Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// Defines the clang::ASTContext interface.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15
#define LLVM_CLANG_AST_ASTCONTEXT_H
16
 
17
#include "clang/AST/ASTFwd.h"
18
#include "clang/AST/CanonicalType.h"
19
#include "clang/AST/CommentCommandTraits.h"
20
#include "clang/AST/ComparisonCategories.h"
21
#include "clang/AST/Decl.h"
22
#include "clang/AST/DeclarationName.h"
23
#include "clang/AST/ExternalASTSource.h"
24
#include "clang/AST/NestedNameSpecifier.h"
25
#include "clang/AST/PrettyPrinter.h"
26
#include "clang/AST/RawCommentList.h"
27
#include "clang/AST/TemplateName.h"
28
#include "clang/Basic/IdentifierTable.h"
29
#include "clang/Basic/LLVM.h"
30
#include "clang/Basic/LangOptions.h"
31
#include "clang/Basic/NoSanitizeList.h"
32
#include "clang/Basic/PartialDiagnostic.h"
33
#include "clang/Basic/ProfileList.h"
34
#include "clang/Basic/SourceLocation.h"
35
#include "clang/Basic/XRayLists.h"
36
#include "llvm/ADT/DenseMap.h"
37
#include "llvm/ADT/DenseSet.h"
38
#include "llvm/ADT/FoldingSet.h"
39
#include "llvm/ADT/IntrusiveRefCntPtr.h"
40
#include "llvm/ADT/MapVector.h"
41
#include "llvm/ADT/PointerIntPair.h"
42
#include "llvm/ADT/PointerUnion.h"
43
#include "llvm/ADT/SmallVector.h"
44
#include "llvm/ADT/StringMap.h"
45
#include "llvm/ADT/StringRef.h"
46
#include "llvm/ADT/TinyPtrVector.h"
47
#include "llvm/Support/TypeSize.h"
48
#include <optional>
49
 
50
namespace llvm {
51
 
52
class APFixedPoint;
53
class FixedPointSemantics;
54
struct fltSemantics;
55
template <typename T, unsigned N> class SmallPtrSet;
56
 
57
} // namespace llvm
58
 
59
namespace clang {
60
 
61
class APValue;
62
class ASTMutationListener;
63
class ASTRecordLayout;
64
class AtomicExpr;
65
class BlockExpr;
66
class BuiltinTemplateDecl;
67
class CharUnits;
68
class ConceptDecl;
69
class CXXABI;
70
class CXXConstructorDecl;
71
class CXXMethodDecl;
72
class CXXRecordDecl;
73
class DiagnosticsEngine;
74
class ParentMapContext;
75
class DynTypedNodeList;
76
class Expr;
77
enum class FloatModeKind;
78
class GlobalDecl;
79
class MangleContext;
80
class MangleNumberingContext;
81
class MemberSpecializationInfo;
82
class Module;
83
struct MSGuidDeclParts;
84
class ObjCCategoryDecl;
85
class ObjCCategoryImplDecl;
86
class ObjCContainerDecl;
87
class ObjCImplDecl;
88
class ObjCImplementationDecl;
89
class ObjCInterfaceDecl;
90
class ObjCIvarDecl;
91
class ObjCMethodDecl;
92
class ObjCPropertyDecl;
93
class ObjCPropertyImplDecl;
94
class ObjCProtocolDecl;
95
class ObjCTypeParamDecl;
96
class OMPTraitInfo;
97
struct ParsedTargetAttr;
98
class Preprocessor;
99
class StoredDeclsMap;
100
class TargetAttr;
101
class TargetInfo;
102
class TemplateDecl;
103
class TemplateParameterList;
104
class TemplateTemplateParmDecl;
105
class TemplateTypeParmDecl;
106
class TypeConstraint;
107
class UnresolvedSetIterator;
108
class UsingShadowDecl;
109
class VarTemplateDecl;
110
class VTableContextBase;
111
struct BlockVarCopyInit;
112
 
113
namespace Builtin {
114
 
115
class Context;
116
 
117
} // namespace Builtin
118
 
119
enum BuiltinTemplateKind : int;
120
enum OpenCLTypeKind : uint8_t;
121
 
122
namespace comments {
123
 
124
class FullComment;
125
 
126
} // namespace comments
127
 
128
namespace interp {
129
 
130
class Context;
131
 
132
} // namespace interp
133
 
134
namespace serialization {
135
template <class> class AbstractTypeReader;
136
} // namespace serialization
137
 
138
enum class AlignRequirementKind {
139
  /// The alignment was not explicit in code.
140
  None,
141
 
142
  /// The alignment comes from an alignment attribute on a typedef.
143
  RequiredByTypedef,
144
 
145
  /// The alignment comes from an alignment attribute on a record type.
146
  RequiredByRecord,
147
 
148
  /// The alignment comes from an alignment attribute on a enum type.
149
  RequiredByEnum,
150
};
151
 
152
struct TypeInfo {
153
  uint64_t Width = 0;
154
  unsigned Align = 0;
155
  AlignRequirementKind AlignRequirement;
156
 
157
  TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
158
  TypeInfo(uint64_t Width, unsigned Align,
159
           AlignRequirementKind AlignRequirement)
160
      : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
161
  bool isAlignRequired() {
162
    return AlignRequirement != AlignRequirementKind::None;
163
  }
164
};
165
 
166
struct TypeInfoChars {
167
  CharUnits Width;
168
  CharUnits Align;
169
  AlignRequirementKind AlignRequirement;
170
 
171
  TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
172
  TypeInfoChars(CharUnits Width, CharUnits Align,
173
                AlignRequirementKind AlignRequirement)
174
      : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
175
  bool isAlignRequired() {
176
    return AlignRequirement != AlignRequirementKind::None;
177
  }
178
};
179
 
180
/// Holds long-lived AST nodes (such as types and decls) that can be
181
/// referred to throughout the semantic analysis of a file.
182
class ASTContext : public RefCountedBase<ASTContext> {
183
  friend class NestedNameSpecifier;
184
 
185
  mutable SmallVector<Type *, 0> Types;
186
  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
187
  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
188
  mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
189
  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
190
  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
191
  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
192
  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
193
  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
194
  mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
195
      ConstantArrayTypes;
196
  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
197
  mutable std::vector<VariableArrayType*> VariableArrayTypes;
198
  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
199
  mutable llvm::FoldingSet<DependentSizedExtVectorType>
200
    DependentSizedExtVectorTypes;
201
  mutable llvm::FoldingSet<DependentAddressSpaceType>
202
      DependentAddressSpaceTypes;
203
  mutable llvm::FoldingSet<VectorType> VectorTypes;
204
  mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
205
  mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
206
  mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
207
  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
208
  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
209
    FunctionProtoTypes;
210
  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
211
  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
212
  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
213
  mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
214
  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
215
    SubstTemplateTypeParmTypes;
216
  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
217
    SubstTemplateTypeParmPackTypes;
218
  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
219
    TemplateSpecializationTypes;
220
  mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
221
  mutable llvm::FoldingSet<UsingType> UsingTypes;
222
  mutable llvm::FoldingSet<TypedefType> TypedefTypes;
223
  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
224
      GeneralTypesLog2InitSize};
225
  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
226
  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
227
                                     ASTContext&>
228
    DependentTemplateSpecializationTypes;
229
  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
230
  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
231
  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
232
  mutable llvm::FoldingSet<DependentUnaryTransformType>
233
    DependentUnaryTransformTypes;
234
  mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
235
  mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
236
    DeducedTemplateSpecializationTypes;
237
  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
238
  mutable llvm::FoldingSet<AttributedType> AttributedTypes;
239
  mutable llvm::FoldingSet<PipeType> PipeTypes;
240
  mutable llvm::FoldingSet<BitIntType> BitIntTypes;
241
  mutable llvm::FoldingSet<DependentBitIntType> DependentBitIntTypes;
242
  llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
243
 
244
  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
245
  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
246
  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
247
    SubstTemplateTemplateParms;
248
  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
249
                                     ASTContext&>
250
    SubstTemplateTemplateParmPacks;
251
 
252
  /// The set of nested name specifiers.
253
  ///
254
  /// This set is managed by the NestedNameSpecifier class.
255
  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
256
  mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
257
 
258
  /// A cache mapping from RecordDecls to ASTRecordLayouts.
259
  ///
260
  /// This is lazily created.  This is intentionally not serialized.
261
  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
262
    ASTRecordLayouts;
263
  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
264
    ObjCLayouts;
265
 
266
  /// A cache from types to size and alignment information.
267
  using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
268
  mutable TypeInfoMap MemoizedTypeInfo;
269
 
270
  /// A cache from types to unadjusted alignment information. Only ARM and
271
  /// AArch64 targets need this information, keeping it separate prevents
272
  /// imposing overhead on TypeInfo size.
273
  using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
274
  mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
275
 
276
  /// A cache mapping from CXXRecordDecls to key functions.
277
  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
278
 
279
  /// Mapping from ObjCContainers to their ObjCImplementations.
280
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
281
 
282
  /// Mapping from ObjCMethod to its duplicate declaration in the same
283
  /// interface.
284
  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
285
 
286
  /// Mapping from __block VarDecls to BlockVarCopyInit.
287
  llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
288
 
289
  /// Mapping from GUIDs to the corresponding MSGuidDecl.
290
  mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
291
 
292
  /// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
293
  mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
294
      UnnamedGlobalConstantDecls;
295
 
296
  /// Mapping from APValues to the corresponding TemplateParamObjects.
297
  mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
298
 
299
  /// A cache mapping a string value to a StringLiteral object with the same
300
  /// value.
301
  ///
302
  /// This is lazily created.  This is intentionally not serialized.
303
  mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
304
 
305
  /// MD5 hash of CUID. It is calculated when first used and cached by this
306
  /// data member.
307
  mutable std::string CUIDHash;
308
 
309
  /// Representation of a "canonical" template template parameter that
310
  /// is used in canonical template names.
311
  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
312
    TemplateTemplateParmDecl *Parm;
313
 
314
  public:
315
    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
316
        : Parm(Parm) {}
317
 
318
    TemplateTemplateParmDecl *getParam() const { return Parm; }
319
 
320
    void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
321
      Profile(ID, C, Parm);
322
    }
323
 
324
    static void Profile(llvm::FoldingSetNodeID &ID,
325
                        const ASTContext &C,
326
                        TemplateTemplateParmDecl *Parm);
327
  };
328
  mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
329
                                     const ASTContext&>
330
    CanonTemplateTemplateParms;
331
 
332
  TemplateTemplateParmDecl *
333
    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
334
 
335
  /// The typedef for the __int128_t type.
336
  mutable TypedefDecl *Int128Decl = nullptr;
337
 
338
  /// The typedef for the __uint128_t type.
339
  mutable TypedefDecl *UInt128Decl = nullptr;
340
 
341
  /// The typedef for the target specific predefined
342
  /// __builtin_va_list type.
343
  mutable TypedefDecl *BuiltinVaListDecl = nullptr;
344
 
345
  /// The typedef for the predefined \c __builtin_ms_va_list type.
346
  mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
347
 
348
  /// The typedef for the predefined \c id type.
349
  mutable TypedefDecl *ObjCIdDecl = nullptr;
350
 
351
  /// The typedef for the predefined \c SEL type.
352
  mutable TypedefDecl *ObjCSelDecl = nullptr;
353
 
354
  /// The typedef for the predefined \c Class type.
355
  mutable TypedefDecl *ObjCClassDecl = nullptr;
356
 
357
  /// The typedef for the predefined \c Protocol class in Objective-C.
358
  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
359
 
360
  /// The typedef for the predefined 'BOOL' type.
361
  mutable TypedefDecl *BOOLDecl = nullptr;
362
 
363
  // Typedefs which may be provided defining the structure of Objective-C
364
  // pseudo-builtins
365
  QualType ObjCIdRedefinitionType;
366
  QualType ObjCClassRedefinitionType;
367
  QualType ObjCSelRedefinitionType;
368
 
369
  /// The identifier 'bool'.
370
  mutable IdentifierInfo *BoolName = nullptr;
371
 
372
  /// The identifier 'NSObject'.
373
  mutable IdentifierInfo *NSObjectName = nullptr;
374
 
375
  /// The identifier 'NSCopying'.
376
  IdentifierInfo *NSCopyingName = nullptr;
377
 
378
  /// The identifier '__make_integer_seq'.
379
  mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
380
 
381
  /// The identifier '__type_pack_element'.
382
  mutable IdentifierInfo *TypePackElementName = nullptr;
383
 
384
  QualType ObjCConstantStringType;
385
  mutable RecordDecl *CFConstantStringTagDecl = nullptr;
386
  mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
387
 
388
  mutable QualType ObjCSuperType;
389
 
390
  QualType ObjCNSStringType;
391
 
392
  /// The typedef declaration for the Objective-C "instancetype" type.
393
  TypedefDecl *ObjCInstanceTypeDecl = nullptr;
394
 
395
  /// The type for the C FILE type.
396
  TypeDecl *FILEDecl = nullptr;
397
 
398
  /// The type for the C jmp_buf type.
399
  TypeDecl *jmp_bufDecl = nullptr;
400
 
401
  /// The type for the C sigjmp_buf type.
402
  TypeDecl *sigjmp_bufDecl = nullptr;
403
 
404
  /// The type for the C ucontext_t type.
405
  TypeDecl *ucontext_tDecl = nullptr;
406
 
407
  /// Type for the Block descriptor for Blocks CodeGen.
408
  ///
409
  /// Since this is only used for generation of debug info, it is not
410
  /// serialized.
411
  mutable RecordDecl *BlockDescriptorType = nullptr;
412
 
413
  /// Type for the Block descriptor for Blocks CodeGen.
414
  ///
415
  /// Since this is only used for generation of debug info, it is not
416
  /// serialized.
417
  mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
418
 
419
  /// Declaration for the CUDA cudaConfigureCall function.
420
  FunctionDecl *cudaConfigureCallDecl = nullptr;
421
 
422
  /// Keeps track of all declaration attributes.
423
  ///
424
  /// Since so few decls have attrs, we keep them in a hash map instead of
425
  /// wasting space in the Decl class.
426
  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
427
 
428
  /// A mapping from non-redeclarable declarations in modules that were
429
  /// merged with other declarations to the canonical declaration that they were
430
  /// merged into.
431
  llvm::DenseMap<Decl*, Decl*> MergedDecls;
432
 
433
  /// A mapping from a defining declaration to a list of modules (other
434
  /// than the owning module of the declaration) that contain merged
435
  /// definitions of that entity.
436
  llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
437
 
438
  /// Initializers for a module, in order. Each Decl will be either
439
  /// something that has a semantic effect on startup (such as a variable with
440
  /// a non-constant initializer), or an ImportDecl (which recursively triggers
441
  /// initialization of another module).
442
  struct PerModuleInitializers {
443
    llvm::SmallVector<Decl*, 4> Initializers;
444
    llvm::SmallVector<uint32_t, 4> LazyInitializers;
445
 
446
    void resolve(ASTContext &Ctx);
447
  };
448
  llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
449
 
450
  /// For module code-gen cases, this is the top-level module we are building.
451
  Module *TopLevelModule = nullptr;
452
 
453
  static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
454
  static constexpr unsigned GeneralTypesLog2InitSize = 9;
455
  static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
456
 
457
  ASTContext &this_() { return *this; }
458
 
459
public:
460
  /// A type synonym for the TemplateOrInstantiation mapping.
461
  using TemplateOrSpecializationInfo =
462
      llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
463
 
464
private:
465
  friend class ASTDeclReader;
466
  friend class ASTReader;
467
  friend class ASTWriter;
468
  template <class> friend class serialization::AbstractTypeReader;
469
  friend class CXXRecordDecl;
470
  friend class IncrementalParser;
471
 
472
  /// A mapping to contain the template or declaration that
473
  /// a variable declaration describes or was instantiated from,
474
  /// respectively.
475
  ///
476
  /// For non-templates, this value will be NULL. For variable
477
  /// declarations that describe a variable template, this will be a
478
  /// pointer to a VarTemplateDecl. For static data members
479
  /// of class template specializations, this will be the
480
  /// MemberSpecializationInfo referring to the member variable that was
481
  /// instantiated or specialized. Thus, the mapping will keep track of
482
  /// the static data member templates from which static data members of
483
  /// class template specializations were instantiated.
484
  ///
485
  /// Given the following example:
486
  ///
487
  /// \code
488
  /// template<typename T>
489
  /// struct X {
490
  ///   static T value;
491
  /// };
492
  ///
493
  /// template<typename T>
494
  ///   T X<T>::value = T(17);
495
  ///
496
  /// int *x = &X<int>::value;
497
  /// \endcode
498
  ///
499
  /// This mapping will contain an entry that maps from the VarDecl for
500
  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
501
  /// class template X) and will be marked TSK_ImplicitInstantiation.
502
  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
503
  TemplateOrInstantiation;
504
 
505
  /// Keeps track of the declaration from which a using declaration was
506
  /// created during instantiation.
507
  ///
508
  /// The source and target declarations are always a UsingDecl, an
509
  /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
510
  ///
511
  /// For example:
512
  /// \code
513
  /// template<typename T>
514
  /// struct A {
515
  ///   void f();
516
  /// };
517
  ///
518
  /// template<typename T>
519
  /// struct B : A<T> {
520
  ///   using A<T>::f;
521
  /// };
522
  ///
523
  /// template struct B<int>;
524
  /// \endcode
525
  ///
526
  /// This mapping will contain an entry that maps from the UsingDecl in
527
  /// B<int> to the UnresolvedUsingDecl in B<T>.
528
  llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
529
 
530
  /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
531
  /// from the instantiated using-enum to the templated decl from whence it
532
  /// came.
533
  /// Note that using-enum-declarations cannot be dependent and
534
  /// thus will never be instantiated from an "unresolved"
535
  /// version thereof (as with using-declarations), so each mapping is from
536
  /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
537
  llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
538
      InstantiatedFromUsingEnumDecl;
539
 
540
  /// Simlarly maps instantiated UsingShadowDecls to their origin.
541
  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
542
    InstantiatedFromUsingShadowDecl;
543
 
544
  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
545
 
546
  /// Mapping that stores the methods overridden by a given C++
547
  /// member function.
548
  ///
549
  /// Since most C++ member functions aren't virtual and therefore
550
  /// don't override anything, we store the overridden functions in
551
  /// this map on the side rather than within the CXXMethodDecl structure.
552
  using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
553
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
554
 
555
  /// Mapping from each declaration context to its corresponding
556
  /// mangling numbering context (used for constructs like lambdas which
557
  /// need to be consistently numbered for the mangler).
558
  llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
559
      MangleNumberingContexts;
560
  llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
561
      ExtraMangleNumberingContexts;
562
 
563
  /// Side-table of mangling numbers for declarations which rarely
564
  /// need them (like static local vars).
565
  llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
566
  llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
567
  /// Mapping the associated device lambda mangling number if present.
568
  mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
569
      DeviceLambdaManglingNumbers;
570
 
571
  /// Mapping that stores parameterIndex values for ParmVarDecls when
572
  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
573
  using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
574
  ParameterIndexTable ParamIndices;
575
 
576
  ImportDecl *FirstLocalImport = nullptr;
577
  ImportDecl *LastLocalImport = nullptr;
578
 
579
  TranslationUnitDecl *TUDecl = nullptr;
580
  mutable ExternCContextDecl *ExternCContext = nullptr;
581
  mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
582
  mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
583
 
584
  /// The associated SourceManager object.
585
  SourceManager &SourceMgr;
586
 
587
  /// The language options used to create the AST associated with
588
  ///  this ASTContext object.
589
  LangOptions &LangOpts;
590
 
591
  /// NoSanitizeList object that is used by sanitizers to decide which
592
  /// entities should not be instrumented.
593
  std::unique_ptr<NoSanitizeList> NoSanitizeL;
594
 
595
  /// Function filtering mechanism to determine whether a given function
596
  /// should be imbued with the XRay "always" or "never" attributes.
597
  std::unique_ptr<XRayFunctionFilter> XRayFilter;
598
 
599
  /// ProfileList object that is used by the profile instrumentation
600
  /// to decide which entities should be instrumented.
601
  std::unique_ptr<ProfileList> ProfList;
602
 
603
  /// The allocator used to create AST objects.
604
  ///
605
  /// AST objects are never destructed; rather, all memory associated with the
606
  /// AST objects will be released when the ASTContext itself is destroyed.
607
  mutable llvm::BumpPtrAllocator BumpAlloc;
608
 
609
  /// Allocator for partial diagnostics.
610
  PartialDiagnostic::DiagStorageAllocator DiagAllocator;
611
 
612
  /// The current C++ ABI.
613
  std::unique_ptr<CXXABI> ABI;
614
  CXXABI *createCXXABI(const TargetInfo &T);
615
 
616
  /// Address space map mangling must be used with language specific
617
  /// address spaces (e.g. OpenCL/CUDA)
618
  bool AddrSpaceMapMangling;
619
 
620
  const TargetInfo *Target = nullptr;
621
  const TargetInfo *AuxTarget = nullptr;
622
  clang::PrintingPolicy PrintingPolicy;
623
  std::unique_ptr<interp::Context> InterpContext;
624
  std::unique_ptr<ParentMapContext> ParentMapCtx;
625
 
626
  /// Keeps track of the deallocated DeclListNodes for future reuse.
627
  DeclListNode *ListNodeFreeList = nullptr;
628
 
629
public:
630
  IdentifierTable &Idents;
631
  SelectorTable &Selectors;
632
  Builtin::Context &BuiltinInfo;
633
  const TranslationUnitKind TUKind;
634
  mutable DeclarationNameTable DeclarationNames;
635
  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
636
  ASTMutationListener *Listener = nullptr;
637
 
638
  /// Returns the clang bytecode interpreter context.
639
  interp::Context &getInterpContext();
640
 
641
  struct CUDAConstantEvalContext {
642
    /// Do not allow wrong-sided variables in constant expressions.
643
    bool NoWrongSidedVars = false;
644
  } CUDAConstantEvalCtx;
645
  struct CUDAConstantEvalContextRAII {
646
    ASTContext &Ctx;
647
    CUDAConstantEvalContext SavedCtx;
648
    CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
649
        : Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
650
      Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
651
    }
652
    ~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
653
  };
654
 
655
  /// Returns the dynamic AST node parent map context.
656
  ParentMapContext &getParentMapContext();
657
 
658
  // A traversal scope limits the parts of the AST visible to certain analyses.
659
  // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
660
  // getParents() will only observe reachable parent edges.
661
  //
662
  // The scope is defined by a set of "top-level" declarations which will be
663
  // visible under the TranslationUnitDecl.
664
  // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
665
  //
666
  // After setTraversalScope({foo, bar}), the exposed AST looks like:
667
  // TranslationUnitDecl
668
  //  - foo
669
  //    - ...
670
  //  - bar
671
  //    - ...
672
  // All other siblings of foo and bar are pruned from the tree.
673
  // (However they are still accessible via TranslationUnitDecl->decls())
674
  //
675
  // Changing the scope clears the parent cache, which is expensive to rebuild.
676
  std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
677
  void setTraversalScope(const std::vector<Decl *> &);
678
 
679
  /// Forwards to get node parents from the ParentMapContext. New callers should
680
  /// use ParentMapContext::getParents() directly.
681
  template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
682
 
683
  const clang::PrintingPolicy &getPrintingPolicy() const {
684
    return PrintingPolicy;
685
  }
686
 
687
  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
688
    PrintingPolicy = Policy;
689
  }
690
 
691
  SourceManager& getSourceManager() { return SourceMgr; }
692
  const SourceManager& getSourceManager() const { return SourceMgr; }
693
 
694
  // Cleans up some of the data structures. This allows us to do cleanup
695
  // normally done in the destructor earlier. Renders much of the ASTContext
696
  // unusable, mostly the actual AST nodes, so should be called when we no
697
  // longer need access to the AST.
698
  void cleanup();
699
 
700
  llvm::BumpPtrAllocator &getAllocator() const {
701
    return BumpAlloc;
702
  }
703
 
704
  void *Allocate(size_t Size, unsigned Align = 8) const {
705
    return BumpAlloc.Allocate(Size, Align);
706
  }
707
  template <typename T> T *Allocate(size_t Num = 1) const {
708
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
709
  }
710
  void Deallocate(void *Ptr) const {}
711
 
712
  /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
713
  /// pool.
714
  DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
715
    if (DeclListNode *Alloc = ListNodeFreeList) {
716
      ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
717
      Alloc->D = ND;
718
      Alloc->Rest = nullptr;
719
      return Alloc;
720
    }
721
    return new (*this) DeclListNode(ND);
722
  }
723
  /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
724
  /// pool.
725
  void DeallocateDeclListNode(DeclListNode *N) {
726
    N->Rest = ListNodeFreeList;
727
    ListNodeFreeList = N;
728
  }
729
 
730
  /// Return the total amount of physical memory allocated for representing
731
  /// AST nodes and type information.
732
  size_t getASTAllocatedMemory() const {
733
    return BumpAlloc.getTotalMemory();
734
  }
735
 
736
  /// Return the total memory used for various side tables.
737
  size_t getSideTableAllocatedMemory() const;
738
 
739
  PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
740
    return DiagAllocator;
741
  }
742
 
743
  const TargetInfo &getTargetInfo() const { return *Target; }
744
  const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
745
 
746
  /// getIntTypeForBitwidth -
747
  /// sets integer QualTy according to specified details:
748
  /// bitwidth, signed/unsigned.
749
  /// Returns empty type if there is no appropriate target types.
750
  QualType getIntTypeForBitwidth(unsigned DestWidth,
751
                                 unsigned Signed) const;
752
 
753
  /// getRealTypeForBitwidth -
754
  /// sets floating point QualTy according to specified bitwidth.
755
  /// Returns empty type if there is no appropriate target types.
756
  QualType getRealTypeForBitwidth(unsigned DestWidth,
757
                                  FloatModeKind ExplicitType) const;
758
 
759
  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
760
 
761
  const LangOptions& getLangOpts() const { return LangOpts; }
762
 
763
  // If this condition is false, typo correction must be performed eagerly
764
  // rather than delayed in many places, as it makes use of dependent types.
765
  // the condition is false for clang's C-only codepath, as it doesn't support
766
  // dependent types yet.
767
  bool isDependenceAllowed() const {
768
    return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
769
  }
770
 
771
  const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
772
 
773
  const XRayFunctionFilter &getXRayFilter() const {
774
    return *XRayFilter;
775
  }
776
 
777
  const ProfileList &getProfileList() const { return *ProfList; }
778
 
779
  DiagnosticsEngine &getDiagnostics() const;
780
 
781
  FullSourceLoc getFullLoc(SourceLocation Loc) const {
782
    return FullSourceLoc(Loc,SourceMgr);
783
  }
784
 
785
  /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
786
  /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
787
  /// the default ABI set by the target.
788
  TargetCXXABI::Kind getCXXABIKind() const;
789
 
790
  /// All comments in this translation unit.
791
  RawCommentList Comments;
792
 
793
  /// True if comments are already loaded from ExternalASTSource.
794
  mutable bool CommentsLoaded = false;
795
 
796
  /// Mapping from declaration to directly attached comment.
797
  ///
798
  /// Raw comments are owned by Comments list.  This mapping is populated
799
  /// lazily.
800
  mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
801
 
802
  /// Mapping from canonical declaration to the first redeclaration in chain
803
  /// that has a comment attached.
804
  ///
805
  /// Raw comments are owned by Comments list.  This mapping is populated
806
  /// lazily.
807
  mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
808
 
809
  /// Keeps track of redeclaration chains that don't have any comment attached.
810
  /// Mapping from canonical declaration to redeclaration chain that has no
811
  /// comments attached to any redeclaration. Specifically it's mapping to
812
  /// the last redeclaration we've checked.
813
  ///
814
  /// Shall not contain declarations that have comments attached to any
815
  /// redeclaration in their chain.
816
  mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
817
 
818
  /// Mapping from declarations to parsed comments attached to any
819
  /// redeclaration.
820
  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
821
 
822
  /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
823
  /// and removes the redeclaration chain from the set of commentless chains.
824
  ///
825
  /// Don't do anything if a comment has already been attached to \p OriginalD
826
  /// or its redeclaration chain.
827
  void cacheRawCommentForDecl(const Decl &OriginalD,
828
                              const RawComment &Comment) const;
829
 
830
  /// \returns searches \p CommentsInFile for doc comment for \p D.
831
  ///
832
  /// \p RepresentativeLocForDecl is used as a location for searching doc
833
  /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
834
  /// same file where \p RepresentativeLocForDecl is.
835
  RawComment *getRawCommentForDeclNoCacheImpl(
836
      const Decl *D, const SourceLocation RepresentativeLocForDecl,
837
      const std::map<unsigned, RawComment *> &CommentsInFile) const;
838
 
839
  /// Return the documentation comment attached to a given declaration,
840
  /// without looking into cache.
841
  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
842
 
843
public:
844
  void addComment(const RawComment &RC);
845
 
846
  /// Return the documentation comment attached to a given declaration.
847
  /// Returns nullptr if no comment is attached.
848
  ///
849
  /// \param OriginalDecl if not nullptr, is set to declaration AST node that
850
  /// had the comment, if the comment we found comes from a redeclaration.
851
  const RawComment *
852
  getRawCommentForAnyRedecl(const Decl *D,
853
                            const Decl **OriginalDecl = nullptr) const;
854
 
855
  /// Searches existing comments for doc comments that should be attached to \p
856
  /// Decls. If any doc comment is found, it is parsed.
857
  ///
858
  /// Requirement: All \p Decls are in the same file.
859
  ///
860
  /// If the last comment in the file is already attached we assume
861
  /// there are not comments left to be attached to \p Decls.
862
  void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
863
                                       const Preprocessor *PP);
864
 
865
  /// Return parsed documentation comment attached to a given declaration.
866
  /// Returns nullptr if no comment is attached.
867
  ///
868
  /// \param PP the Preprocessor used with this TU.  Could be nullptr if
869
  /// preprocessor is not available.
870
  comments::FullComment *getCommentForDecl(const Decl *D,
871
                                           const Preprocessor *PP) const;
872
 
873
  /// Return parsed documentation comment attached to a given declaration.
874
  /// Returns nullptr if no comment is attached. Does not look at any
875
  /// redeclarations of the declaration.
876
  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
877
 
878
  comments::FullComment *cloneFullComment(comments::FullComment *FC,
879
                                         const Decl *D) const;
880
 
881
private:
882
  mutable comments::CommandTraits CommentCommandTraits;
883
 
884
  /// Iterator that visits import declarations.
885
  class import_iterator {
886
    ImportDecl *Import = nullptr;
887
 
888
  public:
889
    using value_type = ImportDecl *;
890
    using reference = ImportDecl *;
891
    using pointer = ImportDecl *;
892
    using difference_type = int;
893
    using iterator_category = std::forward_iterator_tag;
894
 
895
    import_iterator() = default;
896
    explicit import_iterator(ImportDecl *Import) : Import(Import) {}
897
 
898
    reference operator*() const { return Import; }
899
    pointer operator->() const { return Import; }
900
 
901
    import_iterator &operator++() {
902
      Import = ASTContext::getNextLocalImport(Import);
903
      return *this;
904
    }
905
 
906
    import_iterator operator++(int) {
907
      import_iterator Other(*this);
908
      ++(*this);
909
      return Other;
910
    }
911
 
912
    friend bool operator==(import_iterator X, import_iterator Y) {
913
      return X.Import == Y.Import;
914
    }
915
 
916
    friend bool operator!=(import_iterator X, import_iterator Y) {
917
      return X.Import != Y.Import;
918
    }
919
  };
920
 
921
public:
922
  comments::CommandTraits &getCommentCommandTraits() const {
923
    return CommentCommandTraits;
924
  }
925
 
926
  /// Retrieve the attributes for the given declaration.
927
  AttrVec& getDeclAttrs(const Decl *D);
928
 
929
  /// Erase the attributes corresponding to the given declaration.
930
  void eraseDeclAttrs(const Decl *D);
931
 
932
  /// If this variable is an instantiated static data member of a
933
  /// class template specialization, returns the templated static data member
934
  /// from which it was instantiated.
935
  // FIXME: Remove ?
936
  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
937
                                                           const VarDecl *Var);
938
 
939
  /// Note that the static data member \p Inst is an instantiation of
940
  /// the static data member template \p Tmpl of a class template.
941
  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
942
                                           TemplateSpecializationKind TSK,
943
                        SourceLocation PointOfInstantiation = SourceLocation());
944
 
945
  TemplateOrSpecializationInfo
946
  getTemplateOrSpecializationInfo(const VarDecl *Var);
947
 
948
  void setTemplateOrSpecializationInfo(VarDecl *Inst,
949
                                       TemplateOrSpecializationInfo TSI);
950
 
951
  /// If the given using decl \p Inst is an instantiation of
952
  /// another (possibly unresolved) using decl, return it.
953
  NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
954
 
955
  /// Remember that the using decl \p Inst is an instantiation
956
  /// of the using decl \p Pattern of a class template.
957
  void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
958
 
959
  /// If the given using-enum decl \p Inst is an instantiation of
960
  /// another using-enum decl, return it.
961
  UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
962
 
963
  /// Remember that the using enum decl \p Inst is an instantiation
964
  /// of the using enum decl \p Pattern of a class template.
965
  void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
966
                                        UsingEnumDecl *Pattern);
967
 
968
  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
969
  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
970
                                          UsingShadowDecl *Pattern);
971
 
972
  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
973
 
974
  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
975
 
976
  // Access to the set of methods overridden by the given C++ method.
977
  using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
978
  overridden_cxx_method_iterator
979
  overridden_methods_begin(const CXXMethodDecl *Method) const;
980
 
981
  overridden_cxx_method_iterator
982
  overridden_methods_end(const CXXMethodDecl *Method) const;
983
 
984
  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
985
 
986
  using overridden_method_range =
987
      llvm::iterator_range<overridden_cxx_method_iterator>;
988
 
989
  overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
990
 
991
  /// Note that the given C++ \p Method overrides the given \p
992
  /// Overridden method.
993
  void addOverriddenMethod(const CXXMethodDecl *Method,
994
                           const CXXMethodDecl *Overridden);
995
 
996
  /// Return C++ or ObjC overridden methods for the given \p Method.
997
  ///
998
  /// An ObjC method is considered to override any method in the class's
999
  /// base classes, its protocols, or its categories' protocols, that has
1000
  /// the same selector and is of the same kind (class or instance).
1001
  /// A method in an implementation is not considered as overriding the same
1002
  /// method in the interface or its categories.
1003
  void getOverriddenMethods(
1004
                        const NamedDecl *Method,
1005
                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
1006
 
1007
  /// Notify the AST context that a new import declaration has been
1008
  /// parsed or implicitly created within this translation unit.
1009
  void addedLocalImportDecl(ImportDecl *Import);
1010
 
1011
  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
1012
    return Import->getNextLocalImport();
1013
  }
1014
 
1015
  using import_range = llvm::iterator_range<import_iterator>;
1016
 
1017
  import_range local_imports() const {
1018
    return import_range(import_iterator(FirstLocalImport), import_iterator());
1019
  }
1020
 
1021
  Decl *getPrimaryMergedDecl(Decl *D) {
1022
    Decl *Result = MergedDecls.lookup(D);
1023
    return Result ? Result : D;
1024
  }
1025
  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1026
    MergedDecls[D] = Primary;
1027
  }
1028
 
1029
  /// Note that the definition \p ND has been merged into module \p M,
1030
  /// and should be visible whenever \p M is visible.
1031
  void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1032
                                 bool NotifyListeners = true);
1033
 
1034
  /// Clean up the merged definition list. Call this if you might have
1035
  /// added duplicates into the list.
1036
  void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1037
 
1038
  /// Get the additional modules in which the definition \p Def has
1039
  /// been merged.
1040
  ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1041
 
1042
  /// Add a declaration to the list of declarations that are initialized
1043
  /// for a module. This will typically be a global variable (with internal
1044
  /// linkage) that runs module initializers, such as the iostream initializer,
1045
  /// or an ImportDecl nominating another module that has initializers.
1046
  void addModuleInitializer(Module *M, Decl *Init);
1047
 
1048
  void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1049
 
1050
  /// Get the initializations to perform when importing a module, if any.
1051
  ArrayRef<Decl*> getModuleInitializers(Module *M);
1052
 
1053
  /// Set the (C++20) module we are building.
1054
  void setModuleForCodeGen(Module *M) { TopLevelModule = M; }
1055
 
1056
  /// Get module under construction, nullptr if this is not a C++20 module.
1057
  Module *getModuleForCodeGen() const { return TopLevelModule; }
1058
 
1059
  TranslationUnitDecl *getTranslationUnitDecl() const {
1060
    return TUDecl->getMostRecentDecl();
1061
  }
1062
  void addTranslationUnitDecl() {
1063
    assert(!TUDecl || TUKind == TU_Incremental);
1064
    TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1065
    if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1066
      TraversalScope = {NewTUDecl};
1067
    if (TUDecl)
1068
      NewTUDecl->setPreviousDecl(TUDecl);
1069
    TUDecl = NewTUDecl;
1070
  }
1071
 
1072
  ExternCContextDecl *getExternCContextDecl() const;
1073
  BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1074
  BuiltinTemplateDecl *getTypePackElementDecl() const;
1075
 
1076
  // Builtin Types.
1077
  CanQualType VoidTy;
1078
  CanQualType BoolTy;
1079
  CanQualType CharTy;
1080
  CanQualType WCharTy;  // [C++ 3.9.1p5].
1081
  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1082
  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1083
  CanQualType Char8Ty;  // [C++20 proposal]
1084
  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1085
  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1086
  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1087
  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1088
  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1089
  CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
1090
  CanQualType ShortAccumTy, AccumTy,
1091
      LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1092
  CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1093
  CanQualType ShortFractTy, FractTy, LongFractTy;
1094
  CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1095
  CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1096
  CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1097
      SatUnsignedLongAccumTy;
1098
  CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1099
  CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1100
      SatUnsignedLongFractTy;
1101
  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1102
  CanQualType BFloat16Ty;
1103
  CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1104
  CanQualType VoidPtrTy, NullPtrTy;
1105
  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1106
  CanQualType BuiltinFnTy;
1107
  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1108
  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1109
  CanQualType ObjCBuiltinBoolTy;
1110
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1111
  CanQualType SingletonId;
1112
#include "clang/Basic/OpenCLImageTypes.def"
1113
  CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1114
  CanQualType OCLQueueTy, OCLReserveIDTy;
1115
  CanQualType IncompleteMatrixIdxTy;
1116
  CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1117
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1118
  CanQualType Id##Ty;
1119
#include "clang/Basic/OpenCLExtensionTypes.def"
1120
#define SVE_TYPE(Name, Id, SingletonId) \
1121
  CanQualType SingletonId;
1122
#include "clang/Basic/AArch64SVEACLETypes.def"
1123
#define PPC_VECTOR_TYPE(Name, Id, Size) \
1124
  CanQualType Id##Ty;
1125
#include "clang/Basic/PPCTypes.def"
1126
#define RVV_TYPE(Name, Id, SingletonId) \
1127
  CanQualType SingletonId;
1128
#include "clang/Basic/RISCVVTypes.def"
1129
 
1130
  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1131
  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1132
  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1133
 
1134
  // Decl used to help define __builtin_va_list for some targets.
1135
  // The decl is built when constructing 'BuiltinVaListDecl'.
1136
  mutable Decl *VaListTagDecl = nullptr;
1137
 
1138
  // Implicitly-declared type 'struct _GUID'.
1139
  mutable TagDecl *MSGuidTagDecl = nullptr;
1140
 
1141
  /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1142
  llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1143
 
1144
  /// Keep track of CUDA/HIP external kernels or device variables ODR-used by
1145
  /// host code.
1146
  llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
1147
 
1148
  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1149
             SelectorTable &sels, Builtin::Context &builtins,
1150
             TranslationUnitKind TUKind);
1151
  ASTContext(const ASTContext &) = delete;
1152
  ASTContext &operator=(const ASTContext &) = delete;
1153
  ~ASTContext();
1154
 
1155
  /// Attach an external AST source to the AST context.
1156
  ///
1157
  /// The external AST source provides the ability to load parts of
1158
  /// the abstract syntax tree as needed from some external storage,
1159
  /// e.g., a precompiled header.
1160
  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1161
 
1162
  /// Retrieve a pointer to the external AST source associated
1163
  /// with this AST context, if any.
1164
  ExternalASTSource *getExternalSource() const {
1165
    return ExternalSource.get();
1166
  }
1167
 
1168
  /// Attach an AST mutation listener to the AST context.
1169
  ///
1170
  /// The AST mutation listener provides the ability to track modifications to
1171
  /// the abstract syntax tree entities committed after they were initially
1172
  /// created.
1173
  void setASTMutationListener(ASTMutationListener *Listener) {
1174
    this->Listener = Listener;
1175
  }
1176
 
1177
  /// Retrieve a pointer to the AST mutation listener associated
1178
  /// with this AST context, if any.
1179
  ASTMutationListener *getASTMutationListener() const { return Listener; }
1180
 
1181
  void PrintStats() const;
1182
  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1183
 
1184
  BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1185
                                                const IdentifierInfo *II) const;
1186
 
1187
  /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1188
  /// declaration.
1189
  RecordDecl *buildImplicitRecord(StringRef Name,
1190
                                  RecordDecl::TagKind TK = TTK_Struct) const;
1191
 
1192
  /// Create a new implicit TU-level typedef declaration.
1193
  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1194
 
1195
  /// Retrieve the declaration for the 128-bit signed integer type.
1196
  TypedefDecl *getInt128Decl() const;
1197
 
1198
  /// Retrieve the declaration for the 128-bit unsigned integer type.
1199
  TypedefDecl *getUInt128Decl() const;
1200
 
1201
  //===--------------------------------------------------------------------===//
1202
  //                           Type Constructors
1203
  //===--------------------------------------------------------------------===//
1204
 
1205
private:
1206
  /// Return a type with extended qualifiers.
1207
  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1208
 
1209
  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1210
 
1211
  QualType getPipeType(QualType T, bool ReadOnly) const;
1212
 
1213
public:
1214
  /// Return the uniqued reference to the type for an address space
1215
  /// qualified type with the specified type and address space.
1216
  ///
1217
  /// The resulting type has a union of the qualifiers from T and the address
1218
  /// space. If T already has an address space specifier, it is silently
1219
  /// replaced.
1220
  QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1221
 
1222
  /// Remove any existing address space on the type and returns the type
1223
  /// with qualifiers intact (or that's the idea anyway)
1224
  ///
1225
  /// The return type should be T with all prior qualifiers minus the address
1226
  /// space.
1227
  QualType removeAddrSpaceQualType(QualType T) const;
1228
 
1229
  /// Apply Objective-C protocol qualifiers to the given type.
1230
  /// \param allowOnPointerType specifies if we can apply protocol
1231
  /// qualifiers on ObjCObjectPointerType. It can be set to true when
1232
  /// constructing the canonical type of a Objective-C type parameter.
1233
  QualType applyObjCProtocolQualifiers(QualType type,
1234
      ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1235
      bool allowOnPointerType = false) const;
1236
 
1237
  /// Return the uniqued reference to the type for an Objective-C
1238
  /// gc-qualified type.
1239
  ///
1240
  /// The resulting type has a union of the qualifiers from T and the gc
1241
  /// attribute.
1242
  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1243
 
1244
  /// Remove the existing address space on the type if it is a pointer size
1245
  /// address space and return the type with qualifiers intact.
1246
  QualType removePtrSizeAddrSpace(QualType T) const;
1247
 
1248
  /// Return the uniqued reference to the type for a \c restrict
1249
  /// qualified type.
1250
  ///
1251
  /// The resulting type has a union of the qualifiers from \p T and
1252
  /// \c restrict.
1253
  QualType getRestrictType(QualType T) const {
1254
    return T.withFastQualifiers(Qualifiers::Restrict);
1255
  }
1256
 
1257
  /// Return the uniqued reference to the type for a \c volatile
1258
  /// qualified type.
1259
  ///
1260
  /// The resulting type has a union of the qualifiers from \p T and
1261
  /// \c volatile.
1262
  QualType getVolatileType(QualType T) const {
1263
    return T.withFastQualifiers(Qualifiers::Volatile);
1264
  }
1265
 
1266
  /// Return the uniqued reference to the type for a \c const
1267
  /// qualified type.
1268
  ///
1269
  /// The resulting type has a union of the qualifiers from \p T and \c const.
1270
  ///
1271
  /// It can be reasonably expected that this will always be equivalent to
1272
  /// calling T.withConst().
1273
  QualType getConstType(QualType T) const { return T.withConst(); }
1274
 
1275
  /// Change the ExtInfo on a function type.
1276
  const FunctionType *adjustFunctionType(const FunctionType *Fn,
1277
                                         FunctionType::ExtInfo EInfo);
1278
 
1279
  /// Adjust the given function result type.
1280
  CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1281
 
1282
  /// Change the result type of a function type once it is deduced.
1283
  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1284
 
1285
  /// Get a function type and produce the equivalent function type with the
1286
  /// specified exception specification. Type sugar that can be present on a
1287
  /// declaration of a function with an exception specification is permitted
1288
  /// and preserved. Other type sugar (for instance, typedefs) is not.
1289
  QualType getFunctionTypeWithExceptionSpec(
1290
      QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
1291
 
1292
  /// Determine whether two function types are the same, ignoring
1293
  /// exception specifications in cases where they're part of the type.
1294
  bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
1295
 
1296
  /// Change the exception specification on a function once it is
1297
  /// delay-parsed, instantiated, or computed.
1298
  void adjustExceptionSpec(FunctionDecl *FD,
1299
                           const FunctionProtoType::ExceptionSpecInfo &ESI,
1300
                           bool AsWritten = false);
1301
 
1302
  /// Get a function type and produce the equivalent function type where
1303
  /// pointer size address spaces in the return type and parameter tyeps are
1304
  /// replaced with the default address space.
1305
  QualType getFunctionTypeWithoutPtrSizes(QualType T);
1306
 
1307
  /// Determine whether two function types are the same, ignoring pointer sizes
1308
  /// in the return type and parameter types.
1309
  bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1310
 
1311
  /// Return the uniqued reference to the type for a complex
1312
  /// number with the specified element type.
1313
  QualType getComplexType(QualType T) const;
1314
  CanQualType getComplexType(CanQualType T) const {
1315
    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1316
  }
1317
 
1318
  /// Return the uniqued reference to the type for a pointer to
1319
  /// the specified type.
1320
  QualType getPointerType(QualType T) const;
1321
  CanQualType getPointerType(CanQualType T) const {
1322
    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1323
  }
1324
 
1325
  /// Return the uniqued reference to a type adjusted from the original
1326
  /// type to a new type.
1327
  QualType getAdjustedType(QualType Orig, QualType New) const;
1328
  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1329
    return CanQualType::CreateUnsafe(
1330
        getAdjustedType((QualType)Orig, (QualType)New));
1331
  }
1332
 
1333
  /// Return the uniqued reference to the decayed version of the given
1334
  /// type.  Can only be called on array and function types which decay to
1335
  /// pointer types.
1336
  QualType getDecayedType(QualType T) const;
1337
  CanQualType getDecayedType(CanQualType T) const {
1338
    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1339
  }
1340
  /// Return the uniqued reference to a specified decay from the original
1341
  /// type to the decayed type.
1342
  QualType getDecayedType(QualType Orig, QualType Decayed) const;
1343
 
1344
  /// Return the uniqued reference to the atomic type for the specified
1345
  /// type.
1346
  QualType getAtomicType(QualType T) const;
1347
 
1348
  /// Return the uniqued reference to the type for a block of the
1349
  /// specified type.
1350
  QualType getBlockPointerType(QualType T) const;
1351
 
1352
  /// Gets the struct used to keep track of the descriptor for pointer to
1353
  /// blocks.
1354
  QualType getBlockDescriptorType() const;
1355
 
1356
  /// Return a read_only pipe type for the specified type.
1357
  QualType getReadPipeType(QualType T) const;
1358
 
1359
  /// Return a write_only pipe type for the specified type.
1360
  QualType getWritePipeType(QualType T) const;
1361
 
1362
  /// Return a bit-precise integer type with the specified signedness and bit
1363
  /// count.
1364
  QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
1365
 
1366
  /// Return a dependent bit-precise integer type with the specified signedness
1367
  /// and bit count.
1368
  QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
1369
 
1370
  /// Gets the struct used to keep track of the extended descriptor for
1371
  /// pointer to blocks.
1372
  QualType getBlockDescriptorExtendedType() const;
1373
 
1374
  /// Map an AST Type to an OpenCLTypeKind enum value.
1375
  OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1376
 
1377
  /// Get address space for OpenCL type.
1378
  LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1379
 
1380
  /// Returns default address space based on OpenCL version and enabled features
1381
  inline LangAS getDefaultOpenCLPointeeAddrSpace() {
1382
    return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
1383
                                              : LangAS::opencl_private;
1384
  }
1385
 
1386
  void setcudaConfigureCallDecl(FunctionDecl *FD) {
1387
    cudaConfigureCallDecl = FD;
1388
  }
1389
 
1390
  FunctionDecl *getcudaConfigureCallDecl() {
1391
    return cudaConfigureCallDecl;
1392
  }
1393
 
1394
  /// Returns true iff we need copy/dispose helpers for the given type.
1395
  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1396
 
1397
  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1398
  /// is set to false in this case. If HasByrefExtendedLayout returns true,
1399
  /// byref variable has extended lifetime.
1400
  bool getByrefLifetime(QualType Ty,
1401
                        Qualifiers::ObjCLifetime &Lifetime,
1402
                        bool &HasByrefExtendedLayout) const;
1403
 
1404
  /// Return the uniqued reference to the type for an lvalue reference
1405
  /// to the specified type.
1406
  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1407
    const;
1408
 
1409
  /// Return the uniqued reference to the type for an rvalue reference
1410
  /// to the specified type.
1411
  QualType getRValueReferenceType(QualType T) const;
1412
 
1413
  /// Return the uniqued reference to the type for a member pointer to
1414
  /// the specified type in the specified class.
1415
  ///
1416
  /// The class \p Cls is a \c Type because it could be a dependent name.
1417
  QualType getMemberPointerType(QualType T, const Type *Cls) const;
1418
 
1419
  /// Return a non-unique reference to the type for a variable array of
1420
  /// the specified element type.
1421
  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1422
                                ArrayType::ArraySizeModifier ASM,
1423
                                unsigned IndexTypeQuals,
1424
                                SourceRange Brackets) const;
1425
 
1426
  /// Return a non-unique reference to the type for a dependently-sized
1427
  /// array of the specified element type.
1428
  ///
1429
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1430
  /// point.
1431
  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1432
                                      ArrayType::ArraySizeModifier ASM,
1433
                                      unsigned IndexTypeQuals,
1434
                                      SourceRange Brackets) const;
1435
 
1436
  /// Return a unique reference to the type for an incomplete array of
1437
  /// the specified element type.
1438
  QualType getIncompleteArrayType(QualType EltTy,
1439
                                  ArrayType::ArraySizeModifier ASM,
1440
                                  unsigned IndexTypeQuals) const;
1441
 
1442
  /// Return the unique reference to the type for a constant array of
1443
  /// the specified element type.
1444
  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1445
                                const Expr *SizeExpr,
1446
                                ArrayType::ArraySizeModifier ASM,
1447
                                unsigned IndexTypeQuals) const;
1448
 
1449
  /// Return a type for a constant array for a string literal of the
1450
  /// specified element type and length.
1451
  QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1452
 
1453
  /// Returns a vla type where known sizes are replaced with [*].
1454
  QualType getVariableArrayDecayedType(QualType Ty) const;
1455
 
1456
  // Convenience struct to return information about a builtin vector type.
1457
  struct BuiltinVectorTypeInfo {
1458
    QualType ElementType;
1459
    llvm::ElementCount EC;
1460
    unsigned NumVectors;
1461
    BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1462
                          unsigned NumVectors)
1463
        : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1464
  };
1465
 
1466
  /// Returns the element type, element count and number of vectors
1467
  /// (in case of tuple) for a builtin vector type.
1468
  BuiltinVectorTypeInfo
1469
  getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1470
 
1471
  /// Return the unique reference to a scalable vector type of the specified
1472
  /// element type and scalable number of elements.
1473
  ///
1474
  /// \pre \p EltTy must be a built-in type.
1475
  QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1476
 
1477
  /// Return the unique reference to a vector type of the specified
1478
  /// element type and size.
1479
  ///
1480
  /// \pre \p VectorType must be a built-in type.
1481
  QualType getVectorType(QualType VectorType, unsigned NumElts,
1482
                         VectorType::VectorKind VecKind) const;
1483
  /// Return the unique reference to the type for a dependently sized vector of
1484
  /// the specified element type.
1485
  QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1486
                                  SourceLocation AttrLoc,
1487
                                  VectorType::VectorKind VecKind) const;
1488
 
1489
  /// Return the unique reference to an extended vector type
1490
  /// of the specified element type and size.
1491
  ///
1492
  /// \pre \p VectorType must be a built-in type.
1493
  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1494
 
1495
  /// \pre Return a non-unique reference to the type for a dependently-sized
1496
  /// vector of the specified element type.
1497
  ///
1498
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1499
  /// point.
1500
  QualType getDependentSizedExtVectorType(QualType VectorType,
1501
                                          Expr *SizeExpr,
1502
                                          SourceLocation AttrLoc) const;
1503
 
1504
  /// Return the unique reference to the matrix type of the specified element
1505
  /// type and size
1506
  ///
1507
  /// \pre \p ElementType must be a valid matrix element type (see
1508
  /// MatrixType::isValidElementType).
1509
  QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1510
                                 unsigned NumColumns) const;
1511
 
1512
  /// Return the unique reference to the matrix type of the specified element
1513
  /// type and size
1514
  QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1515
                                       Expr *ColumnExpr,
1516
                                       SourceLocation AttrLoc) const;
1517
 
1518
  QualType getDependentAddressSpaceType(QualType PointeeType,
1519
                                        Expr *AddrSpaceExpr,
1520
                                        SourceLocation AttrLoc) const;
1521
 
1522
  /// Return a K&R style C function type like 'int()'.
1523
  QualType getFunctionNoProtoType(QualType ResultTy,
1524
                                  const FunctionType::ExtInfo &Info) const;
1525
 
1526
  QualType getFunctionNoProtoType(QualType ResultTy) const {
1527
    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1528
  }
1529
 
1530
  /// Return a normal function type with a typed argument list.
1531
  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1532
                           const FunctionProtoType::ExtProtoInfo &EPI) const {
1533
    return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1534
  }
1535
 
1536
  QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1537
 
1538
private:
1539
  /// Return a normal function type with a typed argument list.
1540
  QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1541
                                   const FunctionProtoType::ExtProtoInfo &EPI,
1542
                                   bool OnlyWantCanonical) const;
1543
  QualType
1544
  getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
1545
                      bool IsDependent, bool IsPack = false,
1546
                      ConceptDecl *TypeConstraintConcept = nullptr,
1547
                      ArrayRef<TemplateArgument> TypeConstraintArgs = {},
1548
                      bool IsCanon = false) const;
1549
 
1550
public:
1551
  /// Return the unique reference to the type for the specified type
1552
  /// declaration.
1553
  QualType getTypeDeclType(const TypeDecl *Decl,
1554
                           const TypeDecl *PrevDecl = nullptr) const {
1555
    assert(Decl && "Passed null for Decl param");
1556
    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1557
 
1558
    if (PrevDecl) {
1559
      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1560
      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1561
      return QualType(PrevDecl->TypeForDecl, 0);
1562
    }
1563
 
1564
    return getTypeDeclTypeSlow(Decl);
1565
  }
1566
 
1567
  QualType getUsingType(const UsingShadowDecl *Found,
1568
                        QualType Underlying) const;
1569
 
1570
  /// Return the unique reference to the type for the specified
1571
  /// typedef-name decl.
1572
  QualType getTypedefType(const TypedefNameDecl *Decl,
1573
                          QualType Underlying = QualType()) const;
1574
 
1575
  QualType getRecordType(const RecordDecl *Decl) const;
1576
 
1577
  QualType getEnumType(const EnumDecl *Decl) const;
1578
 
1579
  QualType
1580
  getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
1581
 
1582
  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1583
 
1584
  QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
1585
                             QualType equivalentType) const;
1586
 
1587
  QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
1588
                                   QualType Wrapped);
1589
 
1590
  QualType
1591
  getSubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
1592
                               unsigned Index,
1593
                               std::optional<unsigned> PackIndex) const;
1594
  QualType getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
1595
                                            unsigned Index, bool Final,
1596
                                            const TemplateArgument &ArgPack);
1597
 
1598
  QualType
1599
  getTemplateTypeParmType(unsigned Depth, unsigned Index,
1600
                          bool ParameterPack,
1601
                          TemplateTypeParmDecl *ParmDecl = nullptr) const;
1602
 
1603
  QualType getTemplateSpecializationType(TemplateName T,
1604
                                         ArrayRef<TemplateArgument> Args,
1605
                                         QualType Canon = QualType()) const;
1606
 
1607
  QualType
1608
  getCanonicalTemplateSpecializationType(TemplateName T,
1609
                                         ArrayRef<TemplateArgument> Args) const;
1610
 
1611
  QualType getTemplateSpecializationType(TemplateName T,
1612
                                         ArrayRef<TemplateArgumentLoc> Args,
1613
                                         QualType Canon = QualType()) const;
1614
 
1615
  TypeSourceInfo *
1616
  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1617
                                    const TemplateArgumentListInfo &Args,
1618
                                    QualType Canon = QualType()) const;
1619
 
1620
  QualType getParenType(QualType NamedType) const;
1621
 
1622
  QualType getMacroQualifiedType(QualType UnderlyingTy,
1623
                                 const IdentifierInfo *MacroII) const;
1624
 
1625
  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1626
                             NestedNameSpecifier *NNS, QualType NamedType,
1627
                             TagDecl *OwnedTagDecl = nullptr) const;
1628
  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1629
                                NestedNameSpecifier *NNS,
1630
                                const IdentifierInfo *Name,
1631
                                QualType Canon = QualType()) const;
1632
 
1633
  QualType getDependentTemplateSpecializationType(
1634
      ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1635
      const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const;
1636
  QualType getDependentTemplateSpecializationType(
1637
      ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1638
      const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1639
 
1640
  TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1641
 
1642
  /// Get a template argument list with one argument per template parameter
1643
  /// in a template parameter list, such as for the injected class name of
1644
  /// a class template.
1645
  void getInjectedTemplateArgs(const TemplateParameterList *Params,
1646
                               SmallVectorImpl<TemplateArgument> &Args);
1647
 
1648
  /// Form a pack expansion type with the given pattern.
1649
  /// \param NumExpansions The number of expansions for the pack, if known.
1650
  /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1651
  ///        contain an unexpanded pack. This only makes sense if the pack
1652
  ///        expansion is used in a context where the arity is inferred from
1653
  ///        elsewhere, such as if the pattern contains a placeholder type or
1654
  ///        if this is the canonical type of another pack expansion type.
1655
  QualType getPackExpansionType(QualType Pattern,
1656
                                std::optional<unsigned> NumExpansions,
1657
                                bool ExpectPackInType = true);
1658
 
1659
  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1660
                                ObjCInterfaceDecl *PrevDecl = nullptr) const;
1661
 
1662
  /// Legacy interface: cannot provide type arguments or __kindof.
1663
  QualType getObjCObjectType(QualType Base,
1664
                             ObjCProtocolDecl * const *Protocols,
1665
                             unsigned NumProtocols) const;
1666
 
1667
  QualType getObjCObjectType(QualType Base,
1668
                             ArrayRef<QualType> typeArgs,
1669
                             ArrayRef<ObjCProtocolDecl *> protocols,
1670
                             bool isKindOf) const;
1671
 
1672
  QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1673
                                ArrayRef<ObjCProtocolDecl *> protocols) const;
1674
  void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1675
                                    ObjCTypeParamDecl *New) const;
1676
 
1677
  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1678
 
1679
  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1680
  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1681
  /// of protocols.
1682
  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1683
                                            ObjCInterfaceDecl *IDecl);
1684
 
1685
  /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1686
  QualType getObjCObjectPointerType(QualType OIT) const;
1687
 
1688
  /// C2x feature and GCC extension.
1689
  QualType getTypeOfExprType(Expr *E, TypeOfKind Kind) const;
1690
  QualType getTypeOfType(QualType QT, TypeOfKind Kind) const;
1691
 
1692
  QualType getReferenceQualifiedType(const Expr *e) const;
1693
 
1694
  /// C++11 decltype.
1695
  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1696
 
1697
  /// Unary type transforms
1698
  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1699
                                 UnaryTransformType::UTTKind UKind) const;
1700
 
1701
  /// C++11 deduced auto type.
1702
  QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1703
                       bool IsDependent, bool IsPack = false,
1704
                       ConceptDecl *TypeConstraintConcept = nullptr,
1705
                       ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1706
 
1707
  /// C++11 deduction pattern for 'auto' type.
1708
  QualType getAutoDeductType() const;
1709
 
1710
  /// C++11 deduction pattern for 'auto &&' type.
1711
  QualType getAutoRRefDeductType() const;
1712
 
1713
  /// C++17 deduced class template specialization type.
1714
  QualType getDeducedTemplateSpecializationType(TemplateName Template,
1715
                                                QualType DeducedType,
1716
                                                bool IsDependent) const;
1717
 
1718
  /// Return the unique reference to the type for the specified TagDecl
1719
  /// (struct/union/class/enum) decl.
1720
  QualType getTagDeclType(const TagDecl *Decl) const;
1721
 
1722
  /// Return the unique type for "size_t" (C99 7.17), defined in
1723
  /// <stddef.h>.
1724
  ///
1725
  /// The sizeof operator requires this (C99 6.5.3.4p4).
1726
  CanQualType getSizeType() const;
1727
 
1728
  /// Return the unique signed counterpart of
1729
  /// the integer type corresponding to size_t.
1730
  CanQualType getSignedSizeType() const;
1731
 
1732
  /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1733
  /// <stdint.h>.
1734
  CanQualType getIntMaxType() const;
1735
 
1736
  /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1737
  /// <stdint.h>.
1738
  CanQualType getUIntMaxType() const;
1739
 
1740
  /// Return the unique wchar_t type available in C++ (and available as
1741
  /// __wchar_t as a Microsoft extension).
1742
  QualType getWCharType() const { return WCharTy; }
1743
 
1744
  /// Return the type of wide characters. In C++, this returns the
1745
  /// unique wchar_t type. In C99, this returns a type compatible with the type
1746
  /// defined in <stddef.h> as defined by the target.
1747
  QualType getWideCharType() const { return WideCharTy; }
1748
 
1749
  /// Return the type of "signed wchar_t".
1750
  ///
1751
  /// Used when in C++, as a GCC extension.
1752
  QualType getSignedWCharType() const;
1753
 
1754
  /// Return the type of "unsigned wchar_t".
1755
  ///
1756
  /// Used when in C++, as a GCC extension.
1757
  QualType getUnsignedWCharType() const;
1758
 
1759
  /// In C99, this returns a type compatible with the type
1760
  /// defined in <stddef.h> as defined by the target.
1761
  QualType getWIntType() const { return WIntTy; }
1762
 
1763
  /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1764
  /// as defined by the target.
1765
  QualType getIntPtrType() const;
1766
 
1767
  /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1768
  /// as defined by the target.
1769
  QualType getUIntPtrType() const;
1770
 
1771
  /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1772
  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1773
  QualType getPointerDiffType() const;
1774
 
1775
  /// Return the unique unsigned counterpart of "ptrdiff_t"
1776
  /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1777
  /// in the definition of %tu format specifier.
1778
  QualType getUnsignedPointerDiffType() const;
1779
 
1780
  /// Return the unique type for "pid_t" defined in
1781
  /// <sys/types.h>. We need this to compute the correct type for vfork().
1782
  QualType getProcessIDType() const;
1783
 
1784
  /// Return the C structure type used to represent constant CFStrings.
1785
  QualType getCFConstantStringType() const;
1786
 
1787
  /// Returns the C struct type for objc_super
1788
  QualType getObjCSuperType() const;
1789
  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1790
 
1791
  /// Get the structure type used to representation CFStrings, or NULL
1792
  /// if it hasn't yet been built.
1793
  QualType getRawCFConstantStringType() const {
1794
    if (CFConstantStringTypeDecl)
1795
      return getTypedefType(CFConstantStringTypeDecl);
1796
    return QualType();
1797
  }
1798
  void setCFConstantStringType(QualType T);
1799
  TypedefDecl *getCFConstantStringDecl() const;
1800
  RecordDecl *getCFConstantStringTagDecl() const;
1801
 
1802
  // This setter/getter represents the ObjC type for an NSConstantString.
1803
  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1804
  QualType getObjCConstantStringInterface() const {
1805
    return ObjCConstantStringType;
1806
  }
1807
 
1808
  QualType getObjCNSStringType() const {
1809
    return ObjCNSStringType;
1810
  }
1811
 
1812
  void setObjCNSStringType(QualType T) {
1813
    ObjCNSStringType = T;
1814
  }
1815
 
1816
  /// Retrieve the type that \c id has been defined to, which may be
1817
  /// different from the built-in \c id if \c id has been typedef'd.
1818
  QualType getObjCIdRedefinitionType() const {
1819
    if (ObjCIdRedefinitionType.isNull())
1820
      return getObjCIdType();
1821
    return ObjCIdRedefinitionType;
1822
  }
1823
 
1824
  /// Set the user-written type that redefines \c id.
1825
  void setObjCIdRedefinitionType(QualType RedefType) {
1826
    ObjCIdRedefinitionType = RedefType;
1827
  }
1828
 
1829
  /// Retrieve the type that \c Class has been defined to, which may be
1830
  /// different from the built-in \c Class if \c Class has been typedef'd.
1831
  QualType getObjCClassRedefinitionType() const {
1832
    if (ObjCClassRedefinitionType.isNull())
1833
      return getObjCClassType();
1834
    return ObjCClassRedefinitionType;
1835
  }
1836
 
1837
  /// Set the user-written type that redefines 'SEL'.
1838
  void setObjCClassRedefinitionType(QualType RedefType) {
1839
    ObjCClassRedefinitionType = RedefType;
1840
  }
1841
 
1842
  /// Retrieve the type that 'SEL' has been defined to, which may be
1843
  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1844
  QualType getObjCSelRedefinitionType() const {
1845
    if (ObjCSelRedefinitionType.isNull())
1846
      return getObjCSelType();
1847
    return ObjCSelRedefinitionType;
1848
  }
1849
 
1850
  /// Set the user-written type that redefines 'SEL'.
1851
  void setObjCSelRedefinitionType(QualType RedefType) {
1852
    ObjCSelRedefinitionType = RedefType;
1853
  }
1854
 
1855
  /// Retrieve the identifier 'NSObject'.
1856
  IdentifierInfo *getNSObjectName() const {
1857
    if (!NSObjectName) {
1858
      NSObjectName = &Idents.get("NSObject");
1859
    }
1860
 
1861
    return NSObjectName;
1862
  }
1863
 
1864
  /// Retrieve the identifier 'NSCopying'.
1865
  IdentifierInfo *getNSCopyingName() {
1866
    if (!NSCopyingName) {
1867
      NSCopyingName = &Idents.get("NSCopying");
1868
    }
1869
 
1870
    return NSCopyingName;
1871
  }
1872
 
1873
  CanQualType getNSUIntegerType() const;
1874
 
1875
  CanQualType getNSIntegerType() const;
1876
 
1877
  /// Retrieve the identifier 'bool'.
1878
  IdentifierInfo *getBoolName() const {
1879
    if (!BoolName)
1880
      BoolName = &Idents.get("bool");
1881
    return BoolName;
1882
  }
1883
 
1884
  IdentifierInfo *getMakeIntegerSeqName() const {
1885
    if (!MakeIntegerSeqName)
1886
      MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1887
    return MakeIntegerSeqName;
1888
  }
1889
 
1890
  IdentifierInfo *getTypePackElementName() const {
1891
    if (!TypePackElementName)
1892
      TypePackElementName = &Idents.get("__type_pack_element");
1893
    return TypePackElementName;
1894
  }
1895
 
1896
  /// Retrieve the Objective-C "instancetype" type, if already known;
1897
  /// otherwise, returns a NULL type;
1898
  QualType getObjCInstanceType() {
1899
    return getTypeDeclType(getObjCInstanceTypeDecl());
1900
  }
1901
 
1902
  /// Retrieve the typedef declaration corresponding to the Objective-C
1903
  /// "instancetype" type.
1904
  TypedefDecl *getObjCInstanceTypeDecl();
1905
 
1906
  /// Set the type for the C FILE type.
1907
  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1908
 
1909
  /// Retrieve the C FILE type.
1910
  QualType getFILEType() const {
1911
    if (FILEDecl)
1912
      return getTypeDeclType(FILEDecl);
1913
    return QualType();
1914
  }
1915
 
1916
  /// Set the type for the C jmp_buf type.
1917
  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1918
    this->jmp_bufDecl = jmp_bufDecl;
1919
  }
1920
 
1921
  /// Retrieve the C jmp_buf type.
1922
  QualType getjmp_bufType() const {
1923
    if (jmp_bufDecl)
1924
      return getTypeDeclType(jmp_bufDecl);
1925
    return QualType();
1926
  }
1927
 
1928
  /// Set the type for the C sigjmp_buf type.
1929
  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1930
    this->sigjmp_bufDecl = sigjmp_bufDecl;
1931
  }
1932
 
1933
  /// Retrieve the C sigjmp_buf type.
1934
  QualType getsigjmp_bufType() const {
1935
    if (sigjmp_bufDecl)
1936
      return getTypeDeclType(sigjmp_bufDecl);
1937
    return QualType();
1938
  }
1939
 
1940
  /// Set the type for the C ucontext_t type.
1941
  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1942
    this->ucontext_tDecl = ucontext_tDecl;
1943
  }
1944
 
1945
  /// Retrieve the C ucontext_t type.
1946
  QualType getucontext_tType() const {
1947
    if (ucontext_tDecl)
1948
      return getTypeDeclType(ucontext_tDecl);
1949
    return QualType();
1950
  }
1951
 
1952
  /// The result type of logical operations, '<', '>', '!=', etc.
1953
  QualType getLogicalOperationType() const {
1954
    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1955
  }
1956
 
1957
  /// Emit the Objective-CC type encoding for the given type \p T into
1958
  /// \p S.
1959
  ///
1960
  /// If \p Field is specified then record field names are also encoded.
1961
  void getObjCEncodingForType(QualType T, std::string &S,
1962
                              const FieldDecl *Field=nullptr,
1963
                              QualType *NotEncodedT=nullptr) const;
1964
 
1965
  /// Emit the Objective-C property type encoding for the given
1966
  /// type \p T into \p S.
1967
  void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1968
 
1969
  void getLegacyIntegralTypeEncoding(QualType &t) const;
1970
 
1971
  /// Put the string version of the type qualifiers \p QT into \p S.
1972
  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1973
                                       std::string &S) const;
1974
 
1975
  /// Emit the encoded type for the function \p Decl into \p S.
1976
  ///
1977
  /// This is in the same format as Objective-C method encodings.
1978
  ///
1979
  /// \returns true if an error occurred (e.g., because one of the parameter
1980
  /// types is incomplete), false otherwise.
1981
  std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1982
 
1983
  /// Emit the encoded type for the method declaration \p Decl into
1984
  /// \p S.
1985
  std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1986
                                           bool Extended = false) const;
1987
 
1988
  /// Return the encoded type for this block declaration.
1989
  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1990
 
1991
  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1992
  /// this method declaration. If non-NULL, Container must be either
1993
  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1994
  /// only be NULL when getting encodings for protocol properties.
1995
  std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1996
                                             const Decl *Container) const;
1997
 
1998
  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1999
                                      ObjCProtocolDecl *rProto) const;
2000
 
2001
  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
2002
                                                  const ObjCPropertyDecl *PD,
2003
                                                  const Decl *Container) const;
2004
 
2005
  /// Return the size of type \p T for Objective-C encoding purpose,
2006
  /// in characters.
2007
  CharUnits getObjCEncodingTypeSize(QualType T) const;
2008
 
2009
  /// Retrieve the typedef corresponding to the predefined \c id type
2010
  /// in Objective-C.
2011
  TypedefDecl *getObjCIdDecl() const;
2012
 
2013
  /// Represents the Objective-CC \c id type.
2014
  ///
2015
  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
2016
  /// pointer type, a pointer to a struct.
2017
  QualType getObjCIdType() const {
2018
    return getTypeDeclType(getObjCIdDecl());
2019
  }
2020
 
2021
  /// Retrieve the typedef corresponding to the predefined 'SEL' type
2022
  /// in Objective-C.
2023
  TypedefDecl *getObjCSelDecl() const;
2024
 
2025
  /// Retrieve the type that corresponds to the predefined Objective-C
2026
  /// 'SEL' type.
2027
  QualType getObjCSelType() const {
2028
    return getTypeDeclType(getObjCSelDecl());
2029
  }
2030
 
2031
  /// Retrieve the typedef declaration corresponding to the predefined
2032
  /// Objective-C 'Class' type.
2033
  TypedefDecl *getObjCClassDecl() const;
2034
 
2035
  /// Represents the Objective-C \c Class type.
2036
  ///
2037
  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
2038
  /// pointer type, a pointer to a struct.
2039
  QualType getObjCClassType() const {
2040
    return getTypeDeclType(getObjCClassDecl());
2041
  }
2042
 
2043
  /// Retrieve the Objective-C class declaration corresponding to
2044
  /// the predefined \c Protocol class.
2045
  ObjCInterfaceDecl *getObjCProtocolDecl() const;
2046
 
2047
  /// Retrieve declaration of 'BOOL' typedef
2048
  TypedefDecl *getBOOLDecl() const {
2049
    return BOOLDecl;
2050
  }
2051
 
2052
  /// Save declaration of 'BOOL' typedef
2053
  void setBOOLDecl(TypedefDecl *TD) {
2054
    BOOLDecl = TD;
2055
  }
2056
 
2057
  /// type of 'BOOL' type.
2058
  QualType getBOOLType() const {
2059
    return getTypeDeclType(getBOOLDecl());
2060
  }
2061
 
2062
  /// Retrieve the type of the Objective-C \c Protocol class.
2063
  QualType getObjCProtoType() const {
2064
    return getObjCInterfaceType(getObjCProtocolDecl());
2065
  }
2066
 
2067
  /// Retrieve the C type declaration corresponding to the predefined
2068
  /// \c __builtin_va_list type.
2069
  TypedefDecl *getBuiltinVaListDecl() const;
2070
 
2071
  /// Retrieve the type of the \c __builtin_va_list type.
2072
  QualType getBuiltinVaListType() const {
2073
    return getTypeDeclType(getBuiltinVaListDecl());
2074
  }
2075
 
2076
  /// Retrieve the C type declaration corresponding to the predefined
2077
  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2078
  /// for some targets.
2079
  Decl *getVaListTagDecl() const;
2080
 
2081
  /// Retrieve the C type declaration corresponding to the predefined
2082
  /// \c __builtin_ms_va_list type.
2083
  TypedefDecl *getBuiltinMSVaListDecl() const;
2084
 
2085
  /// Retrieve the type of the \c __builtin_ms_va_list type.
2086
  QualType getBuiltinMSVaListType() const {
2087
    return getTypeDeclType(getBuiltinMSVaListDecl());
2088
  }
2089
 
2090
  /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
2091
  TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2092
 
2093
  /// Retrieve the implicitly-predeclared 'struct _GUID' type.
2094
  QualType getMSGuidType() const {
2095
    assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2096
    return getTagDeclType(MSGuidTagDecl);
2097
  }
2098
 
2099
  /// Return whether a declaration to a builtin is allowed to be
2100
  /// overloaded/redeclared.
2101
  bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2102
 
2103
  /// Return a type with additional \c const, \c volatile, or
2104
  /// \c restrict qualifiers.
2105
  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2106
    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2107
  }
2108
 
2109
  /// Un-split a SplitQualType.
2110
  QualType getQualifiedType(SplitQualType split) const {
2111
    return getQualifiedType(split.Ty, split.Quals);
2112
  }
2113
 
2114
  /// Return a type with additional qualifiers.
2115
  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2116
    if (!Qs.hasNonFastQualifiers())
2117
      return T.withFastQualifiers(Qs.getFastQualifiers());
2118
    QualifierCollector Qc(Qs);
2119
    const Type *Ptr = Qc.strip(T);
2120
    return getExtQualType(Ptr, Qc);
2121
  }
2122
 
2123
  /// Return a type with additional qualifiers.
2124
  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2125
    if (!Qs.hasNonFastQualifiers())
2126
      return QualType(T, Qs.getFastQualifiers());
2127
    return getExtQualType(T, Qs);
2128
  }
2129
 
2130
  /// Return a type with the given lifetime qualifier.
2131
  ///
2132
  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2133
  QualType getLifetimeQualifiedType(QualType type,
2134
                                    Qualifiers::ObjCLifetime lifetime) {
2135
    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2136
    assert(lifetime != Qualifiers::OCL_None);
2137
 
2138
    Qualifiers qs;
2139
    qs.addObjCLifetime(lifetime);
2140
    return getQualifiedType(type, qs);
2141
  }
2142
 
2143
  /// getUnqualifiedObjCPointerType - Returns version of
2144
  /// Objective-C pointer type with lifetime qualifier removed.
2145
  QualType getUnqualifiedObjCPointerType(QualType type) const {
2146
    if (!type.getTypePtr()->isObjCObjectPointerType() ||
2147
        !type.getQualifiers().hasObjCLifetime())
2148
      return type;
2149
    Qualifiers Qs = type.getQualifiers();
2150
    Qs.removeObjCLifetime();
2151
    return getQualifiedType(type.getUnqualifiedType(), Qs);
2152
  }
2153
 
2154
  unsigned char getFixedPointScale(QualType Ty) const;
2155
  unsigned char getFixedPointIBits(QualType Ty) const;
2156
  llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2157
  llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2158
  llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2159
 
2160
  DeclarationNameInfo getNameForTemplate(TemplateName Name,
2161
                                         SourceLocation NameLoc) const;
2162
 
2163
  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2164
                                         UnresolvedSetIterator End) const;
2165
  TemplateName getAssumedTemplateName(DeclarationName Name) const;
2166
 
2167
  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2168
                                        bool TemplateKeyword,
2169
                                        TemplateName Template) const;
2170
 
2171
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2172
                                        const IdentifierInfo *Name) const;
2173
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2174
                                        OverloadedOperatorKind Operator) const;
2175
  TemplateName
2176
  getSubstTemplateTemplateParm(TemplateName replacement, Decl *AssociatedDecl,
2177
                               unsigned Index,
2178
                               std::optional<unsigned> PackIndex) const;
2179
  TemplateName getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
2180
                                                Decl *AssociatedDecl,
2181
                                                unsigned Index,
2182
                                                bool Final) const;
2183
 
2184
  enum GetBuiltinTypeError {
2185
    /// No error
2186
    GE_None,
2187
 
2188
    /// Missing a type
2189
    GE_Missing_type,
2190
 
2191
    /// Missing a type from <stdio.h>
2192
    GE_Missing_stdio,
2193
 
2194
    /// Missing a type from <setjmp.h>
2195
    GE_Missing_setjmp,
2196
 
2197
    /// Missing a type from <ucontext.h>
2198
    GE_Missing_ucontext
2199
  };
2200
 
2201
  QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2202
                         ASTContext::GetBuiltinTypeError &Error,
2203
                         bool &RequireICE, bool AllowTypeModifiers) const;
2204
 
2205
  /// Return the type for the specified builtin.
2206
  ///
2207
  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2208
  /// arguments to the builtin that are required to be integer constant
2209
  /// expressions.
2210
  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2211
                          unsigned *IntegerConstantArgs = nullptr) const;
2212
 
2213
  /// Types and expressions required to build C++2a three-way comparisons
2214
  /// using operator<=>, including the values return by builtin <=> operators.
2215
  ComparisonCategories CompCategories;
2216
 
2217
private:
2218
  CanQualType getFromTargetType(unsigned Type) const;
2219
  TypeInfo getTypeInfoImpl(const Type *T) const;
2220
 
2221
  //===--------------------------------------------------------------------===//
2222
  //                         Type Predicates.
2223
  //===--------------------------------------------------------------------===//
2224
 
2225
public:
2226
  /// Return one of the GCNone, Weak or Strong Objective-C garbage
2227
  /// collection attributes.
2228
  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2229
 
2230
  /// Return true if the given vector types are of the same unqualified
2231
  /// type or if they are equivalent to the same GCC vector type.
2232
  ///
2233
  /// \note This ignores whether they are target-specific (AltiVec or Neon)
2234
  /// types.
2235
  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2236
 
2237
  /// Return true if the given types are an SVE builtin and a VectorType that
2238
  /// is a fixed-length representation of the SVE builtin for a specific
2239
  /// vector-length.
2240
  bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2241
 
2242
  /// Return true if the given vector types are lax-compatible SVE vector types,
2243
  /// false otherwise.
2244
  bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2245
 
2246
  /// Return true if the type has been explicitly qualified with ObjC ownership.
2247
  /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2248
  /// some cases the compiler treats these differently.
2249
  bool hasDirectOwnershipQualifier(QualType Ty) const;
2250
 
2251
  /// Return true if this is an \c NSObject object with its \c NSObject
2252
  /// attribute set.
2253
  static bool isObjCNSObjectType(QualType Ty) {
2254
    return Ty->isObjCNSObjectType();
2255
  }
2256
 
2257
  //===--------------------------------------------------------------------===//
2258
  //                         Type Sizing and Analysis
2259
  //===--------------------------------------------------------------------===//
2260
 
2261
  /// Return the APFloat 'semantics' for the specified scalar floating
2262
  /// point type.
2263
  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2264
 
2265
  /// Get the size and alignment of the specified complete type in bits.
2266
  TypeInfo getTypeInfo(const Type *T) const;
2267
  TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2268
 
2269
  /// Get default simd alignment of the specified complete type in bits.
2270
  unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2271
 
2272
  /// Return the size of the specified (complete) type \p T, in bits.
2273
  uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2274
  uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2275
 
2276
  /// Return the size of the character type, in bits.
2277
  uint64_t getCharWidth() const {
2278
    return getTypeSize(CharTy);
2279
  }
2280
 
2281
  /// Convert a size in bits to a size in characters.
2282
  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2283
 
2284
  /// Convert a size in characters to a size in bits.
2285
  int64_t toBits(CharUnits CharSize) const;
2286
 
2287
  /// Return the size of the specified (complete) type \p T, in
2288
  /// characters.
2289
  CharUnits getTypeSizeInChars(QualType T) const;
2290
  CharUnits getTypeSizeInChars(const Type *T) const;
2291
 
2292
  std::optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2293
    if (Ty->isIncompleteType() || Ty->isDependentType())
2294
      return std::nullopt;
2295
    return getTypeSizeInChars(Ty);
2296
  }
2297
 
2298
  std::optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2299
    return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2300
  }
2301
 
2302
  /// Return the ABI-specified alignment of a (complete) type \p T, in
2303
  /// bits.
2304
  unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2305
  unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2306
 
2307
  /// Return the ABI-specified natural alignment of a (complete) type \p T,
2308
  /// before alignment adjustments, in bits.
2309
  ///
2310
  /// This alignment is curently used only by ARM and AArch64 when passing
2311
  /// arguments of a composite type.
2312
  unsigned getTypeUnadjustedAlign(QualType T) const {
2313
    return getTypeUnadjustedAlign(T.getTypePtr());
2314
  }
2315
  unsigned getTypeUnadjustedAlign(const Type *T) const;
2316
 
2317
  /// Return the alignment of a type, in bits, or 0 if
2318
  /// the type is incomplete and we cannot determine the alignment (for
2319
  /// example, from alignment attributes). The returned alignment is the
2320
  /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2321
  /// ABI alignment.
2322
  unsigned getTypeAlignIfKnown(QualType T,
2323
                               bool NeedsPreferredAlignment = false) const;
2324
 
2325
  /// Return the ABI-specified alignment of a (complete) type \p T, in
2326
  /// characters.
2327
  CharUnits getTypeAlignInChars(QualType T) const;
2328
  CharUnits getTypeAlignInChars(const Type *T) const;
2329
 
2330
  /// Return the PreferredAlignment of a (complete) type \p T, in
2331
  /// characters.
2332
  CharUnits getPreferredTypeAlignInChars(QualType T) const {
2333
    return toCharUnitsFromBits(getPreferredTypeAlign(T));
2334
  }
2335
 
2336
  /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2337
  /// in characters, before alignment adjustments. This method does not work on
2338
  /// incomplete types.
2339
  CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2340
  CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2341
 
2342
  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2343
  // type is a record, its data size is returned.
2344
  TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2345
 
2346
  TypeInfoChars getTypeInfoInChars(const Type *T) const;
2347
  TypeInfoChars getTypeInfoInChars(QualType T) const;
2348
 
2349
  /// Determine if the alignment the type has was required using an
2350
  /// alignment attribute.
2351
  bool isAlignmentRequired(const Type *T) const;
2352
  bool isAlignmentRequired(QualType T) const;
2353
 
2354
  /// More type predicates useful for type checking/promotion
2355
  bool isPromotableIntegerType(QualType T) const; // C99 6.3.1.1p2
2356
 
2357
  /// Return the "preferred" alignment of the specified type \p T for
2358
  /// the current target, in bits.
2359
  ///
2360
  /// This can be different than the ABI alignment in cases where it is
2361
  /// beneficial for performance or backwards compatibility preserving to
2362
  /// overalign a data type. (Note: despite the name, the preferred alignment
2363
  /// is ABI-impacting, and not an optimization.)
2364
  unsigned getPreferredTypeAlign(QualType T) const {
2365
    return getPreferredTypeAlign(T.getTypePtr());
2366
  }
2367
  unsigned getPreferredTypeAlign(const Type *T) const;
2368
 
2369
  /// Return the default alignment for __attribute__((aligned)) on
2370
  /// this target, to be used if no alignment value is specified.
2371
  unsigned getTargetDefaultAlignForAttributeAligned() const;
2372
 
2373
  /// Return the alignment in bits that should be given to a
2374
  /// global variable with type \p T.
2375
  unsigned getAlignOfGlobalVar(QualType T) const;
2376
 
2377
  /// Return the alignment in characters that should be given to a
2378
  /// global variable with type \p T.
2379
  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2380
 
2381
  /// Return a conservative estimate of the alignment of the specified
2382
  /// decl \p D.
2383
  ///
2384
  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2385
  /// alignment.
2386
  ///
2387
  /// If \p ForAlignof, references are treated like their underlying type
2388
  /// and  large arrays don't get any special treatment. If not \p ForAlignof
2389
  /// it computes the value expected by CodeGen: references are treated like
2390
  /// pointers and large arrays get extra alignment.
2391
  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2392
 
2393
  /// Return the alignment (in bytes) of the thrown exception object. This is
2394
  /// only meaningful for targets that allocate C++ exceptions in a system
2395
  /// runtime, such as those using the Itanium C++ ABI.
2396
  CharUnits getExnObjectAlignment() const;
2397
 
2398
  /// Get or compute information about the layout of the specified
2399
  /// record (struct/union/class) \p D, which indicates its size and field
2400
  /// position information.
2401
  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2402
 
2403
  /// Get or compute information about the layout of the specified
2404
  /// Objective-C interface.
2405
  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2406
    const;
2407
 
2408
  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2409
                        bool Simple = false) const;
2410
 
2411
  /// Get or compute information about the layout of the specified
2412
  /// Objective-C implementation.
2413
  ///
2414
  /// This may differ from the interface if synthesized ivars are present.
2415
  const ASTRecordLayout &
2416
  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2417
 
2418
  /// Get our current best idea for the key function of the
2419
  /// given record decl, or nullptr if there isn't one.
2420
  ///
2421
  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2422
  ///   ...the first non-pure virtual function that is not inline at the
2423
  ///   point of class definition.
2424
  ///
2425
  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2426
  /// virtual functions that are defined 'inline', which means that
2427
  /// the result of this computation can change.
2428
  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2429
 
2430
  /// Observe that the given method cannot be a key function.
2431
  /// Checks the key-function cache for the method's class and clears it
2432
  /// if matches the given declaration.
2433
  ///
2434
  /// This is used in ABIs where out-of-line definitions marked
2435
  /// inline are not considered to be key functions.
2436
  ///
2437
  /// \param method should be the declaration from the class definition
2438
  void setNonKeyFunction(const CXXMethodDecl *method);
2439
 
2440
  /// Loading virtual member pointers using the virtual inheritance model
2441
  /// always results in an adjustment using the vbtable even if the index is
2442
  /// zero.
2443
  ///
2444
  /// This is usually OK because the first slot in the vbtable points
2445
  /// backwards to the top of the MDC.  However, the MDC might be reusing a
2446
  /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2447
  /// points to the start of the nv-base which introduced the vbptr and *not*
2448
  /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2449
  CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2450
 
2451
  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2452
  uint64_t getFieldOffset(const ValueDecl *FD) const;
2453
 
2454
  /// Get the offset of an ObjCIvarDecl in bits.
2455
  uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2456
                                const ObjCImplementationDecl *ID,
2457
                                const ObjCIvarDecl *Ivar) const;
2458
 
2459
  /// Find the 'this' offset for the member path in a pointer-to-member
2460
  /// APValue.
2461
  CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2462
 
2463
  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2464
 
2465
  VTableContextBase *getVTableContext();
2466
 
2467
  /// If \p T is null pointer, assume the target in ASTContext.
2468
  MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2469
 
2470
  /// Creates a device mangle context to correctly mangle lambdas in a mixed
2471
  /// architecture compile by setting the lambda mangling number source to the
2472
  /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2473
  /// (from the AuxTargetInfo) is a an itanium target.
2474
  MangleContext *createDeviceMangleContext(const TargetInfo &T);
2475
 
2476
  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2477
                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2478
 
2479
  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2480
  void CollectInheritedProtocols(const Decl *CDecl,
2481
                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2482
 
2483
  /// Return true if the specified type has unique object representations
2484
  /// according to (C++17 [meta.unary.prop]p9)
2485
  bool hasUniqueObjectRepresentations(QualType Ty) const;
2486
 
2487
  //===--------------------------------------------------------------------===//
2488
  //                            Type Operators
2489
  //===--------------------------------------------------------------------===//
2490
 
2491
  /// Return the canonical (structural) type corresponding to the
2492
  /// specified potentially non-canonical type \p T.
2493
  ///
2494
  /// The non-canonical version of a type may have many "decorated" versions of
2495
  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2496
  /// returned type is guaranteed to be free of any of these, allowing two
2497
  /// canonical types to be compared for exact equality with a simple pointer
2498
  /// comparison.
2499
  CanQualType getCanonicalType(QualType T) const {
2500
    return CanQualType::CreateUnsafe(T.getCanonicalType());
2501
  }
2502
 
2503
  const Type *getCanonicalType(const Type *T) const {
2504
    return T->getCanonicalTypeInternal().getTypePtr();
2505
  }
2506
 
2507
  /// Return the canonical parameter type corresponding to the specific
2508
  /// potentially non-canonical one.
2509
  ///
2510
  /// Qualifiers are stripped off, functions are turned into function
2511
  /// pointers, and arrays decay one level into pointers.
2512
  CanQualType getCanonicalParamType(QualType T) const;
2513
 
2514
  /// Determine whether the given types \p T1 and \p T2 are equivalent.
2515
  bool hasSameType(QualType T1, QualType T2) const {
2516
    return getCanonicalType(T1) == getCanonicalType(T2);
2517
  }
2518
  bool hasSameType(const Type *T1, const Type *T2) const {
2519
    return getCanonicalType(T1) == getCanonicalType(T2);
2520
  }
2521
 
2522
  /// Determine whether the given expressions \p X and \p Y are equivalent.
2523
  bool hasSameExpr(const Expr *X, const Expr *Y) const;
2524
 
2525
  /// Return this type as a completely-unqualified array type,
2526
  /// capturing the qualifiers in \p Quals.
2527
  ///
2528
  /// This will remove the minimal amount of sugaring from the types, similar
2529
  /// to the behavior of QualType::getUnqualifiedType().
2530
  ///
2531
  /// \param T is the qualified type, which may be an ArrayType
2532
  ///
2533
  /// \param Quals will receive the full set of qualifiers that were
2534
  /// applied to the array.
2535
  ///
2536
  /// \returns if this is an array type, the completely unqualified array type
2537
  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2538
  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2539
 
2540
  /// Determine whether the given types are equivalent after
2541
  /// cvr-qualifiers have been removed.
2542
  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2543
    return getCanonicalType(T1).getTypePtr() ==
2544
           getCanonicalType(T2).getTypePtr();
2545
  }
2546
 
2547
  bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2548
                                       bool IsParam) const {
2549
    auto SubTnullability = SubT->getNullability();
2550
    auto SuperTnullability = SuperT->getNullability();
2551
    if (SubTnullability.has_value() == SuperTnullability.has_value()) {
2552
      // Neither has nullability; return true
2553
      if (!SubTnullability)
2554
        return true;
2555
      // Both have nullability qualifier.
2556
      if (*SubTnullability == *SuperTnullability ||
2557
          *SubTnullability == NullabilityKind::Unspecified ||
2558
          *SuperTnullability == NullabilityKind::Unspecified)
2559
        return true;
2560
 
2561
      if (IsParam) {
2562
        // Ok for the superclass method parameter to be "nonnull" and the subclass
2563
        // method parameter to be "nullable"
2564
        return (*SuperTnullability == NullabilityKind::NonNull &&
2565
                *SubTnullability == NullabilityKind::Nullable);
2566
      }
2567
      // For the return type, it's okay for the superclass method to specify
2568
      // "nullable" and the subclass method specify "nonnull"
2569
      return (*SuperTnullability == NullabilityKind::Nullable &&
2570
              *SubTnullability == NullabilityKind::NonNull);
2571
    }
2572
    return true;
2573
  }
2574
 
2575
  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2576
                           const ObjCMethodDecl *MethodImp);
2577
 
2578
  bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
2579
                          bool AllowPiMismatch = true);
2580
  void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
2581
                               bool AllowPiMismatch = true);
2582
 
2583
  /// Determine if two types are similar, according to the C++ rules. That is,
2584
  /// determine if they are the same other than qualifiers on the initial
2585
  /// sequence of pointer / pointer-to-member / array (and in Clang, object
2586
  /// pointer) types and their element types.
2587
  ///
2588
  /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2589
  /// those qualifiers are also ignored in the 'similarity' check.
2590
  bool hasSimilarType(QualType T1, QualType T2);
2591
 
2592
  /// Determine if two types are similar, ignoring only CVR qualifiers.
2593
  bool hasCvrSimilarType(QualType T1, QualType T2);
2594
 
2595
  /// Retrieves the "canonical" nested name specifier for a
2596
  /// given nested name specifier.
2597
  ///
2598
  /// The canonical nested name specifier is a nested name specifier
2599
  /// that uniquely identifies a type or namespace within the type
2600
  /// system. For example, given:
2601
  ///
2602
  /// \code
2603
  /// namespace N {
2604
  ///   struct S {
2605
  ///     template<typename T> struct X { typename T* type; };
2606
  ///   };
2607
  /// }
2608
  ///
2609
  /// template<typename T> struct Y {
2610
  ///   typename N::S::X<T>::type member;
2611
  /// };
2612
  /// \endcode
2613
  ///
2614
  /// Here, the nested-name-specifier for N::S::X<T>:: will be
2615
  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2616
  /// by declarations in the type system and the canonical type for
2617
  /// the template type parameter 'T' is template-param-0-0.
2618
  NestedNameSpecifier *
2619
  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2620
 
2621
  /// Retrieves the default calling convention for the current target.
2622
  CallingConv getDefaultCallingConvention(bool IsVariadic,
2623
                                          bool IsCXXMethod,
2624
                                          bool IsBuiltin = false) const;
2625
 
2626
  /// Retrieves the "canonical" template name that refers to a
2627
  /// given template.
2628
  ///
2629
  /// The canonical template name is the simplest expression that can
2630
  /// be used to refer to a given template. For most templates, this
2631
  /// expression is just the template declaration itself. For example,
2632
  /// the template std::vector can be referred to via a variety of
2633
  /// names---std::vector, \::std::vector, vector (if vector is in
2634
  /// scope), etc.---but all of these names map down to the same
2635
  /// TemplateDecl, which is used to form the canonical template name.
2636
  ///
2637
  /// Dependent template names are more interesting. Here, the
2638
  /// template name could be something like T::template apply or
2639
  /// std::allocator<T>::template rebind, where the nested name
2640
  /// specifier itself is dependent. In this case, the canonical
2641
  /// template name uses the shortest form of the dependent
2642
  /// nested-name-specifier, which itself contains all canonical
2643
  /// types, values, and templates.
2644
  TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
2645
 
2646
  /// Determine whether the given template names refer to the same
2647
  /// template.
2648
  bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
2649
 
2650
  /// Determine whether two Friend functions are different because constraints
2651
  /// that refer to an enclosing template, according to [temp.friend] p9.
2652
  bool FriendsDifferByConstraints(const FunctionDecl *X,
2653
                                  const FunctionDecl *Y) const;
2654
 
2655
  /// Determine whether the two declarations refer to the same entity.
2656
  bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
2657
 
2658
  /// Determine whether two template parameter lists are similar enough
2659
  /// that they may be used in declarations of the same template.
2660
  bool isSameTemplateParameterList(const TemplateParameterList *X,
2661
                                   const TemplateParameterList *Y) const;
2662
 
2663
  /// Determine whether two template parameters are similar enough
2664
  /// that they may be used in declarations of the same template.
2665
  bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
2666
 
2667
  /// Determine whether two 'requires' expressions are similar enough that they
2668
  /// may be used in re-declarations.
2669
  ///
2670
  /// Use of 'requires' isn't mandatory, works with constraints expressed in
2671
  /// other ways too.
2672
  bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
2673
 
2674
  /// Determine whether two type contraint are similar enough that they could
2675
  /// used in declarations of the same template.
2676
  bool isSameTypeConstraint(const TypeConstraint *XTC,
2677
                            const TypeConstraint *YTC) const;
2678
 
2679
  /// Determine whether two default template arguments are similar enough
2680
  /// that they may be used in declarations of the same template.
2681
  bool isSameDefaultTemplateArgument(const NamedDecl *X,
2682
                                     const NamedDecl *Y) const;
2683
 
2684
  /// Retrieve the "canonical" template argument.
2685
  ///
2686
  /// The canonical template argument is the simplest template argument
2687
  /// (which may be a type, value, expression, or declaration) that
2688
  /// expresses the value of the argument.
2689
  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2690
    const;
2691
 
2692
  /// Type Query functions.  If the type is an instance of the specified class,
2693
  /// return the Type pointer for the underlying maximally pretty type.  This
2694
  /// is a member of ASTContext because this may need to do some amount of
2695
  /// canonicalization, e.g. to move type qualifiers into the element type.
2696
  const ArrayType *getAsArrayType(QualType T) const;
2697
  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2698
    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2699
  }
2700
  const VariableArrayType *getAsVariableArrayType(QualType T) const {
2701
    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2702
  }
2703
  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2704
    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2705
  }
2706
  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2707
    const {
2708
    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2709
  }
2710
 
2711
  /// Return the innermost element type of an array type.
2712
  ///
2713
  /// For example, will return "int" for int[m][n]
2714
  QualType getBaseElementType(const ArrayType *VAT) const;
2715
 
2716
  /// Return the innermost element type of a type (which needn't
2717
  /// actually be an array type).
2718
  QualType getBaseElementType(QualType QT) const;
2719
 
2720
  /// Return number of constant array elements.
2721
  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2722
 
2723
  /// Return number of elements initialized in an ArrayInitLoopExpr.
2724
  uint64_t
2725
  getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const;
2726
 
2727
  /// Perform adjustment on the parameter type of a function.
2728
  ///
2729
  /// This routine adjusts the given parameter type @p T to the actual
2730
  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2731
  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2732
  QualType getAdjustedParameterType(QualType T) const;
2733
 
2734
  /// Retrieve the parameter type as adjusted for use in the signature
2735
  /// of a function, decaying array and function types and removing top-level
2736
  /// cv-qualifiers.
2737
  QualType getSignatureParameterType(QualType T) const;
2738
 
2739
  QualType getExceptionObjectType(QualType T) const;
2740
 
2741
  /// Return the properly qualified result of decaying the specified
2742
  /// array type to a pointer.
2743
  ///
2744
  /// This operation is non-trivial when handling typedefs etc.  The canonical
2745
  /// type of \p T must be an array type, this returns a pointer to a properly
2746
  /// qualified element of the array.
2747
  ///
2748
  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2749
  QualType getArrayDecayedType(QualType T) const;
2750
 
2751
  /// Return the type that \p PromotableType will promote to: C99
2752
  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2753
  QualType getPromotedIntegerType(QualType PromotableType) const;
2754
 
2755
  /// Recurses in pointer/array types until it finds an Objective-C
2756
  /// retainable type and returns its ownership.
2757
  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2758
 
2759
  /// Whether this is a promotable bitfield reference according
2760
  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2761
  ///
2762
  /// \returns the type this bit-field will promote to, or NULL if no
2763
  /// promotion occurs.
2764
  QualType isPromotableBitField(Expr *E) const;
2765
 
2766
  /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2767
  ///
2768
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2769
  /// \p LHS < \p RHS, return -1.
2770
  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2771
 
2772
  /// Compare the rank of the two specified floating point types,
2773
  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2774
  ///
2775
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2776
  /// \p LHS < \p RHS, return -1.
2777
  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2778
 
2779
  /// Compare the rank of two floating point types as above, but compare equal
2780
  /// if both types have the same floating-point semantics on the target (i.e.
2781
  /// long double and double on AArch64 will return 0).
2782
  int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2783
 
2784
  unsigned getTargetAddressSpace(LangAS AS) const;
2785
 
2786
  LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2787
 
2788
  /// Get target-dependent integer value for null pointer which is used for
2789
  /// constant folding.
2790
  uint64_t getTargetNullPointerValue(QualType QT) const;
2791
 
2792
  bool addressSpaceMapManglingFor(LangAS AS) const {
2793
    return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2794
  }
2795
 
2796
  // Merges two exception specifications, such that the resulting
2797
  // exception spec is the union of both. For example, if either
2798
  // of them can throw something, the result can throw it as well.
2799
  FunctionProtoType::ExceptionSpecInfo
2800
  mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
2801
                      FunctionProtoType::ExceptionSpecInfo ESI2,
2802
                      SmallVectorImpl<QualType> &ExceptionTypeStorage,
2803
                      bool AcceptDependent);
2804
 
2805
  // For two "same" types, return a type which has
2806
  // the common sugar between them. If Unqualified is true,
2807
  // both types need only be the same unqualified type.
2808
  // The result will drop the qualifiers which do not occur
2809
  // in both types.
2810
  QualType getCommonSugaredType(QualType X, QualType Y,
2811
                                bool Unqualified = false);
2812
 
2813
private:
2814
  // Helper for integer ordering
2815
  unsigned getIntegerRank(const Type *T) const;
2816
 
2817
public:
2818
  //===--------------------------------------------------------------------===//
2819
  //                    Type Compatibility Predicates
2820
  //===--------------------------------------------------------------------===//
2821
 
2822
  /// Compatibility predicates used to check assignment expressions.
2823
  bool typesAreCompatible(QualType T1, QualType T2,
2824
                          bool CompareUnqualified = false); // C99 6.2.7p1
2825
 
2826
  bool propertyTypesAreCompatible(QualType, QualType);
2827
  bool typesAreBlockPointerCompatible(QualType, QualType);
2828
 
2829
  bool isObjCIdType(QualType T) const {
2830
    if (const auto *ET = dyn_cast<ElaboratedType>(T))
2831
      T = ET->getNamedType();
2832
    return T == getObjCIdType();
2833
  }
2834
 
2835
  bool isObjCClassType(QualType T) const {
2836
    if (const auto *ET = dyn_cast<ElaboratedType>(T))
2837
      T = ET->getNamedType();
2838
    return T == getObjCClassType();
2839
  }
2840
 
2841
  bool isObjCSelType(QualType T) const {
2842
    if (const auto *ET = dyn_cast<ElaboratedType>(T))
2843
      T = ET->getNamedType();
2844
    return T == getObjCSelType();
2845
  }
2846
 
2847
  bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2848
                                         const ObjCObjectPointerType *RHS,
2849
                                         bool ForCompare);
2850
 
2851
  bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2852
                                            const ObjCObjectPointerType *RHS);
2853
 
2854
  // Check the safety of assignment from LHS to RHS
2855
  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2856
                               const ObjCObjectPointerType *RHSOPT);
2857
  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2858
                               const ObjCObjectType *RHS);
2859
  bool canAssignObjCInterfacesInBlockPointer(
2860
                                          const ObjCObjectPointerType *LHSOPT,
2861
                                          const ObjCObjectPointerType *RHSOPT,
2862
                                          bool BlockReturnType);
2863
  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2864
  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2865
                                   const ObjCObjectPointerType *RHSOPT);
2866
  bool canBindObjCObjectType(QualType To, QualType From);
2867
 
2868
  // Functions for calculating composite types
2869
  QualType mergeTypes(QualType, QualType, bool OfBlockPointer = false,
2870
                      bool Unqualified = false, bool BlockReturnType = false,
2871
                      bool IsConditionalOperator = false);
2872
  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer = false,
2873
                              bool Unqualified = false, bool AllowCXX = false,
2874
                              bool IsConditionalOperator = false);
2875
  QualType mergeFunctionParameterTypes(QualType, QualType,
2876
                                       bool OfBlockPointer = false,
2877
                                       bool Unqualified = false);
2878
  QualType mergeTransparentUnionType(QualType, QualType,
2879
                                     bool OfBlockPointer=false,
2880
                                     bool Unqualified = false);
2881
 
2882
  QualType mergeObjCGCQualifiers(QualType, QualType);
2883
 
2884
  /// This function merges the ExtParameterInfo lists of two functions. It
2885
  /// returns true if the lists are compatible. The merged list is returned in
2886
  /// NewParamInfos.
2887
  ///
2888
  /// \param FirstFnType The type of the first function.
2889
  ///
2890
  /// \param SecondFnType The type of the second function.
2891
  ///
2892
  /// \param CanUseFirst This flag is set to true if the first function's
2893
  /// ExtParameterInfo list can be used as the composite list of
2894
  /// ExtParameterInfo.
2895
  ///
2896
  /// \param CanUseSecond This flag is set to true if the second function's
2897
  /// ExtParameterInfo list can be used as the composite list of
2898
  /// ExtParameterInfo.
2899
  ///
2900
  /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2901
  /// empty if none of the flags are set.
2902
  ///
2903
  bool mergeExtParameterInfo(
2904
      const FunctionProtoType *FirstFnType,
2905
      const FunctionProtoType *SecondFnType,
2906
      bool &CanUseFirst, bool &CanUseSecond,
2907
      SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2908
 
2909
  void ResetObjCLayout(const ObjCContainerDecl *CD);
2910
 
2911
  //===--------------------------------------------------------------------===//
2912
  //                    Integer Predicates
2913
  //===--------------------------------------------------------------------===//
2914
 
2915
  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2916
  // of bits in an integer type excluding any padding bits.
2917
  unsigned getIntWidth(QualType T) const;
2918
 
2919
  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2920
  // unsigned integer type.  This method takes a signed type, and returns the
2921
  // corresponding unsigned integer type.
2922
  // With the introduction of fixed point types in ISO N1169, this method also
2923
  // accepts fixed point types and returns the corresponding unsigned type for
2924
  // a given fixed point type.
2925
  QualType getCorrespondingUnsignedType(QualType T) const;
2926
 
2927
  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2928
  // unsigned integer type.  This method takes an unsigned type, and returns the
2929
  // corresponding signed integer type.
2930
  // With the introduction of fixed point types in ISO N1169, this method also
2931
  // accepts fixed point types and returns the corresponding signed type for
2932
  // a given fixed point type.
2933
  QualType getCorrespondingSignedType(QualType T) const;
2934
 
2935
  // Per ISO N1169, this method accepts fixed point types and returns the
2936
  // corresponding saturated type for a given fixed point type.
2937
  QualType getCorrespondingSaturatedType(QualType Ty) const;
2938
 
2939
  // This method accepts fixed point types and returns the corresponding signed
2940
  // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2941
  // fixed point types because there are unsigned integer types like bool and
2942
  // char8_t that don't have signed equivalents.
2943
  QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2944
 
2945
  //===--------------------------------------------------------------------===//
2946
  //                    Integer Values
2947
  //===--------------------------------------------------------------------===//
2948
 
2949
  /// Make an APSInt of the appropriate width and signedness for the
2950
  /// given \p Value and integer \p Type.
2951
  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2952
    // If Type is a signed integer type larger than 64 bits, we need to be sure
2953
    // to sign extend Res appropriately.
2954
    llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2955
    Res = Value;
2956
    unsigned Width = getIntWidth(Type);
2957
    if (Width != Res.getBitWidth())
2958
      return Res.extOrTrunc(Width);
2959
    return Res;
2960
  }
2961
 
2962
  bool isSentinelNullExpr(const Expr *E);
2963
 
2964
  /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2965
  /// none exists.
2966
  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2967
 
2968
  /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2969
  /// none exists.
2970
  ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2971
 
2972
  /// Return true if there is at least one \@implementation in the TU.
2973
  bool AnyObjCImplementation() {
2974
    return !ObjCImpls.empty();
2975
  }
2976
 
2977
  /// Set the implementation of ObjCInterfaceDecl.
2978
  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2979
                             ObjCImplementationDecl *ImplD);
2980
 
2981
  /// Set the implementation of ObjCCategoryDecl.
2982
  void setObjCImplementation(ObjCCategoryDecl *CatD,
2983
                             ObjCCategoryImplDecl *ImplD);
2984
 
2985
  /// Get the duplicate declaration of a ObjCMethod in the same
2986
  /// interface, or null if none exists.
2987
  const ObjCMethodDecl *
2988
  getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2989
 
2990
  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2991
                                  const ObjCMethodDecl *Redecl);
2992
 
2993
  /// Returns the Objective-C interface that \p ND belongs to if it is
2994
  /// an Objective-C method/property/ivar etc. that is part of an interface,
2995
  /// otherwise returns null.
2996
  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2997
 
2998
  /// Set the copy initialization expression of a block var decl. \p CanThrow
2999
  /// indicates whether the copy expression can throw or not.
3000
  void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
3001
 
3002
  /// Get the copy initialization expression of the VarDecl \p VD, or
3003
  /// nullptr if none exists.
3004
  BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
3005
 
3006
  /// Allocate an uninitialized TypeSourceInfo.
3007
  ///
3008
  /// The caller should initialize the memory held by TypeSourceInfo using
3009
  /// the TypeLoc wrappers.
3010
  ///
3011
  /// \param T the type that will be the basis for type source info. This type
3012
  /// should refer to how the declarator was written in source code, not to
3013
  /// what type semantic analysis resolved the declarator to.
3014
  ///
3015
  /// \param Size the size of the type info to create, or 0 if the size
3016
  /// should be calculated based on the type.
3017
  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
3018
 
3019
  /// Allocate a TypeSourceInfo where all locations have been
3020
  /// initialized to a given location, which defaults to the empty
3021
  /// location.
3022
  TypeSourceInfo *
3023
  getTrivialTypeSourceInfo(QualType T,
3024
                           SourceLocation Loc = SourceLocation()) const;
3025
 
3026
  /// Add a deallocation callback that will be invoked when the
3027
  /// ASTContext is destroyed.
3028
  ///
3029
  /// \param Callback A callback function that will be invoked on destruction.
3030
  ///
3031
  /// \param Data Pointer data that will be provided to the callback function
3032
  /// when it is called.
3033
  void AddDeallocation(void (*Callback)(void *), void *Data) const;
3034
 
3035
  /// If T isn't trivially destructible, calls AddDeallocation to register it
3036
  /// for destruction.
3037
  template <typename T> void addDestruction(T *Ptr) const {
3038
    if (!std::is_trivially_destructible<T>::value) {
3039
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
3040
      AddDeallocation(DestroyPtr, Ptr);
3041
    }
3042
  }
3043
 
3044
  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
3045
  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
3046
 
3047
  /// Determines if the decl can be CodeGen'ed or deserialized from PCH
3048
  /// lazily, only when used; this is only relevant for function or file scoped
3049
  /// var definitions.
3050
  ///
3051
  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
3052
  /// it is not used.
3053
  bool DeclMustBeEmitted(const Decl *D);
3054
 
3055
  /// Visits all versions of a multiversioned function with the passed
3056
  /// predicate.
3057
  void forEachMultiversionedFunctionVersion(
3058
      const FunctionDecl *FD,
3059
      llvm::function_ref<void(FunctionDecl *)> Pred) const;
3060
 
3061
  const CXXConstructorDecl *
3062
  getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
3063
 
3064
  void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
3065
                                            CXXConstructorDecl *CD);
3066
 
3067
  void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
3068
 
3069
  TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
3070
 
3071
  void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
3072
 
3073
  DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
3074
 
3075
  void setManglingNumber(const NamedDecl *ND, unsigned Number);
3076
  unsigned getManglingNumber(const NamedDecl *ND,
3077
                             bool ForAuxTarget = false) const;
3078
 
3079
  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
3080
  unsigned getStaticLocalNumber(const VarDecl *VD) const;
3081
 
3082
  /// Retrieve the context for computing mangling numbers in the given
3083
  /// DeclContext.
3084
  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
3085
  enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
3086
  MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
3087
                                                   const Decl *D);
3088
 
3089
  std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
3090
 
3091
  /// Used by ParmVarDecl to store on the side the
3092
  /// index of the parameter when it exceeds the size of the normal bitfield.
3093
  void setParameterIndex(const ParmVarDecl *D, unsigned index);
3094
 
3095
  /// Used by ParmVarDecl to retrieve on the side the
3096
  /// index of the parameter when it exceeds the size of the normal bitfield.
3097
  unsigned getParameterIndex(const ParmVarDecl *D) const;
3098
 
3099
  /// Return a string representing the human readable name for the specified
3100
  /// function declaration or file name. Used by SourceLocExpr and
3101
  /// PredefinedExpr to cache evaluated results.
3102
  StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
3103
 
3104
  /// Return a declaration for the global GUID object representing the given
3105
  /// GUID value.
3106
  MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
3107
 
3108
  /// Return a declaration for a uniquified anonymous global constant
3109
  /// corresponding to a given APValue.
3110
  UnnamedGlobalConstantDecl *
3111
  getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
3112
 
3113
  /// Return the template parameter object of the given type with the given
3114
  /// value.
3115
  TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
3116
                                                      const APValue &V) const;
3117
 
3118
  /// Parses the target attributes passed in, and returns only the ones that are
3119
  /// valid feature names.
3120
  ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
3121
 
3122
  std::vector<std::string>
3123
  filterFunctionTargetVersionAttrs(const TargetVersionAttr *TV) const;
3124
 
3125
  void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3126
                             const FunctionDecl *) const;
3127
  void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3128
                             GlobalDecl GD) const;
3129
 
3130
  //===--------------------------------------------------------------------===//
3131
  //                    Statistics
3132
  //===--------------------------------------------------------------------===//
3133
 
3134
  /// The number of implicitly-declared default constructors.
3135
  unsigned NumImplicitDefaultConstructors = 0;
3136
 
3137
  /// The number of implicitly-declared default constructors for
3138
  /// which declarations were built.
3139
  unsigned NumImplicitDefaultConstructorsDeclared = 0;
3140
 
3141
  /// The number of implicitly-declared copy constructors.
3142
  unsigned NumImplicitCopyConstructors = 0;
3143
 
3144
  /// The number of implicitly-declared copy constructors for
3145
  /// which declarations were built.
3146
  unsigned NumImplicitCopyConstructorsDeclared = 0;
3147
 
3148
  /// The number of implicitly-declared move constructors.
3149
  unsigned NumImplicitMoveConstructors = 0;
3150
 
3151
  /// The number of implicitly-declared move constructors for
3152
  /// which declarations were built.
3153
  unsigned NumImplicitMoveConstructorsDeclared = 0;
3154
 
3155
  /// The number of implicitly-declared copy assignment operators.
3156
  unsigned NumImplicitCopyAssignmentOperators = 0;
3157
 
3158
  /// The number of implicitly-declared copy assignment operators for
3159
  /// which declarations were built.
3160
  unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3161
 
3162
  /// The number of implicitly-declared move assignment operators.
3163
  unsigned NumImplicitMoveAssignmentOperators = 0;
3164
 
3165
  /// The number of implicitly-declared move assignment operators for
3166
  /// which declarations were built.
3167
  unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3168
 
3169
  /// The number of implicitly-declared destructors.
3170
  unsigned NumImplicitDestructors = 0;
3171
 
3172
  /// The number of implicitly-declared destructors for which
3173
  /// declarations were built.
3174
  unsigned NumImplicitDestructorsDeclared = 0;
3175
 
3176
public:
3177
  /// Initialize built-in types.
3178
  ///
3179
  /// This routine may only be invoked once for a given ASTContext object.
3180
  /// It is normally invoked after ASTContext construction.
3181
  ///
3182
  /// \param Target The target
3183
  void InitBuiltinTypes(const TargetInfo &Target,
3184
                        const TargetInfo *AuxTarget = nullptr);
3185
 
3186
private:
3187
  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3188
 
3189
  class ObjCEncOptions {
3190
    unsigned Bits;
3191
 
3192
    ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3193
 
3194
  public:
3195
    ObjCEncOptions() : Bits(0) {}
3196
    ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3197
 
3198
#define OPT_LIST(V)                                                            \
3199
  V(ExpandPointedToStructures, 0)                                              \
3200
  V(ExpandStructures, 1)                                                       \
3201
  V(IsOutermostType, 2)                                                        \
3202
  V(EncodingProperty, 3)                                                       \
3203
  V(IsStructField, 4)                                                          \
3204
  V(EncodeBlockParameters, 5)                                                  \
3205
  V(EncodeClassNames, 6)                                                       \
3206
 
3207
#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3208
OPT_LIST(V)
3209
#undef V
3210
 
3211
#define V(N,I) bool N() const { return Bits & 1 << I; }
3212
OPT_LIST(V)
3213
#undef V
3214
 
3215
#undef OPT_LIST
3216
 
3217
    [[nodiscard]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3218
      return Bits & Mask.Bits;
3219
    }
3220
 
3221
    [[nodiscard]] ObjCEncOptions forComponentType() const {
3222
      ObjCEncOptions Mask = ObjCEncOptions()
3223
                                .setIsOutermostType()
3224
                                .setIsStructField();
3225
      return Bits & ~Mask.Bits;
3226
    }
3227
  };
3228
 
3229
  // Return the Objective-C type encoding for a given type.
3230
  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3231
                                  ObjCEncOptions Options,
3232
                                  const FieldDecl *Field,
3233
                                  QualType *NotEncodedT = nullptr) const;
3234
 
3235
  // Adds the encoding of the structure's members.
3236
  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3237
                                       const FieldDecl *Field,
3238
                                       bool includeVBases = true,
3239
                                       QualType *NotEncodedT=nullptr) const;
3240
 
3241
public:
3242
  // Adds the encoding of a method parameter or return type.
3243
  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3244
                                         QualType T, std::string& S,
3245
                                         bool Extended) const;
3246
 
3247
  /// Returns true if this is an inline-initialized static data member
3248
  /// which is treated as a definition for MSVC compatibility.
3249
  bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3250
 
3251
  enum class InlineVariableDefinitionKind {
3252
    /// Not an inline variable.
3253
    None,
3254
 
3255
    /// Weak definition of inline variable.
3256
    Weak,
3257
 
3258
    /// Weak for now, might become strong later in this TU.
3259
    WeakUnknown,
3260
 
3261
    /// Strong definition.
3262
    Strong
3263
  };
3264
 
3265
  /// Determine whether a definition of this inline variable should
3266
  /// be treated as a weak or strong definition. For compatibility with
3267
  /// C++14 and before, for a constexpr static data member, if there is an
3268
  /// out-of-line declaration of the member, we may promote it from weak to
3269
  /// strong.
3270
  InlineVariableDefinitionKind
3271
  getInlineVariableDefinitionKind(const VarDecl *VD) const;
3272
 
3273
private:
3274
  friend class DeclarationNameTable;
3275
  friend class DeclContext;
3276
 
3277
  const ASTRecordLayout &
3278
  getObjCLayout(const ObjCInterfaceDecl *D,
3279
                const ObjCImplementationDecl *Impl) const;
3280
 
3281
  /// A set of deallocations that should be performed when the
3282
  /// ASTContext is destroyed.
3283
  // FIXME: We really should have a better mechanism in the ASTContext to
3284
  // manage running destructors for types which do variable sized allocation
3285
  // within the AST. In some places we thread the AST bump pointer allocator
3286
  // into the datastructures which avoids this mess during deallocation but is
3287
  // wasteful of memory, and here we require a lot of error prone book keeping
3288
  // in order to track and run destructors while we're tearing things down.
3289
  using DeallocationFunctionsAndArguments =
3290
      llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3291
  mutable DeallocationFunctionsAndArguments Deallocations;
3292
 
3293
  // FIXME: This currently contains the set of StoredDeclMaps used
3294
  // by DeclContext objects.  This probably should not be in ASTContext,
3295
  // but we include it here so that ASTContext can quickly deallocate them.
3296
  llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3297
 
3298
  std::vector<Decl *> TraversalScope;
3299
 
3300
  std::unique_ptr<VTableContextBase> VTContext;
3301
 
3302
  void ReleaseDeclContextMaps();
3303
 
3304
public:
3305
  enum PragmaSectionFlag : unsigned {
3306
    PSF_None = 0,
3307
    PSF_Read = 0x1,
3308
    PSF_Write = 0x2,
3309
    PSF_Execute = 0x4,
3310
    PSF_Implicit = 0x8,
3311
    PSF_ZeroInit = 0x10,
3312
    PSF_Invalid = 0x80000000U,
3313
  };
3314
 
3315
  struct SectionInfo {
3316
    NamedDecl *Decl;
3317
    SourceLocation PragmaSectionLocation;
3318
    int SectionFlags;
3319
 
3320
    SectionInfo() = default;
3321
    SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3322
                int SectionFlags)
3323
        : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3324
          SectionFlags(SectionFlags) {}
3325
  };
3326
 
3327
  llvm::StringMap<SectionInfo> SectionInfos;
3328
 
3329
  /// Return a new OMPTraitInfo object owned by this context.
3330
  OMPTraitInfo &getNewOMPTraitInfo();
3331
 
3332
  /// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
3333
  bool mayExternalize(const Decl *D) const;
3334
 
3335
  /// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
3336
  bool shouldExternalize(const Decl *D) const;
3337
 
3338
  StringRef getCUIDHash() const;
3339
 
3340
private:
3341
  /// All OMPTraitInfo objects live in this collection, one per
3342
  /// `pragma omp [begin] declare variant` directive.
3343
  SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3344
};
3345
 
3346
/// Insertion operator for diagnostics.
3347
const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3348
                                      const ASTContext::SectionInfo &Section);
3349
 
3350
/// Utility function for constructing a nullary selector.
3351
inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3352
  IdentifierInfo* II = &Ctx.Idents.get(name);
3353
  return Ctx.Selectors.getSelector(0, &II);
3354
}
3355
 
3356
/// Utility function for constructing an unary selector.
3357
inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3358
  IdentifierInfo* II = &Ctx.Idents.get(name);
3359
  return Ctx.Selectors.getSelector(1, &II);
3360
}
3361
 
3362
} // namespace clang
3363
 
3364
// operator new and delete aren't allowed inside namespaces.
3365
 
3366
/// Placement new for using the ASTContext's allocator.
3367
///
3368
/// This placement form of operator new uses the ASTContext's allocator for
3369
/// obtaining memory.
3370
///
3371
/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3372
/// Any changes here need to also be made there.
3373
///
3374
/// We intentionally avoid using a nothrow specification here so that the calls
3375
/// to this operator will not perform a null check on the result -- the
3376
/// underlying allocator never returns null pointers.
3377
///
3378
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3379
/// @code
3380
/// // Default alignment (8)
3381
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3382
/// // Specific alignment
3383
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3384
/// @endcode
3385
/// Memory allocated through this placement new operator does not need to be
3386
/// explicitly freed, as ASTContext will free all of this memory when it gets
3387
/// destroyed. Please note that you cannot use delete on the pointer.
3388
///
3389
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3390
/// @param C The ASTContext that provides the allocator.
3391
/// @param Alignment The alignment of the allocated memory (if the underlying
3392
///                  allocator supports it).
3393
/// @return The allocated memory. Could be nullptr.
3394
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3395
                          size_t Alignment /* = 8 */) {
3396
  return C.Allocate(Bytes, Alignment);
3397
}
3398
 
3399
/// Placement delete companion to the new above.
3400
///
3401
/// This operator is just a companion to the new above. There is no way of
3402
/// invoking it directly; see the new operator for more details. This operator
3403
/// is called implicitly by the compiler if a placement new expression using
3404
/// the ASTContext throws in the object constructor.
3405
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3406
  C.Deallocate(Ptr);
3407
}
3408
 
3409
/// This placement form of operator new[] uses the ASTContext's allocator for
3410
/// obtaining memory.
3411
///
3412
/// We intentionally avoid using a nothrow specification here so that the calls
3413
/// to this operator will not perform a null check on the result -- the
3414
/// underlying allocator never returns null pointers.
3415
///
3416
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3417
/// @code
3418
/// // Default alignment (8)
3419
/// char *data = new (Context) char[10];
3420
/// // Specific alignment
3421
/// char *data = new (Context, 4) char[10];
3422
/// @endcode
3423
/// Memory allocated through this placement new[] operator does not need to be
3424
/// explicitly freed, as ASTContext will free all of this memory when it gets
3425
/// destroyed. Please note that you cannot use delete on the pointer.
3426
///
3427
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3428
/// @param C The ASTContext that provides the allocator.
3429
/// @param Alignment The alignment of the allocated memory (if the underlying
3430
///                  allocator supports it).
3431
/// @return The allocated memory. Could be nullptr.
3432
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3433
                            size_t Alignment /* = 8 */) {
3434
  return C.Allocate(Bytes, Alignment);
3435
}
3436
 
3437
/// Placement delete[] companion to the new[] above.
3438
///
3439
/// This operator is just a companion to the new[] above. There is no way of
3440
/// invoking it directly; see the new[] operator for more details. This operator
3441
/// is called implicitly by the compiler if a placement new[] expression using
3442
/// the ASTContext throws in the object constructor.
3443
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3444
  C.Deallocate(Ptr);
3445
}
3446
 
3447
/// Create the representation of a LazyGenerationalUpdatePtr.
3448
template <typename Owner, typename T,
3449
          void (clang::ExternalASTSource::*Update)(Owner)>
3450
typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3451
    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3452
        const clang::ASTContext &Ctx, T Value) {
3453
  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3454
  // include ASTContext.h. We explicitly instantiate it for all relevant types
3455
  // in ASTContext.cpp.
3456
  if (auto *Source = Ctx.getExternalSource())
3457
    return new (Ctx) LazyData(Source, Value);
3458
  return Value;
3459
}
3460
 
3461
#endif // LLVM_CLANG_AST_ASTCONTEXT_H