Rev 176 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
169 | pmbaty | 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
96 | pmbaty | 3 | Copyright (c) 2013 Ronald de Man |
169 | pmbaty | 4 | Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch |
96 | pmbaty | 5 | |
169 | pmbaty | 6 | Stockfish is free software: you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by |
||
8 | the Free Software Foundation, either version 3 of the License, or |
||
9 | (at your option) any later version. |
||
10 | |||
11 | Stockfish is distributed in the hope that it will be useful, |
||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
14 | GNU General Public License for more details. |
||
15 | |||
16 | You should have received a copy of the GNU General Public License |
||
17 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
96 | pmbaty | 18 | */ |
19 | |||
20 | #include <algorithm> |
||
169 | pmbaty | 21 | #include <atomic> |
22 | #include <cstdint> |
||
185 | pmbaty | 23 | #include <cstring> // For std::memset and std::memcpy |
169 | pmbaty | 24 | #include <deque> |
25 | #include <fstream> |
||
26 | #include <iostream> |
||
27 | #include <list> |
||
28 | #include <sstream> |
||
29 | #include <type_traits> |
||
96 | pmbaty | 30 | |
169 | pmbaty | 31 | #include "../bitboard.h" |
32 | #include "../movegen.h" |
||
96 | pmbaty | 33 | #include "../position.h" |
34 | #include "../search.h" |
||
169 | pmbaty | 35 | #include "../thread_win32.h" |
36 | #include "../types.h" |
||
185 | pmbaty | 37 | #include "../uci.h" |
96 | pmbaty | 38 | |
39 | #include "tbprobe.h" |
||
40 | |||
169 | pmbaty | 41 | #ifndef _WIN32 |
42 | #include <fcntl.h> |
||
43 | #include <unistd.h> |
||
44 | #include <sys/mman.h> |
||
45 | #include <sys/stat.h> |
||
46 | #else |
||
47 | #define WIN32_LEAN_AND_MEAN |
||
48 | #define NOMINMAX |
||
49 | #include <windows.h> |
||
50 | #endif |
||
96 | pmbaty | 51 | |
169 | pmbaty | 52 | using namespace Tablebases; |
96 | pmbaty | 53 | |
169 | pmbaty | 54 | int Tablebases::MaxCardinality; |
96 | pmbaty | 55 | |
169 | pmbaty | 56 | namespace { |
96 | pmbaty | 57 | |
185 | pmbaty | 58 | constexpr int TBPIECES = 7; // Max number of supported pieces |
59 | |||
60 | enum { BigEndian, LittleEndian }; |
||
61 | enum TBType { KEY, WDL, DTZ }; // Used as template parameter |
||
62 | |||
169 | pmbaty | 63 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables |
185 | pmbaty | 64 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 }; |
96 | pmbaty | 65 | |
169 | pmbaty | 66 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } |
67 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } |
||
68 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } |
||
96 | pmbaty | 69 | |
185 | pmbaty | 70 | const std::string PieceToChar = " PNBRQK pnbrqk"; |
96 | pmbaty | 71 | |
169 | pmbaty | 72 | int MapPawns[SQUARE_NB]; |
73 | int MapB1H1H7[SQUARE_NB]; |
||
74 | int MapA1D1D4[SQUARE_NB]; |
||
75 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] |
||
76 | |||
185 | pmbaty | 77 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements |
78 | int LeadPawnIdx[6][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] |
||
79 | int LeadPawnsSize[6][4]; // [leadPawnsCnt][FILE_A..FILE_D] |
||
80 | |||
169 | pmbaty | 81 | // Comparison function to sort leading pawns in ascending MapPawns[] order |
82 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } |
||
83 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } |
||
84 | |||
185 | pmbaty | 85 | constexpr Value WDL_to_value[] = { |
169 | pmbaty | 86 | -VALUE_MATE + MAX_PLY + 1, |
87 | VALUE_DRAW - 2, |
||
88 | VALUE_DRAW, |
||
89 | VALUE_DRAW + 2, |
||
90 | VALUE_MATE - MAX_PLY - 1 |
||
91 | }; |
||
92 | |||
93 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> |
||
185 | pmbaty | 94 | inline void swap_endian(T& x) |
96 | pmbaty | 95 | { |
185 | pmbaty | 96 | static_assert(std::is_unsigned<T>::value, "Argument of swap_endian not unsigned"); |
97 | |||
98 | uint8_t tmp, *c = (uint8_t*)&x; |
||
169 | pmbaty | 99 | for (int i = 0; i < Half; ++i) |
100 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; |
||
96 | pmbaty | 101 | } |
185 | pmbaty | 102 | template<> inline void swap_endian<uint8_t>(uint8_t&) {} |
96 | pmbaty | 103 | |
169 | pmbaty | 104 | template<typename T, int LE> T number(void* addr) |
96 | pmbaty | 105 | { |
185 | pmbaty | 106 | static const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; |
107 | static const bool IsLittleEndian = (Le.c[0] == 4); |
||
96 | pmbaty | 108 | |
169 | pmbaty | 109 | T v; |
96 | pmbaty | 110 | |
169 | pmbaty | 111 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) |
112 | std::memcpy(&v, addr, sizeof(T)); |
||
113 | else |
||
114 | v = *((T*)addr); |
||
96 | pmbaty | 115 | |
169 | pmbaty | 116 | if (LE != IsLittleEndian) |
185 | pmbaty | 117 | swap_endian(v); |
169 | pmbaty | 118 | return v; |
119 | } |
||
120 | |||
185 | pmbaty | 121 | // DTZ tables don't store valid scores for moves that reset the rule50 counter |
122 | // like captures and pawn moves but we can easily recover the correct dtz of the |
||
123 | // previous move if we know the position's WDL score. |
||
124 | int dtz_before_zeroing(WDLScore wdl) { |
||
125 | return wdl == WDLWin ? 1 : |
||
126 | wdl == WDLCursedWin ? 101 : |
||
127 | wdl == WDLBlessedLoss ? -101 : |
||
128 | wdl == WDLLoss ? -1 : 0; |
||
129 | } |
||
169 | pmbaty | 130 | |
185 | pmbaty | 131 | // Return the sign of a number (-1, 0, 1) |
132 | template <typename T> int sign_of(T val) { |
||
133 | return (T(0) < val) - (val < T(0)); |
||
134 | } |
||
169 | pmbaty | 135 | |
185 | pmbaty | 136 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] |
137 | struct SparseEntry { |
||
138 | char block[4]; // Number of block |
||
139 | char offset[2]; // Offset within the block |
||
140 | }; |
||
169 | pmbaty | 141 | |
185 | pmbaty | 142 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); |
169 | pmbaty | 143 | |
185 | pmbaty | 144 | typedef uint16_t Sym; // Huffman symbol |
169 | pmbaty | 145 | |
185 | pmbaty | 146 | struct LR { |
147 | enum Side { Left, Right }; |
||
169 | pmbaty | 148 | |
185 | pmbaty | 149 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 |
150 | // bits is the right-hand symbol. If symbol has length 1, |
||
151 | // then the left-hand symbol is the stored value. |
||
152 | template<Side S> |
||
153 | Sym get() { |
||
154 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : |
||
155 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : (assert(false), Sym(-1)); |
||
169 | pmbaty | 156 | } |
185 | pmbaty | 157 | }; |
169 | pmbaty | 158 | |
185 | pmbaty | 159 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); |
169 | pmbaty | 160 | |
185 | pmbaty | 161 | // Tablebases data layout is structured as following: |
162 | // |
||
163 | // TBFile: memory maps/unmaps the physical .rtbw and .rtbz files |
||
164 | // TBTable: one object for each file with corresponding indexing information |
||
165 | // TBTables: has ownership of TBTable objects, keeping a list and a hash |
||
169 | pmbaty | 166 | |
185 | pmbaty | 167 | // class TBFile memory maps/unmaps the single .rtbw and .rtbz files. Files are |
168 | // memory mapped for best performance. Files are mapped at first access: at init |
||
169 | // time only existence of the file is checked. |
||
169 | pmbaty | 170 | class TBFile : public std::ifstream { |
171 | |||
172 | std::string fname; |
||
173 | |||
174 | public: |
||
175 | // Look for and open the file among the Paths directories where the .rtbw |
||
176 | // and .rtbz files can be found. Multiple directories are separated by ";" |
||
177 | // on Windows and by ":" on Unix-based operating systems. |
||
178 | // |
||
179 | // Example: |
||
180 | // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 |
||
181 | static std::string Paths; |
||
182 | |||
183 | TBFile(const std::string& f) { |
||
184 | |||
185 | #ifndef _WIN32 |
||
185 | pmbaty | 186 | constexpr char SepChar = ':'; |
96 | pmbaty | 187 | #else |
185 | pmbaty | 188 | constexpr char SepChar = ';'; |
96 | pmbaty | 189 | #endif |
169 | pmbaty | 190 | std::stringstream ss(Paths); |
191 | std::string path; |
||
192 | |||
193 | while (std::getline(ss, path, SepChar)) { |
||
194 | fname = path + "/" + f; |
||
195 | std::ifstream::open(fname); |
||
196 | if (is_open()) |
||
197 | return; |
||
198 | } |
||
96 | pmbaty | 199 | } |
200 | |||
169 | pmbaty | 201 | // Memory map the file and check it. File should be already open and will be |
202 | // closed after mapping. |
||
185 | pmbaty | 203 | uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) { |
169 | pmbaty | 204 | |
205 | assert(is_open()); |
||
206 | |||
207 | close(); // Need to re-open to get native file descriptor |
||
208 | |||
209 | #ifndef _WIN32 |
||
210 | struct stat statbuf; |
||
211 | int fd = ::open(fname.c_str(), O_RDONLY); |
||
212 | |||
213 | if (fd == -1) |
||
214 | return *baseAddress = nullptr, nullptr; |
||
215 | |||
216 | fstat(fd, &statbuf); |
||
217 | *mapping = statbuf.st_size; |
||
218 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); |
||
185 | pmbaty | 219 | madvise(*baseAddress, statbuf.st_size, MADV_RANDOM); |
169 | pmbaty | 220 | ::close(fd); |
221 | |||
222 | if (*baseAddress == MAP_FAILED) { |
||
223 | std::cerr << "Could not mmap() " << fname << std::endl; |
||
224 | exit(1); |
||
225 | } |
||
226 | #else |
||
227 | HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, |
||
228 | OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); |
||
229 | |||
230 | if (fd == INVALID_HANDLE_VALUE) |
||
231 | return *baseAddress = nullptr, nullptr; |
||
232 | |||
233 | DWORD size_high; |
||
234 | DWORD size_low = GetFileSize(fd, &size_high); |
||
235 | HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); |
||
236 | CloseHandle(fd); |
||
237 | |||
238 | if (!mmap) { |
||
239 | std::cerr << "CreateFileMapping() failed" << std::endl; |
||
240 | exit(1); |
||
241 | } |
||
242 | |||
243 | *mapping = (uint64_t)mmap; |
||
244 | *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); |
||
245 | |||
246 | if (!*baseAddress) { |
||
247 | std::cerr << "MapViewOfFile() failed, name = " << fname |
||
248 | << ", error = " << GetLastError() << std::endl; |
||
249 | exit(1); |
||
250 | } |
||
251 | #endif |
||
252 | uint8_t* data = (uint8_t*)*baseAddress; |
||
253 | |||
185 | pmbaty | 254 | constexpr uint8_t Magics[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, |
255 | { 0x71, 0xE8, 0x23, 0x5D } }; |
||
256 | |||
257 | if (memcmp(data, Magics[type == WDL], 4)) { |
||
169 | pmbaty | 258 | std::cerr << "Corrupted table in file " << fname << std::endl; |
259 | unmap(*baseAddress, *mapping); |
||
260 | return *baseAddress = nullptr, nullptr; |
||
261 | } |
||
262 | |||
185 | pmbaty | 263 | return data + 4; // Skip Magics's header |
96 | pmbaty | 264 | } |
265 | |||
169 | pmbaty | 266 | static void unmap(void* baseAddress, uint64_t mapping) { |
267 | |||
268 | #ifndef _WIN32 |
||
269 | munmap(baseAddress, mapping); |
||
270 | #else |
||
271 | UnmapViewOfFile(baseAddress); |
||
272 | CloseHandle((HANDLE)mapping); |
||
273 | #endif |
||
96 | pmbaty | 274 | } |
169 | pmbaty | 275 | }; |
276 | |||
277 | std::string TBFile::Paths; |
||
278 | |||
185 | pmbaty | 279 | // struct PairsData contains low level indexing information to access TB data. |
280 | // There are 8, 4 or 2 PairsData records for each TBTable, according to type of |
||
281 | // table and if positions have pawns or not. It is populated at first access. |
||
282 | struct PairsData { |
||
283 | uint8_t flags; // Table flags, see enum TBFlag |
||
284 | uint8_t maxSymLen; // Maximum length in bits of the Huffman symbols |
||
285 | uint8_t minSymLen; // Minimum length in bits of the Huffman symbols |
||
286 | uint32_t blocksNum; // Number of blocks in the TB file |
||
287 | size_t sizeofBlock; // Block size in bytes |
||
288 | size_t span; // About every span values there is a SparseIndex[] entry |
||
289 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value |
||
290 | LR* btree; // btree[sym] stores the left and right symbols that expand sym |
||
291 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 |
||
292 | uint32_t blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum |
||
293 | SparseEntry* sparseIndex; // Partial indices into blockLength[] |
||
294 | size_t sparseIndexSize; // Size of SparseIndex[] table |
||
295 | uint8_t* data; // Start of Huffman compressed data |
||
296 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l |
||
297 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 |
||
298 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups |
||
299 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces |
||
300 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) |
||
301 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ) |
||
302 | }; |
||
169 | pmbaty | 303 | |
185 | pmbaty | 304 | // struct TBTable contains indexing information to access the corresponding TBFile. |
305 | // There are 2 types of TBTable, corresponding to a WDL or a DTZ file. TBTable |
||
306 | // is populated at init time but the nested PairsData records are populated at |
||
307 | // first access, when the corresponding file is memory mapped. |
||
308 | template<TBType Type> |
||
309 | struct TBTable { |
||
310 | typedef typename std::conditional<Type == WDL, WDLScore, int>::type Ret; |
||
311 | |||
312 | static constexpr int Sides = Type == WDL ? 2 : 1; |
||
313 | |||
314 | std::atomic_bool ready; |
||
315 | void* baseAddress; |
||
316 | uint8_t* map; |
||
317 | uint64_t mapping; |
||
318 | Key key; |
||
319 | Key key2; |
||
320 | int pieceCount; |
||
321 | bool hasPawns; |
||
322 | bool hasUniquePieces; |
||
323 | uint8_t pawnCount[2]; // [Lead color / other color] |
||
324 | PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0] |
||
325 | |||
326 | PairsData* get(int stm, int f) { |
||
327 | return &items[stm % Sides][hasPawns ? f : 0]; |
||
328 | } |
||
329 | |||
330 | TBTable() : ready(false), baseAddress(nullptr) {} |
||
331 | explicit TBTable(const std::string& code); |
||
332 | explicit TBTable(const TBTable<WDL>& wdl); |
||
333 | |||
334 | ~TBTable() { |
||
335 | if (baseAddress) |
||
336 | TBFile::unmap(baseAddress, mapping); |
||
337 | } |
||
338 | }; |
||
339 | |||
340 | template<> |
||
341 | TBTable<WDL>::TBTable(const std::string& code) : TBTable() { |
||
342 | |||
169 | pmbaty | 343 | StateInfo st; |
344 | Position pos; |
||
345 | |||
346 | key = pos.set(code, WHITE, &st).material_key(); |
||
185 | pmbaty | 347 | pieceCount = pos.count<ALL_PIECES>(); |
169 | pmbaty | 348 | hasPawns = pos.pieces(PAWN); |
349 | |||
185 | pmbaty | 350 | hasUniquePieces = false; |
169 | pmbaty | 351 | for (Color c = WHITE; c <= BLACK; ++c) |
352 | for (PieceType pt = PAWN; pt < KING; ++pt) |
||
353 | if (popcount(pos.pieces(c, pt)) == 1) |
||
354 | hasUniquePieces = true; |
||
355 | |||
185 | pmbaty | 356 | // Set the leading color. In case both sides have pawns the leading color |
357 | // is the side with less pawns because this leads to better compression. |
||
358 | bool c = !pos.count<PAWN>(BLACK) |
||
359 | || ( pos.count<PAWN>(WHITE) |
||
360 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); |
||
169 | pmbaty | 361 | |
185 | pmbaty | 362 | pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); |
363 | pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); |
||
96 | pmbaty | 364 | |
169 | pmbaty | 365 | key2 = pos.set(code, BLACK, &st).material_key(); |
96 | pmbaty | 366 | } |
367 | |||
185 | pmbaty | 368 | template<> |
369 | TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() { |
||
96 | pmbaty | 370 | |
185 | pmbaty | 371 | // Use the corresponding WDL table to avoid recalculating all from scratch |
169 | pmbaty | 372 | key = wdl.key; |
373 | key2 = wdl.key2; |
||
374 | pieceCount = wdl.pieceCount; |
||
375 | hasPawns = wdl.hasPawns; |
||
376 | hasUniquePieces = wdl.hasUniquePieces; |
||
185 | pmbaty | 377 | pawnCount[0] = wdl.pawnCount[0]; |
378 | pawnCount[1] = wdl.pawnCount[1]; |
||
379 | } |
||
169 | pmbaty | 380 | |
185 | pmbaty | 381 | // class TBTables creates and keeps ownership of the TBTable objects, one for |
382 | // each TB file found. It supports a fast, hash based, table lookup. Populated |
||
383 | // at init time, accessed at probe time. |
||
384 | class TBTables { |
||
385 | |||
386 | typedef std::tuple<Key, TBTable<WDL>*, TBTable<DTZ>*> Entry; |
||
387 | |||
388 | static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb |
||
389 | static constexpr int Overflow = 1; // Number of elements allowed to map to the last bucket |
||
390 | |||
391 | Entry hashTable[Size + Overflow]; |
||
392 | |||
393 | std::deque<TBTable<WDL>> wdlTable; |
||
394 | std::deque<TBTable<DTZ>> dtzTable; |
||
395 | |||
396 | void insert(Key key, TBTable<WDL>* wdl, TBTable<DTZ>* dtz) { |
||
397 | uint32_t homeBucket = (uint32_t)key & (Size - 1); |
||
398 | Entry entry = std::make_tuple(key, wdl, dtz); |
||
399 | |||
400 | // Ensure last element is empty to avoid overflow when looking up |
||
401 | for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) { |
||
402 | Key otherKey = std::get<KEY>(hashTable[bucket]); |
||
403 | if (otherKey == key || !std::get<WDL>(hashTable[bucket])) { |
||
404 | hashTable[bucket] = entry; |
||
405 | return; |
||
406 | } |
||
407 | |||
408 | // Robin Hood hashing: If we've probed for longer than this element, |
||
409 | // insert here and search for a new spot for the other element instead. |
||
410 | uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1); |
||
411 | if (otherHomeBucket > homeBucket) { |
||
412 | swap(entry, hashTable[bucket]); |
||
413 | key = otherKey; |
||
414 | homeBucket = otherHomeBucket; |
||
415 | } |
||
416 | } |
||
417 | std::cerr << "TB hash table size too low!" << std::endl; |
||
418 | exit(1); |
||
96 | pmbaty | 419 | } |
420 | |||
185 | pmbaty | 421 | public: |
422 | template<TBType Type> |
||
423 | TBTable<Type>* get(Key key) { |
||
424 | for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) { |
||
425 | if (std::get<KEY>(*entry) == key || !std::get<Type>(*entry)) |
||
426 | return std::get<Type>(*entry); |
||
427 | } |
||
428 | } |
||
96 | pmbaty | 429 | |
185 | pmbaty | 430 | void clear() { |
431 | memset(hashTable, 0, sizeof(hashTable)); |
||
432 | wdlTable.clear(); |
||
433 | dtzTable.clear(); |
||
434 | } |
||
435 | size_t size() const { return wdlTable.size(); } |
||
436 | void add(const std::vector<PieceType>& pieces); |
||
437 | }; |
||
169 | pmbaty | 438 | |
185 | pmbaty | 439 | TBTables TBTables; |
169 | pmbaty | 440 | |
185 | pmbaty | 441 | // If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ> |
442 | // are created and added to the lists and hash table. Called at init time. |
||
443 | void TBTables::add(const std::vector<PieceType>& pieces) { |
||
169 | pmbaty | 444 | |
445 | std::string code; |
||
446 | |||
447 | for (PieceType pt : pieces) |
||
448 | code += PieceToChar[pt]; |
||
449 | |||
450 | TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK |
||
451 | |||
452 | if (!file.is_open()) // Only WDL file is checked |
||
453 | return; |
||
454 | |||
455 | file.close(); |
||
456 | |||
457 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); |
||
458 | |||
459 | wdlTable.emplace_back(code); |
||
460 | dtzTable.emplace_back(wdlTable.back()); |
||
461 | |||
185 | pmbaty | 462 | // Insert into the hash keys for both colors: KRvK with KR white and black |
169 | pmbaty | 463 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); |
464 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); |
||
465 | } |
||
466 | |||
467 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into |
||
468 | // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. |
||
469 | // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols |
||
470 | // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 |
||
471 | // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after |
||
472 | // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most |
||
473 | // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly |
||
474 | // of draws or mostly of wins, but such tables are actually quite common. In principle, the |
||
475 | // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for |
||
476 | // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so |
||
477 | // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. |
||
478 | // The generator picks the size that leads to the smallest table. The "book" of symbols and |
||
479 | // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file |
||
480 | // will have one table for wtm and one for btm, a TB file with pawns will have tables per |
||
481 | // file a,b,c,d also in this case one set for wtm and one for btm. |
||
482 | int decompress_pairs(PairsData* d, uint64_t idx) { |
||
483 | |||
484 | // Special case where all table positions store the same value |
||
485 | if (d->flags & TBFlag::SingleValue) |
||
486 | return d->minSymLen; |
||
487 | |||
488 | // First we need to locate the right block that stores the value at index "idx". |
||
489 | // Because each block n stores blockLength[n] + 1 values, the index i of the block |
||
490 | // that contains the value at position idx is: |
||
491 | // |
||
492 | // for (i = -1, sum = 0; sum <= idx; i++) |
||
493 | // sum += blockLength[i + 1] + 1; |
||
494 | // |
||
495 | // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that |
||
496 | // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry |
||
497 | // that stores the blockLength[] index and the offset within that block of the value |
||
498 | // with index I(k), where: |
||
499 | // |
||
500 | // I(k) = k * d->span + d->span / 2 (1) |
||
501 | |||
502 | // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) |
||
185 | pmbaty | 503 | uint32_t k = idx / d->span; |
169 | pmbaty | 504 | |
505 | // Then we read the corresponding SparseIndex[] entry |
||
506 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); |
||
507 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); |
||
508 | |||
509 | // Now compute the difference idx - I(k). From definition of k we know that |
||
510 | // |
||
511 | // idx = k * d->span + idx % d->span (2) |
||
512 | // |
||
513 | // So from (1) and (2) we can compute idx - I(K): |
||
514 | int diff = idx % d->span - d->span / 2; |
||
515 | |||
516 | // Sum the above to offset to find the offset corresponding to our idx |
||
517 | offset += diff; |
||
518 | |||
519 | // Move to previous/next block, until we reach the correct block that contains idx, |
||
520 | // that is when 0 <= offset <= d->blockLength[block] |
||
521 | while (offset < 0) |
||
522 | offset += d->blockLength[--block] + 1; |
||
523 | |||
524 | while (offset > d->blockLength[block]) |
||
525 | offset -= d->blockLength[block++] + 1; |
||
526 | |||
527 | // Finally, we find the start address of our block of canonical Huffman symbols |
||
185 | pmbaty | 528 | uint32_t* ptr = (uint32_t*)(d->data + ((uint64_t)block * d->sizeofBlock)); |
169 | pmbaty | 529 | |
530 | // Read the first 64 bits in our block, this is a (truncated) sequence of |
||
531 | // unknown number of symbols of unknown length but we know the first one |
||
532 | // is at the beginning of this 64 bits sequence. |
||
533 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; |
||
534 | int buf64Size = 64; |
||
535 | Sym sym; |
||
536 | |||
537 | while (true) { |
||
538 | int len = 0; // This is the symbol length - d->min_sym_len |
||
539 | |||
540 | // Now get the symbol length. For any symbol s64 of length l right-padded |
||
541 | // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we |
||
542 | // can find the symbol length iterating through base64[]. |
||
543 | while (buf64 < d->base64[len]) |
||
544 | ++len; |
||
545 | |||
546 | // All the symbols of a given length are consecutive integers (numerical |
||
547 | // sequence property), so we can compute the offset of our symbol of |
||
548 | // length len, stored at the beginning of buf64. |
||
185 | pmbaty | 549 | sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen); |
169 | pmbaty | 550 | |
551 | // Now add the value of the lowest symbol of length len to get our symbol |
||
552 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); |
||
553 | |||
554 | // If our offset is within the number of values represented by symbol sym |
||
555 | // we are done... |
||
556 | if (offset < d->symlen[sym] + 1) |
||
557 | break; |
||
558 | |||
559 | // ...otherwise update the offset and continue to iterate |
||
560 | offset -= d->symlen[sym] + 1; |
||
561 | len += d->minSymLen; // Get the real length |
||
562 | buf64 <<= len; // Consume the just processed symbol |
||
563 | buf64Size -= len; |
||
564 | |||
565 | if (buf64Size <= 32) { // Refill the buffer |
||
566 | buf64Size += 32; |
||
567 | buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); |
||
568 | } |
||
96 | pmbaty | 569 | } |
570 | |||
169 | pmbaty | 571 | // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. |
572 | // We binary-search for our value recursively expanding into the left and |
||
573 | // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 |
||
574 | // that will store the value we need. |
||
575 | while (d->symlen[sym]) { |
||
576 | |||
577 | Sym left = d->btree[sym].get<LR::Left>(); |
||
578 | |||
579 | // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and |
||
580 | // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then |
||
581 | // we know that, for instance the ten-th value (offset = 10) will be on |
||
582 | // the left side because in Recursive Pairing child symbols are adjacent. |
||
583 | if (offset < d->symlen[left] + 1) |
||
584 | sym = left; |
||
585 | else { |
||
586 | offset -= d->symlen[left] + 1; |
||
587 | sym = d->btree[sym].get<LR::Right>(); |
||
588 | } |
||
96 | pmbaty | 589 | } |
590 | |||
185 | pmbaty | 591 | return d->btree[sym].get<LR::Left>(); |
169 | pmbaty | 592 | } |
96 | pmbaty | 593 | |
185 | pmbaty | 594 | bool check_dtz_stm(TBTable<WDL>*, int, File) { return true; } |
169 | pmbaty | 595 | |
185 | pmbaty | 596 | bool check_dtz_stm(TBTable<DTZ>* entry, int stm, File f) { |
169 | pmbaty | 597 | |
185 | pmbaty | 598 | auto flags = entry->get(stm, f)->flags; |
169 | pmbaty | 599 | return (flags & TBFlag::STM) == stm |
600 | || ((entry->key == entry->key2) && !entry->hasPawns); |
||
601 | } |
||
602 | |||
603 | // DTZ scores are sorted by frequency of occurrence and then assigned the |
||
604 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each |
||
605 | // of the four WDLScore values. The mapping information necessary to reconstruct |
||
606 | // the original values is stored in the TB file and read during map[] init. |
||
185 | pmbaty | 607 | WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); } |
169 | pmbaty | 608 | |
185 | pmbaty | 609 | int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) { |
169 | pmbaty | 610 | |
185 | pmbaty | 611 | constexpr int WDLMap[] = { 1, 3, 0, 2, 0 }; |
169 | pmbaty | 612 | |
185 | pmbaty | 613 | auto flags = entry->get(0, f)->flags; |
169 | pmbaty | 614 | |
185 | pmbaty | 615 | uint8_t* map = entry->map; |
616 | uint16_t* idx = entry->get(0, f)->map_idx; |
||
617 | if (flags & TBFlag::Mapped) { |
||
618 | if (flags & TBFlag::Wide) |
||
619 | value = ((uint16_t *)map)[idx[WDLMap[wdl + 2]] + value]; |
||
620 | else |
||
621 | value = map[idx[WDLMap[wdl + 2]] + value]; |
||
622 | } |
||
169 | pmbaty | 623 | |
624 | // DTZ tables store distance to zero in number of moves or plies. We |
||
625 | // want to return plies, so we have convert to plies when needed. |
||
626 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) |
||
627 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) |
||
628 | || wdl == WDLCursedWin |
||
629 | || wdl == WDLBlessedLoss) |
||
630 | value *= 2; |
||
631 | |||
632 | return value + 1; |
||
633 | } |
||
634 | |||
635 | // Compute a unique index out of a position and use it to probe the TB file. To |
||
636 | // encode k pieces of same type and color, first sort the pieces by square in |
||
637 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: |
||
638 | // |
||
639 | // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] |
||
640 | // |
||
185 | pmbaty | 641 | template<typename T, typename Ret = typename T::Ret> |
642 | Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* result) { |
||
169 | pmbaty | 643 | |
644 | Square squares[TBPIECES]; |
||
645 | Piece pieces[TBPIECES]; |
||
646 | uint64_t idx; |
||
647 | int next = 0, size = 0, leadPawnsCnt = 0; |
||
648 | PairsData* d; |
||
649 | Bitboard b, leadPawns = 0; |
||
650 | File tbFile = FILE_A; |
||
651 | |||
652 | // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. |
||
653 | // If both sides have the same pieces keys are equal. In this case TB tables |
||
654 | // only store the 'white to move' case, so if the position to lookup has black |
||
655 | // to move, we need to switch the color and flip the squares before to lookup. |
||
656 | bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); |
||
657 | |||
658 | // TB files are calculated for white as stronger side. For instance we have |
||
659 | // KRvK, not KvKR. A position where stronger side is white will have its |
||
660 | // material key == entry->key, otherwise we have to switch the color and |
||
661 | // flip the squares before to lookup. |
||
662 | bool blackStronger = (pos.material_key() != entry->key); |
||
663 | |||
664 | int flipColor = (symmetricBlackToMove || blackStronger) * 8; |
||
665 | int flipSquares = (symmetricBlackToMove || blackStronger) * 070; |
||
666 | int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); |
||
667 | |||
668 | // For pawns, TB files store 4 separate tables according if leading pawn is on |
||
669 | // file a, b, c or d after reordering. The leading pawn is the one with maximum |
||
670 | // MapPawns[] value, that is the one most toward the edges and with lowest rank. |
||
671 | if (entry->hasPawns) { |
||
672 | |||
673 | // In all the 4 tables, pawns are at the beginning of the piece sequence and |
||
674 | // their color is the reference one. So we just pick the first one. |
||
185 | pmbaty | 675 | Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor); |
169 | pmbaty | 676 | |
677 | assert(type_of(pc) == PAWN); |
||
678 | |||
679 | leadPawns = b = pos.pieces(color_of(pc), PAWN); |
||
680 | do |
||
681 | squares[size++] = pop_lsb(&b) ^ flipSquares; |
||
682 | while (b); |
||
683 | |||
684 | leadPawnsCnt = size; |
||
685 | |||
686 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); |
||
687 | |||
688 | tbFile = file_of(squares[0]); |
||
689 | if (tbFile > FILE_D) |
||
690 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 |
||
185 | pmbaty | 691 | } |
169 | pmbaty | 692 | |
693 | // DTZ tables are one-sided, i.e. they store positions only for white to |
||
694 | // move or only for black to move, so check for side to move to be stm, |
||
695 | // early exit otherwise. |
||
185 | pmbaty | 696 | if (!check_dtz_stm(entry, stm, tbFile)) |
697 | return *result = CHANGE_STM, Ret(); |
||
169 | pmbaty | 698 | |
699 | // Now we are ready to get all the position pieces (but the lead pawns) and |
||
700 | // directly map them to the correct color and square. |
||
701 | b = pos.pieces() ^ leadPawns; |
||
96 | pmbaty | 702 | do { |
169 | pmbaty | 703 | Square s = pop_lsb(&b); |
704 | squares[size] = s ^ flipSquares; |
||
705 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); |
||
706 | } while (b); |
||
707 | |||
708 | assert(size >= 2); |
||
709 | |||
185 | pmbaty | 710 | d = entry->get(stm, tbFile); |
711 | |||
169 | pmbaty | 712 | // Then we reorder the pieces to have the same sequence as the one stored |
185 | pmbaty | 713 | // in pieces[i]: the sequence that ensures the best compression. |
169 | pmbaty | 714 | for (int i = leadPawnsCnt; i < size; ++i) |
715 | for (int j = i; j < size; ++j) |
||
716 | if (d->pieces[i] == pieces[j]) |
||
717 | { |
||
718 | std::swap(pieces[i], pieces[j]); |
||
719 | std::swap(squares[i], squares[j]); |
||
720 | break; |
||
721 | } |
||
722 | |||
723 | // Now we map again the squares so that the square of the lead piece is in |
||
724 | // the triangle A1-D1-D4. |
||
725 | if (file_of(squares[0]) > FILE_D) |
||
726 | for (int i = 0; i < size; ++i) |
||
727 | squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 |
||
728 | |||
729 | // Encode leading pawns starting with the one with minimum MapPawns[] and |
||
730 | // proceeding in ascending order. |
||
731 | if (entry->hasPawns) { |
||
732 | idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; |
||
733 | |||
734 | std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); |
||
735 | |||
736 | for (int i = 1; i < leadPawnsCnt; ++i) |
||
737 | idx += Binomial[i][MapPawns[squares[i]]]; |
||
738 | |||
739 | goto encode_remaining; // With pawns we have finished special treatments |
||
96 | pmbaty | 740 | } |
169 | pmbaty | 741 | |
742 | // In positions withouth pawns, we further flip the squares to ensure leading |
||
743 | // piece is below RANK_5. |
||
744 | if (rank_of(squares[0]) > RANK_4) |
||
745 | for (int i = 0; i < size; ++i) |
||
746 | squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 |
||
747 | |||
748 | // Look for the first piece of the leading group not on the A1-D4 diagonal |
||
749 | // and ensure it is mapped below the diagonal. |
||
750 | for (int i = 0; i < d->groupLen[0]; ++i) { |
||
751 | if (!off_A1H8(squares[i])) |
||
752 | continue; |
||
753 | |||
754 | if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 |
||
755 | for (int j = i; j < size; ++j) |
||
756 | squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); |
||
757 | break; |
||
96 | pmbaty | 758 | } |
759 | |||
169 | pmbaty | 760 | // Encode the leading group. |
761 | // |
||
762 | // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR |
||
763 | // and bK (each 0...63). The simplest way to map this position to an index |
||
764 | // is like this: |
||
765 | // |
||
766 | // index = wK * 64 * 64 + wR * 64 + bK; |
||
767 | // |
||
768 | // But this way the TB is going to have 64*64*64 = 262144 positions, with |
||
769 | // lots of positions being equivalent (because they are mirrors of each |
||
770 | // other) and lots of positions being invalid (two pieces on one square, |
||
771 | // adjacent kings, etc.). |
||
772 | // Usually the first step is to take the wK and bK together. There are just |
||
773 | // 462 ways legal and not-mirrored ways to place the wK and bK on the board. |
||
774 | // Once we have placed the wK and bK, there are 62 squares left for the wR |
||
775 | // Mapping its square from 0..63 to available squares 0..61 can be done like: |
||
776 | // |
||
777 | // wR -= (wR > wK) + (wR > bK); |
||
778 | // |
||
779 | // In words: if wR "comes later" than wK, we deduct 1, and the same if wR |
||
780 | // "comes later" than bK. In case of two same pieces like KRRvK we want to |
||
781 | // place the two Rs "together". If we have 62 squares left, we can place two |
||
782 | // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be |
||
783 | // swapped and still get the same position.) |
||
784 | // |
||
785 | // In case we have at least 3 unique pieces (inlcuded kings) we encode them |
||
786 | // together. |
||
787 | if (entry->hasUniquePieces) { |
||
96 | pmbaty | 788 | |
169 | pmbaty | 789 | int adjust1 = squares[1] > squares[0]; |
790 | int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); |
||
96 | pmbaty | 791 | |
169 | pmbaty | 792 | // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 |
793 | // triangle to 0...5. There are 63 squares for second piece and and 62 |
||
794 | // (mapped to 0...61) for the third. |
||
795 | if (off_A1H8(squares[0])) |
||
796 | idx = ( MapA1D1D4[squares[0]] * 63 |
||
797 | + (squares[1] - adjust1)) * 62 |
||
798 | + squares[2] - adjust2; |
||
799 | |||
800 | // First piece is on a1-h8 diagonal, second below: map this occurence to |
||
801 | // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal |
||
802 | // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. |
||
803 | else if (off_A1H8(squares[1])) |
||
804 | idx = ( 6 * 63 + rank_of(squares[0]) * 28 |
||
805 | + MapB1H1H7[squares[1]]) * 62 |
||
806 | + squares[2] - adjust2; |
||
807 | |||
808 | // First two pieces are on a1-h8 diagonal, third below |
||
809 | else if (off_A1H8(squares[2])) |
||
810 | idx = 6 * 63 * 62 + 4 * 28 * 62 |
||
811 | + rank_of(squares[0]) * 7 * 28 |
||
812 | + (rank_of(squares[1]) - adjust1) * 28 |
||
813 | + MapB1H1H7[squares[2]]; |
||
814 | |||
815 | // All 3 pieces on the diagonal a1-h8 |
||
816 | else |
||
817 | idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 |
||
818 | + rank_of(squares[0]) * 7 * 6 |
||
819 | + (rank_of(squares[1]) - adjust1) * 6 |
||
820 | + (rank_of(squares[2]) - adjust2); |
||
821 | } else |
||
822 | // We don't have at least 3 unique pieces, like in KRRvKBB, just map |
||
823 | // the kings. |
||
824 | idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; |
||
825 | |||
826 | encode_remaining: |
||
827 | idx *= d->groupIdx[0]; |
||
828 | Square* groupSq = squares + d->groupLen[0]; |
||
829 | |||
830 | // Encode remainig pawns then pieces according to square, in ascending order |
||
185 | pmbaty | 831 | bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; |
169 | pmbaty | 832 | |
833 | while (d->groupLen[++next]) |
||
834 | { |
||
835 | std::sort(groupSq, groupSq + d->groupLen[next]); |
||
836 | uint64_t n = 0; |
||
837 | |||
838 | // Map down a square if "comes later" than a square in the previous |
||
839 | // groups (similar to what done earlier for leading group pieces). |
||
840 | for (int i = 0; i < d->groupLen[next]; ++i) |
||
841 | { |
||
842 | auto f = [&](Square s) { return groupSq[i] > s; }; |
||
843 | auto adjust = std::count_if(squares, groupSq, f); |
||
844 | n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; |
||
845 | } |
||
846 | |||
847 | remainingPawns = false; |
||
848 | idx += n * d->groupIdx[next]; |
||
849 | groupSq += d->groupLen[next]; |
||
850 | } |
||
851 | |||
852 | // Now that we have the index, decompress the pair and get the score |
||
853 | return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); |
||
96 | pmbaty | 854 | } |
855 | |||
169 | pmbaty | 856 | // Group together pieces that will be encoded together. The general rule is that |
857 | // a group contains pieces of same type and color. The exception is the leading |
||
858 | // group that, in case of positions withouth pawns, can be formed by 3 different |
||
859 | // pieces (default) or by the king pair when there is not a unique piece apart |
||
860 | // from the kings. When there are pawns, pawns are always first in pieces[]. |
||
861 | // |
||
862 | // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K |
||
863 | // |
||
864 | // The actual grouping depends on the TB generator and can be inferred from the |
||
865 | // sequence of pieces in piece[] array. |
||
866 | template<typename T> |
||
867 | void set_groups(T& e, PairsData* d, int order[], File f) { |
||
96 | pmbaty | 868 | |
169 | pmbaty | 869 | int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; |
870 | d->groupLen[n] = 1; |
||
871 | |||
872 | // Number of pieces per group is stored in groupLen[], for instance in KRKN |
||
873 | // the encoder will default on '111', so groupLen[] will be (3, 1). |
||
874 | for (int i = 1; i < e.pieceCount; ++i) |
||
875 | if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) |
||
876 | d->groupLen[n]++; |
||
877 | else |
||
878 | d->groupLen[++n] = 1; |
||
879 | |||
880 | d->groupLen[++n] = 0; // Zero-terminated |
||
881 | |||
882 | // The sequence in pieces[] defines the groups, but not the order in which |
||
883 | // they are encoded. If the pieces in a group g can be combined on the board |
||
884 | // in N(g) different ways, then the position encoding will be of the form: |
||
885 | // |
||
886 | // g1 * N(g2) * N(g3) + g2 * N(g3) + g3 |
||
887 | // |
||
888 | // This ensures unique encoding for the whole position. The order of the |
||
889 | // groups is a per-table parameter and could not follow the canonical leading |
||
890 | // pawns/pieces -> remainig pawns -> remaining pieces. In particular the |
||
891 | // first group is at order[0] position and the remaining pawns, when present, |
||
892 | // are at order[1] position. |
||
185 | pmbaty | 893 | bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides |
169 | pmbaty | 894 | int next = pp ? 2 : 1; |
895 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); |
||
896 | uint64_t idx = 1; |
||
897 | |||
898 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) |
||
899 | if (k == order[0]) // Leading pawns or pieces |
||
900 | { |
||
901 | d->groupIdx[0] = idx; |
||
902 | idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] |
||
903 | : e.hasUniquePieces ? 31332 : 462; |
||
904 | } |
||
905 | else if (k == order[1]) // Remaining pawns |
||
906 | { |
||
907 | d->groupIdx[1] = idx; |
||
908 | idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; |
||
909 | } |
||
910 | else // Remainig pieces |
||
911 | { |
||
912 | d->groupIdx[next] = idx; |
||
913 | idx *= Binomial[d->groupLen[next]][freeSquares]; |
||
914 | freeSquares -= d->groupLen[next++]; |
||
915 | } |
||
916 | |||
917 | d->groupIdx[n] = idx; |
||
918 | } |
||
919 | |||
920 | // In Recursive Pairing each symbol represents a pair of childern symbols. So |
||
921 | // read d->btree[] symbols data and expand each one in his left and right child |
||
922 | // symbol until reaching the leafs that represent the symbol value. |
||
923 | uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { |
||
924 | |||
925 | visited[s] = true; // We can set it now because tree is acyclic |
||
926 | Sym sr = d->btree[s].get<LR::Right>(); |
||
927 | |||
928 | if (sr == 0xFFF) |
||
929 | return 0; |
||
930 | |||
931 | Sym sl = d->btree[s].get<LR::Left>(); |
||
932 | |||
933 | if (!visited[sl]) |
||
934 | d->symlen[sl] = set_symlen(d, sl, visited); |
||
935 | |||
936 | if (!visited[sr]) |
||
937 | d->symlen[sr] = set_symlen(d, sr, visited); |
||
938 | |||
939 | return d->symlen[sl] + d->symlen[sr] + 1; |
||
940 | } |
||
941 | |||
942 | uint8_t* set_sizes(PairsData* d, uint8_t* data) { |
||
943 | |||
944 | d->flags = *data++; |
||
945 | |||
946 | if (d->flags & TBFlag::SingleValue) { |
||
947 | d->blocksNum = d->blockLengthSize = 0; |
||
948 | d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init |
||
949 | d->minSymLen = *data++; // Here we store the single value |
||
950 | return data; |
||
96 | pmbaty | 951 | } |
952 | |||
169 | pmbaty | 953 | // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] |
954 | // element stores the biggest index that is the tb size. |
||
955 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; |
||
956 | |||
957 | d->sizeofBlock = 1ULL << *data++; |
||
958 | d->span = 1ULL << *data++; |
||
185 | pmbaty | 959 | d->sparseIndexSize = (tbSize + d->span - 1) / d->span; // Round up |
960 | auto padding = number<uint8_t, LittleEndian>(data++); |
||
169 | pmbaty | 961 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); |
962 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] |
||
963 | // does not point out of range. |
||
964 | d->maxSymLen = *data++; |
||
965 | d->minSymLen = *data++; |
||
966 | d->lowestSym = (Sym*)data; |
||
967 | d->base64.resize(d->maxSymLen - d->minSymLen + 1); |
||
968 | |||
969 | // The canonical code is ordered such that longer symbols (in terms of |
||
970 | // the number of bits of their Huffman code) have lower numeric value, |
||
971 | // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). |
||
972 | // Starting from this we compute a base64[] table indexed by symbol length |
||
973 | // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. |
||
974 | // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf |
||
975 | for (int i = d->base64.size() - 2; i >= 0; --i) { |
||
976 | d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) |
||
977 | - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; |
||
978 | |||
979 | assert(d->base64[i] * 2 >= d->base64[i+1]); |
||
980 | } |
||
981 | |||
982 | // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more |
||
983 | // than d->base64[i+1] and given the above assert condition, we ensure that |
||
984 | // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i |
||
985 | // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. |
||
986 | for (size_t i = 0; i < d->base64.size(); ++i) |
||
987 | d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits |
||
988 | |||
989 | data += d->base64.size() * sizeof(Sym); |
||
990 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); |
||
991 | d->btree = (LR*)data; |
||
992 | |||
185 | pmbaty | 993 | // The compression scheme used is "Recursive Pairing", that replaces the most |
169 | pmbaty | 994 | // frequent adjacent pair of symbols in the source message by a new symbol, |
995 | // reevaluating the frequencies of all of the symbol pairs with respect to |
||
996 | // the extended alphabet, and then repeating the process. |
||
997 | // See http://www.larsson.dogma.net/dcc99.pdf |
||
998 | std::vector<bool> visited(d->symlen.size()); |
||
999 | |||
1000 | for (Sym sym = 0; sym < d->symlen.size(); ++sym) |
||
1001 | if (!visited[sym]) |
||
1002 | d->symlen[sym] = set_symlen(d, sym, visited); |
||
1003 | |||
1004 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); |
||
96 | pmbaty | 1005 | } |
1006 | |||
185 | pmbaty | 1007 | uint8_t* set_dtz_map(TBTable<WDL>&, uint8_t* data, File) { return data; } |
96 | pmbaty | 1008 | |
185 | pmbaty | 1009 | uint8_t* set_dtz_map(TBTable<DTZ>& e, uint8_t* data, File maxFile) { |
96 | pmbaty | 1010 | |
185 | pmbaty | 1011 | e.map = data; |
169 | pmbaty | 1012 | |
1013 | for (File f = FILE_A; f <= maxFile; ++f) { |
||
185 | pmbaty | 1014 | auto flags = e.get(0, f)->flags; |
1015 | if (flags & TBFlag::Mapped) { |
||
1016 | if (flags & TBFlag::Wide) { |
||
1017 | data += (uintptr_t)data & 1; // Word alignment, we may have a mixed table |
||
1018 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x |
||
1019 | e.get(0, f)->map_idx[i] = (uint16_t)((uint16_t *)data - (uint16_t *)e.map + 1); |
||
1020 | data += 2 * number<uint16_t, LittleEndian>(data) + 2; |
||
1021 | } |
||
169 | pmbaty | 1022 | } |
185 | pmbaty | 1023 | else { |
1024 | for (int i = 0; i < 4; ++i) { |
||
1025 | e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1); |
||
1026 | data += *data + 1; |
||
1027 | } |
||
1028 | } |
||
1029 | } |
||
96 | pmbaty | 1030 | } |
1031 | |||
169 | pmbaty | 1032 | return data += (uintptr_t)data & 1; // Word alignment |
96 | pmbaty | 1033 | } |
1034 | |||
185 | pmbaty | 1035 | // Populate entry's PairsData records with data from the just memory mapped file. |
1036 | // Called at first access. |
||
1037 | template<typename T> |
||
1038 | void set(T& e, uint8_t* data) { |
||
96 | pmbaty | 1039 | |
169 | pmbaty | 1040 | PairsData* d; |
96 | pmbaty | 1041 | |
169 | pmbaty | 1042 | enum { Split = 1, HasPawns = 2 }; |
96 | pmbaty | 1043 | |
169 | pmbaty | 1044 | assert(e.hasPawns == !!(*data & HasPawns)); |
1045 | assert((e.key != e.key2) == !!(*data & Split)); |
||
96 | pmbaty | 1046 | |
169 | pmbaty | 1047 | data++; // First byte stores flags |
1048 | |||
185 | pmbaty | 1049 | const int sides = T::Sides == 2 && (e.key != e.key2) ? 2 : 1; |
1050 | const File maxFile = e.hasPawns ? FILE_D : FILE_A; |
||
169 | pmbaty | 1051 | |
185 | pmbaty | 1052 | bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides |
169 | pmbaty | 1053 | |
185 | pmbaty | 1054 | assert(!pp || e.pawnCount[0]); |
169 | pmbaty | 1055 | |
185 | pmbaty | 1056 | for (File f = FILE_A; f <= maxFile; ++f) { |
169 | pmbaty | 1057 | |
185 | pmbaty | 1058 | for (int i = 0; i < sides; i++) |
1059 | *e.get(i, f) = PairsData(); |
||
169 | pmbaty | 1060 | |
1061 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, |
||
1062 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; |
||
1063 | data += 1 + pp; |
||
1064 | |||
1065 | for (int k = 0; k < e.pieceCount; ++k, ++data) |
||
185 | pmbaty | 1066 | for (int i = 0; i < sides; i++) |
1067 | e.get(i, f)->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); |
||
169 | pmbaty | 1068 | |
185 | pmbaty | 1069 | for (int i = 0; i < sides; ++i) |
1070 | set_groups(e, e.get(i, f), order[i], f); |
||
169 | pmbaty | 1071 | } |
1072 | |||
1073 | data += (uintptr_t)data & 1; // Word alignment |
||
1074 | |||
185 | pmbaty | 1075 | for (File f = FILE_A; f <= maxFile; ++f) |
1076 | for (int i = 0; i < sides; i++) |
||
1077 | data = set_sizes(e.get(i, f), data); |
||
169 | pmbaty | 1078 | |
185 | pmbaty | 1079 | data = set_dtz_map(e, data, maxFile); |
169 | pmbaty | 1080 | |
185 | pmbaty | 1081 | for (File f = FILE_A; f <= maxFile; ++f) |
1082 | for (int i = 0; i < sides; i++) { |
||
1083 | (d = e.get(i, f))->sparseIndex = (SparseEntry*)data; |
||
169 | pmbaty | 1084 | data += d->sparseIndexSize * sizeof(SparseEntry); |
96 | pmbaty | 1085 | } |
169 | pmbaty | 1086 | |
185 | pmbaty | 1087 | for (File f = FILE_A; f <= maxFile; ++f) |
1088 | for (int i = 0; i < sides; i++) { |
||
1089 | (d = e.get(i, f))->blockLength = (uint16_t*)data; |
||
169 | pmbaty | 1090 | data += d->blockLengthSize * sizeof(uint16_t); |
1091 | } |
||
1092 | |||
185 | pmbaty | 1093 | for (File f = FILE_A; f <= maxFile; ++f) |
1094 | for (int i = 0; i < sides; i++) { |
||
169 | pmbaty | 1095 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment |
185 | pmbaty | 1096 | (d = e.get(i, f))->data = data; |
169 | pmbaty | 1097 | data += d->blocksNum * d->sizeofBlock; |
1098 | } |
||
1099 | } |
||
1100 | |||
185 | pmbaty | 1101 | // If the TB file corresponding to the given position is already memory mapped |
1102 | // then return its base address, otherwise try to memory map and init it. Called |
||
1103 | // at every probe, memory map and init only at first access. Function is thread |
||
1104 | // safe and can be called concurrently. |
||
1105 | template<TBType Type> |
||
1106 | void* mapped(TBTable<Type>& e, const Position& pos) { |
||
169 | pmbaty | 1107 | |
1108 | static Mutex mutex; |
||
1109 | |||
185 | pmbaty | 1110 | // Use 'aquire' to avoid a thread reads 'ready' == true while another is |
1111 | // still working, this could happen due to compiler reordering. |
||
169 | pmbaty | 1112 | if (e.ready.load(std::memory_order_acquire)) |
185 | pmbaty | 1113 | return e.baseAddress; // Could be nullptr if file does not exsist |
169 | pmbaty | 1114 | |
1115 | std::unique_lock<Mutex> lk(mutex); |
||
1116 | |||
1117 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock |
||
1118 | return e.baseAddress; |
||
1119 | |||
1120 | // Pieces strings in decreasing order for each color, like ("KPP","KR") |
||
1121 | std::string fname, w, b; |
||
1122 | for (PieceType pt = KING; pt >= PAWN; --pt) { |
||
1123 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); |
||
1124 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); |
||
96 | pmbaty | 1125 | } |
1126 | |||
169 | pmbaty | 1127 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) |
185 | pmbaty | 1128 | + (Type == WDL ? ".rtbw" : ".rtbz"); |
169 | pmbaty | 1129 | |
185 | pmbaty | 1130 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, Type); |
1131 | |||
169 | pmbaty | 1132 | if (data) |
185 | pmbaty | 1133 | set(e, data); |
169 | pmbaty | 1134 | |
1135 | e.ready.store(true, std::memory_order_release); |
||
1136 | return e.baseAddress; |
||
96 | pmbaty | 1137 | } |
1138 | |||
185 | pmbaty | 1139 | template<TBType Type, typename Ret = typename TBTable<Type>::Ret> |
1140 | Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { |
||
96 | pmbaty | 1141 | |
185 | pmbaty | 1142 | if (pos.count<ALL_PIECES>() == 2) // KvK |
1143 | return Ret(WDLDraw); |
||
96 | pmbaty | 1144 | |
185 | pmbaty | 1145 | TBTable<Type>* entry = TBTables.get<Type>(pos.material_key()); |
96 | pmbaty | 1146 | |
185 | pmbaty | 1147 | if (!entry || !mapped(*entry, pos)) |
1148 | return *result = FAIL, Ret(); |
||
96 | pmbaty | 1149 | |
169 | pmbaty | 1150 | return do_probe_table(pos, entry, wdl, result); |
1151 | } |
||
96 | pmbaty | 1152 | |
169 | pmbaty | 1153 | // For a position where the side to move has a winning capture it is not necessary |
1154 | // to store a winning value so the generator treats such positions as "don't cares" |
||
1155 | // and tries to assign to it a value that improves the compression ratio. Similarly, |
||
1156 | // if the side to move has a drawing capture, then the position is at least drawn. |
||
1157 | // If the position is won, then the TB needs to store a win value. But if the |
||
1158 | // position is drawn, the TB may store a loss value if that is better for compression. |
||
1159 | // All of this means that during probing, the engine must look at captures and probe |
||
1160 | // their results and must probe the position itself. The "best" result of these |
||
1161 | // probes is the correct result for the position. |
||
185 | pmbaty | 1162 | // DTZ tables do not store values when a following move is a zeroing winning move |
169 | pmbaty | 1163 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions |
1164 | // where the best move is an ep-move (even if losing). So in all these cases set |
||
1165 | // the state to ZEROING_BEST_MOVE. |
||
185 | pmbaty | 1166 | template<bool CheckZeroingMoves> |
169 | pmbaty | 1167 | WDLScore search(Position& pos, ProbeState* result) { |
1168 | |||
1169 | WDLScore value, bestValue = WDLLoss; |
||
1170 | StateInfo st; |
||
1171 | |||
1172 | auto moveList = MoveList<LEGAL>(pos); |
||
1173 | size_t totalCount = moveList.size(), moveCount = 0; |
||
1174 | |||
1175 | for (const Move& move : moveList) |
||
1176 | { |
||
1177 | if ( !pos.capture(move) |
||
1178 | && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) |
||
1179 | continue; |
||
1180 | |||
1181 | moveCount++; |
||
1182 | |||
1183 | pos.do_move(move, st); |
||
185 | pmbaty | 1184 | value = -search<false>(pos, result); |
169 | pmbaty | 1185 | pos.undo_move(move); |
1186 | |||
1187 | if (*result == FAIL) |
||
1188 | return WDLDraw; |
||
1189 | |||
1190 | if (value > bestValue) |
||
1191 | { |
||
1192 | bestValue = value; |
||
1193 | |||
1194 | if (value >= WDLWin) |
||
1195 | { |
||
1196 | *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move |
||
1197 | return value; |
||
1198 | } |
||
1199 | } |
||
1200 | } |
||
1201 | |||
1202 | // In case we have already searched all the legal moves we don't have to probe |
||
1203 | // the TB because the stored score could be wrong. For instance TB tables |
||
1204 | // do not contain information on position with ep rights, so in this case |
||
1205 | // the result of probe_wdl_table is wrong. Also in case of only capture |
||
1206 | // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to |
||
1207 | // return with ZEROING_BEST_MOVE set. |
||
1208 | bool noMoreMoves = (moveCount && moveCount == totalCount); |
||
1209 | |||
1210 | if (noMoreMoves) |
||
1211 | value = bestValue; |
||
96 | pmbaty | 1212 | else |
169 | pmbaty | 1213 | { |
185 | pmbaty | 1214 | value = probe_table<WDL>(pos, result); |
96 | pmbaty | 1215 | |
169 | pmbaty | 1216 | if (*result == FAIL) |
1217 | return WDLDraw; |
||
96 | pmbaty | 1218 | } |
1219 | |||
169 | pmbaty | 1220 | // DTZ stores a "don't care" value if bestValue is a win |
1221 | if (bestValue >= value) |
||
1222 | return *result = ( bestValue > WDLDraw |
||
1223 | || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; |
||
96 | pmbaty | 1224 | |
169 | pmbaty | 1225 | return *result = OK, value; |
1226 | } |
||
1227 | |||
1228 | } // namespace |
||
1229 | |||
185 | pmbaty | 1230 | |
1231 | /// Tablebases::init() is called at startup and after every change to |
||
1232 | /// "SyzygyPath" UCI option to (re)create the various tables. It is not thread |
||
1233 | /// safe, nor it needs to be. |
||
169 | pmbaty | 1234 | void Tablebases::init(const std::string& paths) { |
1235 | |||
185 | pmbaty | 1236 | TBTables.clear(); |
169 | pmbaty | 1237 | MaxCardinality = 0; |
1238 | TBFile::Paths = paths; |
||
1239 | |||
185 | pmbaty | 1240 | if (paths.empty() || paths == "<empty>") |
169 | pmbaty | 1241 | return; |
1242 | |||
1243 | // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 |
||
1244 | int code = 0; |
||
1245 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
1246 | if (off_A1H8(s) < 0) |
||
1247 | MapB1H1H7[s] = code++; |
||
1248 | |||
1249 | // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 |
||
1250 | std::vector<Square> diagonal; |
||
1251 | code = 0; |
||
1252 | for (Square s = SQ_A1; s <= SQ_D4; ++s) |
||
1253 | if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) |
||
1254 | MapA1D1D4[s] = code++; |
||
1255 | |||
1256 | else if (!off_A1H8(s) && file_of(s) <= FILE_D) |
||
1257 | diagonal.push_back(s); |
||
1258 | |||
1259 | // Diagonal squares are encoded as last ones |
||
1260 | for (auto s : diagonal) |
||
1261 | MapA1D1D4[s] = code++; |
||
1262 | |||
1263 | // MapKK[] encodes all the 461 possible legal positions of two kings where |
||
1264 | // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 |
||
1265 | // diagonal, the other one shall not to be above the a1-h8 diagonal. |
||
1266 | std::vector<std::pair<int, Square>> bothOnDiagonal; |
||
1267 | code = 0; |
||
1268 | for (int idx = 0; idx < 10; idx++) |
||
1269 | for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) |
||
1270 | if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 |
||
1271 | { |
||
1272 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
||
1273 | if ((PseudoAttacks[KING][s1] | s1) & s2) |
||
1274 | continue; // Illegal position |
||
1275 | |||
1276 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) |
||
1277 | continue; // First on diagonal, second above |
||
1278 | |||
1279 | else if (!off_A1H8(s1) && !off_A1H8(s2)) |
||
185 | pmbaty | 1280 | bothOnDiagonal.emplace_back(idx, s2); |
169 | pmbaty | 1281 | |
1282 | else |
||
1283 | MapKK[idx][s2] = code++; |
||
1284 | } |
||
1285 | |||
1286 | // Legal positions with both kings on diagonal are encoded as last ones |
||
1287 | for (auto p : bothOnDiagonal) |
||
1288 | MapKK[p.first][p.second] = code++; |
||
1289 | |||
1290 | // Binomial[] stores the Binomial Coefficents using Pascal rule. There |
||
1291 | // are Binomial[k][n] ways to choose k elements from a set of n elements. |
||
1292 | Binomial[0][0] = 1; |
||
1293 | |||
1294 | for (int n = 1; n < 64; n++) // Squares |
||
1295 | for (int k = 0; k < 6 && k <= n; ++k) // Pieces |
||
1296 | Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) |
||
1297 | + (k < n ? Binomial[k ][n - 1] : 0); |
||
1298 | |||
1299 | // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible |
||
1300 | // available squares when the leading one is in 's'. Moreover the pawn with |
||
1301 | // highest MapPawns[] is the leading pawn, the one nearest the edge and, |
||
1302 | // among pawns with same file, the one with lowest rank. |
||
1303 | int availableSquares = 47; // Available squares when lead pawn is in a2 |
||
1304 | |||
185 | pmbaty | 1305 | // Init the tables for the encoding of leading pawns group: with 7-men TB we |
1306 | // can have up to 5 leading pawns (KPPPPPK). |
||
1307 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt) |
||
169 | pmbaty | 1308 | for (File f = FILE_A; f <= FILE_D; ++f) |
1309 | { |
||
1310 | // Restart the index at every file because TB table is splitted |
||
1311 | // by file, so we can reuse the same index for different files. |
||
1312 | int idx = 0; |
||
1313 | |||
1314 | // Sum all possible combinations for a given file, starting with |
||
1315 | // the leading pawn on rank 2 and increasing the rank. |
||
1316 | for (Rank r = RANK_2; r <= RANK_7; ++r) |
||
1317 | { |
||
1318 | Square sq = make_square(f, r); |
||
1319 | |||
1320 | // Compute MapPawns[] at first pass. |
||
1321 | // If sq is the leading pawn square, any other pawn cannot be |
||
1322 | // below or more toward the edge of sq. There are 47 available |
||
1323 | // squares when sq = a2 and reduced by 2 for any rank increase |
||
1324 | // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 |
||
1325 | if (leadPawnsCnt == 1) |
||
1326 | { |
||
1327 | MapPawns[sq] = availableSquares--; |
||
1328 | MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip |
||
1329 | } |
||
1330 | LeadPawnIdx[leadPawnsCnt][sq] = idx; |
||
1331 | idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; |
||
1332 | } |
||
1333 | // After a file is traversed, store the cumulated per-file index |
||
1334 | LeadPawnsSize[leadPawnsCnt][f] = idx; |
||
96 | pmbaty | 1335 | } |
169 | pmbaty | 1336 | |
185 | pmbaty | 1337 | // Add entries in TB tables if the corresponding ".rtbw" file exsists |
169 | pmbaty | 1338 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { |
185 | pmbaty | 1339 | TBTables.add({KING, p1, KING}); |
169 | pmbaty | 1340 | |
1341 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { |
||
185 | pmbaty | 1342 | TBTables.add({KING, p1, p2, KING}); |
1343 | TBTables.add({KING, p1, KING, p2}); |
||
169 | pmbaty | 1344 | |
1345 | for (PieceType p3 = PAWN; p3 < KING; ++p3) |
||
185 | pmbaty | 1346 | TBTables.add({KING, p1, p2, KING, p3}); |
169 | pmbaty | 1347 | |
1348 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { |
||
185 | pmbaty | 1349 | TBTables.add({KING, p1, p2, p3, KING}); |
169 | pmbaty | 1350 | |
185 | pmbaty | 1351 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) { |
1352 | TBTables.add({KING, p1, p2, p3, p4, KING}); |
||
169 | pmbaty | 1353 | |
185 | pmbaty | 1354 | for (PieceType p5 = PAWN; p5 <= p4; ++p5) |
1355 | TBTables.add({KING, p1, p2, p3, p4, p5, KING}); |
||
1356 | |||
1357 | for (PieceType p5 = PAWN; p5 < KING; ++p5) |
||
1358 | TBTables.add({KING, p1, p2, p3, p4, KING, p5}); |
||
1359 | } |
||
1360 | |||
1361 | for (PieceType p4 = PAWN; p4 < KING; ++p4) { |
||
1362 | TBTables.add({KING, p1, p2, p3, KING, p4}); |
||
1363 | |||
1364 | for (PieceType p5 = PAWN; p5 <= p4; ++p5) |
||
1365 | TBTables.add({KING, p1, p2, p3, KING, p4, p5}); |
||
1366 | } |
||
169 | pmbaty | 1367 | } |
1368 | |||
1369 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) |
||
1370 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) |
||
185 | pmbaty | 1371 | TBTables.add({KING, p1, p2, KING, p3, p4}); |
169 | pmbaty | 1372 | } |
96 | pmbaty | 1373 | } |
169 | pmbaty | 1374 | |
185 | pmbaty | 1375 | sync_cout << "info string Found " << TBTables.size() << " tablebases" << sync_endl; |
96 | pmbaty | 1376 | } |
1377 | |||
169 | pmbaty | 1378 | // Probe the WDL table for a particular position. |
1379 | // If *result != FAIL, the probe was successful. |
||
1380 | // The return value is from the point of view of the side to move: |
||
1381 | // -2 : loss |
||
1382 | // -1 : loss, but draw under 50-move rule |
||
1383 | // 0 : draw |
||
1384 | // 1 : win, but draw under 50-move rule |
||
1385 | // 2 : win |
||
1386 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { |
||
96 | pmbaty | 1387 | |
169 | pmbaty | 1388 | *result = OK; |
185 | pmbaty | 1389 | return search<false>(pos, result); |
169 | pmbaty | 1390 | } |
1391 | |||
96 | pmbaty | 1392 | // Probe the DTZ table for a particular position. |
169 | pmbaty | 1393 | // If *result != FAIL, the probe was successful. |
96 | pmbaty | 1394 | // The return value is from the point of view of the side to move: |
1395 | // n < -100 : loss, but draw under 50-move rule |
||
1396 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
||
185 | pmbaty | 1397 | // -1 : loss, the side to move is mated |
96 | pmbaty | 1398 | // 0 : draw |
1399 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
||
1400 | // 100 < n : win, but draw under 50-move rule |
||
1401 | // |
||
1402 | // The return value n can be off by 1: a return value -n can mean a loss |
||
1403 | // in n+1 ply and a return value +n can mean a win in n+1 ply. This |
||
1404 | // cannot happen for tables with positions exactly on the "edge" of |
||
1405 | // the 50-move rule. |
||
1406 | // |
||
1407 | // This implies that if dtz > 0 is returned, the position is certainly |
||
1408 | // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine |
||
1409 | // picks moves that preserve dtz + 50-move-counter <= 99. |
||
1410 | // |
||
1411 | // If n = 100 immediately after a capture or pawn move, then the position |
||
1412 | // is also certainly a win, and during the whole phase until the next |
||
1413 | // capture or pawn move, the inequality to be preserved is |
||
1414 | // dtz + 50-movecounter <= 100. |
||
1415 | // |
||
1416 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, |
||
1417 | // then do not accept moves leading to dtz + 50-move-counter == 100. |
||
169 | pmbaty | 1418 | int Tablebases::probe_dtz(Position& pos, ProbeState* result) { |
96 | pmbaty | 1419 | |
169 | pmbaty | 1420 | *result = OK; |
1421 | WDLScore wdl = search<true>(pos, result); |
||
96 | pmbaty | 1422 | |
169 | pmbaty | 1423 | if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws |
1424 | return 0; |
||
96 | pmbaty | 1425 | |
169 | pmbaty | 1426 | // DTZ stores a 'don't care' value in this case, or even a plain wrong |
1427 | // one as in case the best move is a losing ep, so it cannot be probed. |
||
1428 | if (*result == ZEROING_BEST_MOVE) |
||
1429 | return dtz_before_zeroing(wdl); |
||
96 | pmbaty | 1430 | |
185 | pmbaty | 1431 | int dtz = probe_table<DTZ>(pos, result, wdl); |
96 | pmbaty | 1432 | |
169 | pmbaty | 1433 | if (*result == FAIL) |
1434 | return 0; |
||
1435 | |||
1436 | if (*result != CHANGE_STM) |
||
1437 | return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); |
||
1438 | |||
1439 | // DTZ stores results for the other side, so we need to do a 1-ply search and |
||
1440 | // find the winning move that minimizes DTZ. |
||
1441 | StateInfo st; |
||
1442 | int minDTZ = 0xFFFF; |
||
1443 | |||
1444 | for (const Move& move : MoveList<LEGAL>(pos)) |
||
1445 | { |
||
1446 | bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; |
||
1447 | |||
1448 | pos.do_move(move, st); |
||
1449 | |||
1450 | // For zeroing moves we want the dtz of the move _before_ doing it, |
||
1451 | // otherwise we will get the dtz of the next move sequence. Search the |
||
1452 | // position after the move to get the score sign (because even in a |
||
1453 | // winning position we could make a losing capture or going for a draw). |
||
185 | pmbaty | 1454 | dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result)) |
169 | pmbaty | 1455 | : -probe_dtz(pos, result); |
1456 | |||
185 | pmbaty | 1457 | // If the move mates, force minDTZ to 1 |
1458 | if (dtz == 1 && pos.checkers() && MoveList<LEGAL>(pos).size() == 0) |
||
1459 | minDTZ = 1; |
||
169 | pmbaty | 1460 | |
1461 | // Convert result from 1-ply search. Zeroing moves are already accounted |
||
1462 | // by dtz_before_zeroing() that returns the DTZ of the previous move. |
||
1463 | if (!zeroing) |
||
1464 | dtz += sign_of(dtz); |
||
1465 | |||
1466 | // Skip the draws and if we are winning only pick positive dtz |
||
1467 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) |
||
1468 | minDTZ = dtz; |
||
185 | pmbaty | 1469 | |
1470 | pos.undo_move(move); |
||
1471 | |||
1472 | if (*result == FAIL) |
||
1473 | return 0; |
||
96 | pmbaty | 1474 | } |
1475 | |||
185 | pmbaty | 1476 | // When there are no legal moves, the position is mate: we return -1 |
169 | pmbaty | 1477 | return minDTZ == 0xFFFF ? -1 : minDTZ; |
96 | pmbaty | 1478 | } |
1479 | |||
169 | pmbaty | 1480 | |
185 | pmbaty | 1481 | // Use the DTZ tables to rank root moves. |
96 | pmbaty | 1482 | // |
185 | pmbaty | 1483 | // A return value false indicates that not all probes were successful. |
1484 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { |
||
96 | pmbaty | 1485 | |
169 | pmbaty | 1486 | ProbeState result; |
185 | pmbaty | 1487 | StateInfo st; |
96 | pmbaty | 1488 | |
185 | pmbaty | 1489 | // Obtain 50-move counter for the root position |
1490 | int cnt50 = pos.rule50_count(); |
||
96 | pmbaty | 1491 | |
185 | pmbaty | 1492 | // Check whether a position was repeated since the last zeroing move. |
1493 | bool rep = pos.has_repeated(); |
||
169 | pmbaty | 1494 | |
185 | pmbaty | 1495 | int dtz, bound = Options["Syzygy50MoveRule"] ? 900 : 1; |
169 | pmbaty | 1496 | |
185 | pmbaty | 1497 | // Probe and rank each move |
1498 | for (auto& m : rootMoves) |
||
1499 | { |
||
1500 | pos.do_move(m.pv[0], st); |
||
169 | pmbaty | 1501 | |
185 | pmbaty | 1502 | // Calculate dtz for the current move counting from the root position |
1503 | if (pos.rule50_count() == 0) |
||
1504 | { |
||
1505 | // In case of a zeroing move, dtz is one of -101/-1/0/1/101 |
||
1506 | WDLScore wdl = -probe_wdl(pos, &result); |
||
1507 | dtz = dtz_before_zeroing(wdl); |
||
169 | pmbaty | 1508 | } |
185 | pmbaty | 1509 | else |
1510 | { |
||
1511 | // Otherwise, take dtz for the new position and correct by 1 ply |
||
1512 | dtz = -probe_dtz(pos, &result); |
||
1513 | dtz = dtz > 0 ? dtz + 1 |
||
1514 | : dtz < 0 ? dtz - 1 : dtz; |
||
1515 | } |
||
169 | pmbaty | 1516 | |
185 | pmbaty | 1517 | // Make sure that a mating move is assigned a dtz value of 1 |
1518 | if ( pos.checkers() |
||
1519 | && dtz == 2 |
||
1520 | && MoveList<LEGAL>(pos).size() == 0) |
||
1521 | dtz = 1; |
||
169 | pmbaty | 1522 | |
185 | pmbaty | 1523 | pos.undo_move(m.pv[0]); |
169 | pmbaty | 1524 | |
1525 | if (result == FAIL) |
||
1526 | return false; |
||
1527 | |||
185 | pmbaty | 1528 | // Better moves are ranked higher. Certain wins are ranked equally. |
1529 | // Losing moves are ranked equally unless a 50-move draw is in sight. |
||
1530 | int r = dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50)) |
||
1531 | : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50)) |
||
1532 | : 0; |
||
1533 | m.tbRank = r; |
||
96 | pmbaty | 1534 | |
185 | pmbaty | 1535 | // Determine the score to be displayed for this move. Assign at least |
1536 | // 1 cp to cursed wins and let it grow to 49 cp as the positions gets |
||
1537 | // closer to a real win. |
||
1538 | m.tbScore = r >= bound ? VALUE_MATE - MAX_PLY - 1 |
||
1539 | : r > 0 ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200) |
||
1540 | : r == 0 ? VALUE_DRAW |
||
1541 | : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200) |
||
1542 | : -VALUE_MATE + MAX_PLY + 1; |
||
96 | pmbaty | 1543 | } |
1544 | |||
169 | pmbaty | 1545 | return true; |
96 | pmbaty | 1546 | } |
1547 | |||
185 | pmbaty | 1548 | |
1549 | // Use the WDL tables to rank root moves. |
||
96 | pmbaty | 1550 | // This is a fallback for the case that some or all DTZ tables are missing. |
1551 | // |
||
185 | pmbaty | 1552 | // A return value false indicates that not all probes were successful. |
1553 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { |
||
96 | pmbaty | 1554 | |
185 | pmbaty | 1555 | static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 }; |
96 | pmbaty | 1556 | |
185 | pmbaty | 1557 | ProbeState result; |
1558 | StateInfo st; |
||
96 | pmbaty | 1559 | |
185 | pmbaty | 1560 | bool rule50 = Options["Syzygy50MoveRule"]; |
96 | pmbaty | 1561 | |
185 | pmbaty | 1562 | // Probe and rank each move |
1563 | for (auto& m : rootMoves) |
||
1564 | { |
||
1565 | pos.do_move(m.pv[0], st); |
||
96 | pmbaty | 1566 | |
185 | pmbaty | 1567 | WDLScore wdl = -probe_wdl(pos, &result); |
96 | pmbaty | 1568 | |
185 | pmbaty | 1569 | pos.undo_move(m.pv[0]); |
169 | pmbaty | 1570 | |
1571 | if (result == FAIL) |
||
1572 | return false; |
||
1573 | |||
185 | pmbaty | 1574 | m.tbRank = WDL_to_rank[wdl + 2]; |
169 | pmbaty | 1575 | |
185 | pmbaty | 1576 | if (!rule50) |
1577 | wdl = wdl > WDLDraw ? WDLWin |
||
1578 | : wdl < WDLDraw ? WDLLoss : WDLDraw; |
||
1579 | m.tbScore = WDL_to_value[wdl + 2]; |
||
169 | pmbaty | 1580 | } |
1581 | |||
1582 | return true; |
||
96 | pmbaty | 1583 | } |