Subversion Repositories Games.Chess Giants

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
99 pmbaty 1
/* LzmaDec.c -- LZMA Decoder
2
2008-11-06 : Igor Pavlov : Public domain */
3
 
4
#include "LzmaDec.h"
5
 
6
#include <string.h>
7
 
8
#define kNumTopBits 24
9
#define kTopValue ((UInt32)1 << kNumTopBits)
10
 
11
#define kNumBitModelTotalBits 11
12
#define kBitModelTotal (1 << kNumBitModelTotalBits)
13
#define kNumMoveBits 5
14
 
15
#define RC_INIT_SIZE 5
16
 
17
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
18
 
19
#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
20
#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
21
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
22
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
23
  { UPDATE_0(p); i = (i + i); A0; } else \
24
  { UPDATE_1(p); i = (i + i) + 1; A1; }
25
#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
26
 
27
#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
28
#define TREE_DECODE(probs, limit, i) \
29
  { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
30
 
31
/* #define _LZMA_SIZE_OPT */
32
 
33
#ifdef _LZMA_SIZE_OPT
34
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
35
#else
36
#define TREE_6_DECODE(probs, i) \
37
  { i = 1; \
38
  TREE_GET_BIT(probs, i); \
39
  TREE_GET_BIT(probs, i); \
40
  TREE_GET_BIT(probs, i); \
41
  TREE_GET_BIT(probs, i); \
42
  TREE_GET_BIT(probs, i); \
43
  TREE_GET_BIT(probs, i); \
44
  i -= 0x40; }
45
#endif
46
 
47
#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
48
 
49
#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
50
#define UPDATE_0_CHECK range = bound;
51
#define UPDATE_1_CHECK range -= bound; code -= bound;
52
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
53
  { UPDATE_0_CHECK; i = (i + i); A0; } else \
54
  { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
55
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
56
#define TREE_DECODE_CHECK(probs, limit, i) \
57
  { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
58
 
59
 
60
#define kNumPosBitsMax 4
61
#define kNumPosStatesMax (1 << kNumPosBitsMax)
62
 
63
#define kLenNumLowBits 3
64
#define kLenNumLowSymbols (1 << kLenNumLowBits)
65
#define kLenNumMidBits 3
66
#define kLenNumMidSymbols (1 << kLenNumMidBits)
67
#define kLenNumHighBits 8
68
#define kLenNumHighSymbols (1 << kLenNumHighBits)
69
 
70
#define LenChoice 0
71
#define LenChoice2 (LenChoice + 1)
72
#define LenLow (LenChoice2 + 1)
73
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
74
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
75
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
76
 
77
 
78
#define kNumStates 12
79
#define kNumLitStates 7
80
 
81
#define kStartPosModelIndex 4
82
#define kEndPosModelIndex 14
83
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
84
 
85
#define kNumPosSlotBits 6
86
#define kNumLenToPosStates 4
87
 
88
#define kNumAlignBits 4
89
#define kAlignTableSize (1 << kNumAlignBits)
90
 
91
#define kMatchMinLen 2
92
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
93
 
94
#define IsMatch 0
95
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
96
#define IsRepG0 (IsRep + kNumStates)
97
#define IsRepG1 (IsRepG0 + kNumStates)
98
#define IsRepG2 (IsRepG1 + kNumStates)
99
#define IsRep0Long (IsRepG2 + kNumStates)
100
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
101
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
102
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
103
#define LenCoder (Align + kAlignTableSize)
104
#define RepLenCoder (LenCoder + kNumLenProbs)
105
#define Literal (RepLenCoder + kNumLenProbs)
106
 
107
#define LZMA_BASE_SIZE 1846
108
#define LZMA_LIT_SIZE 768
109
/*MAB casts next... */
110
#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + ((unsigned)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
111
 
112
#if Literal != LZMA_BASE_SIZE
113
StopCompilingDueBUG
114
#endif
115
 
116
static const Byte kLiteralNextStates[kNumStates * 2] =
117
{
118
  0, 0, 0, 0, 1, 2, 3,  4,  5,  6,  4,  5,
119
  7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
120
};
121
 
122
#define LZMA_DIC_MIN (1 << 12)
123
 
124
/* First LZMA-symbol is always decoded.
125
And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
126
Out:
127
  Result:
128
    SZ_OK - OK
129
    SZ_ERROR_DATA - Error
130
  p->remainLen:
131
    < kMatchSpecLenStart : normal remain
132
    = kMatchSpecLenStart : finished
133
    = kMatchSpecLenStart + 1 : Flush marker
134
    = kMatchSpecLenStart + 2 : State Init Marker
135
*/
136
 
137
static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
138
{
139
  CLzmaProb *probs = p->probs;
140
 
141
  unsigned state = p->state;
142
  UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
143
  unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
144
  unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
145
  unsigned lc = p->prop.lc;
146
 
147
  Byte *dic = p->dic;
148
  SizeT dicBufSize = p->dicBufSize;
149
  SizeT dicPos = p->dicPos;
150
 
151
  UInt32 processedPos = p->processedPos;
152
  UInt32 checkDicSize = p->checkDicSize;
153
  unsigned len = 0;
154
 
155
  const Byte *buf = p->buf;
156
  UInt32 range = p->range;
157
  UInt32 code = p->code;
158
 
159
  do
160
  {
161
    CLzmaProb *prob;
162
    UInt32 bound;
163
    unsigned ttt;
164
    unsigned posState = processedPos & pbMask;
165
 
166
    prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
167
    IF_BIT_0(prob)
168
    {
169
      unsigned symbol;
170
      UPDATE_0(prob);
171
      prob = probs + Literal;
172
      if (checkDicSize != 0 || processedPos != 0)
173
        prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +             (UInt32)        ( /*MAB casts */
174
        (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))))                            )
175
                ;
176
      if (state < kNumLitStates)
177
      {
178
        symbol = 1;
179
        do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
180
      }
181
      else
182
      {
183
        unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
184
        unsigned offs = 0x100;
185
        symbol = 1;
186
        do
187
        {
188
          unsigned bit;
189
          CLzmaProb *probLit;
190
          matchByte <<= 1;
191
          bit = (matchByte & offs);
192
          probLit = prob + offs + bit + symbol;
193
          GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
194
        }
195
        while (symbol < 0x100);
196
      }
197
      dic[dicPos++] = (Byte)symbol;
198
      processedPos++;
199
 
200
      state = kLiteralNextStates[state];
201
      /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
202
      continue;
203
    }
204
    else
205
    {
206
      UPDATE_1(prob);
207
      prob = probs + IsRep + state;
208
      IF_BIT_0(prob)
209
      {
210
        UPDATE_0(prob);
211
        state += kNumStates;
212
        prob = probs + LenCoder;
213
      }
214
      else
215
      {
216
        UPDATE_1(prob);
217
        if (checkDicSize == 0 && processedPos == 0)
218
          return SZ_ERROR_DATA;
219
        prob = probs + IsRepG0 + state;
220
        IF_BIT_0(prob)
221
        {
222
          UPDATE_0(prob);
223
          prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
224
          IF_BIT_0(prob)
225
          {
226
            UPDATE_0(prob);
227
            dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
228
            dicPos++;
229
            processedPos++;
230
            state = state < kNumLitStates ? 9 : 11;
231
            continue;
232
          }
233
          UPDATE_1(prob);
234
        }
235
        else
236
        {
237
          UInt32 distance;
238
          UPDATE_1(prob);
239
          prob = probs + IsRepG1 + state;
240
          IF_BIT_0(prob)
241
          {
242
            UPDATE_0(prob);
243
            distance = rep1;
244
          }
245
          else
246
          {
247
            UPDATE_1(prob);
248
            prob = probs + IsRepG2 + state;
249
            IF_BIT_0(prob)
250
            {
251
              UPDATE_0(prob);
252
              distance = rep2;
253
            }
254
            else
255
            {
256
              UPDATE_1(prob);
257
              distance = rep3;
258
              rep3 = rep2;
259
            }
260
            rep2 = rep1;
261
          }
262
          rep1 = rep0;
263
          rep0 = distance;
264
        }
265
        state = state < kNumLitStates ? 8 : 11;
266
        prob = probs + RepLenCoder;
267
      }
268
      {
269
                /*MAB: limit changed to limit__ because it was hiding a variable limit */
270
        unsigned limit__, offset;
271
        CLzmaProb *probLen = prob + LenChoice;
272
        IF_BIT_0(probLen)
273
        {
274
          UPDATE_0(probLen);
275
          probLen = prob + LenLow + (posState << kLenNumLowBits);
276
          offset = 0;
277
          limit__ = (1 << kLenNumLowBits);
278
        }
279
        else
280
        {
281
          UPDATE_1(probLen);
282
          probLen = prob + LenChoice2;
283
          IF_BIT_0(probLen)
284
          {
285
            UPDATE_0(probLen);
286
            probLen = prob + LenMid + (posState << kLenNumMidBits);
287
            offset = kLenNumLowSymbols;
288
            limit__ = (1 << kLenNumMidBits);
289
          }
290
          else
291
          {
292
            UPDATE_1(probLen);
293
            probLen = prob + LenHigh;
294
            offset = kLenNumLowSymbols + kLenNumMidSymbols;
295
            limit__ = (1 << kLenNumHighBits);
296
          }
297
        }
298
        TREE_DECODE(probLen, limit__, len);
299
        len += offset;
300
      }
301
 
302
      if (state >= kNumStates)
303
      {
304
        UInt32 distance;
305
        prob = probs + PosSlot +
306
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
307
        TREE_6_DECODE(prob, distance);
308
        if (distance >= kStartPosModelIndex)
309
        {
310
          unsigned posSlot = (unsigned)distance;
311
          int numDirectBits = (int)(((distance >> 1) - 1));
312
          distance = (2 | (distance & 1));
313
          if (posSlot < kEndPosModelIndex)
314
          {
315
            distance <<= numDirectBits;
316
            prob = probs + SpecPos + distance - posSlot - 1;
317
            {
318
              UInt32 mask = 1;
319
              unsigned i = 1;
320
              do
321
              {
322
                GET_BIT2(prob + i, i, ; , distance |= mask);
323
                mask <<= 1;
324
              }
325
              while (--numDirectBits != 0);
326
            }
327
          }
328
          else
329
          {
330
            numDirectBits -= kNumAlignBits;
331
            do
332
            {
333
              NORMALIZE
334
              range >>= 1;
335
 
336
              {
337
                UInt32 t;
338
                code -= range;
339
                t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
340
                distance = (distance << 1) + (t + 1);
341
                code += range & t;
342
              }
343
              /*
344
              distance <<= 1;
345
              if (code >= range)
346
              {
347
                code -= range;
348
                distance |= 1;
349
              }
350
              */
351
            }
352
            while (--numDirectBits != 0);
353
            prob = probs + Align;
354
            distance <<= kNumAlignBits;
355
            {
356
              unsigned i = 1;
357
              GET_BIT2(prob + i, i, ; , distance |= 1);
358
              GET_BIT2(prob + i, i, ; , distance |= 2);
359
              GET_BIT2(prob + i, i, ; , distance |= 4);
360
              GET_BIT2(prob + i, i, ; , distance |= 8);
361
            }
362
            if (distance == (UInt32)0xFFFFFFFF)
363
            {
364
              len += kMatchSpecLenStart;
365
              state -= kNumStates;
366
              break;
367
            }
368
          }
369
        }
370
        rep3 = rep2;
371
        rep2 = rep1;
372
        rep1 = rep0;
373
        rep0 = distance + 1;
374
        if (checkDicSize == 0)
375
        {
376
          if (distance >= processedPos)
377
            return SZ_ERROR_DATA;
378
        }
379
        else if (distance >= checkDicSize)
380
          return SZ_ERROR_DATA;
381
        state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
382
        /* state = kLiteralNextStates[state]; */
383
      }
384
 
385
      len += kMatchMinLen;
386
 
387
      if (limit == dicPos)
388
        return SZ_ERROR_DATA;
389
      {
390
        SizeT rem = limit - dicPos;
391
        unsigned curLen = ((rem < len) ? (unsigned)rem : len);
392
        SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
393
 
394
        processedPos += curLen;
395
 
396
        len -= curLen;
397
        if (pos + curLen <= dicBufSize)
398
        {
399
          Byte *dest = dic + dicPos;
400
          ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
401
          const Byte *lim = dest + curLen;
402
          dicPos += curLen;
403
          do
404
            *(dest) = (Byte)*(dest + src);
405
          while (++dest != lim);
406
        }
407
        else
408
        {
409
          do
410
          {
411
            dic[dicPos++] = dic[pos];
412
            if (++pos == dicBufSize)
413
              pos = 0;
414
          }
415
          while (--curLen != 0);
416
        }
417
      }
418
    }
419
  }
420
  while (dicPos < limit && buf < bufLimit);
421
  NORMALIZE;
422
  p->buf = buf;
423
  p->range = range;
424
  p->code = code;
425
  p->remainLen = len;
426
  p->dicPos = dicPos;
427
  p->processedPos = processedPos;
428
  p->reps[0] = rep0;
429
  p->reps[1] = rep1;
430
  p->reps[2] = rep2;
431
  p->reps[3] = rep3;
432
  p->state = state;
433
 
434
  return SZ_OK;
435
}
436
 
437
static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
438
{
439
  if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
440
  {
441
    Byte *dic = p->dic;
442
    SizeT dicPos = p->dicPos;
443
    SizeT dicBufSize = p->dicBufSize;
444
    unsigned len = p->remainLen;
445
    UInt32 rep0 = p->reps[0];
446
    if (limit - dicPos < len)
447
      len = (unsigned)(limit - dicPos);
448
 
449
    if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
450
      p->checkDicSize = p->prop.dicSize;
451
 
452
    p->processedPos += len;
453
    p->remainLen -= len;
454
    while (len-- != 0)
455
    {
456
      dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
457
      dicPos++;
458
    }
459
    p->dicPos = dicPos;
460
  }
461
}
462
 
463
static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
464
{
465
  do
466
  {
467
    SizeT limit2 = limit;
468
    if (p->checkDicSize == 0)
469
    {
470
      UInt32 rem = p->prop.dicSize - p->processedPos;
471
      if (limit - p->dicPos > rem)
472
        limit2 = p->dicPos + rem;
473
    }
474
    RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
475
    if (p->processedPos >= p->prop.dicSize)
476
      p->checkDicSize = p->prop.dicSize;
477
    LzmaDec_WriteRem(p, limit);
478
  }
479
  while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
480
 
481
  if (p->remainLen > kMatchSpecLenStart)
482
  {
483
    p->remainLen = kMatchSpecLenStart;
484
  }
485
  return 0;
486
}
487
 
488
typedef enum ELzmaDummy
489
{
490
  DUMMY_ERROR, /* unexpected end of input stream */
491
  DUMMY_LIT,
492
  DUMMY_MATCH,
493
  DUMMY_REP
494
} ELzmaDummy;
495
 
496
static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
497
{
498
  UInt32 range = p->range;
499
  UInt32 code = p->code;
500
  const Byte *bufLimit = buf + inSize;
501
  CLzmaProb *probs = p->probs;
502
  unsigned state = p->state;
503
  ELzmaDummy res;
504
 
505
  {
506
    CLzmaProb *prob;
507
    UInt32 bound;
508
    unsigned ttt;
509
    unsigned posState = (p->processedPos) & ((1u << p->prop.pb) - 1u); /*MAB 1u */
510
 
511
    prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
512
    IF_BIT_0_CHECK(prob)
513
    {
514
      UPDATE_0_CHECK
515
 
516
      /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
517
 
518
      prob = probs + Literal;
519
      if (p->checkDicSize != 0 || p->processedPos != 0)
520
        prob += (LZMA_LIT_SIZE *
521
          ( (unsigned) /*MAB casts */
522
                        (((p->processedPos) & ((1u << (p->prop.lp)) - 1u)) << p->prop.lc) +
523
                        (unsigned) /*MAB casts */
524
              (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
525
 
526
      if (state < kNumLitStates)
527
      {
528
        unsigned symbol = 1;
529
        do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
530
      }
531
      else
532
      {
533
        unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
534
            ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
535
        unsigned offs = 0x100;
536
        unsigned symbol = 1;
537
        do
538
        {
539
          unsigned bit;
540
          CLzmaProb *probLit;
541
          matchByte <<= 1;
542
          bit = (matchByte & offs);
543
          probLit = prob + offs + bit + symbol;
544
          GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
545
        }
546
        while (symbol < 0x100);
547
      }
548
      res = DUMMY_LIT;
549
    }
550
    else
551
    {
552
      unsigned len;
553
      UPDATE_1_CHECK;
554
 
555
      prob = probs + IsRep + state;
556
      IF_BIT_0_CHECK(prob)
557
      {
558
        UPDATE_0_CHECK;
559
        state = 0;
560
        prob = probs + LenCoder;
561
        res = DUMMY_MATCH;
562
      }
563
      else
564
      {
565
        UPDATE_1_CHECK;
566
        res = DUMMY_REP;
567
        prob = probs + IsRepG0 + state;
568
        IF_BIT_0_CHECK(prob)
569
        {
570
          UPDATE_0_CHECK;
571
          prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
572
          IF_BIT_0_CHECK(prob)
573
          {
574
            UPDATE_0_CHECK;
575
            NORMALIZE_CHECK;
576
            return DUMMY_REP;
577
          }
578
          else
579
          {
580
            UPDATE_1_CHECK;
581
          }
582
        }
583
        else
584
        {
585
          UPDATE_1_CHECK;
586
          prob = probs + IsRepG1 + state;
587
          IF_BIT_0_CHECK(prob)
588
          {
589
            UPDATE_0_CHECK;
590
          }
591
          else
592
          {
593
            UPDATE_1_CHECK;
594
            prob = probs + IsRepG2 + state;
595
            IF_BIT_0_CHECK(prob)
596
            {
597
              UPDATE_0_CHECK;
598
            }
599
            else
600
            {
601
              UPDATE_1_CHECK;
602
            }
603
          }
604
        }
605
        state = kNumStates;
606
        prob = probs + RepLenCoder;
607
      }
608
      {
609
        unsigned limit, offset;
610
        CLzmaProb *probLen = prob + LenChoice;
611
        IF_BIT_0_CHECK(probLen)
612
        {
613
          UPDATE_0_CHECK;
614
          probLen = prob + LenLow + (posState << kLenNumLowBits);
615
          offset = 0;
616
          limit = 1 << kLenNumLowBits;
617
        }
618
        else
619
        {
620
          UPDATE_1_CHECK;
621
          probLen = prob + LenChoice2;
622
          IF_BIT_0_CHECK(probLen)
623
          {
624
            UPDATE_0_CHECK;
625
            probLen = prob + LenMid + (posState << kLenNumMidBits);
626
            offset = kLenNumLowSymbols;
627
            limit = 1 << kLenNumMidBits;
628
          }
629
          else
630
          {
631
            UPDATE_1_CHECK;
632
            probLen = prob + LenHigh;
633
            offset = kLenNumLowSymbols + kLenNumMidSymbols;
634
            limit = 1 << kLenNumHighBits;
635
          }
636
        }
637
        TREE_DECODE_CHECK(probLen, limit, len);
638
        len += offset;
639
      }
640
 
641
      if (state < 4)
642
      {
643
        unsigned posSlot;
644
        prob = probs + PosSlot +
645
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
646
            kNumPosSlotBits);
647
        TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
648
        if (posSlot >= kStartPosModelIndex)
649
        {
650
          int numDirectBits = (int)((posSlot >> 1) - 1); /*MAB casts */
651
 
652
          /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
653
 
654
          if (posSlot < kEndPosModelIndex)
655
          {
656
            prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
657
          }
658
          else
659
          {
660
            numDirectBits -= kNumAlignBits;
661
            do
662
            {
663
              NORMALIZE_CHECK
664
              range >>= 1;
665
              code -= range & (((code - range) >> 31) - 1);
666
              /* if (code >= range) code -= range; */
667
            }
668
            while (--numDirectBits != 0);
669
            prob = probs + Align;
670
            numDirectBits = kNumAlignBits;
671
          }
672
          {
673
            unsigned i = 1;
674
            do
675
            {
676
              GET_BIT_CHECK(prob + i, i);
677
            }
678
            while (--numDirectBits != 0);
679
          }
680
        }
681
      }
682
    }
683
  }
684
  NORMALIZE_CHECK;
685
  return res;
686
}
687
 
688
 
689
static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
690
{
691
  p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
692
  p->range = 0xFFFFFFFF;
693
  p->needFlush = 0;
694
}
695
 
696
/*MAB: static added because it is not used externally */
697
static
698
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
699
{
700
  p->needFlush = 1;
701
  p->remainLen = 0;
702
  p->tempBufSize = 0;
703
 
704
  if (initDic)
705
  {
706
    p->processedPos = 0;
707
    p->checkDicSize = 0;
708
    p->needInitState = 1;
709
  }
710
  if (initState)
711
    p->needInitState = 1;
712
}
713
 
714
void LzmaDec_Init(CLzmaDec *p)
715
{
716
  p->dicPos = 0;
717
  LzmaDec_InitDicAndState(p, True, True);
718
}
719
 
720
static void LzmaDec_InitStateReal(CLzmaDec *p)
721
{
722
  UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
723
  UInt32 i;
724
  CLzmaProb *probs = p->probs;
725
  for (i = 0; i < numProbs; i++)
726
    probs[i] = kBitModelTotal >> 1;
727
  p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
728
  p->state = 0;
729
  p->needInitState = 0;
730
}
731
 
732
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
733
    ELzmaFinishMode finishMode, ELzmaStatus *status)
734
{
735
  SizeT inSize = *srcLen;
736
  (*srcLen) = 0;
737
  LzmaDec_WriteRem(p, dicLimit);
738
 
739
  *status = LZMA_STATUS_NOT_SPECIFIED;
740
 
741
  while (p->remainLen != kMatchSpecLenStart)
742
  {
743
      int checkEndMarkNow;
744
 
745
      if (p->needFlush != 0)
746
      {
747
        for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
748
          p->tempBuf[p->tempBufSize++] = *src++;
749
        if (p->tempBufSize < RC_INIT_SIZE)
750
        {
751
          *status = LZMA_STATUS_NEEDS_MORE_INPUT;
752
          return SZ_OK;
753
        }
754
        if (p->tempBuf[0] != 0)
755
          return SZ_ERROR_DATA;
756
 
757
        LzmaDec_InitRc(p, p->tempBuf);
758
        p->tempBufSize = 0;
759
      }
760
 
761
      checkEndMarkNow = 0;
762
      if (p->dicPos >= dicLimit)
763
      {
764
        if (p->remainLen == 0 && p->code == 0)
765
        {
766
          *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
767
          return SZ_OK;
768
        }
769
        if (finishMode == LZMA_FINISH_ANY)
770
        {
771
          *status = LZMA_STATUS_NOT_FINISHED;
772
          return SZ_OK;
773
        }
774
        if (p->remainLen != 0)
775
        {
776
          *status = LZMA_STATUS_NOT_FINISHED;
777
          return SZ_ERROR_DATA;
778
        }
779
        checkEndMarkNow = 1;
780
      }
781
 
782
      if (p->needInitState)
783
        LzmaDec_InitStateReal(p);
784
 
785
      if (p->tempBufSize == 0)
786
      {
787
        SizeT processed;
788
        const Byte *bufLimit;
789
        if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
790
        {
791
          int dummyRes = LzmaDec_TryDummy(p, src, inSize);
792
          if (dummyRes == DUMMY_ERROR)
793
          {
794
            memcpy(p->tempBuf, src, inSize);
795
            p->tempBufSize = (unsigned)inSize;
796
            (*srcLen) += inSize;
797
            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
798
            return SZ_OK;
799
          }
800
          if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
801
          {
802
            *status = LZMA_STATUS_NOT_FINISHED;
803
            return SZ_ERROR_DATA;
804
          }
805
          bufLimit = src;
806
        }
807
        else
808
          bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
809
        p->buf = src;
810
        if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
811
          return SZ_ERROR_DATA;
812
        processed = (SizeT)(p->buf - src);
813
        (*srcLen) += processed;
814
        src += processed;
815
        inSize -= processed;
816
      }
817
      else
818
      {
819
        unsigned rem = p->tempBufSize, lookAhead = 0;
820
        while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
821
          p->tempBuf[rem++] = src[lookAhead++];
822
        p->tempBufSize = rem;
823
        if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
824
        {
825
          int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
826
          if (dummyRes == DUMMY_ERROR)
827
          {
828
            (*srcLen) += lookAhead;
829
            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
830
            return SZ_OK;
831
          }
832
          if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
833
          {
834
            *status = LZMA_STATUS_NOT_FINISHED;
835
            return SZ_ERROR_DATA;
836
          }
837
        }
838
        p->buf = p->tempBuf;
839
        if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
840
          return SZ_ERROR_DATA;
841
        lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
842
        (*srcLen) += lookAhead;
843
        src += lookAhead;
844
        inSize -= lookAhead;
845
        p->tempBufSize = 0;
846
      }
847
  }
848
  if (p->code == 0)
849
    *status = LZMA_STATUS_FINISHED_WITH_MARK;
850
  return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
851
}
852
 
853
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
854
{
855
  SizeT outSize = *destLen;
856
  SizeT inSize = *srcLen;
857
  *srcLen = *destLen = 0;
858
  for (;;)
859
  {
860
    SizeT inSizeCur = inSize, outSizeCur, dicPos;
861
    ELzmaFinishMode curFinishMode;
862
    SRes res;
863
    if (p->dicPos == p->dicBufSize)
864
      p->dicPos = 0;
865
    dicPos = p->dicPos;
866
    if (outSize > p->dicBufSize - dicPos)
867
    {
868
      outSizeCur = p->dicBufSize;
869
      curFinishMode = LZMA_FINISH_ANY;
870
    }
871
    else
872
    {
873
      outSizeCur = dicPos + outSize;
874
      curFinishMode = finishMode;
875
    }
876
 
877
    res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
878
    src += inSizeCur;
879
    inSize -= inSizeCur;
880
    *srcLen += inSizeCur;
881
    outSizeCur = p->dicPos - dicPos;
882
    memcpy(dest, p->dic + dicPos, outSizeCur);
883
    dest += outSizeCur;
884
    outSize -= outSizeCur;
885
    *destLen += outSizeCur;
886
    if (res != 0)
887
      return res;
888
    if (outSizeCur == 0 || outSize == 0)
889
      return SZ_OK;
890
  }
891
}
892
 
893
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
894
{
895
  alloc->Free(alloc, p->probs);
896
  p->probs = 0;
897
}
898
 
899
static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
900
{
901
  alloc->Free(alloc, p->dic);
902
  p->dic = 0;
903
}
904
 
905
void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
906
{
907
  LzmaDec_FreeProbs(p, alloc);
908
  LzmaDec_FreeDict(p, alloc);
909
}
910
 
911
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
912
{
913
  UInt32 dicSize;
914
  Byte d;
915
 
916
  if (size < LZMA_PROPS_SIZE)
917
    return SZ_ERROR_UNSUPPORTED;
918
  else
919
    dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
920
 
921
  if (dicSize < LZMA_DIC_MIN)
922
    dicSize = LZMA_DIC_MIN;
923
  p->dicSize = dicSize;
924
 
925
  d = data[0];
926
  if (d >= (9 * 5 * 5))
927
    return SZ_ERROR_UNSUPPORTED;
928
 
929
  p->lc = d % 9;
930
  d /= 9;
931
  p->pb = d / 5;
932
  p->lp = d % 5;
933
 
934
  return SZ_OK;
935
}
936
 
937
static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
938
{
939
  UInt32 numProbs = (UInt32) (LzmaProps_GetNumProbs(propNew)); /*MAB casts */
940
  if (p->probs == 0 || numProbs != p->numProbs)
941
  {
942
    LzmaDec_FreeProbs(p, alloc);
943
    p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
944
    p->numProbs = numProbs;
945
    if (p->probs == 0)
946
      return SZ_ERROR_MEM;
947
  }
948
  return SZ_OK;
949
}
950
 
951
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
952
{
953
  CLzmaProps propNew;
954
  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
955
  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
956
  p->prop = propNew;
957
  return SZ_OK;
958
}
959
 
960
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
961
{
962
  CLzmaProps propNew;
963
  SizeT dicBufSize;
964
  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
965
  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
966
  dicBufSize = propNew.dicSize;
967
  if (p->dic == 0 || dicBufSize != p->dicBufSize)
968
  {
969
    LzmaDec_FreeDict(p, alloc);
970
    p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
971
    if (p->dic == 0)
972
    {
973
      LzmaDec_FreeProbs(p, alloc);
974
      return SZ_ERROR_MEM;
975
    }
976
  }
977
  p->dicBufSize = dicBufSize;
978
  p->prop = propNew;
979
  return SZ_OK;
980
}
981
 
982
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
983
    const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
984
    ELzmaStatus *status, ISzAlloc *alloc)
985
{
986
  CLzmaDec p;
987
  SRes res;
988
  SizeT inSize = *srcLen;
989
  SizeT outSize = *destLen;
990
  *srcLen = *destLen = 0;
991
  if (inSize < RC_INIT_SIZE)
992
    return SZ_ERROR_INPUT_EOF;
993
 
994
  LzmaDec_Construct(&p);
995
  res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
996
  if (res != 0)
997
    return res;
998
  p.dic = dest;
999
  p.dicBufSize = outSize;
1000
 
1001
  LzmaDec_Init(&p);
1002
 
1003
  *srcLen = inSize;
1004
  res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1005
 
1006
  if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1007
    res = SZ_ERROR_INPUT_EOF;
1008
 
1009
  (*destLen) = p.dicPos;
1010
  LzmaDec_FreeProbs(&p, alloc);
1011
  return res;
1012
}