Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cfloat> |
||
23 | #include <cmath> |
||
24 | |||
25 | #include "search.h" |
||
26 | #include "timeman.h" |
||
27 | #include "uci.h" |
||
28 | |||
29 | TimeManagement Time; // Our global time management object |
||
30 | |||
31 | namespace { |
||
32 | |||
33 | enum TimeType { OptimumTime, MaxTime }; |
||
34 | |||
35 | const int MoveHorizon = 50; // Plan time management at most this many moves ahead |
||
154 | pmbaty | 36 | const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio |
96 | pmbaty | 37 | const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio |
38 | |||
39 | |||
40 | // move_importance() is a skew-logistic function based on naive statistical |
||
41 | // analysis of "how many games are still undecided after n half-moves". Game |
||
42 | // is considered "undecided" as long as neither side has >275cp advantage. |
||
43 | // Data was extracted from the CCRL game database with some simple filtering criteria. |
||
44 | |||
45 | double move_importance(int ply) { |
||
46 | |||
47 | const double XScale = 7.64; |
||
48 | const double XShift = 58.4; |
||
49 | const double Skew = 0.183; |
||
50 | |||
51 | return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero |
||
52 | } |
||
53 | |||
54 | template<TimeType T> |
||
154 | pmbaty | 55 | int remaining(int myTime, int movesToGo, int ply, int slowMover) { |
56 | |||
96 | pmbaty | 57 | const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); |
58 | const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); |
||
59 | |||
60 | double moveImportance = (move_importance(ply) * slowMover) / 100; |
||
61 | double otherMovesImportance = 0; |
||
62 | |||
63 | for (int i = 1; i < movesToGo; ++i) |
||
64 | otherMovesImportance += move_importance(ply + 2 * i); |
||
65 | |||
66 | double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); |
||
67 | double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); |
||
68 | |||
69 | return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast |
||
70 | } |
||
71 | |||
72 | } // namespace |
||
73 | |||
74 | |||
75 | /// init() is called at the beginning of the search and calculates the allowed |
||
76 | /// thinking time out of the time control and current game ply. We support four |
||
77 | /// different kinds of time controls, passed in 'limits': |
||
78 | /// |
||
79 | /// inc == 0 && movestogo == 0 means: x basetime [sudden death!] |
||
80 | /// inc == 0 && movestogo != 0 means: x moves in y minutes |
||
81 | /// inc > 0 && movestogo == 0 means: x basetime + z increment |
||
82 | /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment |
||
83 | |||
154 | pmbaty | 84 | void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { |
85 | |||
96 | pmbaty | 86 | int minThinkingTime = Options["Minimum Thinking Time"]; |
87 | int moveOverhead = Options["Move Overhead"]; |
||
88 | int slowMover = Options["Slow Mover"]; |
||
89 | int npmsec = Options["nodestime"]; |
||
90 | |||
91 | // If we have to play in 'nodes as time' mode, then convert from time |
||
92 | // to nodes, and use resulting values in time management formulas. |
||
93 | // WARNING: Given npms (nodes per millisecond) must be much lower then |
||
94 | // the real engine speed to avoid time losses. |
||
95 | if (npmsec) |
||
96 | { |
||
97 | if (!availableNodes) // Only once at game start |
||
98 | availableNodes = npmsec * limits.time[us]; // Time is in msec |
||
99 | |||
100 | // Convert from millisecs to nodes |
||
101 | limits.time[us] = (int)availableNodes; |
||
102 | limits.inc[us] *= npmsec; |
||
103 | limits.npmsec = npmsec; |
||
104 | } |
||
105 | |||
106 | startTime = limits.startTime; |
||
107 | optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); |
||
108 | |||
109 | const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; |
||
110 | |||
111 | // We calculate optimum time usage for different hypothetical "moves to go"-values |
||
112 | // and choose the minimum of calculated search time values. Usually the greatest |
||
113 | // hypMTG gives the minimum values. |
||
114 | for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) |
||
115 | { |
||
116 | // Calculate thinking time for hypothetical "moves to go"-value |
||
117 | int hypMyTime = limits.time[us] |
||
118 | + limits.inc[us] * (hypMTG - 1) |
||
119 | - moveOverhead * (2 + std::min(hypMTG, 40)); |
||
120 | |||
121 | hypMyTime = std::max(hypMyTime, 0); |
||
122 | |||
123 | int t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover); |
||
124 | int t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover); |
||
125 | |||
126 | optimumTime = std::min(t1, optimumTime); |
||
127 | maximumTime = std::min(t2, maximumTime); |
||
128 | } |
||
129 | |||
130 | if (Options["Ponder"]) |
||
131 | optimumTime += optimumTime / 4; |
||
132 | } |