() const { return Preds.end(); } |
||
941 | |||
942 | pred_reverse_iterator pred_rbegin() { return Preds.rbegin(); } |
||
943 | pred_reverse_iterator pred_rend() { return Preds.rend(); } |
||
944 | const_pred_reverse_iterator pred_rbegin() const { return Preds.rbegin(); } |
||
945 | const_pred_reverse_iterator pred_rend() const { return Preds.rend(); } |
||
946 | |||
947 | pred_range preds() { |
||
948 | return pred_range(pred_begin(), pred_end()); |
||
949 | } |
||
950 | |||
951 | pred_const_range preds() const { |
||
952 | return pred_const_range(pred_begin(), pred_end()); |
||
953 | } |
||
954 | |||
955 | succ_iterator succ_begin() { return Succs.begin(); } |
||
956 | succ_iterator succ_end() { return Succs.end(); } |
||
957 | const_succ_iterator succ_begin() const { return Succs.begin(); } |
||
958 | const_succ_iterator succ_end() const { return Succs.end(); } |
||
959 | |||
960 | succ_reverse_iterator succ_rbegin() { return Succs.rbegin(); } |
||
961 | succ_reverse_iterator succ_rend() { return Succs.rend(); } |
||
962 | const_succ_reverse_iterator succ_rbegin() const { return Succs.rbegin(); } |
||
963 | const_succ_reverse_iterator succ_rend() const { return Succs.rend(); } |
||
964 | |||
965 | succ_range succs() { |
||
966 | return succ_range(succ_begin(), succ_end()); |
||
967 | } |
||
968 | |||
969 | succ_const_range succs() const { |
||
970 | return succ_const_range(succ_begin(), succ_end()); |
||
971 | } |
||
972 | |||
973 | unsigned succ_size() const { return Succs.size(); } |
||
974 | bool succ_empty() const { return Succs.empty(); } |
||
975 | |||
976 | unsigned pred_size() const { return Preds.size(); } |
||
977 | bool pred_empty() const { return Preds.empty(); } |
||
978 | |||
979 | |||
980 | class FilterOptions { |
||
981 | public: |
||
982 | unsigned IgnoreNullPredecessors : 1; |
||
983 | unsigned IgnoreDefaultsWithCoveredEnums : 1; |
||
984 | |||
985 | FilterOptions() |
||
986 | : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {} |
||
987 | }; |
||
988 | |||
989 | static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src, |
||
990 | const CFGBlock *Dst); |
||
991 | |||
992 | template <typename IMPL, bool IsPred> |
||
993 | class FilteredCFGBlockIterator { |
||
994 | private: |
||
995 | IMPL I, E; |
||
996 | const FilterOptions F; |
||
997 | const CFGBlock *From; |
||
998 | |||
999 | public: |
||
1000 | explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e, |
||
1001 | const CFGBlock *from, |
||
1002 | const FilterOptions &f) |
||
1003 | : I(i), E(e), F(f), From(from) { |
||
1004 | while (hasMore() && Filter(*I)) |
||
1005 | ++I; |
||
1006 | } |
||
1007 | |||
1008 | bool hasMore() const { return I != E; } |
||
1009 | |||
1010 | FilteredCFGBlockIterator &operator++() { |
||
1011 | do { ++I; } while (hasMore() && Filter(*I)); |
||
1012 | return *this; |
||
1013 | } |
||
1014 | |||
1015 | const CFGBlock *operator*() const { return *I; } |
||
1016 | |||
1017 | private: |
||
1018 | bool Filter(const CFGBlock *To) { |
||
1019 | return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To); |
||
1020 | } |
||
1021 | }; |
||
1022 | |||
1023 | using filtered_pred_iterator = |
||
1024 | FilteredCFGBlockIterator<const_pred_iterator, true>; |
||
1025 | |||
1026 | using filtered_succ_iterator = |
||
1027 | FilteredCFGBlockIterator<const_succ_iterator, false>; |
||
1028 | |||
1029 | filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const { |
||
1030 | return filtered_pred_iterator(pred_begin(), pred_end(), this, f); |
||
1031 | } |
||
1032 | |||
1033 | filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const { |
||
1034 | return filtered_succ_iterator(succ_begin(), succ_end(), this, f); |
||
1035 | } |
||
1036 | |||
1037 | // Manipulation of block contents |
||
1038 | |||
1039 | void setTerminator(CFGTerminator Term) { Terminator = Term; } |
||
1040 | void setLabel(Stmt *Statement) { Label = Statement; } |
||
1041 | void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; } |
||
1042 | void setHasNoReturnElement() { HasNoReturnElement = true; } |
||
1043 | |||
1044 | /// Returns true if the block would eventually end with a sink (a noreturn |
||
1045 | /// node). |
||
1046 | bool isInevitablySinking() const; |
||
1047 | |||
1048 | CFGTerminator getTerminator() const { return Terminator; } |
||
1049 | |||
1050 | Stmt *getTerminatorStmt() { return Terminator.getStmt(); } |
||
1051 | const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); } |
||
1052 | |||
1053 | /// \returns the last (\c rbegin()) condition, e.g. observe the following code |
||
1054 | /// snippet: |
||
1055 | /// if (A && B && C) |
||
1056 | /// A block would be created for \c A, \c B, and \c C. For the latter, |
||
1057 | /// \c getTerminatorStmt() would retrieve the entire condition, rather than |
||
1058 | /// C itself, while this method would only return C. |
||
1059 | const Expr *getLastCondition() const; |
||
1060 | |||
1061 | Stmt *getTerminatorCondition(bool StripParens = true); |
||
1062 | |||
1063 | const Stmt *getTerminatorCondition(bool StripParens = true) const { |
||
1064 | return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens); |
||
1065 | } |
||
1066 | |||
1067 | const Stmt *getLoopTarget() const { return LoopTarget; } |
||
1068 | |||
1069 | Stmt *getLabel() { return Label; } |
||
1070 | const Stmt *getLabel() const { return Label; } |
||
1071 | |||
1072 | bool hasNoReturnElement() const { return HasNoReturnElement; } |
||
1073 | |||
1074 | unsigned getBlockID() const { return BlockID; } |
||
1075 | |||
1076 | CFG *getParent() const { return Parent; } |
||
1077 | |||
1078 | void dump() const; |
||
1079 | |||
1080 | void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const; |
||
1081 | void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO, |
||
1082 | bool ShowColors) const; |
||
1083 | |||
1084 | void printTerminator(raw_ostream &OS, const LangOptions &LO) const; |
||
1085 | void printTerminatorJson(raw_ostream &Out, const LangOptions &LO, |
||
1086 | bool AddQuotes) const; |
||
1087 | |||
1088 | void printAsOperand(raw_ostream &OS, bool /*PrintType*/) { |
||
1089 | OS << "BB#" << getBlockID(); |
||
1090 | } |
||
1091 | |||
1092 | /// Adds a (potentially unreachable) successor block to the current block. |
||
1093 | void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C); |
||
1094 | |||
1095 | void appendStmt(Stmt *statement, BumpVectorContext &C) { |
||
1096 | Elements.push_back(CFGStmt(statement), C); |
||
1097 | } |
||
1098 | |||
1099 | void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC, |
||
1100 | BumpVectorContext &C) { |
||
1101 | Elements.push_back(CFGConstructor(CE, CC), C); |
||
1102 | } |
||
1103 | |||
1104 | void appendCXXRecordTypedCall(Expr *E, |
||
1105 | const ConstructionContext *CC, |
||
1106 | BumpVectorContext &C) { |
||
1107 | Elements.push_back(CFGCXXRecordTypedCall(E, CC), C); |
||
1108 | } |
||
1109 | |||
1110 | void appendInitializer(CXXCtorInitializer *initializer, |
||
1111 | BumpVectorContext &C) { |
||
1112 | Elements.push_back(CFGInitializer(initializer), C); |
||
1113 | } |
||
1114 | |||
1115 | void appendNewAllocator(CXXNewExpr *NE, |
||
1116 | BumpVectorContext &C) { |
||
1117 | Elements.push_back(CFGNewAllocator(NE), C); |
||
1118 | } |
||
1119 | |||
1120 | void appendScopeBegin(const VarDecl *VD, const Stmt *S, |
||
1121 | BumpVectorContext &C) { |
||
1122 | Elements.push_back(CFGScopeBegin(VD, S), C); |
||
1123 | } |
||
1124 | |||
1125 | void prependScopeBegin(const VarDecl *VD, const Stmt *S, |
||
1126 | BumpVectorContext &C) { |
||
1127 | Elements.insert(Elements.rbegin(), 1, CFGScopeBegin(VD, S), C); |
||
1128 | } |
||
1129 | |||
1130 | void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) { |
||
1131 | Elements.push_back(CFGScopeEnd(VD, S), C); |
||
1132 | } |
||
1133 | |||
1134 | void prependScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) { |
||
1135 | Elements.insert(Elements.rbegin(), 1, CFGScopeEnd(VD, S), C); |
||
1136 | } |
||
1137 | |||
1138 | void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) { |
||
1139 | Elements.push_back(CFGBaseDtor(BS), C); |
||
1140 | } |
||
1141 | |||
1142 | void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) { |
||
1143 | Elements.push_back(CFGMemberDtor(FD), C); |
||
1144 | } |
||
1145 | |||
1146 | void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) { |
||
1147 | Elements.push_back(CFGTemporaryDtor(E), C); |
||
1148 | } |
||
1149 | |||
1150 | void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) { |
||
1151 | Elements.push_back(CFGAutomaticObjDtor(VD, S), C); |
||
1152 | } |
||
1153 | |||
1154 | void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) { |
||
1155 | Elements.push_back(CFGLifetimeEnds(VD, S), C); |
||
1156 | } |
||
1157 | |||
1158 | void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) { |
||
1159 | Elements.push_back(CFGLoopExit(LoopStmt), C); |
||
1160 | } |
||
1161 | |||
1162 | void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) { |
||
1163 | Elements.push_back(CFGDeleteDtor(RD, DE), C); |
||
1164 | } |
||
1165 | |||
1166 | // Destructors must be inserted in reversed order. So insertion is in two |
||
1167 | // steps. First we prepare space for some number of elements, then we insert |
||
1168 | // the elements beginning at the last position in prepared space. |
||
1169 | iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt, |
||
1170 | BumpVectorContext &C) { |
||
1171 | return iterator(Elements.insert(I.base(), Cnt, |
||
1172 | CFGAutomaticObjDtor(nullptr, nullptr), C)); |
||
1173 | } |
||
1174 | iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) { |
||
1175 | *I = CFGAutomaticObjDtor(VD, S); |
||
1176 | return ++I; |
||
1177 | } |
||
1178 | |||
1179 | // Scope leaving must be performed in reversed order. So insertion is in two |
||
1180 | // steps. First we prepare space for some number of elements, then we insert |
||
1181 | // the elements beginning at the last position in prepared space. |
||
1182 | iterator beginLifetimeEndsInsert(iterator I, size_t Cnt, |
||
1183 | BumpVectorContext &C) { |
||
1184 | return iterator( |
||
1185 | Elements.insert(I.base(), Cnt, CFGLifetimeEnds(nullptr, nullptr), C)); |
||
1186 | } |
||
1187 | iterator insertLifetimeEnds(iterator I, VarDecl *VD, Stmt *S) { |
||
1188 | *I = CFGLifetimeEnds(VD, S); |
||
1189 | return ++I; |
||
1190 | } |
||
1191 | |||
1192 | // Scope leaving must be performed in reversed order. So insertion is in two |
||
1193 | // steps. First we prepare space for some number of elements, then we insert |
||
1194 | // the elements beginning at the last position in prepared space. |
||
1195 | iterator beginScopeEndInsert(iterator I, size_t Cnt, BumpVectorContext &C) { |
||
1196 | return iterator( |
||
1197 | Elements.insert(I.base(), Cnt, CFGScopeEnd(nullptr, nullptr), C)); |
||
1198 | } |
||
1199 | iterator insertScopeEnd(iterator I, VarDecl *VD, Stmt *S) { |
||
1200 | *I = CFGScopeEnd(VD, S); |
||
1201 | return ++I; |
||
1202 | } |
||
1203 | }; |
||
1204 | |||
1205 | /// CFGCallback defines methods that should be called when a logical |
||
1206 | /// operator error is found when building the CFG. |
||
1207 | class CFGCallback { |
||
1208 | public: |
||
1209 | CFGCallback() = default; |
||
1210 | virtual ~CFGCallback() = default; |
||
1211 | |||
1212 | virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {} |
||
1213 | virtual void compareBitwiseEquality(const BinaryOperator *B, |
||
1214 | bool isAlwaysTrue) {} |
||
1215 | virtual void compareBitwiseOr(const BinaryOperator *B) {} |
||
1216 | }; |
||
1217 | |||
1218 | /// Represents a source-level, intra-procedural CFG that represents the |
||
1219 | /// control-flow of a Stmt. The Stmt can represent an entire function body, |
||
1220 | /// or a single expression. A CFG will always contain one empty block that |
||
1221 | /// represents the Exit point of the CFG. A CFG will also contain a designated |
||
1222 | /// Entry block. The CFG solely represents control-flow; it consists of |
||
1223 | /// CFGBlocks which are simply containers of Stmt*'s in the AST the CFG |
||
1224 | /// was constructed from. |
||
1225 | class CFG { |
||
1226 | public: |
||
1227 | //===--------------------------------------------------------------------===// |
||
1228 | // CFG Construction & Manipulation. |
||
1229 | //===--------------------------------------------------------------------===// |
||
1230 | |||
1231 | class BuildOptions { |
||
1232 | std::bitset<Stmt::lastStmtConstant> alwaysAddMask; |
||
1233 | |||
1234 | public: |
||
1235 | using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>; |
||
1236 | |||
1237 | ForcedBlkExprs **forcedBlkExprs = nullptr; |
||
1238 | CFGCallback *Observer = nullptr; |
||
1239 | bool PruneTriviallyFalseEdges = true; |
||
1240 | bool AddEHEdges = false; |
||
1241 | bool AddInitializers = false; |
||
1242 | bool AddImplicitDtors = false; |
||
1243 | bool AddLifetime = false; |
||
1244 | bool AddLoopExit = false; |
||
1245 | bool AddTemporaryDtors = false; |
||
1246 | bool AddScopes = false; |
||
1247 | bool AddStaticInitBranches = false; |
||
1248 | bool AddCXXNewAllocator = false; |
||
1249 | bool AddCXXDefaultInitExprInCtors = false; |
||
1250 | bool AddCXXDefaultInitExprInAggregates = false; |
||
1251 | bool AddRichCXXConstructors = false; |
||
1252 | bool MarkElidedCXXConstructors = false; |
||
1253 | bool AddVirtualBaseBranches = false; |
||
1254 | bool OmitImplicitValueInitializers = false; |
||
1255 | |||
1256 | BuildOptions() = default; |
||
1257 | |||
1258 | bool alwaysAdd(const Stmt *stmt) const { |
||
1259 | return alwaysAddMask[stmt->getStmtClass()]; |
||
1260 | } |
||
1261 | |||
1262 | BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) { |
||
1263 | alwaysAddMask[stmtClass] = val; |
||
1264 | return *this; |
||
1265 | } |
||
1266 | |||
1267 | BuildOptions &setAllAlwaysAdd() { |
||
1268 | alwaysAddMask.set(); |
||
1269 | return *this; |
||
1270 | } |
||
1271 | }; |
||
1272 | |||
1273 | /// Builds a CFG from an AST. |
||
1274 | static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C, |
||
1275 | const BuildOptions &BO); |
||
1276 | |||
1277 | /// Create a new block in the CFG. The CFG owns the block; the caller should |
||
1278 | /// not directly free it. |
||
1279 | CFGBlock *createBlock(); |
||
1280 | |||
1281 | /// Set the entry block of the CFG. This is typically used only during CFG |
||
1282 | /// construction. Most CFG clients expect that the entry block has no |
||
1283 | /// predecessors and contains no statements. |
||
1284 | void setEntry(CFGBlock *B) { Entry = B; } |
||
1285 | |||
1286 | /// Set the block used for indirect goto jumps. This is typically used only |
||
1287 | /// during CFG construction. |
||
1288 | void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; } |
||
1289 | |||
1290 | //===--------------------------------------------------------------------===// |
||
1291 | // Block Iterators |
||
1292 | //===--------------------------------------------------------------------===// |
||
1293 | |||
1294 | using CFGBlockListTy = BumpVector<CFGBlock *>; |
||
1295 | using iterator = CFGBlockListTy::iterator; |
||
1296 | using const_iterator = CFGBlockListTy::const_iterator; |
||
1297 | using reverse_iterator = std::reverse_iterator<iterator>; |
||
1298 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
||
1299 | |||
1300 | CFGBlock & front() { return *Blocks.front(); } |
||
1301 | CFGBlock & back() { return *Blocks.back(); } |
||
1302 | |||
1303 | iterator begin() { return Blocks.begin(); } |
||
1304 | iterator end() { return Blocks.end(); } |
||
1305 | const_iterator begin() const { return Blocks.begin(); } |
||
1306 | const_iterator end() const { return Blocks.end(); } |
||
1307 | |||
1308 | iterator nodes_begin() { return iterator(Blocks.begin()); } |
||
1309 | iterator nodes_end() { return iterator(Blocks.end()); } |
||
1310 | |||
1311 | llvm::iterator_range<iterator> nodes() { return {begin(), end()}; } |
||
1312 | llvm::iterator_range<const_iterator> const_nodes() const { |
||
1313 | return {begin(), end()}; |
||
1314 | } |
||
1315 | |||
1316 | const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); } |
||
1317 | const_iterator nodes_end() const { return const_iterator(Blocks.end()); } |
||
1318 | |||
1319 | reverse_iterator rbegin() { return Blocks.rbegin(); } |
||
1320 | reverse_iterator rend() { return Blocks.rend(); } |
||
1321 | const_reverse_iterator rbegin() const { return Blocks.rbegin(); } |
||
1322 | const_reverse_iterator rend() const { return Blocks.rend(); } |
||
1323 | |||
1324 | llvm::iterator_range<reverse_iterator> reverse_nodes() { |
||
1325 | return {rbegin(), rend()}; |
||
1326 | } |
||
1327 | llvm::iterator_range<const_reverse_iterator> const_reverse_nodes() const { |
||
1328 | return {rbegin(), rend()}; |
||
1329 | } |
||
1330 | |||
1331 | CFGBlock & getEntry() { return *Entry; } |
||
1332 | const CFGBlock & getEntry() const { return *Entry; } |
||
1333 | CFGBlock & getExit() { return *Exit; } |
||
1334 | const CFGBlock & getExit() const { return *Exit; } |
||
1335 | |||
1336 | CFGBlock * getIndirectGotoBlock() { return IndirectGotoBlock; } |
||
1337 | const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; } |
||
1338 | |||
1339 | using try_block_iterator = std::vector<const CFGBlock *>::const_iterator; |
||
1340 | using try_block_range = llvm::iterator_range<try_block_iterator>; |
||
1341 | |||
1342 | try_block_iterator try_blocks_begin() const { |
||
1343 | return TryDispatchBlocks.begin(); |
||
1344 | } |
||
1345 | |||
1346 | try_block_iterator try_blocks_end() const { |
||
1347 | return TryDispatchBlocks.end(); |
||
1348 | } |
||
1349 | |||
1350 | try_block_range try_blocks() const { |
||
1351 | return try_block_range(try_blocks_begin(), try_blocks_end()); |
||
1352 | } |
||
1353 | |||
1354 | void addTryDispatchBlock(const CFGBlock *block) { |
||
1355 | TryDispatchBlocks.push_back(block); |
||
1356 | } |
||
1357 | |||
1358 | /// Records a synthetic DeclStmt and the DeclStmt it was constructed from. |
||
1359 | /// |
||
1360 | /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains |
||
1361 | /// multiple decls. |
||
1362 | void addSyntheticDeclStmt(const DeclStmt *Synthetic, |
||
1363 | const DeclStmt *Source) { |
||
1364 | assert(Synthetic->isSingleDecl() && "Can handle single declarations only"); |
||
1365 | assert(Synthetic != Source && "Don't include original DeclStmts in map"); |
||
1366 | assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map"); |
||
1367 | SyntheticDeclStmts[Synthetic] = Source; |
||
1368 | } |
||
1369 | |||
1370 | using synthetic_stmt_iterator = |
||
1371 | llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator; |
||
1372 | using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>; |
||
1373 | |||
1374 | /// Iterates over synthetic DeclStmts in the CFG. |
||
1375 | /// |
||
1376 | /// Each element is a (synthetic statement, source statement) pair. |
||
1377 | /// |
||
1378 | /// \sa addSyntheticDeclStmt |
||
1379 | synthetic_stmt_iterator synthetic_stmt_begin() const { |
||
1380 | return SyntheticDeclStmts.begin(); |
||
1381 | } |
||
1382 | |||
1383 | /// \sa synthetic_stmt_begin |
||
1384 | synthetic_stmt_iterator synthetic_stmt_end() const { |
||
1385 | return SyntheticDeclStmts.end(); |
||
1386 | } |
||
1387 | |||
1388 | /// \sa synthetic_stmt_begin |
||
1389 | synthetic_stmt_range synthetic_stmts() const { |
||
1390 | return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end()); |
||
1391 | } |
||
1392 | |||
1393 | //===--------------------------------------------------------------------===// |
||
1394 | // Member templates useful for various batch operations over CFGs. |
||
1395 | //===--------------------------------------------------------------------===// |
||
1396 | |||
1397 | template <typename Callback> void VisitBlockStmts(Callback &O) const { |
||
1398 | for (const_iterator I = begin(), E = end(); I != E; ++I) |
||
1399 | for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end(); |
||
1400 | BI != BE; ++BI) { |
||
1401 | if (std::optional<CFGStmt> stmt = BI->getAs<CFGStmt>()) |
||
1402 | O(const_cast<Stmt *>(stmt->getStmt())); |
||
1403 | } |
||
1404 | } |
||
1405 | |||
1406 | //===--------------------------------------------------------------------===// |
||
1407 | // CFG Introspection. |
||
1408 | //===--------------------------------------------------------------------===// |
||
1409 | |||
1410 | /// Returns the total number of BlockIDs allocated (which start at 0). |
||
1411 | unsigned getNumBlockIDs() const { return NumBlockIDs; } |
||
1412 | |||
1413 | /// Return the total number of CFGBlocks within the CFG This is simply a |
||
1414 | /// renaming of the getNumBlockIDs(). This is necessary because the dominator |
||
1415 | /// implementation needs such an interface. |
||
1416 | unsigned size() const { return NumBlockIDs; } |
||
1417 | |||
1418 | /// Returns true if the CFG has no branches. Usually it boils down to the CFG |
||
1419 | /// having exactly three blocks (entry, the actual code, exit), but sometimes |
||
1420 | /// more blocks appear due to having control flow that can be fully |
||
1421 | /// resolved in compile time. |
||
1422 | bool isLinear() const; |
||
1423 | |||
1424 | //===--------------------------------------------------------------------===// |
||
1425 | // CFG Debugging: Pretty-Printing and Visualization. |
||
1426 | //===--------------------------------------------------------------------===// |
||
1427 | |||
1428 | void viewCFG(const LangOptions &LO) const; |
||
1429 | void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const; |
||
1430 | void dump(const LangOptions &LO, bool ShowColors) const; |
||
1431 | |||
1432 | //===--------------------------------------------------------------------===// |
||
1433 | // Internal: constructors and data. |
||
1434 | //===--------------------------------------------------------------------===// |
||
1435 | |||
1436 | CFG() : Blocks(BlkBVC, 10) {} |
||
1437 | |||
1438 | llvm::BumpPtrAllocator& getAllocator() { |
||
1439 | return BlkBVC.getAllocator(); |
||
1440 | } |
||
1441 | |||
1442 | BumpVectorContext &getBumpVectorContext() { |
||
1443 | return BlkBVC; |
||
1444 | } |
||
1445 | |||
1446 | private: |
||
1447 | CFGBlock *Entry = nullptr; |
||
1448 | CFGBlock *Exit = nullptr; |
||
1449 | |||
1450 | // Special block to contain collective dispatch for indirect gotos |
||
1451 | CFGBlock* IndirectGotoBlock = nullptr; |
||
1452 | |||
1453 | unsigned NumBlockIDs = 0; |
||
1454 | |||
1455 | BumpVectorContext BlkBVC; |
||
1456 | |||
1457 | CFGBlockListTy Blocks; |
||
1458 | |||
1459 | /// C++ 'try' statements are modeled with an indirect dispatch block. |
||
1460 | /// This is the collection of such blocks present in the CFG. |
||
1461 | std::vector<const CFGBlock *> TryDispatchBlocks; |
||
1462 | |||
1463 | /// Collects DeclStmts synthesized for this CFG and maps each one back to its |
||
1464 | /// source DeclStmt. |
||
1465 | llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts; |
||
1466 | }; |
||
1467 | |||
1468 | Expr *extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE); |
||
1469 | |||
1470 | } // namespace clang |
||
1471 | |||
1472 | //===----------------------------------------------------------------------===// |
||
1473 | // GraphTraits specializations for CFG basic block graphs (source-level CFGs) |
||
1474 | //===----------------------------------------------------------------------===// |
||
1475 | |||
1476 | namespace llvm { |
||
1477 | |||
1478 | /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from |
||
1479 | /// CFGTerminator to a specific Stmt class. |
||
1480 | template <> struct simplify_type< ::clang::CFGTerminator> { |
||
1481 | using SimpleType = ::clang::Stmt *; |
||
1482 | |||
1483 | static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) { |
||
1484 | return Val.getStmt(); |
||
1485 | } |
||
1486 | }; |
||
1487 | |||
1488 | // Traits for: CFGBlock |
||
1489 | |||
1490 | template <> struct GraphTraits< ::clang::CFGBlock *> { |
||
1491 | using NodeRef = ::clang::CFGBlock *; |
||
1492 | using ChildIteratorType = ::clang::CFGBlock::succ_iterator; |
||
1493 | |||
1494 | static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; } |
||
1495 | static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
||
1496 | static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
||
1497 | }; |
||
1498 | |||
1499 | template <> struct GraphTraits< const ::clang::CFGBlock *> { |
||
1500 | using NodeRef = const ::clang::CFGBlock *; |
||
1501 | using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator; |
||
1502 | |||
1503 | static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; } |
||
1504 | static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
||
1505 | static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
||
1506 | }; |
||
1507 | |||
1508 | template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> { |
||
1509 | using NodeRef = ::clang::CFGBlock *; |
||
1510 | using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator; |
||
1511 | |||
1512 | static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) { |
||
1513 | return G.Graph; |
||
1514 | } |
||
1515 | |||
1516 | static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } |
||
1517 | static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } |
||
1518 | }; |
||
1519 | |||
1520 | template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> { |
||
1521 | using NodeRef = const ::clang::CFGBlock *; |
||
1522 | using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator; |
||
1523 | |||
1524 | static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) { |
||
1525 | return G.Graph; |
||
1526 | } |
||
1527 | |||
1528 | static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } |
||
1529 | static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } |
||
1530 | }; |
||
1531 | |||
1532 | // Traits for: CFG |
||
1533 | |||
1534 | template <> struct GraphTraits< ::clang::CFG* > |
||
1535 | : public GraphTraits< ::clang::CFGBlock *> { |
||
1536 | using nodes_iterator = ::clang::CFG::iterator; |
||
1537 | |||
1538 | static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); } |
||
1539 | static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();} |
||
1540 | static nodes_iterator nodes_end(::clang::CFG* F) { return F->nodes_end(); } |
||
1541 | static unsigned size(::clang::CFG* F) { return F->size(); } |
||
1542 | }; |
||
1543 | |||
1544 | template <> struct GraphTraits<const ::clang::CFG* > |
||
1545 | : public GraphTraits<const ::clang::CFGBlock *> { |
||
1546 | using nodes_iterator = ::clang::CFG::const_iterator; |
||
1547 | |||
1548 | static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); } |
||
1549 | |||
1550 | static nodes_iterator nodes_begin( const ::clang::CFG* F) { |
||
1551 | return F->nodes_begin(); |
||
1552 | } |
||
1553 | |||
1554 | static nodes_iterator nodes_end( const ::clang::CFG* F) { |
||
1555 | return F->nodes_end(); |
||
1556 | } |
||
1557 | |||
1558 | static unsigned size(const ::clang::CFG* F) { |
||
1559 | return F->size(); |
||
1560 | } |
||
1561 | }; |
||
1562 | |||
1563 | template <> struct GraphTraits<Inverse< ::clang::CFG *>> |
||
1564 | : public GraphTraits<Inverse< ::clang::CFGBlock *>> { |
||
1565 | using nodes_iterator = ::clang::CFG::iterator; |
||
1566 | |||
1567 | static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); } |
||
1568 | static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();} |
||
1569 | static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); } |
||
1570 | }; |
||
1571 | |||
1572 | template <> struct GraphTraits<Inverse<const ::clang::CFG *>> |
||
1573 | : public GraphTraits<Inverse<const ::clang::CFGBlock *>> { |
||
1574 | using nodes_iterator = ::clang::CFG::const_iterator; |
||
1575 | |||
1576 | static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); } |
||
1577 | |||
1578 | static nodes_iterator nodes_begin(const ::clang::CFG* F) { |
||
1579 | return F->nodes_begin(); |
||
1580 | } |
||
1581 | |||
1582 | static nodes_iterator nodes_end(const ::clang::CFG* F) { |
||
1583 | return F->nodes_end(); |
||
1584 | } |
||
1585 | }; |
||
1586 | |||
1587 | } // namespace llvm |
||
1588 | |||
1589 | #endif // LLVM_CLANG_ANALYSIS_CFG_H |