Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 96 | pmbaty | 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
| 169 | pmbaty | 5 | Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 96 | pmbaty | 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
||
| 8 | it under the terms of the GNU General Public License as published by |
||
| 9 | the Free Software Foundation, either version 3 of the License, or |
||
| 10 | (at your option) any later version. |
||
| 11 | |||
| 12 | Stockfish is distributed in the hope that it will be useful, |
||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 15 | GNU General Public License for more details. |
||
| 16 | |||
| 17 | You should have received a copy of the GNU General Public License |
||
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
| 19 | */ |
||
| 20 | |||
| 21 | #include <algorithm> |
||
| 22 | #include <cfloat> |
||
| 23 | #include <cmath> |
||
| 24 | |||
| 25 | #include "search.h" |
||
| 26 | #include "timeman.h" |
||
| 27 | #include "uci.h" |
||
| 28 | |||
| 29 | TimeManagement Time; // Our global time management object |
||
| 30 | |||
| 31 | namespace { |
||
| 32 | |||
| 33 | enum TimeType { OptimumTime, MaxTime }; |
||
| 34 | |||
| 35 | const int MoveHorizon = 50; // Plan time management at most this many moves ahead |
||
| 154 | pmbaty | 36 | const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio |
| 96 | pmbaty | 37 | const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio |
| 38 | |||
| 39 | |||
| 40 | // move_importance() is a skew-logistic function based on naive statistical |
||
| 41 | // analysis of "how many games are still undecided after n half-moves". Game |
||
| 42 | // is considered "undecided" as long as neither side has >275cp advantage. |
||
| 43 | // Data was extracted from the CCRL game database with some simple filtering criteria. |
||
| 44 | |||
| 45 | double move_importance(int ply) { |
||
| 46 | |||
| 47 | const double XScale = 7.64; |
||
| 48 | const double XShift = 58.4; |
||
| 49 | const double Skew = 0.183; |
||
| 50 | |||
| 51 | return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero |
||
| 52 | } |
||
| 53 | |||
| 54 | template<TimeType T> |
||
| 154 | pmbaty | 55 | int remaining(int myTime, int movesToGo, int ply, int slowMover) { |
| 56 | |||
| 96 | pmbaty | 57 | const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); |
| 58 | const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); |
||
| 59 | |||
| 60 | double moveImportance = (move_importance(ply) * slowMover) / 100; |
||
| 61 | double otherMovesImportance = 0; |
||
| 62 | |||
| 63 | for (int i = 1; i < movesToGo; ++i) |
||
| 64 | otherMovesImportance += move_importance(ply + 2 * i); |
||
| 65 | |||
| 66 | double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); |
||
| 67 | double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); |
||
| 68 | |||
| 69 | return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast |
||
| 70 | } |
||
| 71 | |||
| 72 | } // namespace |
||
| 73 | |||
| 74 | |||
| 75 | /// init() is called at the beginning of the search and calculates the allowed |
||
| 76 | /// thinking time out of the time control and current game ply. We support four |
||
| 77 | /// different kinds of time controls, passed in 'limits': |
||
| 78 | /// |
||
| 79 | /// inc == 0 && movestogo == 0 means: x basetime [sudden death!] |
||
| 80 | /// inc == 0 && movestogo != 0 means: x moves in y minutes |
||
| 81 | /// inc > 0 && movestogo == 0 means: x basetime + z increment |
||
| 82 | /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment |
||
| 83 | |||
| 154 | pmbaty | 84 | void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { |
| 85 | |||
| 96 | pmbaty | 86 | int minThinkingTime = Options["Minimum Thinking Time"]; |
| 87 | int moveOverhead = Options["Move Overhead"]; |
||
| 88 | int slowMover = Options["Slow Mover"]; |
||
| 89 | int npmsec = Options["nodestime"]; |
||
| 90 | |||
| 91 | // If we have to play in 'nodes as time' mode, then convert from time |
||
| 92 | // to nodes, and use resulting values in time management formulas. |
||
| 93 | // WARNING: Given npms (nodes per millisecond) must be much lower then |
||
| 94 | // the real engine speed to avoid time losses. |
||
| 95 | if (npmsec) |
||
| 96 | { |
||
| 97 | if (!availableNodes) // Only once at game start |
||
| 98 | availableNodes = npmsec * limits.time[us]; // Time is in msec |
||
| 99 | |||
| 100 | // Convert from millisecs to nodes |
||
| 101 | limits.time[us] = (int)availableNodes; |
||
| 102 | limits.inc[us] *= npmsec; |
||
| 103 | limits.npmsec = npmsec; |
||
| 104 | } |
||
| 105 | |||
| 106 | startTime = limits.startTime; |
||
| 107 | optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); |
||
| 108 | |||
| 109 | const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; |
||
| 110 | |||
| 111 | // We calculate optimum time usage for different hypothetical "moves to go"-values |
||
| 112 | // and choose the minimum of calculated search time values. Usually the greatest |
||
| 113 | // hypMTG gives the minimum values. |
||
| 114 | for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) |
||
| 115 | { |
||
| 116 | // Calculate thinking time for hypothetical "moves to go"-value |
||
| 117 | int hypMyTime = limits.time[us] |
||
| 118 | + limits.inc[us] * (hypMTG - 1) |
||
| 119 | - moveOverhead * (2 + std::min(hypMTG, 40)); |
||
| 120 | |||
| 121 | hypMyTime = std::max(hypMyTime, 0); |
||
| 122 | |||
| 123 | int t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover); |
||
| 124 | int t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover); |
||
| 125 | |||
| 126 | optimumTime = std::min(t1, optimumTime); |
||
| 127 | maximumTime = std::min(t2, maximumTime); |
||
| 128 | } |
||
| 129 | |||
| 130 | if (Options["Ponder"]) |
||
| 131 | optimumTime += optimumTime / 4; |
||
| 132 | } |