Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines a simple Typed Intermediate Language, or TIL, that is used |
||
10 | // by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended |
||
11 | // to be largely independent of clang, in the hope that the analysis can be |
||
12 | // reused for other non-C++ languages. All dependencies on clang/llvm should |
||
13 | // go in ThreadSafetyUtil.h. |
||
14 | // |
||
15 | // Thread safety analysis works by comparing mutex expressions, e.g. |
||
16 | // |
||
17 | // class A { Mutex mu; int dat GUARDED_BY(this->mu); } |
||
18 | // class B { A a; } |
||
19 | // |
||
20 | // void foo(B* b) { |
||
21 | // (*b).a.mu.lock(); // locks (*b).a.mu |
||
22 | // b->a.dat = 0; // substitute &b->a for 'this'; |
||
23 | // // requires lock on (&b->a)->mu |
||
24 | // (b->a.mu).unlock(); // unlocks (b->a.mu) |
||
25 | // } |
||
26 | // |
||
27 | // As illustrated by the above example, clang Exprs are not well-suited to |
||
28 | // represent mutex expressions directly, since there is no easy way to compare |
||
29 | // Exprs for equivalence. The thread safety analysis thus lowers clang Exprs |
||
30 | // into a simple intermediate language (IL). The IL supports: |
||
31 | // |
||
32 | // (1) comparisons for semantic equality of expressions |
||
33 | // (2) SSA renaming of variables |
||
34 | // (3) wildcards and pattern matching over expressions |
||
35 | // (4) hash-based expression lookup |
||
36 | // |
||
37 | // The TIL is currently very experimental, is intended only for use within |
||
38 | // the thread safety analysis, and is subject to change without notice. |
||
39 | // After the API stabilizes and matures, it may be appropriate to make this |
||
40 | // more generally available to other analyses. |
||
41 | // |
||
42 | // UNDER CONSTRUCTION. USE AT YOUR OWN RISK. |
||
43 | // |
||
44 | //===----------------------------------------------------------------------===// |
||
45 | |||
46 | #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H |
||
47 | #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H |
||
48 | |||
49 | #include "clang/AST/Decl.h" |
||
50 | #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" |
||
51 | #include "clang/Basic/LLVM.h" |
||
52 | #include "llvm/ADT/ArrayRef.h" |
||
53 | #include "llvm/ADT/StringRef.h" |
||
54 | #include "llvm/Support/Casting.h" |
||
55 | #include "llvm/Support/raw_ostream.h" |
||
56 | #include <algorithm> |
||
57 | #include <cassert> |
||
58 | #include <cstddef> |
||
59 | #include <cstdint> |
||
60 | #include <iterator> |
||
61 | #include <optional> |
||
62 | #include <string> |
||
63 | #include <utility> |
||
64 | |||
65 | namespace clang { |
||
66 | |||
67 | class CallExpr; |
||
68 | class Expr; |
||
69 | class Stmt; |
||
70 | |||
71 | namespace threadSafety { |
||
72 | namespace til { |
||
73 | |||
74 | class BasicBlock; |
||
75 | |||
76 | /// Enum for the different distinct classes of SExpr |
||
77 | enum TIL_Opcode : unsigned char { |
||
78 | #define TIL_OPCODE_DEF(X) COP_##X, |
||
79 | #include "ThreadSafetyOps.def" |
||
80 | #undef TIL_OPCODE_DEF |
||
81 | }; |
||
82 | |||
83 | /// Opcode for unary arithmetic operations. |
||
84 | enum TIL_UnaryOpcode : unsigned char { |
||
85 | UOP_Minus, // - |
||
86 | UOP_BitNot, // ~ |
||
87 | UOP_LogicNot // ! |
||
88 | }; |
||
89 | |||
90 | /// Opcode for binary arithmetic operations. |
||
91 | enum TIL_BinaryOpcode : unsigned char { |
||
92 | BOP_Add, // + |
||
93 | BOP_Sub, // - |
||
94 | BOP_Mul, // * |
||
95 | BOP_Div, // / |
||
96 | BOP_Rem, // % |
||
97 | BOP_Shl, // << |
||
98 | BOP_Shr, // >> |
||
99 | BOP_BitAnd, // & |
||
100 | BOP_BitXor, // ^ |
||
101 | BOP_BitOr, // | |
||
102 | BOP_Eq, // == |
||
103 | BOP_Neq, // != |
||
104 | BOP_Lt, // < |
||
105 | BOP_Leq, // <= |
||
106 | BOP_Cmp, // <=> |
||
107 | BOP_LogicAnd, // && (no short-circuit) |
||
108 | BOP_LogicOr // || (no short-circuit) |
||
109 | }; |
||
110 | |||
111 | /// Opcode for cast operations. |
||
112 | enum TIL_CastOpcode : unsigned char { |
||
113 | CAST_none = 0, |
||
114 | |||
115 | // Extend precision of numeric type |
||
116 | CAST_extendNum, |
||
117 | |||
118 | // Truncate precision of numeric type |
||
119 | CAST_truncNum, |
||
120 | |||
121 | // Convert to floating point type |
||
122 | CAST_toFloat, |
||
123 | |||
124 | // Convert to integer type |
||
125 | CAST_toInt, |
||
126 | |||
127 | // Convert smart pointer to pointer (C++ only) |
||
128 | CAST_objToPtr |
||
129 | }; |
||
130 | |||
131 | const TIL_Opcode COP_Min = COP_Future; |
||
132 | const TIL_Opcode COP_Max = COP_Branch; |
||
133 | const TIL_UnaryOpcode UOP_Min = UOP_Minus; |
||
134 | const TIL_UnaryOpcode UOP_Max = UOP_LogicNot; |
||
135 | const TIL_BinaryOpcode BOP_Min = BOP_Add; |
||
136 | const TIL_BinaryOpcode BOP_Max = BOP_LogicOr; |
||
137 | const TIL_CastOpcode CAST_Min = CAST_none; |
||
138 | const TIL_CastOpcode CAST_Max = CAST_toInt; |
||
139 | |||
140 | /// Return the name of a unary opcode. |
||
141 | StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op); |
||
142 | |||
143 | /// Return the name of a binary opcode. |
||
144 | StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op); |
||
145 | |||
146 | /// ValueTypes are data types that can actually be held in registers. |
||
147 | /// All variables and expressions must have a value type. |
||
148 | /// Pointer types are further subdivided into the various heap-allocated |
||
149 | /// types, such as functions, records, etc. |
||
150 | /// Structured types that are passed by value (e.g. complex numbers) |
||
151 | /// require special handling; they use BT_ValueRef, and size ST_0. |
||
152 | struct ValueType { |
||
153 | enum BaseType : unsigned char { |
||
154 | BT_Void = 0, |
||
155 | BT_Bool, |
||
156 | BT_Int, |
||
157 | BT_Float, |
||
158 | BT_String, // String literals |
||
159 | BT_Pointer, |
||
160 | BT_ValueRef |
||
161 | }; |
||
162 | |||
163 | enum SizeType : unsigned char { |
||
164 | ST_0 = 0, |
||
165 | ST_1, |
||
166 | ST_8, |
||
167 | ST_16, |
||
168 | ST_32, |
||
169 | ST_64, |
||
170 | ST_128 |
||
171 | }; |
||
172 | |||
173 | ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS) |
||
174 | : Base(B), Size(Sz), Signed(S), VectSize(VS) {} |
||
175 | |||
176 | inline static SizeType getSizeType(unsigned nbytes); |
||
177 | |||
178 | template <class T> |
||
179 | inline static ValueType getValueType(); |
||
180 | |||
181 | BaseType Base; |
||
182 | SizeType Size; |
||
183 | bool Signed; |
||
184 | |||
185 | // 0 for scalar, otherwise num elements in vector |
||
186 | unsigned char VectSize; |
||
187 | }; |
||
188 | |||
189 | inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) { |
||
190 | switch (nbytes) { |
||
191 | case 1: return ST_8; |
||
192 | case 2: return ST_16; |
||
193 | case 4: return ST_32; |
||
194 | case 8: return ST_64; |
||
195 | case 16: return ST_128; |
||
196 | default: return ST_0; |
||
197 | } |
||
198 | } |
||
199 | |||
200 | template<> |
||
201 | inline ValueType ValueType::getValueType<void>() { |
||
202 | return ValueType(BT_Void, ST_0, false, 0); |
||
203 | } |
||
204 | |||
205 | template<> |
||
206 | inline ValueType ValueType::getValueType<bool>() { |
||
207 | return ValueType(BT_Bool, ST_1, false, 0); |
||
208 | } |
||
209 | |||
210 | template<> |
||
211 | inline ValueType ValueType::getValueType<int8_t>() { |
||
212 | return ValueType(BT_Int, ST_8, true, 0); |
||
213 | } |
||
214 | |||
215 | template<> |
||
216 | inline ValueType ValueType::getValueType<uint8_t>() { |
||
217 | return ValueType(BT_Int, ST_8, false, 0); |
||
218 | } |
||
219 | |||
220 | template<> |
||
221 | inline ValueType ValueType::getValueType<int16_t>() { |
||
222 | return ValueType(BT_Int, ST_16, true, 0); |
||
223 | } |
||
224 | |||
225 | template<> |
||
226 | inline ValueType ValueType::getValueType<uint16_t>() { |
||
227 | return ValueType(BT_Int, ST_16, false, 0); |
||
228 | } |
||
229 | |||
230 | template<> |
||
231 | inline ValueType ValueType::getValueType<int32_t>() { |
||
232 | return ValueType(BT_Int, ST_32, true, 0); |
||
233 | } |
||
234 | |||
235 | template<> |
||
236 | inline ValueType ValueType::getValueType<uint32_t>() { |
||
237 | return ValueType(BT_Int, ST_32, false, 0); |
||
238 | } |
||
239 | |||
240 | template<> |
||
241 | inline ValueType ValueType::getValueType<int64_t>() { |
||
242 | return ValueType(BT_Int, ST_64, true, 0); |
||
243 | } |
||
244 | |||
245 | template<> |
||
246 | inline ValueType ValueType::getValueType<uint64_t>() { |
||
247 | return ValueType(BT_Int, ST_64, false, 0); |
||
248 | } |
||
249 | |||
250 | template<> |
||
251 | inline ValueType ValueType::getValueType<float>() { |
||
252 | return ValueType(BT_Float, ST_32, true, 0); |
||
253 | } |
||
254 | |||
255 | template<> |
||
256 | inline ValueType ValueType::getValueType<double>() { |
||
257 | return ValueType(BT_Float, ST_64, true, 0); |
||
258 | } |
||
259 | |||
260 | template<> |
||
261 | inline ValueType ValueType::getValueType<long double>() { |
||
262 | return ValueType(BT_Float, ST_128, true, 0); |
||
263 | } |
||
264 | |||
265 | template<> |
||
266 | inline ValueType ValueType::getValueType<StringRef>() { |
||
267 | return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0); |
||
268 | } |
||
269 | |||
270 | template<> |
||
271 | inline ValueType ValueType::getValueType<void*>() { |
||
272 | return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0); |
||
273 | } |
||
274 | |||
275 | /// Base class for AST nodes in the typed intermediate language. |
||
276 | class SExpr { |
||
277 | public: |
||
278 | SExpr() = delete; |
||
279 | |||
280 | TIL_Opcode opcode() const { return Opcode; } |
||
281 | |||
282 | // Subclasses of SExpr must define the following: |
||
283 | // |
||
284 | // This(const This& E, ...) { |
||
285 | // copy constructor: construct copy of E, with some additional arguments. |
||
286 | // } |
||
287 | // |
||
288 | // template <class V> |
||
289 | // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
290 | // traverse all subexpressions, following the traversal/rewriter interface. |
||
291 | // } |
||
292 | // |
||
293 | // template <class C> typename C::CType compare(CType* E, C& Cmp) { |
||
294 | // compare all subexpressions, following the comparator interface |
||
295 | // } |
||
296 | void *operator new(size_t S, MemRegionRef &R) { |
||
297 | return ::operator new(S, R); |
||
298 | } |
||
299 | |||
300 | /// SExpr objects must be created in an arena. |
||
301 | void *operator new(size_t) = delete; |
||
302 | |||
303 | /// SExpr objects cannot be deleted. |
||
304 | // This declaration is public to workaround a gcc bug that breaks building |
||
305 | // with REQUIRES_EH=1. |
||
306 | void operator delete(void *) = delete; |
||
307 | |||
308 | /// Returns the instruction ID for this expression. |
||
309 | /// All basic block instructions have a unique ID (i.e. virtual register). |
||
310 | unsigned id() const { return SExprID; } |
||
311 | |||
312 | /// Returns the block, if this is an instruction in a basic block, |
||
313 | /// otherwise returns null. |
||
314 | BasicBlock *block() const { return Block; } |
||
315 | |||
316 | /// Set the basic block and instruction ID for this expression. |
||
317 | void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; } |
||
318 | |||
319 | protected: |
||
320 | SExpr(TIL_Opcode Op) : Opcode(Op) {} |
||
321 | SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {} |
||
322 | |||
323 | const TIL_Opcode Opcode; |
||
324 | unsigned char Reserved = 0; |
||
325 | unsigned short Flags = 0; |
||
326 | unsigned SExprID = 0; |
||
327 | BasicBlock *Block = nullptr; |
||
328 | }; |
||
329 | |||
330 | // Contains various helper functions for SExprs. |
||
331 | namespace ThreadSafetyTIL { |
||
332 | |||
333 | inline bool isTrivial(const SExpr *E) { |
||
334 | TIL_Opcode Op = E->opcode(); |
||
335 | return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr; |
||
336 | } |
||
337 | |||
338 | } // namespace ThreadSafetyTIL |
||
339 | |||
340 | // Nodes which declare variables |
||
341 | |||
342 | /// A named variable, e.g. "x". |
||
343 | /// |
||
344 | /// There are two distinct places in which a Variable can appear in the AST. |
||
345 | /// A variable declaration introduces a new variable, and can occur in 3 places: |
||
346 | /// Let-expressions: (Let (x = t) u) |
||
347 | /// Functions: (Function (x : t) u) |
||
348 | /// Self-applicable functions (SFunction (x) t) |
||
349 | /// |
||
350 | /// If a variable occurs in any other location, it is a reference to an existing |
||
351 | /// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't |
||
352 | /// allocate a separate AST node for variable references; a reference is just a |
||
353 | /// pointer to the original declaration. |
||
354 | class Variable : public SExpr { |
||
355 | public: |
||
356 | enum VariableKind { |
||
357 | /// Let-variable |
||
358 | VK_Let, |
||
359 | |||
360 | /// Function parameter |
||
361 | VK_Fun, |
||
362 | |||
363 | /// SFunction (self) parameter |
||
364 | VK_SFun |
||
365 | }; |
||
366 | |||
367 | Variable(StringRef s, SExpr *D = nullptr) |
||
368 | : SExpr(COP_Variable), Name(s), Definition(D) { |
||
369 | Flags = VK_Let; |
||
370 | } |
||
371 | |||
372 | Variable(SExpr *D, const ValueDecl *Cvd = nullptr) |
||
373 | : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"), |
||
374 | Definition(D), Cvdecl(Cvd) { |
||
375 | Flags = VK_Let; |
||
376 | } |
||
377 | |||
378 | Variable(const Variable &Vd, SExpr *D) // rewrite constructor |
||
379 | : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) { |
||
380 | Flags = Vd.kind(); |
||
381 | } |
||
382 | |||
383 | static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; } |
||
384 | |||
385 | /// Return the kind of variable (let, function param, or self) |
||
386 | VariableKind kind() const { return static_cast<VariableKind>(Flags); } |
||
387 | |||
388 | /// Return the name of the variable, if any. |
||
389 | StringRef name() const { return Name; } |
||
390 | |||
391 | /// Return the clang declaration for this variable, if any. |
||
392 | const ValueDecl *clangDecl() const { return Cvdecl; } |
||
393 | |||
394 | /// Return the definition of the variable. |
||
395 | /// For let-vars, this is the setting expression. |
||
396 | /// For function and self parameters, it is the type of the variable. |
||
397 | SExpr *definition() { return Definition; } |
||
398 | const SExpr *definition() const { return Definition; } |
||
399 | |||
400 | void setName(StringRef S) { Name = S; } |
||
401 | void setKind(VariableKind K) { Flags = K; } |
||
402 | void setDefinition(SExpr *E) { Definition = E; } |
||
403 | void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; } |
||
404 | |||
405 | template <class V> |
||
406 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
407 | // This routine is only called for variable references. |
||
408 | return Vs.reduceVariableRef(this); |
||
409 | } |
||
410 | |||
411 | template <class C> |
||
412 | typename C::CType compare(const Variable* E, C& Cmp) const { |
||
413 | return Cmp.compareVariableRefs(this, E); |
||
414 | } |
||
415 | |||
416 | private: |
||
417 | friend class BasicBlock; |
||
418 | friend class Function; |
||
419 | friend class Let; |
||
420 | friend class SFunction; |
||
421 | |||
422 | // The name of the variable. |
||
423 | StringRef Name; |
||
424 | |||
425 | // The TIL type or definition. |
||
426 | SExpr *Definition; |
||
427 | |||
428 | // The clang declaration for this variable. |
||
429 | const ValueDecl *Cvdecl = nullptr; |
||
430 | }; |
||
431 | |||
432 | /// Placeholder for an expression that has not yet been created. |
||
433 | /// Used to implement lazy copy and rewriting strategies. |
||
434 | class Future : public SExpr { |
||
435 | public: |
||
436 | enum FutureStatus { |
||
437 | FS_pending, |
||
438 | FS_evaluating, |
||
439 | FS_done |
||
440 | }; |
||
441 | |||
442 | Future() : SExpr(COP_Future) {} |
||
443 | virtual ~Future() = delete; |
||
444 | |||
445 | static bool classof(const SExpr *E) { return E->opcode() == COP_Future; } |
||
446 | |||
447 | // A lazy rewriting strategy should subclass Future and override this method. |
||
448 | virtual SExpr *compute() { return nullptr; } |
||
449 | |||
450 | // Return the result of this future if it exists, otherwise return null. |
||
451 | SExpr *maybeGetResult() const { return Result; } |
||
452 | |||
453 | // Return the result of this future; forcing it if necessary. |
||
454 | SExpr *result() { |
||
455 | switch (Status) { |
||
456 | case FS_pending: |
||
457 | return force(); |
||
458 | case FS_evaluating: |
||
459 | return nullptr; // infinite loop; illegal recursion. |
||
460 | case FS_done: |
||
461 | return Result; |
||
462 | } |
||
463 | } |
||
464 | |||
465 | template <class V> |
||
466 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
467 | assert(Result && "Cannot traverse Future that has not been forced."); |
||
468 | return Vs.traverse(Result, Ctx); |
||
469 | } |
||
470 | |||
471 | template <class C> |
||
472 | typename C::CType compare(const Future* E, C& Cmp) const { |
||
473 | if (!Result || !E->Result) |
||
474 | return Cmp.comparePointers(this, E); |
||
475 | return Cmp.compare(Result, E->Result); |
||
476 | } |
||
477 | |||
478 | private: |
||
479 | SExpr* force(); |
||
480 | |||
481 | FutureStatus Status = FS_pending; |
||
482 | SExpr *Result = nullptr; |
||
483 | }; |
||
484 | |||
485 | /// Placeholder for expressions that cannot be represented in the TIL. |
||
486 | class Undefined : public SExpr { |
||
487 | public: |
||
488 | Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {} |
||
489 | Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {} |
||
490 | |||
491 | static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; } |
||
492 | |||
493 | template <class V> |
||
494 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
495 | return Vs.reduceUndefined(*this); |
||
496 | } |
||
497 | |||
498 | template <class C> |
||
499 | typename C::CType compare(const Undefined* E, C& Cmp) const { |
||
500 | return Cmp.trueResult(); |
||
501 | } |
||
502 | |||
503 | private: |
||
504 | const Stmt *Cstmt; |
||
505 | }; |
||
506 | |||
507 | /// Placeholder for a wildcard that matches any other expression. |
||
508 | class Wildcard : public SExpr { |
||
509 | public: |
||
510 | Wildcard() : SExpr(COP_Wildcard) {} |
||
511 | Wildcard(const Wildcard &) = default; |
||
512 | |||
513 | static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; } |
||
514 | |||
515 | template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
516 | return Vs.reduceWildcard(*this); |
||
517 | } |
||
518 | |||
519 | template <class C> |
||
520 | typename C::CType compare(const Wildcard* E, C& Cmp) const { |
||
521 | return Cmp.trueResult(); |
||
522 | } |
||
523 | }; |
||
524 | |||
525 | template <class T> class LiteralT; |
||
526 | |||
527 | // Base class for literal values. |
||
528 | class Literal : public SExpr { |
||
529 | public: |
||
530 | Literal(const Expr *C) |
||
531 | : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {} |
||
532 | Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {} |
||
533 | Literal(const Literal &) = default; |
||
534 | |||
535 | static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; } |
||
536 | |||
537 | // The clang expression for this literal. |
||
538 | const Expr *clangExpr() const { return Cexpr; } |
||
539 | |||
540 | ValueType valueType() const { return ValType; } |
||
541 | |||
542 | template<class T> const LiteralT<T>& as() const { |
||
543 | return *static_cast<const LiteralT<T>*>(this); |
||
544 | } |
||
545 | template<class T> LiteralT<T>& as() { |
||
546 | return *static_cast<LiteralT<T>*>(this); |
||
547 | } |
||
548 | |||
549 | template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx); |
||
550 | |||
551 | template <class C> |
||
552 | typename C::CType compare(const Literal* E, C& Cmp) const { |
||
553 | // TODO: defer actual comparison to LiteralT |
||
554 | return Cmp.trueResult(); |
||
555 | } |
||
556 | |||
557 | private: |
||
558 | const ValueType ValType; |
||
559 | const Expr *Cexpr = nullptr; |
||
560 | }; |
||
561 | |||
562 | // Derived class for literal values, which stores the actual value. |
||
563 | template<class T> |
||
564 | class LiteralT : public Literal { |
||
565 | public: |
||
566 | LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {} |
||
567 | LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {} |
||
568 | |||
569 | T value() const { return Val;} |
||
570 | T& value() { return Val; } |
||
571 | |||
572 | private: |
||
573 | T Val; |
||
574 | }; |
||
575 | |||
576 | template <class V> |
||
577 | typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
578 | if (Cexpr) |
||
579 | return Vs.reduceLiteral(*this); |
||
580 | |||
581 | switch (ValType.Base) { |
||
582 | case ValueType::BT_Void: |
||
583 | break; |
||
584 | case ValueType::BT_Bool: |
||
585 | return Vs.reduceLiteralT(as<bool>()); |
||
586 | case ValueType::BT_Int: { |
||
587 | switch (ValType.Size) { |
||
588 | case ValueType::ST_8: |
||
589 | if (ValType.Signed) |
||
590 | return Vs.reduceLiteralT(as<int8_t>()); |
||
591 | else |
||
592 | return Vs.reduceLiteralT(as<uint8_t>()); |
||
593 | case ValueType::ST_16: |
||
594 | if (ValType.Signed) |
||
595 | return Vs.reduceLiteralT(as<int16_t>()); |
||
596 | else |
||
597 | return Vs.reduceLiteralT(as<uint16_t>()); |
||
598 | case ValueType::ST_32: |
||
599 | if (ValType.Signed) |
||
600 | return Vs.reduceLiteralT(as<int32_t>()); |
||
601 | else |
||
602 | return Vs.reduceLiteralT(as<uint32_t>()); |
||
603 | case ValueType::ST_64: |
||
604 | if (ValType.Signed) |
||
605 | return Vs.reduceLiteralT(as<int64_t>()); |
||
606 | else |
||
607 | return Vs.reduceLiteralT(as<uint64_t>()); |
||
608 | default: |
||
609 | break; |
||
610 | } |
||
611 | } |
||
612 | case ValueType::BT_Float: { |
||
613 | switch (ValType.Size) { |
||
614 | case ValueType::ST_32: |
||
615 | return Vs.reduceLiteralT(as<float>()); |
||
616 | case ValueType::ST_64: |
||
617 | return Vs.reduceLiteralT(as<double>()); |
||
618 | default: |
||
619 | break; |
||
620 | } |
||
621 | } |
||
622 | case ValueType::BT_String: |
||
623 | return Vs.reduceLiteralT(as<StringRef>()); |
||
624 | case ValueType::BT_Pointer: |
||
625 | return Vs.reduceLiteralT(as<void*>()); |
||
626 | case ValueType::BT_ValueRef: |
||
627 | break; |
||
628 | } |
||
629 | return Vs.reduceLiteral(*this); |
||
630 | } |
||
631 | |||
632 | /// A Literal pointer to an object allocated in memory. |
||
633 | /// At compile time, pointer literals are represented by symbolic names. |
||
634 | class LiteralPtr : public SExpr { |
||
635 | public: |
||
636 | LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {} |
||
637 | LiteralPtr(const LiteralPtr &) = default; |
||
638 | |||
639 | static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; } |
||
640 | |||
641 | // The clang declaration for the value that this pointer points to. |
||
642 | const ValueDecl *clangDecl() const { return Cvdecl; } |
||
643 | void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; } |
||
644 | |||
645 | template <class V> |
||
646 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
647 | return Vs.reduceLiteralPtr(*this); |
||
648 | } |
||
649 | |||
650 | template <class C> |
||
651 | typename C::CType compare(const LiteralPtr* E, C& Cmp) const { |
||
652 | if (!Cvdecl || !E->Cvdecl) |
||
653 | return Cmp.comparePointers(this, E); |
||
654 | return Cmp.comparePointers(Cvdecl, E->Cvdecl); |
||
655 | } |
||
656 | |||
657 | private: |
||
658 | const ValueDecl *Cvdecl; |
||
659 | }; |
||
660 | |||
661 | /// A function -- a.k.a. lambda abstraction. |
||
662 | /// Functions with multiple arguments are created by currying, |
||
663 | /// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y }))) |
||
664 | class Function : public SExpr { |
||
665 | public: |
||
666 | Function(Variable *Vd, SExpr *Bd) |
||
667 | : SExpr(COP_Function), VarDecl(Vd), Body(Bd) { |
||
668 | Vd->setKind(Variable::VK_Fun); |
||
669 | } |
||
670 | |||
671 | Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor |
||
672 | : SExpr(F), VarDecl(Vd), Body(Bd) { |
||
673 | Vd->setKind(Variable::VK_Fun); |
||
674 | } |
||
675 | |||
676 | static bool classof(const SExpr *E) { return E->opcode() == COP_Function; } |
||
677 | |||
678 | Variable *variableDecl() { return VarDecl; } |
||
679 | const Variable *variableDecl() const { return VarDecl; } |
||
680 | |||
681 | SExpr *body() { return Body; } |
||
682 | const SExpr *body() const { return Body; } |
||
683 | |||
684 | template <class V> |
||
685 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
686 | // This is a variable declaration, so traverse the definition. |
||
687 | auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx)); |
||
688 | // Tell the rewriter to enter the scope of the function. |
||
689 | Variable *Nvd = Vs.enterScope(*VarDecl, E0); |
||
690 | auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx)); |
||
691 | Vs.exitScope(*VarDecl); |
||
692 | return Vs.reduceFunction(*this, Nvd, E1); |
||
693 | } |
||
694 | |||
695 | template <class C> |
||
696 | typename C::CType compare(const Function* E, C& Cmp) const { |
||
697 | typename C::CType Ct = |
||
698 | Cmp.compare(VarDecl->definition(), E->VarDecl->definition()); |
||
699 | if (Cmp.notTrue(Ct)) |
||
700 | return Ct; |
||
701 | Cmp.enterScope(variableDecl(), E->variableDecl()); |
||
702 | Ct = Cmp.compare(body(), E->body()); |
||
703 | Cmp.leaveScope(); |
||
704 | return Ct; |
||
705 | } |
||
706 | |||
707 | private: |
||
708 | Variable *VarDecl; |
||
709 | SExpr* Body; |
||
710 | }; |
||
711 | |||
712 | /// A self-applicable function. |
||
713 | /// A self-applicable function can be applied to itself. It's useful for |
||
714 | /// implementing objects and late binding. |
||
715 | class SFunction : public SExpr { |
||
716 | public: |
||
717 | SFunction(Variable *Vd, SExpr *B) |
||
718 | : SExpr(COP_SFunction), VarDecl(Vd), Body(B) { |
||
719 | assert(Vd->Definition == nullptr); |
||
720 | Vd->setKind(Variable::VK_SFun); |
||
721 | Vd->Definition = this; |
||
722 | } |
||
723 | |||
724 | SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor |
||
725 | : SExpr(F), VarDecl(Vd), Body(B) { |
||
726 | assert(Vd->Definition == nullptr); |
||
727 | Vd->setKind(Variable::VK_SFun); |
||
728 | Vd->Definition = this; |
||
729 | } |
||
730 | |||
731 | static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; } |
||
732 | |||
733 | Variable *variableDecl() { return VarDecl; } |
||
734 | const Variable *variableDecl() const { return VarDecl; } |
||
735 | |||
736 | SExpr *body() { return Body; } |
||
737 | const SExpr *body() const { return Body; } |
||
738 | |||
739 | template <class V> |
||
740 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
741 | // A self-variable points to the SFunction itself. |
||
742 | // A rewrite must introduce the variable with a null definition, and update |
||
743 | // it after 'this' has been rewritten. |
||
744 | Variable *Nvd = Vs.enterScope(*VarDecl, nullptr); |
||
745 | auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx)); |
||
746 | Vs.exitScope(*VarDecl); |
||
747 | // A rewrite operation will call SFun constructor to set Vvd->Definition. |
||
748 | return Vs.reduceSFunction(*this, Nvd, E1); |
||
749 | } |
||
750 | |||
751 | template <class C> |
||
752 | typename C::CType compare(const SFunction* E, C& Cmp) const { |
||
753 | Cmp.enterScope(variableDecl(), E->variableDecl()); |
||
754 | typename C::CType Ct = Cmp.compare(body(), E->body()); |
||
755 | Cmp.leaveScope(); |
||
756 | return Ct; |
||
757 | } |
||
758 | |||
759 | private: |
||
760 | Variable *VarDecl; |
||
761 | SExpr* Body; |
||
762 | }; |
||
763 | |||
764 | /// A block of code -- e.g. the body of a function. |
||
765 | class Code : public SExpr { |
||
766 | public: |
||
767 | Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {} |
||
768 | Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor |
||
769 | : SExpr(C), ReturnType(T), Body(B) {} |
||
770 | |||
771 | static bool classof(const SExpr *E) { return E->opcode() == COP_Code; } |
||
772 | |||
773 | SExpr *returnType() { return ReturnType; } |
||
774 | const SExpr *returnType() const { return ReturnType; } |
||
775 | |||
776 | SExpr *body() { return Body; } |
||
777 | const SExpr *body() const { return Body; } |
||
778 | |||
779 | template <class V> |
||
780 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
781 | auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx)); |
||
782 | auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx)); |
||
783 | return Vs.reduceCode(*this, Nt, Nb); |
||
784 | } |
||
785 | |||
786 | template <class C> |
||
787 | typename C::CType compare(const Code* E, C& Cmp) const { |
||
788 | typename C::CType Ct = Cmp.compare(returnType(), E->returnType()); |
||
789 | if (Cmp.notTrue(Ct)) |
||
790 | return Ct; |
||
791 | return Cmp.compare(body(), E->body()); |
||
792 | } |
||
793 | |||
794 | private: |
||
795 | SExpr* ReturnType; |
||
796 | SExpr* Body; |
||
797 | }; |
||
798 | |||
799 | /// A typed, writable location in memory |
||
800 | class Field : public SExpr { |
||
801 | public: |
||
802 | Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {} |
||
803 | Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor |
||
804 | : SExpr(C), Range(R), Body(B) {} |
||
805 | |||
806 | static bool classof(const SExpr *E) { return E->opcode() == COP_Field; } |
||
807 | |||
808 | SExpr *range() { return Range; } |
||
809 | const SExpr *range() const { return Range; } |
||
810 | |||
811 | SExpr *body() { return Body; } |
||
812 | const SExpr *body() const { return Body; } |
||
813 | |||
814 | template <class V> |
||
815 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
816 | auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx)); |
||
817 | auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx)); |
||
818 | return Vs.reduceField(*this, Nr, Nb); |
||
819 | } |
||
820 | |||
821 | template <class C> |
||
822 | typename C::CType compare(const Field* E, C& Cmp) const { |
||
823 | typename C::CType Ct = Cmp.compare(range(), E->range()); |
||
824 | if (Cmp.notTrue(Ct)) |
||
825 | return Ct; |
||
826 | return Cmp.compare(body(), E->body()); |
||
827 | } |
||
828 | |||
829 | private: |
||
830 | SExpr* Range; |
||
831 | SExpr* Body; |
||
832 | }; |
||
833 | |||
834 | /// Apply an argument to a function. |
||
835 | /// Note that this does not actually call the function. Functions are curried, |
||
836 | /// so this returns a closure in which the first parameter has been applied. |
||
837 | /// Once all parameters have been applied, Call can be used to invoke the |
||
838 | /// function. |
||
839 | class Apply : public SExpr { |
||
840 | public: |
||
841 | Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {} |
||
842 | Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor |
||
843 | : SExpr(A), Fun(F), Arg(Ar) {} |
||
844 | |||
845 | static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; } |
||
846 | |||
847 | SExpr *fun() { return Fun; } |
||
848 | const SExpr *fun() const { return Fun; } |
||
849 | |||
850 | SExpr *arg() { return Arg; } |
||
851 | const SExpr *arg() const { return Arg; } |
||
852 | |||
853 | template <class V> |
||
854 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
855 | auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx)); |
||
856 | auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx)); |
||
857 | return Vs.reduceApply(*this, Nf, Na); |
||
858 | } |
||
859 | |||
860 | template <class C> |
||
861 | typename C::CType compare(const Apply* E, C& Cmp) const { |
||
862 | typename C::CType Ct = Cmp.compare(fun(), E->fun()); |
||
863 | if (Cmp.notTrue(Ct)) |
||
864 | return Ct; |
||
865 | return Cmp.compare(arg(), E->arg()); |
||
866 | } |
||
867 | |||
868 | private: |
||
869 | SExpr* Fun; |
||
870 | SExpr* Arg; |
||
871 | }; |
||
872 | |||
873 | /// Apply a self-argument to a self-applicable function. |
||
874 | class SApply : public SExpr { |
||
875 | public: |
||
876 | SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {} |
||
877 | SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor |
||
878 | : SExpr(A), Sfun(Sf), Arg(Ar) {} |
||
879 | |||
880 | static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; } |
||
881 | |||
882 | SExpr *sfun() { return Sfun; } |
||
883 | const SExpr *sfun() const { return Sfun; } |
||
884 | |||
885 | SExpr *arg() { return Arg ? Arg : Sfun; } |
||
886 | const SExpr *arg() const { return Arg ? Arg : Sfun; } |
||
887 | |||
888 | bool isDelegation() const { return Arg != nullptr; } |
||
889 | |||
890 | template <class V> |
||
891 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
892 | auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx)); |
||
893 | typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx)) |
||
894 | : nullptr; |
||
895 | return Vs.reduceSApply(*this, Nf, Na); |
||
896 | } |
||
897 | |||
898 | template <class C> |
||
899 | typename C::CType compare(const SApply* E, C& Cmp) const { |
||
900 | typename C::CType Ct = Cmp.compare(sfun(), E->sfun()); |
||
901 | if (Cmp.notTrue(Ct) || (!arg() && !E->arg())) |
||
902 | return Ct; |
||
903 | return Cmp.compare(arg(), E->arg()); |
||
904 | } |
||
905 | |||
906 | private: |
||
907 | SExpr* Sfun; |
||
908 | SExpr* Arg; |
||
909 | }; |
||
910 | |||
911 | /// Project a named slot from a C++ struct or class. |
||
912 | class Project : public SExpr { |
||
913 | public: |
||
914 | Project(SExpr *R, const ValueDecl *Cvd) |
||
915 | : SExpr(COP_Project), Rec(R), Cvdecl(Cvd) { |
||
916 | assert(Cvd && "ValueDecl must not be null"); |
||
917 | } |
||
918 | |||
919 | static bool classof(const SExpr *E) { return E->opcode() == COP_Project; } |
||
920 | |||
921 | SExpr *record() { return Rec; } |
||
922 | const SExpr *record() const { return Rec; } |
||
923 | |||
924 | const ValueDecl *clangDecl() const { return Cvdecl; } |
||
925 | |||
926 | bool isArrow() const { return (Flags & 0x01) != 0; } |
||
927 | |||
928 | void setArrow(bool b) { |
||
929 | if (b) Flags |= 0x01; |
||
930 | else Flags &= 0xFFFE; |
||
931 | } |
||
932 | |||
933 | StringRef slotName() const { |
||
934 | if (Cvdecl->getDeclName().isIdentifier()) |
||
935 | return Cvdecl->getName(); |
||
936 | if (!SlotName) { |
||
937 | SlotName = ""; |
||
938 | llvm::raw_string_ostream OS(*SlotName); |
||
939 | Cvdecl->printName(OS); |
||
940 | } |
||
941 | return *SlotName; |
||
942 | } |
||
943 | |||
944 | template <class V> |
||
945 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
946 | auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx)); |
||
947 | return Vs.reduceProject(*this, Nr); |
||
948 | } |
||
949 | |||
950 | template <class C> |
||
951 | typename C::CType compare(const Project* E, C& Cmp) const { |
||
952 | typename C::CType Ct = Cmp.compare(record(), E->record()); |
||
953 | if (Cmp.notTrue(Ct)) |
||
954 | return Ct; |
||
955 | return Cmp.comparePointers(Cvdecl, E->Cvdecl); |
||
956 | } |
||
957 | |||
958 | private: |
||
959 | SExpr* Rec; |
||
960 | mutable std::optional<std::string> SlotName; |
||
961 | const ValueDecl *Cvdecl; |
||
962 | }; |
||
963 | |||
964 | /// Call a function (after all arguments have been applied). |
||
965 | class Call : public SExpr { |
||
966 | public: |
||
967 | Call(SExpr *T, const CallExpr *Ce = nullptr) |
||
968 | : SExpr(COP_Call), Target(T), Cexpr(Ce) {} |
||
969 | Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {} |
||
970 | |||
971 | static bool classof(const SExpr *E) { return E->opcode() == COP_Call; } |
||
972 | |||
973 | SExpr *target() { return Target; } |
||
974 | const SExpr *target() const { return Target; } |
||
975 | |||
976 | const CallExpr *clangCallExpr() const { return Cexpr; } |
||
977 | |||
978 | template <class V> |
||
979 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
980 | auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx)); |
||
981 | return Vs.reduceCall(*this, Nt); |
||
982 | } |
||
983 | |||
984 | template <class C> |
||
985 | typename C::CType compare(const Call* E, C& Cmp) const { |
||
986 | return Cmp.compare(target(), E->target()); |
||
987 | } |
||
988 | |||
989 | private: |
||
990 | SExpr* Target; |
||
991 | const CallExpr *Cexpr; |
||
992 | }; |
||
993 | |||
994 | /// Allocate memory for a new value on the heap or stack. |
||
995 | class Alloc : public SExpr { |
||
996 | public: |
||
997 | enum AllocKind { |
||
998 | AK_Stack, |
||
999 | AK_Heap |
||
1000 | }; |
||
1001 | |||
1002 | Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; } |
||
1003 | Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); } |
||
1004 | |||
1005 | static bool classof(const SExpr *E) { return E->opcode() == COP_Call; } |
||
1006 | |||
1007 | AllocKind kind() const { return static_cast<AllocKind>(Flags); } |
||
1008 | |||
1009 | SExpr *dataType() { return Dtype; } |
||
1010 | const SExpr *dataType() const { return Dtype; } |
||
1011 | |||
1012 | template <class V> |
||
1013 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1014 | auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx)); |
||
1015 | return Vs.reduceAlloc(*this, Nd); |
||
1016 | } |
||
1017 | |||
1018 | template <class C> |
||
1019 | typename C::CType compare(const Alloc* E, C& Cmp) const { |
||
1020 | typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind()); |
||
1021 | if (Cmp.notTrue(Ct)) |
||
1022 | return Ct; |
||
1023 | return Cmp.compare(dataType(), E->dataType()); |
||
1024 | } |
||
1025 | |||
1026 | private: |
||
1027 | SExpr* Dtype; |
||
1028 | }; |
||
1029 | |||
1030 | /// Load a value from memory. |
||
1031 | class Load : public SExpr { |
||
1032 | public: |
||
1033 | Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {} |
||
1034 | Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {} |
||
1035 | |||
1036 | static bool classof(const SExpr *E) { return E->opcode() == COP_Load; } |
||
1037 | |||
1038 | SExpr *pointer() { return Ptr; } |
||
1039 | const SExpr *pointer() const { return Ptr; } |
||
1040 | |||
1041 | template <class V> |
||
1042 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1043 | auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx)); |
||
1044 | return Vs.reduceLoad(*this, Np); |
||
1045 | } |
||
1046 | |||
1047 | template <class C> |
||
1048 | typename C::CType compare(const Load* E, C& Cmp) const { |
||
1049 | return Cmp.compare(pointer(), E->pointer()); |
||
1050 | } |
||
1051 | |||
1052 | private: |
||
1053 | SExpr* Ptr; |
||
1054 | }; |
||
1055 | |||
1056 | /// Store a value to memory. |
||
1057 | /// The destination is a pointer to a field, the source is the value to store. |
||
1058 | class Store : public SExpr { |
||
1059 | public: |
||
1060 | Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {} |
||
1061 | Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {} |
||
1062 | |||
1063 | static bool classof(const SExpr *E) { return E->opcode() == COP_Store; } |
||
1064 | |||
1065 | SExpr *destination() { return Dest; } // Address to store to |
||
1066 | const SExpr *destination() const { return Dest; } |
||
1067 | |||
1068 | SExpr *source() { return Source; } // Value to store |
||
1069 | const SExpr *source() const { return Source; } |
||
1070 | |||
1071 | template <class V> |
||
1072 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1073 | auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx)); |
||
1074 | auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx)); |
||
1075 | return Vs.reduceStore(*this, Np, Nv); |
||
1076 | } |
||
1077 | |||
1078 | template <class C> |
||
1079 | typename C::CType compare(const Store* E, C& Cmp) const { |
||
1080 | typename C::CType Ct = Cmp.compare(destination(), E->destination()); |
||
1081 | if (Cmp.notTrue(Ct)) |
||
1082 | return Ct; |
||
1083 | return Cmp.compare(source(), E->source()); |
||
1084 | } |
||
1085 | |||
1086 | private: |
||
1087 | SExpr* Dest; |
||
1088 | SExpr* Source; |
||
1089 | }; |
||
1090 | |||
1091 | /// If p is a reference to an array, then p[i] is a reference to the i'th |
||
1092 | /// element of the array. |
||
1093 | class ArrayIndex : public SExpr { |
||
1094 | public: |
||
1095 | ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {} |
||
1096 | ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N) |
||
1097 | : SExpr(E), Array(A), Index(N) {} |
||
1098 | |||
1099 | static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; } |
||
1100 | |||
1101 | SExpr *array() { return Array; } |
||
1102 | const SExpr *array() const { return Array; } |
||
1103 | |||
1104 | SExpr *index() { return Index; } |
||
1105 | const SExpr *index() const { return Index; } |
||
1106 | |||
1107 | template <class V> |
||
1108 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1109 | auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx)); |
||
1110 | auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx)); |
||
1111 | return Vs.reduceArrayIndex(*this, Na, Ni); |
||
1112 | } |
||
1113 | |||
1114 | template <class C> |
||
1115 | typename C::CType compare(const ArrayIndex* E, C& Cmp) const { |
||
1116 | typename C::CType Ct = Cmp.compare(array(), E->array()); |
||
1117 | if (Cmp.notTrue(Ct)) |
||
1118 | return Ct; |
||
1119 | return Cmp.compare(index(), E->index()); |
||
1120 | } |
||
1121 | |||
1122 | private: |
||
1123 | SExpr* Array; |
||
1124 | SExpr* Index; |
||
1125 | }; |
||
1126 | |||
1127 | /// Pointer arithmetic, restricted to arrays only. |
||
1128 | /// If p is a reference to an array, then p + n, where n is an integer, is |
||
1129 | /// a reference to a subarray. |
||
1130 | class ArrayAdd : public SExpr { |
||
1131 | public: |
||
1132 | ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {} |
||
1133 | ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N) |
||
1134 | : SExpr(E), Array(A), Index(N) {} |
||
1135 | |||
1136 | static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; } |
||
1137 | |||
1138 | SExpr *array() { return Array; } |
||
1139 | const SExpr *array() const { return Array; } |
||
1140 | |||
1141 | SExpr *index() { return Index; } |
||
1142 | const SExpr *index() const { return Index; } |
||
1143 | |||
1144 | template <class V> |
||
1145 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1146 | auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx)); |
||
1147 | auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx)); |
||
1148 | return Vs.reduceArrayAdd(*this, Na, Ni); |
||
1149 | } |
||
1150 | |||
1151 | template <class C> |
||
1152 | typename C::CType compare(const ArrayAdd* E, C& Cmp) const { |
||
1153 | typename C::CType Ct = Cmp.compare(array(), E->array()); |
||
1154 | if (Cmp.notTrue(Ct)) |
||
1155 | return Ct; |
||
1156 | return Cmp.compare(index(), E->index()); |
||
1157 | } |
||
1158 | |||
1159 | private: |
||
1160 | SExpr* Array; |
||
1161 | SExpr* Index; |
||
1162 | }; |
||
1163 | |||
1164 | /// Simple arithmetic unary operations, e.g. negate and not. |
||
1165 | /// These operations have no side-effects. |
||
1166 | class UnaryOp : public SExpr { |
||
1167 | public: |
||
1168 | UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) { |
||
1169 | Flags = Op; |
||
1170 | } |
||
1171 | |||
1172 | UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; } |
||
1173 | |||
1174 | static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; } |
||
1175 | |||
1176 | TIL_UnaryOpcode unaryOpcode() const { |
||
1177 | return static_cast<TIL_UnaryOpcode>(Flags); |
||
1178 | } |
||
1179 | |||
1180 | SExpr *expr() { return Expr0; } |
||
1181 | const SExpr *expr() const { return Expr0; } |
||
1182 | |||
1183 | template <class V> |
||
1184 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1185 | auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx)); |
||
1186 | return Vs.reduceUnaryOp(*this, Ne); |
||
1187 | } |
||
1188 | |||
1189 | template <class C> |
||
1190 | typename C::CType compare(const UnaryOp* E, C& Cmp) const { |
||
1191 | typename C::CType Ct = |
||
1192 | Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode()); |
||
1193 | if (Cmp.notTrue(Ct)) |
||
1194 | return Ct; |
||
1195 | return Cmp.compare(expr(), E->expr()); |
||
1196 | } |
||
1197 | |||
1198 | private: |
||
1199 | SExpr* Expr0; |
||
1200 | }; |
||
1201 | |||
1202 | /// Simple arithmetic binary operations, e.g. +, -, etc. |
||
1203 | /// These operations have no side effects. |
||
1204 | class BinaryOp : public SExpr { |
||
1205 | public: |
||
1206 | BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1) |
||
1207 | : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) { |
||
1208 | Flags = Op; |
||
1209 | } |
||
1210 | |||
1211 | BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1) |
||
1212 | : SExpr(B), Expr0(E0), Expr1(E1) { |
||
1213 | Flags = B.Flags; |
||
1214 | } |
||
1215 | |||
1216 | static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; } |
||
1217 | |||
1218 | TIL_BinaryOpcode binaryOpcode() const { |
||
1219 | return static_cast<TIL_BinaryOpcode>(Flags); |
||
1220 | } |
||
1221 | |||
1222 | SExpr *expr0() { return Expr0; } |
||
1223 | const SExpr *expr0() const { return Expr0; } |
||
1224 | |||
1225 | SExpr *expr1() { return Expr1; } |
||
1226 | const SExpr *expr1() const { return Expr1; } |
||
1227 | |||
1228 | template <class V> |
||
1229 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1230 | auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx)); |
||
1231 | auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx)); |
||
1232 | return Vs.reduceBinaryOp(*this, Ne0, Ne1); |
||
1233 | } |
||
1234 | |||
1235 | template <class C> |
||
1236 | typename C::CType compare(const BinaryOp* E, C& Cmp) const { |
||
1237 | typename C::CType Ct = |
||
1238 | Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode()); |
||
1239 | if (Cmp.notTrue(Ct)) |
||
1240 | return Ct; |
||
1241 | Ct = Cmp.compare(expr0(), E->expr0()); |
||
1242 | if (Cmp.notTrue(Ct)) |
||
1243 | return Ct; |
||
1244 | return Cmp.compare(expr1(), E->expr1()); |
||
1245 | } |
||
1246 | |||
1247 | private: |
||
1248 | SExpr* Expr0; |
||
1249 | SExpr* Expr1; |
||
1250 | }; |
||
1251 | |||
1252 | /// Cast expressions. |
||
1253 | /// Cast expressions are essentially unary operations, but we treat them |
||
1254 | /// as a distinct AST node because they only change the type of the result. |
||
1255 | class Cast : public SExpr { |
||
1256 | public: |
||
1257 | Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; } |
||
1258 | Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; } |
||
1259 | |||
1260 | static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; } |
||
1261 | |||
1262 | TIL_CastOpcode castOpcode() const { |
||
1263 | return static_cast<TIL_CastOpcode>(Flags); |
||
1264 | } |
||
1265 | |||
1266 | SExpr *expr() { return Expr0; } |
||
1267 | const SExpr *expr() const { return Expr0; } |
||
1268 | |||
1269 | template <class V> |
||
1270 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1271 | auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx)); |
||
1272 | return Vs.reduceCast(*this, Ne); |
||
1273 | } |
||
1274 | |||
1275 | template <class C> |
||
1276 | typename C::CType compare(const Cast* E, C& Cmp) const { |
||
1277 | typename C::CType Ct = |
||
1278 | Cmp.compareIntegers(castOpcode(), E->castOpcode()); |
||
1279 | if (Cmp.notTrue(Ct)) |
||
1280 | return Ct; |
||
1281 | return Cmp.compare(expr(), E->expr()); |
||
1282 | } |
||
1283 | |||
1284 | private: |
||
1285 | SExpr* Expr0; |
||
1286 | }; |
||
1287 | |||
1288 | class SCFG; |
||
1289 | |||
1290 | /// Phi Node, for code in SSA form. |
||
1291 | /// Each Phi node has an array of possible values that it can take, |
||
1292 | /// depending on where control flow comes from. |
||
1293 | class Phi : public SExpr { |
||
1294 | public: |
||
1295 | using ValArray = SimpleArray<SExpr *>; |
||
1296 | |||
1297 | // In minimal SSA form, all Phi nodes are MultiVal. |
||
1298 | // During conversion to SSA, incomplete Phi nodes may be introduced, which |
||
1299 | // are later determined to be SingleVal, and are thus redundant. |
||
1300 | enum Status { |
||
1301 | PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal) |
||
1302 | PH_SingleVal, // Phi node has one distinct value, and can be eliminated |
||
1303 | PH_Incomplete // Phi node is incomplete |
||
1304 | }; |
||
1305 | |||
1306 | Phi() : SExpr(COP_Phi) {} |
||
1307 | Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {} |
||
1308 | Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {} |
||
1309 | |||
1310 | static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; } |
||
1311 | |||
1312 | const ValArray &values() const { return Values; } |
||
1313 | ValArray &values() { return Values; } |
||
1314 | |||
1315 | Status status() const { return static_cast<Status>(Flags); } |
||
1316 | void setStatus(Status s) { Flags = s; } |
||
1317 | |||
1318 | /// Return the clang declaration of the variable for this Phi node, if any. |
||
1319 | const ValueDecl *clangDecl() const { return Cvdecl; } |
||
1320 | |||
1321 | /// Set the clang variable associated with this Phi node. |
||
1322 | void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; } |
||
1323 | |||
1324 | template <class V> |
||
1325 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1326 | typename V::template Container<typename V::R_SExpr> |
||
1327 | Nvs(Vs, Values.size()); |
||
1328 | |||
1329 | for (const auto *Val : Values) |
||
1330 | Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) ); |
||
1331 | return Vs.reducePhi(*this, Nvs); |
||
1332 | } |
||
1333 | |||
1334 | template <class C> |
||
1335 | typename C::CType compare(const Phi *E, C &Cmp) const { |
||
1336 | // TODO: implement CFG comparisons |
||
1337 | return Cmp.comparePointers(this, E); |
||
1338 | } |
||
1339 | |||
1340 | private: |
||
1341 | ValArray Values; |
||
1342 | const ValueDecl* Cvdecl = nullptr; |
||
1343 | }; |
||
1344 | |||
1345 | /// Base class for basic block terminators: Branch, Goto, and Return. |
||
1346 | class Terminator : public SExpr { |
||
1347 | protected: |
||
1348 | Terminator(TIL_Opcode Op) : SExpr(Op) {} |
||
1349 | Terminator(const SExpr &E) : SExpr(E) {} |
||
1350 | |||
1351 | public: |
||
1352 | static bool classof(const SExpr *E) { |
||
1353 | return E->opcode() >= COP_Goto && E->opcode() <= COP_Return; |
||
1354 | } |
||
1355 | |||
1356 | /// Return the list of basic blocks that this terminator can branch to. |
||
1357 | ArrayRef<BasicBlock *> successors(); |
||
1358 | |||
1359 | ArrayRef<BasicBlock *> successors() const { |
||
1360 | return const_cast<Terminator*>(this)->successors(); |
||
1361 | } |
||
1362 | }; |
||
1363 | |||
1364 | /// Jump to another basic block. |
||
1365 | /// A goto instruction is essentially a tail-recursive call into another |
||
1366 | /// block. In addition to the block pointer, it specifies an index into the |
||
1367 | /// phi nodes of that block. The index can be used to retrieve the "arguments" |
||
1368 | /// of the call. |
||
1369 | class Goto : public Terminator { |
||
1370 | public: |
||
1371 | Goto(BasicBlock *B, unsigned I) |
||
1372 | : Terminator(COP_Goto), TargetBlock(B), Index(I) {} |
||
1373 | Goto(const Goto &G, BasicBlock *B, unsigned I) |
||
1374 | : Terminator(COP_Goto), TargetBlock(B), Index(I) {} |
||
1375 | |||
1376 | static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; } |
||
1377 | |||
1378 | const BasicBlock *targetBlock() const { return TargetBlock; } |
||
1379 | BasicBlock *targetBlock() { return TargetBlock; } |
||
1380 | |||
1381 | /// Returns the index into the |
||
1382 | unsigned index() const { return Index; } |
||
1383 | |||
1384 | /// Return the list of basic blocks that this terminator can branch to. |
||
1385 | ArrayRef<BasicBlock *> successors() { return TargetBlock; } |
||
1386 | |||
1387 | template <class V> |
||
1388 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1389 | BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock); |
||
1390 | return Vs.reduceGoto(*this, Ntb); |
||
1391 | } |
||
1392 | |||
1393 | template <class C> |
||
1394 | typename C::CType compare(const Goto *E, C &Cmp) const { |
||
1395 | // TODO: implement CFG comparisons |
||
1396 | return Cmp.comparePointers(this, E); |
||
1397 | } |
||
1398 | |||
1399 | private: |
||
1400 | BasicBlock *TargetBlock; |
||
1401 | unsigned Index; |
||
1402 | }; |
||
1403 | |||
1404 | /// A conditional branch to two other blocks. |
||
1405 | /// Note that unlike Goto, Branch does not have an index. The target blocks |
||
1406 | /// must be child-blocks, and cannot have Phi nodes. |
||
1407 | class Branch : public Terminator { |
||
1408 | public: |
||
1409 | Branch(SExpr *C, BasicBlock *T, BasicBlock *E) |
||
1410 | : Terminator(COP_Branch), Condition(C) { |
||
1411 | Branches[0] = T; |
||
1412 | Branches[1] = E; |
||
1413 | } |
||
1414 | |||
1415 | Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E) |
||
1416 | : Terminator(Br), Condition(C) { |
||
1417 | Branches[0] = T; |
||
1418 | Branches[1] = E; |
||
1419 | } |
||
1420 | |||
1421 | static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; } |
||
1422 | |||
1423 | const SExpr *condition() const { return Condition; } |
||
1424 | SExpr *condition() { return Condition; } |
||
1425 | |||
1426 | const BasicBlock *thenBlock() const { return Branches[0]; } |
||
1427 | BasicBlock *thenBlock() { return Branches[0]; } |
||
1428 | |||
1429 | const BasicBlock *elseBlock() const { return Branches[1]; } |
||
1430 | BasicBlock *elseBlock() { return Branches[1]; } |
||
1431 | |||
1432 | /// Return the list of basic blocks that this terminator can branch to. |
||
1433 | ArrayRef<BasicBlock *> successors() { return llvm::ArrayRef(Branches); } |
||
1434 | |||
1435 | template <class V> |
||
1436 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1437 | auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx)); |
||
1438 | BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]); |
||
1439 | BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]); |
||
1440 | return Vs.reduceBranch(*this, Nc, Ntb, Nte); |
||
1441 | } |
||
1442 | |||
1443 | template <class C> |
||
1444 | typename C::CType compare(const Branch *E, C &Cmp) const { |
||
1445 | // TODO: implement CFG comparisons |
||
1446 | return Cmp.comparePointers(this, E); |
||
1447 | } |
||
1448 | |||
1449 | private: |
||
1450 | SExpr *Condition; |
||
1451 | BasicBlock *Branches[2]; |
||
1452 | }; |
||
1453 | |||
1454 | /// Return from the enclosing function, passing the return value to the caller. |
||
1455 | /// Only the exit block should end with a return statement. |
||
1456 | class Return : public Terminator { |
||
1457 | public: |
||
1458 | Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {} |
||
1459 | Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {} |
||
1460 | |||
1461 | static bool classof(const SExpr *E) { return E->opcode() == COP_Return; } |
||
1462 | |||
1463 | /// Return an empty list. |
||
1464 | ArrayRef<BasicBlock *> successors() { return std::nullopt; } |
||
1465 | |||
1466 | SExpr *returnValue() { return Retval; } |
||
1467 | const SExpr *returnValue() const { return Retval; } |
||
1468 | |||
1469 | template <class V> |
||
1470 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1471 | auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx)); |
||
1472 | return Vs.reduceReturn(*this, Ne); |
||
1473 | } |
||
1474 | |||
1475 | template <class C> |
||
1476 | typename C::CType compare(const Return *E, C &Cmp) const { |
||
1477 | return Cmp.compare(Retval, E->Retval); |
||
1478 | } |
||
1479 | |||
1480 | private: |
||
1481 | SExpr* Retval; |
||
1482 | }; |
||
1483 | |||
1484 | inline ArrayRef<BasicBlock*> Terminator::successors() { |
||
1485 | switch (opcode()) { |
||
1486 | case COP_Goto: return cast<Goto>(this)->successors(); |
||
1487 | case COP_Branch: return cast<Branch>(this)->successors(); |
||
1488 | case COP_Return: return cast<Return>(this)->successors(); |
||
1489 | default: |
||
1490 | return std::nullopt; |
||
1491 | } |
||
1492 | } |
||
1493 | |||
1494 | /// A basic block is part of an SCFG. It can be treated as a function in |
||
1495 | /// continuation passing style. A block consists of a sequence of phi nodes, |
||
1496 | /// which are "arguments" to the function, followed by a sequence of |
||
1497 | /// instructions. It ends with a Terminator, which is a Branch or Goto to |
||
1498 | /// another basic block in the same SCFG. |
||
1499 | class BasicBlock : public SExpr { |
||
1500 | public: |
||
1501 | using InstrArray = SimpleArray<SExpr *>; |
||
1502 | using BlockArray = SimpleArray<BasicBlock *>; |
||
1503 | |||
1504 | // TopologyNodes are used to overlay tree structures on top of the CFG, |
||
1505 | // such as dominator and postdominator trees. Each block is assigned an |
||
1506 | // ID in the tree according to a depth-first search. Tree traversals are |
||
1507 | // always up, towards the parents. |
||
1508 | struct TopologyNode { |
||
1509 | int NodeID = 0; |
||
1510 | |||
1511 | // Includes this node, so must be > 1. |
||
1512 | int SizeOfSubTree = 0; |
||
1513 | |||
1514 | // Pointer to parent. |
||
1515 | BasicBlock *Parent = nullptr; |
||
1516 | |||
1517 | TopologyNode() = default; |
||
1518 | |||
1519 | bool isParentOf(const TopologyNode& OtherNode) { |
||
1520 | return OtherNode.NodeID > NodeID && |
||
1521 | OtherNode.NodeID < NodeID + SizeOfSubTree; |
||
1522 | } |
||
1523 | |||
1524 | bool isParentOfOrEqual(const TopologyNode& OtherNode) { |
||
1525 | return OtherNode.NodeID >= NodeID && |
||
1526 | OtherNode.NodeID < NodeID + SizeOfSubTree; |
||
1527 | } |
||
1528 | }; |
||
1529 | |||
1530 | explicit BasicBlock(MemRegionRef A) |
||
1531 | : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {} |
||
1532 | BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is, |
||
1533 | Terminator *T) |
||
1534 | : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false), |
||
1535 | Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {} |
||
1536 | |||
1537 | static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; } |
||
1538 | |||
1539 | /// Returns the block ID. Every block has a unique ID in the CFG. |
||
1540 | int blockID() const { return BlockID; } |
||
1541 | |||
1542 | /// Returns the number of predecessors. |
||
1543 | size_t numPredecessors() const { return Predecessors.size(); } |
||
1544 | size_t numSuccessors() const { return successors().size(); } |
||
1545 | |||
1546 | const SCFG* cfg() const { return CFGPtr; } |
||
1547 | SCFG* cfg() { return CFGPtr; } |
||
1548 | |||
1549 | const BasicBlock *parent() const { return DominatorNode.Parent; } |
||
1550 | BasicBlock *parent() { return DominatorNode.Parent; } |
||
1551 | |||
1552 | const InstrArray &arguments() const { return Args; } |
||
1553 | InstrArray &arguments() { return Args; } |
||
1554 | |||
1555 | InstrArray &instructions() { return Instrs; } |
||
1556 | const InstrArray &instructions() const { return Instrs; } |
||
1557 | |||
1558 | /// Returns a list of predecessors. |
||
1559 | /// The order of predecessors in the list is important; each phi node has |
||
1560 | /// exactly one argument for each precessor, in the same order. |
||
1561 | BlockArray &predecessors() { return Predecessors; } |
||
1562 | const BlockArray &predecessors() const { return Predecessors; } |
||
1563 | |||
1564 | ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); } |
||
1565 | ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); } |
||
1566 | |||
1567 | const Terminator *terminator() const { return TermInstr; } |
||
1568 | Terminator *terminator() { return TermInstr; } |
||
1569 | |||
1570 | void setTerminator(Terminator *E) { TermInstr = E; } |
||
1571 | |||
1572 | bool Dominates(const BasicBlock &Other) { |
||
1573 | return DominatorNode.isParentOfOrEqual(Other.DominatorNode); |
||
1574 | } |
||
1575 | |||
1576 | bool PostDominates(const BasicBlock &Other) { |
||
1577 | return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode); |
||
1578 | } |
||
1579 | |||
1580 | /// Add a new argument. |
||
1581 | void addArgument(Phi *V) { |
||
1582 | Args.reserveCheck(1, Arena); |
||
1583 | Args.push_back(V); |
||
1584 | } |
||
1585 | |||
1586 | /// Add a new instruction. |
||
1587 | void addInstruction(SExpr *V) { |
||
1588 | Instrs.reserveCheck(1, Arena); |
||
1589 | Instrs.push_back(V); |
||
1590 | } |
||
1591 | |||
1592 | // Add a new predecessor, and return the phi-node index for it. |
||
1593 | // Will add an argument to all phi-nodes, initialized to nullptr. |
||
1594 | unsigned addPredecessor(BasicBlock *Pred); |
||
1595 | |||
1596 | // Reserve space for Nargs arguments. |
||
1597 | void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); } |
||
1598 | |||
1599 | // Reserve space for Nins instructions. |
||
1600 | void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); } |
||
1601 | |||
1602 | // Reserve space for NumPreds predecessors, including space in phi nodes. |
||
1603 | void reservePredecessors(unsigned NumPreds); |
||
1604 | |||
1605 | /// Return the index of BB, or Predecessors.size if BB is not a predecessor. |
||
1606 | unsigned findPredecessorIndex(const BasicBlock *BB) const { |
||
1607 | auto I = llvm::find(Predecessors, BB); |
||
1608 | return std::distance(Predecessors.cbegin(), I); |
||
1609 | } |
||
1610 | |||
1611 | template <class V> |
||
1612 | typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1613 | typename V::template Container<SExpr*> Nas(Vs, Args.size()); |
||
1614 | typename V::template Container<SExpr*> Nis(Vs, Instrs.size()); |
||
1615 | |||
1616 | // Entering the basic block should do any scope initialization. |
||
1617 | Vs.enterBasicBlock(*this); |
||
1618 | |||
1619 | for (const auto *E : Args) { |
||
1620 | auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx)); |
||
1621 | Nas.push_back(Ne); |
||
1622 | } |
||
1623 | for (const auto *E : Instrs) { |
||
1624 | auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx)); |
||
1625 | Nis.push_back(Ne); |
||
1626 | } |
||
1627 | auto Nt = Vs.traverse(TermInstr, Ctx); |
||
1628 | |||
1629 | // Exiting the basic block should handle any scope cleanup. |
||
1630 | Vs.exitBasicBlock(*this); |
||
1631 | |||
1632 | return Vs.reduceBasicBlock(*this, Nas, Nis, Nt); |
||
1633 | } |
||
1634 | |||
1635 | template <class C> |
||
1636 | typename C::CType compare(const BasicBlock *E, C &Cmp) const { |
||
1637 | // TODO: implement CFG comparisons |
||
1638 | return Cmp.comparePointers(this, E); |
||
1639 | } |
||
1640 | |||
1641 | private: |
||
1642 | friend class SCFG; |
||
1643 | |||
1644 | // assign unique ids to all instructions |
||
1645 | unsigned renumberInstrs(unsigned id); |
||
1646 | |||
1647 | unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID); |
||
1648 | unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID); |
||
1649 | void computeDominator(); |
||
1650 | void computePostDominator(); |
||
1651 | |||
1652 | // The arena used to allocate this block. |
||
1653 | MemRegionRef Arena; |
||
1654 | |||
1655 | // The CFG that contains this block. |
||
1656 | SCFG *CFGPtr = nullptr; |
||
1657 | |||
1658 | // Unique ID for this BB in the containing CFG. IDs are in topological order. |
||
1659 | unsigned BlockID : 31; |
||
1660 | |||
1661 | // Bit to determine if a block has been visited during a traversal. |
||
1662 | bool Visited : 1; |
||
1663 | |||
1664 | // Predecessor blocks in the CFG. |
||
1665 | BlockArray Predecessors; |
||
1666 | |||
1667 | // Phi nodes. One argument per predecessor. |
||
1668 | InstrArray Args; |
||
1669 | |||
1670 | // Instructions. |
||
1671 | InstrArray Instrs; |
||
1672 | |||
1673 | // Terminating instruction. |
||
1674 | Terminator *TermInstr = nullptr; |
||
1675 | |||
1676 | // The dominator tree. |
||
1677 | TopologyNode DominatorNode; |
||
1678 | |||
1679 | // The post-dominator tree. |
||
1680 | TopologyNode PostDominatorNode; |
||
1681 | }; |
||
1682 | |||
1683 | /// An SCFG is a control-flow graph. It consists of a set of basic blocks, |
||
1684 | /// each of which terminates in a branch to another basic block. There is one |
||
1685 | /// entry point, and one exit point. |
||
1686 | class SCFG : public SExpr { |
||
1687 | public: |
||
1688 | using BlockArray = SimpleArray<BasicBlock *>; |
||
1689 | using iterator = BlockArray::iterator; |
||
1690 | using const_iterator = BlockArray::const_iterator; |
||
1691 | |||
1692 | SCFG(MemRegionRef A, unsigned Nblocks) |
||
1693 | : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) { |
||
1694 | Entry = new (A) BasicBlock(A); |
||
1695 | Exit = new (A) BasicBlock(A); |
||
1696 | auto *V = new (A) Phi(); |
||
1697 | Exit->addArgument(V); |
||
1698 | Exit->setTerminator(new (A) Return(V)); |
||
1699 | add(Entry); |
||
1700 | add(Exit); |
||
1701 | } |
||
1702 | |||
1703 | SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba |
||
1704 | : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) { |
||
1705 | // TODO: set entry and exit! |
||
1706 | } |
||
1707 | |||
1708 | static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; } |
||
1709 | |||
1710 | /// Return true if this CFG is valid. |
||
1711 | bool valid() const { return Entry && Exit && Blocks.size() > 0; } |
||
1712 | |||
1713 | /// Return true if this CFG has been normalized. |
||
1714 | /// After normalization, blocks are in topological order, and block and |
||
1715 | /// instruction IDs have been assigned. |
||
1716 | bool normal() const { return Normal; } |
||
1717 | |||
1718 | iterator begin() { return Blocks.begin(); } |
||
1719 | iterator end() { return Blocks.end(); } |
||
1720 | |||
1721 | const_iterator begin() const { return cbegin(); } |
||
1722 | const_iterator end() const { return cend(); } |
||
1723 | |||
1724 | const_iterator cbegin() const { return Blocks.cbegin(); } |
||
1725 | const_iterator cend() const { return Blocks.cend(); } |
||
1726 | |||
1727 | const BasicBlock *entry() const { return Entry; } |
||
1728 | BasicBlock *entry() { return Entry; } |
||
1729 | const BasicBlock *exit() const { return Exit; } |
||
1730 | BasicBlock *exit() { return Exit; } |
||
1731 | |||
1732 | /// Return the number of blocks in the CFG. |
||
1733 | /// Block::blockID() will return a number less than numBlocks(); |
||
1734 | size_t numBlocks() const { return Blocks.size(); } |
||
1735 | |||
1736 | /// Return the total number of instructions in the CFG. |
||
1737 | /// This is useful for building instruction side-tables; |
||
1738 | /// A call to SExpr::id() will return a number less than numInstructions(). |
||
1739 | unsigned numInstructions() { return NumInstructions; } |
||
1740 | |||
1741 | inline void add(BasicBlock *BB) { |
||
1742 | assert(BB->CFGPtr == nullptr); |
||
1743 | BB->CFGPtr = this; |
||
1744 | Blocks.reserveCheck(1, Arena); |
||
1745 | Blocks.push_back(BB); |
||
1746 | } |
||
1747 | |||
1748 | void setEntry(BasicBlock *BB) { Entry = BB; } |
||
1749 | void setExit(BasicBlock *BB) { Exit = BB; } |
||
1750 | |||
1751 | void computeNormalForm(); |
||
1752 | |||
1753 | template <class V> |
||
1754 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1755 | Vs.enterCFG(*this); |
||
1756 | typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size()); |
||
1757 | |||
1758 | for (const auto *B : Blocks) { |
||
1759 | Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) ); |
||
1760 | } |
||
1761 | Vs.exitCFG(*this); |
||
1762 | return Vs.reduceSCFG(*this, Bbs); |
||
1763 | } |
||
1764 | |||
1765 | template <class C> |
||
1766 | typename C::CType compare(const SCFG *E, C &Cmp) const { |
||
1767 | // TODO: implement CFG comparisons |
||
1768 | return Cmp.comparePointers(this, E); |
||
1769 | } |
||
1770 | |||
1771 | private: |
||
1772 | // assign unique ids to all instructions |
||
1773 | void renumberInstrs(); |
||
1774 | |||
1775 | MemRegionRef Arena; |
||
1776 | BlockArray Blocks; |
||
1777 | BasicBlock *Entry = nullptr; |
||
1778 | BasicBlock *Exit = nullptr; |
||
1779 | unsigned NumInstructions = 0; |
||
1780 | bool Normal = false; |
||
1781 | }; |
||
1782 | |||
1783 | /// An identifier, e.g. 'foo' or 'x'. |
||
1784 | /// This is a pseduo-term; it will be lowered to a variable or projection. |
||
1785 | class Identifier : public SExpr { |
||
1786 | public: |
||
1787 | Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {} |
||
1788 | Identifier(const Identifier &) = default; |
||
1789 | |||
1790 | static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; } |
||
1791 | |||
1792 | StringRef name() const { return Name; } |
||
1793 | |||
1794 | template <class V> |
||
1795 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1796 | return Vs.reduceIdentifier(*this); |
||
1797 | } |
||
1798 | |||
1799 | template <class C> |
||
1800 | typename C::CType compare(const Identifier* E, C& Cmp) const { |
||
1801 | return Cmp.compareStrings(name(), E->name()); |
||
1802 | } |
||
1803 | |||
1804 | private: |
||
1805 | StringRef Name; |
||
1806 | }; |
||
1807 | |||
1808 | /// An if-then-else expression. |
||
1809 | /// This is a pseduo-term; it will be lowered to a branch in a CFG. |
||
1810 | class IfThenElse : public SExpr { |
||
1811 | public: |
||
1812 | IfThenElse(SExpr *C, SExpr *T, SExpr *E) |
||
1813 | : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {} |
||
1814 | IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E) |
||
1815 | : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {} |
||
1816 | |||
1817 | static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; } |
||
1818 | |||
1819 | SExpr *condition() { return Condition; } // Address to store to |
||
1820 | const SExpr *condition() const { return Condition; } |
||
1821 | |||
1822 | SExpr *thenExpr() { return ThenExpr; } // Value to store |
||
1823 | const SExpr *thenExpr() const { return ThenExpr; } |
||
1824 | |||
1825 | SExpr *elseExpr() { return ElseExpr; } // Value to store |
||
1826 | const SExpr *elseExpr() const { return ElseExpr; } |
||
1827 | |||
1828 | template <class V> |
||
1829 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1830 | auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx)); |
||
1831 | auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx)); |
||
1832 | auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx)); |
||
1833 | return Vs.reduceIfThenElse(*this, Nc, Nt, Ne); |
||
1834 | } |
||
1835 | |||
1836 | template <class C> |
||
1837 | typename C::CType compare(const IfThenElse* E, C& Cmp) const { |
||
1838 | typename C::CType Ct = Cmp.compare(condition(), E->condition()); |
||
1839 | if (Cmp.notTrue(Ct)) |
||
1840 | return Ct; |
||
1841 | Ct = Cmp.compare(thenExpr(), E->thenExpr()); |
||
1842 | if (Cmp.notTrue(Ct)) |
||
1843 | return Ct; |
||
1844 | return Cmp.compare(elseExpr(), E->elseExpr()); |
||
1845 | } |
||
1846 | |||
1847 | private: |
||
1848 | SExpr* Condition; |
||
1849 | SExpr* ThenExpr; |
||
1850 | SExpr* ElseExpr; |
||
1851 | }; |
||
1852 | |||
1853 | /// A let-expression, e.g. let x=t; u. |
||
1854 | /// This is a pseduo-term; it will be lowered to instructions in a CFG. |
||
1855 | class Let : public SExpr { |
||
1856 | public: |
||
1857 | Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) { |
||
1858 | Vd->setKind(Variable::VK_Let); |
||
1859 | } |
||
1860 | |||
1861 | Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) { |
||
1862 | Vd->setKind(Variable::VK_Let); |
||
1863 | } |
||
1864 | |||
1865 | static bool classof(const SExpr *E) { return E->opcode() == COP_Let; } |
||
1866 | |||
1867 | Variable *variableDecl() { return VarDecl; } |
||
1868 | const Variable *variableDecl() const { return VarDecl; } |
||
1869 | |||
1870 | SExpr *body() { return Body; } |
||
1871 | const SExpr *body() const { return Body; } |
||
1872 | |||
1873 | template <class V> |
||
1874 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { |
||
1875 | // This is a variable declaration, so traverse the definition. |
||
1876 | auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx)); |
||
1877 | // Tell the rewriter to enter the scope of the let variable. |
||
1878 | Variable *Nvd = Vs.enterScope(*VarDecl, E0); |
||
1879 | auto E1 = Vs.traverse(Body, Ctx); |
||
1880 | Vs.exitScope(*VarDecl); |
||
1881 | return Vs.reduceLet(*this, Nvd, E1); |
||
1882 | } |
||
1883 | |||
1884 | template <class C> |
||
1885 | typename C::CType compare(const Let* E, C& Cmp) const { |
||
1886 | typename C::CType Ct = |
||
1887 | Cmp.compare(VarDecl->definition(), E->VarDecl->definition()); |
||
1888 | if (Cmp.notTrue(Ct)) |
||
1889 | return Ct; |
||
1890 | Cmp.enterScope(variableDecl(), E->variableDecl()); |
||
1891 | Ct = Cmp.compare(body(), E->body()); |
||
1892 | Cmp.leaveScope(); |
||
1893 | return Ct; |
||
1894 | } |
||
1895 | |||
1896 | private: |
||
1897 | Variable *VarDecl; |
||
1898 | SExpr* Body; |
||
1899 | }; |
||
1900 | |||
1901 | const SExpr *getCanonicalVal(const SExpr *E); |
||
1902 | SExpr* simplifyToCanonicalVal(SExpr *E); |
||
1903 | void simplifyIncompleteArg(til::Phi *Ph); |
||
1904 | |||
1905 | } // namespace til |
||
1906 | } // namespace threadSafety |
||
1907 | |||
1908 | } // namespace clang |
||
1909 | |||
1910 | #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H |