Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- ThreadSafetyUtil.h ---------------------------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file defines some basic utility classes for use by ThreadSafetyTIL.h |
||
| 10 | // |
||
| 11 | //===----------------------------------------------------------------------===// |
||
| 12 | |||
| 13 | #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H |
||
| 14 | #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H |
||
| 15 | |||
| 16 | #include "clang/AST/Decl.h" |
||
| 17 | #include "clang/Basic/LLVM.h" |
||
| 18 | #include "llvm/ADT/StringRef.h" |
||
| 19 | #include "llvm/ADT/iterator_range.h" |
||
| 20 | #include "llvm/Support/Allocator.h" |
||
| 21 | #include <cassert> |
||
| 22 | #include <cstddef> |
||
| 23 | #include <cstring> |
||
| 24 | #include <iterator> |
||
| 25 | #include <ostream> |
||
| 26 | #include <string> |
||
| 27 | #include <vector> |
||
| 28 | |||
| 29 | namespace clang { |
||
| 30 | |||
| 31 | class Expr; |
||
| 32 | |||
| 33 | namespace threadSafety { |
||
| 34 | namespace til { |
||
| 35 | |||
| 36 | // Simple wrapper class to abstract away from the details of memory management. |
||
| 37 | // SExprs are allocated in pools, and deallocated all at once. |
||
| 38 | class MemRegionRef { |
||
| 39 | private: |
||
| 40 | union AlignmentType { |
||
| 41 | double d; |
||
| 42 | void *p; |
||
| 43 | long double dd; |
||
| 44 | long long ii; |
||
| 45 | }; |
||
| 46 | |||
| 47 | public: |
||
| 48 | MemRegionRef() = default; |
||
| 49 | MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {} |
||
| 50 | |||
| 51 | void *allocate(size_t Sz) { |
||
| 52 | return Allocator->Allocate(Sz, alignof(AlignmentType)); |
||
| 53 | } |
||
| 54 | |||
| 55 | template <typename T> T *allocateT() { return Allocator->Allocate<T>(); } |
||
| 56 | |||
| 57 | template <typename T> T *allocateT(size_t NumElems) { |
||
| 58 | return Allocator->Allocate<T>(NumElems); |
||
| 59 | } |
||
| 60 | |||
| 61 | private: |
||
| 62 | llvm::BumpPtrAllocator *Allocator = nullptr; |
||
| 63 | }; |
||
| 64 | |||
| 65 | } // namespace til |
||
| 66 | } // namespace threadSafety |
||
| 67 | |||
| 68 | } // namespace clang |
||
| 69 | |||
| 70 | inline void *operator new(size_t Sz, |
||
| 71 | clang::threadSafety::til::MemRegionRef &R) { |
||
| 72 | return R.allocate(Sz); |
||
| 73 | } |
||
| 74 | |||
| 75 | namespace clang { |
||
| 76 | namespace threadSafety { |
||
| 77 | |||
| 78 | std::string getSourceLiteralString(const Expr *CE); |
||
| 79 | |||
| 80 | namespace til { |
||
| 81 | |||
| 82 | // A simple fixed size array class that does not manage its own memory, |
||
| 83 | // suitable for use with bump pointer allocation. |
||
| 84 | template <class T> class SimpleArray { |
||
| 85 | public: |
||
| 86 | SimpleArray() = default; |
||
| 87 | SimpleArray(T *Dat, size_t Cp, size_t Sz = 0) |
||
| 88 | : Data(Dat), Size(Sz), Capacity(Cp) {} |
||
| 89 | SimpleArray(MemRegionRef A, size_t Cp) |
||
| 90 | : Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Capacity(Cp) {} |
||
| 91 | SimpleArray(const SimpleArray<T> &A) = delete; |
||
| 92 | |||
| 93 | SimpleArray(SimpleArray<T> &&A) |
||
| 94 | : Data(A.Data), Size(A.Size), Capacity(A.Capacity) { |
||
| 95 | A.Data = nullptr; |
||
| 96 | A.Size = 0; |
||
| 97 | A.Capacity = 0; |
||
| 98 | } |
||
| 99 | |||
| 100 | SimpleArray &operator=(SimpleArray &&RHS) { |
||
| 101 | if (this != &RHS) { |
||
| 102 | Data = RHS.Data; |
||
| 103 | Size = RHS.Size; |
||
| 104 | Capacity = RHS.Capacity; |
||
| 105 | |||
| 106 | RHS.Data = nullptr; |
||
| 107 | RHS.Size = RHS.Capacity = 0; |
||
| 108 | } |
||
| 109 | return *this; |
||
| 110 | } |
||
| 111 | |||
| 112 | // Reserve space for at least Ncp items, reallocating if necessary. |
||
| 113 | void reserve(size_t Ncp, MemRegionRef A) { |
||
| 114 | if (Ncp <= Capacity) |
||
| 115 | return; |
||
| 116 | T *Odata = Data; |
||
| 117 | Data = A.allocateT<T>(Ncp); |
||
| 118 | Capacity = Ncp; |
||
| 119 | memcpy(Data, Odata, sizeof(T) * Size); |
||
| 120 | } |
||
| 121 | |||
| 122 | // Reserve space for at least N more items. |
||
| 123 | void reserveCheck(size_t N, MemRegionRef A) { |
||
| 124 | if (Capacity == 0) |
||
| 125 | reserve(u_max(InitialCapacity, N), A); |
||
| 126 | else if (Size + N < Capacity) |
||
| 127 | reserve(u_max(Size + N, Capacity * 2), A); |
||
| 128 | } |
||
| 129 | |||
| 130 | using iterator = T *; |
||
| 131 | using const_iterator = const T *; |
||
| 132 | using reverse_iterator = std::reverse_iterator<iterator>; |
||
| 133 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
||
| 134 | |||
| 135 | size_t size() const { return Size; } |
||
| 136 | size_t capacity() const { return Capacity; } |
||
| 137 | |||
| 138 | T &operator[](unsigned i) { |
||
| 139 | assert(i < Size && "Array index out of bounds."); |
||
| 140 | return Data[i]; |
||
| 141 | } |
||
| 142 | |||
| 143 | const T &operator[](unsigned i) const { |
||
| 144 | assert(i < Size && "Array index out of bounds."); |
||
| 145 | return Data[i]; |
||
| 146 | } |
||
| 147 | |||
| 148 | T &back() { |
||
| 149 | assert(Size && "No elements in the array."); |
||
| 150 | return Data[Size - 1]; |
||
| 151 | } |
||
| 152 | |||
| 153 | const T &back() const { |
||
| 154 | assert(Size && "No elements in the array."); |
||
| 155 | return Data[Size - 1]; |
||
| 156 | } |
||
| 157 | |||
| 158 | iterator begin() { return Data; } |
||
| 159 | iterator end() { return Data + Size; } |
||
| 160 | |||
| 161 | const_iterator begin() const { return Data; } |
||
| 162 | const_iterator end() const { return Data + Size; } |
||
| 163 | |||
| 164 | const_iterator cbegin() const { return Data; } |
||
| 165 | const_iterator cend() const { return Data + Size; } |
||
| 166 | |||
| 167 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
||
| 168 | reverse_iterator rend() { return reverse_iterator(begin()); } |
||
| 169 | |||
| 170 | const_reverse_iterator rbegin() const { |
||
| 171 | return const_reverse_iterator(end()); |
||
| 172 | } |
||
| 173 | |||
| 174 | const_reverse_iterator rend() const { |
||
| 175 | return const_reverse_iterator(begin()); |
||
| 176 | } |
||
| 177 | |||
| 178 | void push_back(const T &Elem) { |
||
| 179 | assert(Size < Capacity); |
||
| 180 | Data[Size++] = Elem; |
||
| 181 | } |
||
| 182 | |||
| 183 | // drop last n elements from array |
||
| 184 | void drop(unsigned n = 0) { |
||
| 185 | assert(Size > n); |
||
| 186 | Size -= n; |
||
| 187 | } |
||
| 188 | |||
| 189 | void setValues(unsigned Sz, const T& C) { |
||
| 190 | assert(Sz <= Capacity); |
||
| 191 | Size = Sz; |
||
| 192 | for (unsigned i = 0; i < Sz; ++i) { |
||
| 193 | Data[i] = C; |
||
| 194 | } |
||
| 195 | } |
||
| 196 | |||
| 197 | template <class Iter> unsigned append(Iter I, Iter E) { |
||
| 198 | size_t Osz = Size; |
||
| 199 | size_t J = Osz; |
||
| 200 | for (; J < Capacity && I != E; ++J, ++I) |
||
| 201 | Data[J] = *I; |
||
| 202 | Size = J; |
||
| 203 | return J - Osz; |
||
| 204 | } |
||
| 205 | |||
| 206 | llvm::iterator_range<reverse_iterator> reverse() { |
||
| 207 | return llvm::reverse(*this); |
||
| 208 | } |
||
| 209 | |||
| 210 | llvm::iterator_range<const_reverse_iterator> reverse() const { |
||
| 211 | return llvm::reverse(*this); |
||
| 212 | } |
||
| 213 | |||
| 214 | private: |
||
| 215 | // std::max is annoying here, because it requires a reference, |
||
| 216 | // thus forcing InitialCapacity to be initialized outside the .h file. |
||
| 217 | size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; } |
||
| 218 | |||
| 219 | static const size_t InitialCapacity = 4; |
||
| 220 | |||
| 221 | T *Data = nullptr; |
||
| 222 | size_t Size = 0; |
||
| 223 | size_t Capacity = 0; |
||
| 224 | }; |
||
| 225 | |||
| 226 | } // namespace til |
||
| 227 | |||
| 228 | // A copy on write vector. |
||
| 229 | // The vector can be in one of three states: |
||
| 230 | // * invalid -- no operations are permitted. |
||
| 231 | // * read-only -- read operations are permitted. |
||
| 232 | // * writable -- read and write operations are permitted. |
||
| 233 | // The init(), destroy(), and makeWritable() methods will change state. |
||
| 234 | template<typename T> |
||
| 235 | class CopyOnWriteVector { |
||
| 236 | class VectorData { |
||
| 237 | public: |
||
| 238 | unsigned NumRefs = 1; |
||
| 239 | std::vector<T> Vect; |
||
| 240 | |||
| 241 | VectorData() = default; |
||
| 242 | VectorData(const VectorData &VD) : Vect(VD.Vect) {} |
||
| 243 | }; |
||
| 244 | |||
| 245 | public: |
||
| 246 | CopyOnWriteVector() = default; |
||
| 247 | CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; } |
||
| 248 | |||
| 249 | CopyOnWriteVector &operator=(CopyOnWriteVector &&V) { |
||
| 250 | destroy(); |
||
| 251 | Data = V.Data; |
||
| 252 | V.Data = nullptr; |
||
| 253 | return *this; |
||
| 254 | } |
||
| 255 | |||
| 256 | // No copy constructor or copy assignment. Use clone() with move assignment. |
||
| 257 | CopyOnWriteVector(const CopyOnWriteVector &) = delete; |
||
| 258 | CopyOnWriteVector &operator=(const CopyOnWriteVector &) = delete; |
||
| 259 | |||
| 260 | ~CopyOnWriteVector() { destroy(); } |
||
| 261 | |||
| 262 | // Returns true if this holds a valid vector. |
||
| 263 | bool valid() const { return Data; } |
||
| 264 | |||
| 265 | // Returns true if this vector is writable. |
||
| 266 | bool writable() const { return Data && Data->NumRefs == 1; } |
||
| 267 | |||
| 268 | // If this vector is not valid, initialize it to a valid vector. |
||
| 269 | void init() { |
||
| 270 | if (!Data) { |
||
| 271 | Data = new VectorData(); |
||
| 272 | } |
||
| 273 | } |
||
| 274 | |||
| 275 | // Destroy this vector; thus making it invalid. |
||
| 276 | void destroy() { |
||
| 277 | if (!Data) |
||
| 278 | return; |
||
| 279 | if (Data->NumRefs <= 1) |
||
| 280 | delete Data; |
||
| 281 | else |
||
| 282 | --Data->NumRefs; |
||
| 283 | Data = nullptr; |
||
| 284 | } |
||
| 285 | |||
| 286 | // Make this vector writable, creating a copy if needed. |
||
| 287 | void makeWritable() { |
||
| 288 | if (!Data) { |
||
| 289 | Data = new VectorData(); |
||
| 290 | return; |
||
| 291 | } |
||
| 292 | if (Data->NumRefs == 1) |
||
| 293 | return; // already writeable. |
||
| 294 | --Data->NumRefs; |
||
| 295 | Data = new VectorData(*Data); |
||
| 296 | } |
||
| 297 | |||
| 298 | // Create a lazy copy of this vector. |
||
| 299 | CopyOnWriteVector clone() { return CopyOnWriteVector(Data); } |
||
| 300 | |||
| 301 | using const_iterator = typename std::vector<T>::const_iterator; |
||
| 302 | |||
| 303 | const std::vector<T> &elements() const { return Data->Vect; } |
||
| 304 | |||
| 305 | const_iterator begin() const { return elements().cbegin(); } |
||
| 306 | const_iterator end() const { return elements().cend(); } |
||
| 307 | |||
| 308 | const T& operator[](unsigned i) const { return elements()[i]; } |
||
| 309 | |||
| 310 | unsigned size() const { return Data ? elements().size() : 0; } |
||
| 311 | |||
| 312 | // Return true if V and this vector refer to the same data. |
||
| 313 | bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; } |
||
| 314 | |||
| 315 | // Clear vector. The vector must be writable. |
||
| 316 | void clear() { |
||
| 317 | assert(writable() && "Vector is not writable!"); |
||
| 318 | Data->Vect.clear(); |
||
| 319 | } |
||
| 320 | |||
| 321 | // Push a new element onto the end. The vector must be writable. |
||
| 322 | void push_back(const T &Elem) { |
||
| 323 | assert(writable() && "Vector is not writable!"); |
||
| 324 | Data->Vect.push_back(Elem); |
||
| 325 | } |
||
| 326 | |||
| 327 | // Gets a mutable reference to the element at index(i). |
||
| 328 | // The vector must be writable. |
||
| 329 | T& elem(unsigned i) { |
||
| 330 | assert(writable() && "Vector is not writable!"); |
||
| 331 | return Data->Vect[i]; |
||
| 332 | } |
||
| 333 | |||
| 334 | // Drops elements from the back until the vector has size i. |
||
| 335 | void downsize(unsigned i) { |
||
| 336 | assert(writable() && "Vector is not writable!"); |
||
| 337 | Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end()); |
||
| 338 | } |
||
| 339 | |||
| 340 | private: |
||
| 341 | CopyOnWriteVector(VectorData *D) : Data(D) { |
||
| 342 | if (!Data) |
||
| 343 | return; |
||
| 344 | ++Data->NumRefs; |
||
| 345 | } |
||
| 346 | |||
| 347 | VectorData *Data = nullptr; |
||
| 348 | }; |
||
| 349 | |||
| 350 | inline std::ostream& operator<<(std::ostream& ss, const StringRef str) { |
||
| 351 | return ss.write(str.data(), str.size()); |
||
| 352 | } |
||
| 353 | |||
| 354 | } // namespace threadSafety |
||
| 355 | } // namespace clang |
||
| 356 | |||
| 357 | #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H |