Rev 154 | Rev 176 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
169 | pmbaty | 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
96 | pmbaty | 3 | Copyright (c) 2013 Ronald de Man |
169 | pmbaty | 4 | Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch |
96 | pmbaty | 5 | |
169 | pmbaty | 6 | Stockfish is free software: you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by |
||
8 | the Free Software Foundation, either version 3 of the License, or |
||
9 | (at your option) any later version. |
||
10 | |||
11 | Stockfish is distributed in the hope that it will be useful, |
||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
14 | GNU General Public License for more details. |
||
15 | |||
16 | You should have received a copy of the GNU General Public License |
||
17 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
96 | pmbaty | 18 | */ |
19 | |||
20 | #include <algorithm> |
||
169 | pmbaty | 21 | #include <atomic> |
22 | #include <cstdint> |
||
23 | #include <cstring> // For std::memset |
||
24 | #include <deque> |
||
25 | #include <fstream> |
||
26 | #include <iostream> |
||
27 | #include <list> |
||
28 | #include <sstream> |
||
29 | #include <type_traits> |
||
96 | pmbaty | 30 | |
169 | pmbaty | 31 | #include "../bitboard.h" |
32 | #include "../movegen.h" |
||
96 | pmbaty | 33 | #include "../position.h" |
34 | #include "../search.h" |
||
169 | pmbaty | 35 | #include "../thread_win32.h" |
36 | #include "../types.h" |
||
96 | pmbaty | 37 | |
38 | #include "tbprobe.h" |
||
39 | |||
169 | pmbaty | 40 | #ifndef _WIN32 |
41 | #include <fcntl.h> |
||
42 | #include <unistd.h> |
||
43 | #include <sys/mman.h> |
||
44 | #include <sys/stat.h> |
||
45 | #else |
||
46 | #define WIN32_LEAN_AND_MEAN |
||
47 | #define NOMINMAX |
||
48 | #include <windows.h> |
||
49 | #endif |
||
96 | pmbaty | 50 | |
169 | pmbaty | 51 | using namespace Tablebases; |
96 | pmbaty | 52 | |
169 | pmbaty | 53 | int Tablebases::MaxCardinality; |
96 | pmbaty | 54 | |
169 | pmbaty | 55 | namespace { |
96 | pmbaty | 56 | |
169 | pmbaty | 57 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables |
58 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 }; |
||
96 | pmbaty | 59 | |
169 | pmbaty | 60 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } |
61 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } |
||
62 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } |
||
96 | pmbaty | 63 | |
169 | pmbaty | 64 | // DTZ tables don't store valid scores for moves that reset the rule50 counter |
65 | // like captures and pawn moves but we can easily recover the correct dtz of the |
||
66 | // previous move if we know the position's WDL score. |
||
67 | int dtz_before_zeroing(WDLScore wdl) { |
||
68 | return wdl == WDLWin ? 1 : |
||
69 | wdl == WDLCursedWin ? 101 : |
||
70 | wdl == WDLBlessedLoss ? -101 : |
||
71 | wdl == WDLLoss ? -1 : 0; |
||
72 | } |
||
96 | pmbaty | 73 | |
169 | pmbaty | 74 | // Return the sign of a number (-1, 0, 1) |
75 | template <typename T> int sign_of(T val) { |
||
76 | return (T(0) < val) - (val < T(0)); |
||
96 | pmbaty | 77 | } |
78 | |||
169 | pmbaty | 79 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] |
80 | struct SparseEntry { |
||
81 | char block[4]; // Number of block |
||
82 | char offset[2]; // Offset within the block |
||
83 | }; |
||
96 | pmbaty | 84 | |
169 | pmbaty | 85 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); |
96 | pmbaty | 86 | |
169 | pmbaty | 87 | typedef uint16_t Sym; // Huffman symbol |
96 | pmbaty | 88 | |
169 | pmbaty | 89 | struct LR { |
90 | enum Side { Left, Right, Value }; |
||
96 | pmbaty | 91 | |
169 | pmbaty | 92 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 |
93 | // bits is the right-hand symbol. If symbol has length 1, |
||
94 | // then the first byte is the stored value. |
||
95 | template<Side S> |
||
96 | Sym get() { |
||
97 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : |
||
98 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : |
||
99 | S == Value ? lr[0] : (assert(false), Sym(-1)); |
||
100 | } |
||
101 | }; |
||
102 | |||
103 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); |
||
104 | |||
105 | const int TBPIECES = 6; |
||
106 | |||
107 | struct PairsData { |
||
108 | int flags; |
||
109 | size_t sizeofBlock; // Block size in bytes |
||
110 | size_t span; // About every span values there is a SparseIndex[] entry |
||
111 | int blocksNum; // Number of blocks in the TB file |
||
112 | int maxSymLen; // Maximum length in bits of the Huffman symbols |
||
113 | int minSymLen; // Minimum length in bits of the Huffman symbols |
||
114 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value |
||
115 | LR* btree; // btree[sym] stores the left and right symbols that expand sym |
||
116 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 |
||
117 | int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum |
||
118 | SparseEntry* sparseIndex; // Partial indices into blockLength[] |
||
119 | size_t sparseIndexSize; // Size of SparseIndex[] table |
||
120 | uint8_t* data; // Start of Huffman compressed data |
||
121 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l |
||
122 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 |
||
123 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups |
||
124 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces |
||
125 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) |
||
126 | }; |
||
127 | |||
128 | // Helper struct to avoid manually defining entry copy constructor as we |
||
129 | // should because the default one is not compatible with std::atomic_bool. |
||
130 | struct Atomic { |
||
131 | Atomic() = default; |
||
132 | Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body |
||
133 | std::atomic_bool ready; |
||
134 | }; |
||
135 | |||
136 | // We define types for the different parts of the WDLEntry and DTZEntry with |
||
137 | // corresponding specializations for pieces or pawns. |
||
138 | |||
139 | struct WDLEntryPiece { |
||
140 | PairsData* precomp; |
||
141 | }; |
||
142 | |||
143 | struct WDLEntryPawn { |
||
144 | uint8_t pawnCount[2]; // [Lead color / other color] |
||
145 | WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D] |
||
146 | }; |
||
147 | |||
148 | struct DTZEntryPiece { |
||
149 | PairsData* precomp; |
||
150 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss |
||
151 | uint8_t* map; |
||
152 | }; |
||
153 | |||
154 | struct DTZEntryPawn { |
||
155 | uint8_t pawnCount[2]; |
||
156 | DTZEntryPiece file[4]; |
||
157 | uint8_t* map; |
||
158 | }; |
||
159 | |||
160 | struct TBEntry : public Atomic { |
||
161 | void* baseAddress; |
||
162 | uint64_t mapping; |
||
163 | Key key; |
||
164 | Key key2; |
||
165 | int pieceCount; |
||
166 | bool hasPawns; |
||
167 | bool hasUniquePieces; |
||
168 | }; |
||
169 | |||
170 | // Now the main types: WDLEntry and DTZEntry |
||
171 | struct WDLEntry : public TBEntry { |
||
172 | WDLEntry(const std::string& code); |
||
173 | ~WDLEntry(); |
||
174 | union { |
||
175 | WDLEntryPiece pieceTable[2]; // [wtm / btm] |
||
176 | WDLEntryPawn pawnTable; |
||
177 | }; |
||
178 | }; |
||
179 | |||
180 | struct DTZEntry : public TBEntry { |
||
181 | DTZEntry(const WDLEntry& wdl); |
||
182 | ~DTZEntry(); |
||
183 | union { |
||
184 | DTZEntryPiece pieceTable; |
||
185 | DTZEntryPawn pawnTable; |
||
186 | }; |
||
187 | }; |
||
188 | |||
189 | typedef decltype(WDLEntry::pieceTable) WDLPieceTable; |
||
190 | typedef decltype(DTZEntry::pieceTable) DTZPieceTable; |
||
191 | typedef decltype(WDLEntry::pawnTable ) WDLPawnTable; |
||
192 | typedef decltype(DTZEntry::pawnTable ) DTZPawnTable; |
||
193 | |||
194 | auto item(WDLPieceTable& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } |
||
195 | auto item(DTZPieceTable& e, int , int ) -> decltype(e)& { return e; } |
||
196 | auto item(WDLPawnTable& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } |
||
197 | auto item(DTZPawnTable& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } |
||
198 | |||
199 | template<typename E> struct Ret { typedef int type; }; |
||
200 | template<> struct Ret<WDLEntry> { typedef WDLScore type; }; |
||
201 | |||
202 | int MapPawns[SQUARE_NB]; |
||
203 | int MapB1H1H7[SQUARE_NB]; |
||
204 | int MapA1D1D4[SQUARE_NB]; |
||
205 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] |
||
206 | |||
207 | // Comparison function to sort leading pawns in ascending MapPawns[] order |
||
208 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } |
||
209 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } |
||
210 | |||
211 | const Value WDL_to_value[] = { |
||
212 | -VALUE_MATE + MAX_PLY + 1, |
||
213 | VALUE_DRAW - 2, |
||
214 | VALUE_DRAW, |
||
215 | VALUE_DRAW + 2, |
||
216 | VALUE_MATE - MAX_PLY - 1 |
||
217 | }; |
||
218 | |||
219 | const std::string PieceToChar = " PNBRQK pnbrqk"; |
||
220 | |||
221 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements |
||
222 | int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] |
||
223 | int LeadPawnsSize[5][4]; // [leadPawnsCnt][FILE_A..FILE_D] |
||
224 | |||
225 | enum { BigEndian, LittleEndian }; |
||
226 | |||
227 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> |
||
228 | inline void swap_byte(T& x) |
||
96 | pmbaty | 229 | { |
169 | pmbaty | 230 | char tmp, *c = (char*)&x; |
231 | for (int i = 0; i < Half; ++i) |
||
232 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; |
||
96 | pmbaty | 233 | } |
169 | pmbaty | 234 | template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {} |
96 | pmbaty | 235 | |
169 | pmbaty | 236 | template<typename T, int LE> T number(void* addr) |
96 | pmbaty | 237 | { |
169 | pmbaty | 238 | const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; |
239 | const bool IsLittleEndian = (Le.c[0] == 4); |
||
96 | pmbaty | 240 | |
169 | pmbaty | 241 | T v; |
96 | pmbaty | 242 | |
169 | pmbaty | 243 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) |
244 | std::memcpy(&v, addr, sizeof(T)); |
||
245 | else |
||
246 | v = *((T*)addr); |
||
96 | pmbaty | 247 | |
169 | pmbaty | 248 | if (LE != IsLittleEndian) |
249 | swap_byte(v); |
||
250 | return v; |
||
251 | } |
||
252 | |||
253 | class HashTable { |
||
254 | |||
255 | typedef std::pair<WDLEntry*, DTZEntry*> EntryPair; |
||
256 | typedef std::pair<Key, EntryPair> Entry; |
||
257 | |||
258 | static const int TBHASHBITS = 10; |
||
259 | static const int HSHMAX = 5; |
||
260 | |||
261 | Entry hashTable[1 << TBHASHBITS][HSHMAX]; |
||
262 | |||
263 | std::deque<WDLEntry> wdlTable; |
||
264 | std::deque<DTZEntry> dtzTable; |
||
265 | |||
266 | void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) { |
||
267 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; |
||
268 | |||
269 | for (int i = 0; i < HSHMAX; ++i, ++entry) |
||
270 | if (!entry->second.first || entry->first == key) { |
||
271 | *entry = std::make_pair(key, std::make_pair(wdl, dtz)); |
||
272 | return; |
||
273 | } |
||
274 | |||
275 | std::cerr << "HSHMAX too low!" << std::endl; |
||
276 | exit(1); |
||
277 | } |
||
278 | |||
279 | public: |
||
280 | template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1> |
||
281 | E* get(Key key) { |
||
282 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; |
||
283 | |||
284 | for (int i = 0; i < HSHMAX; ++i, ++entry) |
||
285 | if (entry->first == key) |
||
286 | return std::get<I>(entry->second); |
||
287 | |||
288 | return nullptr; |
||
96 | pmbaty | 289 | } |
290 | |||
169 | pmbaty | 291 | void clear() { |
292 | std::memset(hashTable, 0, sizeof(hashTable)); |
||
293 | wdlTable.clear(); |
||
294 | dtzTable.clear(); |
||
295 | } |
||
296 | size_t size() const { return wdlTable.size(); } |
||
297 | void insert(const std::vector<PieceType>& pieces); |
||
298 | }; |
||
299 | |||
300 | HashTable EntryTable; |
||
301 | |||
302 | class TBFile : public std::ifstream { |
||
303 | |||
304 | std::string fname; |
||
305 | |||
306 | public: |
||
307 | // Look for and open the file among the Paths directories where the .rtbw |
||
308 | // and .rtbz files can be found. Multiple directories are separated by ";" |
||
309 | // on Windows and by ":" on Unix-based operating systems. |
||
310 | // |
||
311 | // Example: |
||
312 | // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 |
||
313 | static std::string Paths; |
||
314 | |||
315 | TBFile(const std::string& f) { |
||
316 | |||
317 | #ifndef _WIN32 |
||
318 | const char SepChar = ':'; |
||
96 | pmbaty | 319 | #else |
169 | pmbaty | 320 | const char SepChar = ';'; |
96 | pmbaty | 321 | #endif |
169 | pmbaty | 322 | std::stringstream ss(Paths); |
323 | std::string path; |
||
324 | |||
325 | while (std::getline(ss, path, SepChar)) { |
||
326 | fname = path + "/" + f; |
||
327 | std::ifstream::open(fname); |
||
328 | if (is_open()) |
||
329 | return; |
||
330 | } |
||
96 | pmbaty | 331 | } |
332 | |||
169 | pmbaty | 333 | // Memory map the file and check it. File should be already open and will be |
334 | // closed after mapping. |
||
335 | uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) { |
||
336 | |||
337 | assert(is_open()); |
||
338 | |||
339 | close(); // Need to re-open to get native file descriptor |
||
340 | |||
341 | #ifndef _WIN32 |
||
342 | struct stat statbuf; |
||
343 | int fd = ::open(fname.c_str(), O_RDONLY); |
||
344 | |||
345 | if (fd == -1) |
||
346 | return *baseAddress = nullptr, nullptr; |
||
347 | |||
348 | fstat(fd, &statbuf); |
||
349 | *mapping = statbuf.st_size; |
||
350 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); |
||
351 | ::close(fd); |
||
352 | |||
353 | if (*baseAddress == MAP_FAILED) { |
||
354 | std::cerr << "Could not mmap() " << fname << std::endl; |
||
355 | exit(1); |
||
356 | } |
||
357 | #else |
||
358 | HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, |
||
359 | OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); |
||
360 | |||
361 | if (fd == INVALID_HANDLE_VALUE) |
||
362 | return *baseAddress = nullptr, nullptr; |
||
363 | |||
364 | DWORD size_high; |
||
365 | DWORD size_low = GetFileSize(fd, &size_high); |
||
366 | HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); |
||
367 | CloseHandle(fd); |
||
368 | |||
369 | if (!mmap) { |
||
370 | std::cerr << "CreateFileMapping() failed" << std::endl; |
||
371 | exit(1); |
||
372 | } |
||
373 | |||
374 | *mapping = (uint64_t)mmap; |
||
375 | *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); |
||
376 | |||
377 | if (!*baseAddress) { |
||
378 | std::cerr << "MapViewOfFile() failed, name = " << fname |
||
379 | << ", error = " << GetLastError() << std::endl; |
||
380 | exit(1); |
||
381 | } |
||
382 | #endif |
||
383 | uint8_t* data = (uint8_t*)*baseAddress; |
||
384 | |||
385 | if ( *data++ != *TB_MAGIC++ |
||
386 | || *data++ != *TB_MAGIC++ |
||
387 | || *data++ != *TB_MAGIC++ |
||
388 | || *data++ != *TB_MAGIC) { |
||
389 | std::cerr << "Corrupted table in file " << fname << std::endl; |
||
390 | unmap(*baseAddress, *mapping); |
||
391 | return *baseAddress = nullptr, nullptr; |
||
392 | } |
||
393 | |||
394 | return data; |
||
96 | pmbaty | 395 | } |
396 | |||
169 | pmbaty | 397 | static void unmap(void* baseAddress, uint64_t mapping) { |
398 | |||
399 | #ifndef _WIN32 |
||
400 | munmap(baseAddress, mapping); |
||
401 | #else |
||
402 | UnmapViewOfFile(baseAddress); |
||
403 | CloseHandle((HANDLE)mapping); |
||
404 | #endif |
||
96 | pmbaty | 405 | } |
169 | pmbaty | 406 | }; |
407 | |||
408 | std::string TBFile::Paths; |
||
409 | |||
410 | WDLEntry::WDLEntry(const std::string& code) { |
||
411 | |||
412 | StateInfo st; |
||
413 | Position pos; |
||
414 | |||
415 | memset(this, 0, sizeof(WDLEntry)); |
||
416 | |||
417 | ready = false; |
||
418 | key = pos.set(code, WHITE, &st).material_key(); |
||
419 | pieceCount = popcount(pos.pieces()); |
||
420 | hasPawns = pos.pieces(PAWN); |
||
421 | |||
422 | for (Color c = WHITE; c <= BLACK; ++c) |
||
423 | for (PieceType pt = PAWN; pt < KING; ++pt) |
||
424 | if (popcount(pos.pieces(c, pt)) == 1) |
||
425 | hasUniquePieces = true; |
||
426 | |||
427 | if (hasPawns) { |
||
428 | // Set the leading color. In case both sides have pawns the leading color |
||
429 | // is the side with less pawns because this leads to better compression. |
||
430 | bool c = !pos.count<PAWN>(BLACK) |
||
431 | || ( pos.count<PAWN>(WHITE) |
||
432 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); |
||
433 | |||
434 | pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); |
||
435 | pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); |
||
96 | pmbaty | 436 | } |
437 | |||
169 | pmbaty | 438 | key2 = pos.set(code, BLACK, &st).material_key(); |
96 | pmbaty | 439 | } |
440 | |||
169 | pmbaty | 441 | WDLEntry::~WDLEntry() { |
96 | pmbaty | 442 | |
169 | pmbaty | 443 | if (baseAddress) |
444 | TBFile::unmap(baseAddress, mapping); |
||
96 | pmbaty | 445 | |
169 | pmbaty | 446 | for (int i = 0; i < 2; ++i) |
447 | if (hasPawns) |
||
448 | for (File f = FILE_A; f <= FILE_D; ++f) |
||
449 | delete pawnTable.file[i][f].precomp; |
||
450 | else |
||
451 | delete pieceTable[i].precomp; |
||
452 | } |
||
453 | |||
454 | DTZEntry::DTZEntry(const WDLEntry& wdl) { |
||
455 | |||
456 | memset(this, 0, sizeof(DTZEntry)); |
||
457 | |||
458 | ready = false; |
||
459 | key = wdl.key; |
||
460 | key2 = wdl.key2; |
||
461 | pieceCount = wdl.pieceCount; |
||
462 | hasPawns = wdl.hasPawns; |
||
463 | hasUniquePieces = wdl.hasUniquePieces; |
||
464 | |||
465 | if (hasPawns) { |
||
466 | pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0]; |
||
467 | pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1]; |
||
96 | pmbaty | 468 | } |
169 | pmbaty | 469 | } |
96 | pmbaty | 470 | |
169 | pmbaty | 471 | DTZEntry::~DTZEntry() { |
96 | pmbaty | 472 | |
169 | pmbaty | 473 | if (baseAddress) |
474 | TBFile::unmap(baseAddress, mapping); |
||
475 | |||
476 | if (hasPawns) |
||
477 | for (File f = FILE_A; f <= FILE_D; ++f) |
||
478 | delete pawnTable.file[f].precomp; |
||
479 | else |
||
480 | delete pieceTable.precomp; |
||
481 | } |
||
482 | |||
483 | void HashTable::insert(const std::vector<PieceType>& pieces) { |
||
484 | |||
485 | std::string code; |
||
486 | |||
487 | for (PieceType pt : pieces) |
||
488 | code += PieceToChar[pt]; |
||
489 | |||
490 | TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK |
||
491 | |||
492 | if (!file.is_open()) // Only WDL file is checked |
||
493 | return; |
||
494 | |||
495 | file.close(); |
||
496 | |||
497 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); |
||
498 | |||
499 | wdlTable.emplace_back(code); |
||
500 | dtzTable.emplace_back(wdlTable.back()); |
||
501 | |||
502 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); |
||
503 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); |
||
504 | } |
||
505 | |||
506 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into |
||
507 | // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. |
||
508 | // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols |
||
509 | // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 |
||
510 | // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after |
||
511 | // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most |
||
512 | // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly |
||
513 | // of draws or mostly of wins, but such tables are actually quite common. In principle, the |
||
514 | // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for |
||
515 | // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so |
||
516 | // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. |
||
517 | // The generator picks the size that leads to the smallest table. The "book" of symbols and |
||
518 | // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file |
||
519 | // will have one table for wtm and one for btm, a TB file with pawns will have tables per |
||
520 | // file a,b,c,d also in this case one set for wtm and one for btm. |
||
521 | int decompress_pairs(PairsData* d, uint64_t idx) { |
||
522 | |||
523 | // Special case where all table positions store the same value |
||
524 | if (d->flags & TBFlag::SingleValue) |
||
525 | return d->minSymLen; |
||
526 | |||
527 | // First we need to locate the right block that stores the value at index "idx". |
||
528 | // Because each block n stores blockLength[n] + 1 values, the index i of the block |
||
529 | // that contains the value at position idx is: |
||
530 | // |
||
531 | // for (i = -1, sum = 0; sum <= idx; i++) |
||
532 | // sum += blockLength[i + 1] + 1; |
||
533 | // |
||
534 | // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that |
||
535 | // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry |
||
536 | // that stores the blockLength[] index and the offset within that block of the value |
||
537 | // with index I(k), where: |
||
538 | // |
||
539 | // I(k) = k * d->span + d->span / 2 (1) |
||
540 | |||
541 | // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) |
||
542 | uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast |
||
543 | |||
544 | // Then we read the corresponding SparseIndex[] entry |
||
545 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); |
||
546 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); |
||
547 | |||
548 | // Now compute the difference idx - I(k). From definition of k we know that |
||
549 | // |
||
550 | // idx = k * d->span + idx % d->span (2) |
||
551 | // |
||
552 | // So from (1) and (2) we can compute idx - I(K): |
||
553 | int diff = idx % d->span - d->span / 2; |
||
554 | |||
555 | // Sum the above to offset to find the offset corresponding to our idx |
||
556 | offset += diff; |
||
557 | |||
558 | // Move to previous/next block, until we reach the correct block that contains idx, |
||
559 | // that is when 0 <= offset <= d->blockLength[block] |
||
560 | while (offset < 0) |
||
561 | offset += d->blockLength[--block] + 1; |
||
562 | |||
563 | while (offset > d->blockLength[block]) |
||
564 | offset -= d->blockLength[block++] + 1; |
||
565 | |||
566 | // Finally, we find the start address of our block of canonical Huffman symbols |
||
567 | uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock); |
||
568 | |||
569 | // Read the first 64 bits in our block, this is a (truncated) sequence of |
||
570 | // unknown number of symbols of unknown length but we know the first one |
||
571 | // is at the beginning of this 64 bits sequence. |
||
572 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; |
||
573 | int buf64Size = 64; |
||
574 | Sym sym; |
||
575 | |||
576 | while (true) { |
||
577 | int len = 0; // This is the symbol length - d->min_sym_len |
||
578 | |||
579 | // Now get the symbol length. For any symbol s64 of length l right-padded |
||
580 | // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we |
||
581 | // can find the symbol length iterating through base64[]. |
||
582 | while (buf64 < d->base64[len]) |
||
583 | ++len; |
||
584 | |||
585 | // All the symbols of a given length are consecutive integers (numerical |
||
586 | // sequence property), so we can compute the offset of our symbol of |
||
587 | // length len, stored at the beginning of buf64. |
||
588 | sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast |
||
589 | |||
590 | // Now add the value of the lowest symbol of length len to get our symbol |
||
591 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); |
||
592 | |||
593 | // If our offset is within the number of values represented by symbol sym |
||
594 | // we are done... |
||
595 | if (offset < d->symlen[sym] + 1) |
||
596 | break; |
||
597 | |||
598 | // ...otherwise update the offset and continue to iterate |
||
599 | offset -= d->symlen[sym] + 1; |
||
600 | len += d->minSymLen; // Get the real length |
||
601 | buf64 <<= len; // Consume the just processed symbol |
||
602 | buf64Size -= len; |
||
603 | |||
604 | if (buf64Size <= 32) { // Refill the buffer |
||
605 | buf64Size += 32; |
||
606 | buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); |
||
607 | } |
||
96 | pmbaty | 608 | } |
609 | |||
169 | pmbaty | 610 | // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. |
611 | // We binary-search for our value recursively expanding into the left and |
||
612 | // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 |
||
613 | // that will store the value we need. |
||
614 | while (d->symlen[sym]) { |
||
615 | |||
616 | Sym left = d->btree[sym].get<LR::Left>(); |
||
617 | |||
618 | // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and |
||
619 | // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then |
||
620 | // we know that, for instance the ten-th value (offset = 10) will be on |
||
621 | // the left side because in Recursive Pairing child symbols are adjacent. |
||
622 | if (offset < d->symlen[left] + 1) |
||
623 | sym = left; |
||
624 | else { |
||
625 | offset -= d->symlen[left] + 1; |
||
626 | sym = d->btree[sym].get<LR::Right>(); |
||
627 | } |
||
96 | pmbaty | 628 | } |
629 | |||
169 | pmbaty | 630 | return d->btree[sym].get<LR::Value>(); |
631 | } |
||
96 | pmbaty | 632 | |
169 | pmbaty | 633 | bool check_dtz_stm(WDLEntry*, int, File) { return true; } |
634 | |||
635 | bool check_dtz_stm(DTZEntry* entry, int stm, File f) { |
||
636 | |||
637 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags |
||
638 | : entry->pieceTable.precomp->flags; |
||
639 | |||
640 | return (flags & TBFlag::STM) == stm |
||
641 | || ((entry->key == entry->key2) && !entry->hasPawns); |
||
642 | } |
||
643 | |||
644 | // DTZ scores are sorted by frequency of occurrence and then assigned the |
||
645 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each |
||
646 | // of the four WDLScore values. The mapping information necessary to reconstruct |
||
647 | // the original values is stored in the TB file and read during map[] init. |
||
648 | WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); } |
||
649 | |||
650 | int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) { |
||
651 | |||
652 | const int WDLMap[] = { 1, 3, 0, 2, 0 }; |
||
653 | |||
654 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags |
||
655 | : entry->pieceTable.precomp->flags; |
||
656 | |||
657 | uint8_t* map = entry->hasPawns ? entry->pawnTable.map |
||
658 | : entry->pieceTable.map; |
||
659 | |||
660 | uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx |
||
661 | : entry->pieceTable.map_idx; |
||
662 | if (flags & TBFlag::Mapped) |
||
663 | value = map[idx[WDLMap[wdl + 2]] + value]; |
||
664 | |||
665 | // DTZ tables store distance to zero in number of moves or plies. We |
||
666 | // want to return plies, so we have convert to plies when needed. |
||
667 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) |
||
668 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) |
||
669 | || wdl == WDLCursedWin |
||
670 | || wdl == WDLBlessedLoss) |
||
671 | value *= 2; |
||
672 | |||
673 | return value + 1; |
||
674 | } |
||
675 | |||
676 | // Compute a unique index out of a position and use it to probe the TB file. To |
||
677 | // encode k pieces of same type and color, first sort the pieces by square in |
||
678 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: |
||
679 | // |
||
680 | // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] |
||
681 | // |
||
682 | template<typename Entry, typename T = typename Ret<Entry>::type> |
||
683 | T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) { |
||
684 | |||
685 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
||
686 | |||
687 | Square squares[TBPIECES]; |
||
688 | Piece pieces[TBPIECES]; |
||
689 | uint64_t idx; |
||
690 | int next = 0, size = 0, leadPawnsCnt = 0; |
||
691 | PairsData* d; |
||
692 | Bitboard b, leadPawns = 0; |
||
693 | File tbFile = FILE_A; |
||
694 | |||
695 | // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. |
||
696 | // If both sides have the same pieces keys are equal. In this case TB tables |
||
697 | // only store the 'white to move' case, so if the position to lookup has black |
||
698 | // to move, we need to switch the color and flip the squares before to lookup. |
||
699 | bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); |
||
700 | |||
701 | // TB files are calculated for white as stronger side. For instance we have |
||
702 | // KRvK, not KvKR. A position where stronger side is white will have its |
||
703 | // material key == entry->key, otherwise we have to switch the color and |
||
704 | // flip the squares before to lookup. |
||
705 | bool blackStronger = (pos.material_key() != entry->key); |
||
706 | |||
707 | int flipColor = (symmetricBlackToMove || blackStronger) * 8; |
||
708 | int flipSquares = (symmetricBlackToMove || blackStronger) * 070; |
||
709 | int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); |
||
710 | |||
711 | // For pawns, TB files store 4 separate tables according if leading pawn is on |
||
712 | // file a, b, c or d after reordering. The leading pawn is the one with maximum |
||
713 | // MapPawns[] value, that is the one most toward the edges and with lowest rank. |
||
714 | if (entry->hasPawns) { |
||
715 | |||
716 | // In all the 4 tables, pawns are at the beginning of the piece sequence and |
||
717 | // their color is the reference one. So we just pick the first one. |
||
718 | Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor); |
||
719 | |||
720 | assert(type_of(pc) == PAWN); |
||
721 | |||
722 | leadPawns = b = pos.pieces(color_of(pc), PAWN); |
||
723 | do |
||
724 | squares[size++] = pop_lsb(&b) ^ flipSquares; |
||
725 | while (b); |
||
726 | |||
727 | leadPawnsCnt = size; |
||
728 | |||
729 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); |
||
730 | |||
731 | tbFile = file_of(squares[0]); |
||
732 | if (tbFile > FILE_D) |
||
733 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 |
||
734 | |||
735 | d = item(entry->pawnTable , stm, tbFile).precomp; |
||
736 | } else |
||
737 | d = item(entry->pieceTable, stm, tbFile).precomp; |
||
738 | |||
739 | // DTZ tables are one-sided, i.e. they store positions only for white to |
||
740 | // move or only for black to move, so check for side to move to be stm, |
||
741 | // early exit otherwise. |
||
742 | if (!IsWDL && !check_dtz_stm(entry, stm, tbFile)) |
||
743 | return *result = CHANGE_STM, T(); |
||
744 | |||
745 | // Now we are ready to get all the position pieces (but the lead pawns) and |
||
746 | // directly map them to the correct color and square. |
||
747 | b = pos.pieces() ^ leadPawns; |
||
96 | pmbaty | 748 | do { |
169 | pmbaty | 749 | Square s = pop_lsb(&b); |
750 | squares[size] = s ^ flipSquares; |
||
751 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); |
||
752 | } while (b); |
||
753 | |||
754 | assert(size >= 2); |
||
755 | |||
756 | // Then we reorder the pieces to have the same sequence as the one stored |
||
757 | // in precomp->pieces[i]: the sequence that ensures the best compression. |
||
758 | for (int i = leadPawnsCnt; i < size; ++i) |
||
759 | for (int j = i; j < size; ++j) |
||
760 | if (d->pieces[i] == pieces[j]) |
||
761 | { |
||
762 | std::swap(pieces[i], pieces[j]); |
||
763 | std::swap(squares[i], squares[j]); |
||
764 | break; |
||
765 | } |
||
766 | |||
767 | // Now we map again the squares so that the square of the lead piece is in |
||
768 | // the triangle A1-D1-D4. |
||
769 | if (file_of(squares[0]) > FILE_D) |
||
770 | for (int i = 0; i < size; ++i) |
||
771 | squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 |
||
772 | |||
773 | // Encode leading pawns starting with the one with minimum MapPawns[] and |
||
774 | // proceeding in ascending order. |
||
775 | if (entry->hasPawns) { |
||
776 | idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; |
||
777 | |||
778 | std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); |
||
779 | |||
780 | for (int i = 1; i < leadPawnsCnt; ++i) |
||
781 | idx += Binomial[i][MapPawns[squares[i]]]; |
||
782 | |||
783 | goto encode_remaining; // With pawns we have finished special treatments |
||
96 | pmbaty | 784 | } |
169 | pmbaty | 785 | |
786 | // In positions withouth pawns, we further flip the squares to ensure leading |
||
787 | // piece is below RANK_5. |
||
788 | if (rank_of(squares[0]) > RANK_4) |
||
789 | for (int i = 0; i < size; ++i) |
||
790 | squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 |
||
791 | |||
792 | // Look for the first piece of the leading group not on the A1-D4 diagonal |
||
793 | // and ensure it is mapped below the diagonal. |
||
794 | for (int i = 0; i < d->groupLen[0]; ++i) { |
||
795 | if (!off_A1H8(squares[i])) |
||
796 | continue; |
||
797 | |||
798 | if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 |
||
799 | for (int j = i; j < size; ++j) |
||
800 | squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); |
||
801 | break; |
||
96 | pmbaty | 802 | } |
803 | |||
169 | pmbaty | 804 | // Encode the leading group. |
805 | // |
||
806 | // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR |
||
807 | // and bK (each 0...63). The simplest way to map this position to an index |
||
808 | // is like this: |
||
809 | // |
||
810 | // index = wK * 64 * 64 + wR * 64 + bK; |
||
811 | // |
||
812 | // But this way the TB is going to have 64*64*64 = 262144 positions, with |
||
813 | // lots of positions being equivalent (because they are mirrors of each |
||
814 | // other) and lots of positions being invalid (two pieces on one square, |
||
815 | // adjacent kings, etc.). |
||
816 | // Usually the first step is to take the wK and bK together. There are just |
||
817 | // 462 ways legal and not-mirrored ways to place the wK and bK on the board. |
||
818 | // Once we have placed the wK and bK, there are 62 squares left for the wR |
||
819 | // Mapping its square from 0..63 to available squares 0..61 can be done like: |
||
820 | // |
||
821 | // wR -= (wR > wK) + (wR > bK); |
||
822 | // |
||
823 | // In words: if wR "comes later" than wK, we deduct 1, and the same if wR |
||
824 | // "comes later" than bK. In case of two same pieces like KRRvK we want to |
||
825 | // place the two Rs "together". If we have 62 squares left, we can place two |
||
826 | // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be |
||
827 | // swapped and still get the same position.) |
||
828 | // |
||
829 | // In case we have at least 3 unique pieces (inlcuded kings) we encode them |
||
830 | // together. |
||
831 | if (entry->hasUniquePieces) { |
||
96 | pmbaty | 832 | |
169 | pmbaty | 833 | int adjust1 = squares[1] > squares[0]; |
834 | int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); |
||
96 | pmbaty | 835 | |
169 | pmbaty | 836 | // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 |
837 | // triangle to 0...5. There are 63 squares for second piece and and 62 |
||
838 | // (mapped to 0...61) for the third. |
||
839 | if (off_A1H8(squares[0])) |
||
840 | idx = ( MapA1D1D4[squares[0]] * 63 |
||
841 | + (squares[1] - adjust1)) * 62 |
||
842 | + squares[2] - adjust2; |
||
843 | |||
844 | // First piece is on a1-h8 diagonal, second below: map this occurence to |
||
845 | // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal |
||
846 | // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. |
||
847 | else if (off_A1H8(squares[1])) |
||
848 | idx = ( 6 * 63 + rank_of(squares[0]) * 28 |
||
849 | + MapB1H1H7[squares[1]]) * 62 |
||
850 | + squares[2] - adjust2; |
||
851 | |||
852 | // First two pieces are on a1-h8 diagonal, third below |
||
853 | else if (off_A1H8(squares[2])) |
||
854 | idx = 6 * 63 * 62 + 4 * 28 * 62 |
||
855 | + rank_of(squares[0]) * 7 * 28 |
||
856 | + (rank_of(squares[1]) - adjust1) * 28 |
||
857 | + MapB1H1H7[squares[2]]; |
||
858 | |||
859 | // All 3 pieces on the diagonal a1-h8 |
||
860 | else |
||
861 | idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 |
||
862 | + rank_of(squares[0]) * 7 * 6 |
||
863 | + (rank_of(squares[1]) - adjust1) * 6 |
||
864 | + (rank_of(squares[2]) - adjust2); |
||
865 | } else |
||
866 | // We don't have at least 3 unique pieces, like in KRRvKBB, just map |
||
867 | // the kings. |
||
868 | idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; |
||
869 | |||
870 | encode_remaining: |
||
871 | idx *= d->groupIdx[0]; |
||
872 | Square* groupSq = squares + d->groupLen[0]; |
||
873 | |||
874 | // Encode remainig pawns then pieces according to square, in ascending order |
||
875 | bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1]; |
||
876 | |||
877 | while (d->groupLen[++next]) |
||
878 | { |
||
879 | std::sort(groupSq, groupSq + d->groupLen[next]); |
||
880 | uint64_t n = 0; |
||
881 | |||
882 | // Map down a square if "comes later" than a square in the previous |
||
883 | // groups (similar to what done earlier for leading group pieces). |
||
884 | for (int i = 0; i < d->groupLen[next]; ++i) |
||
885 | { |
||
886 | auto f = [&](Square s) { return groupSq[i] > s; }; |
||
887 | auto adjust = std::count_if(squares, groupSq, f); |
||
888 | n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; |
||
889 | } |
||
890 | |||
891 | remainingPawns = false; |
||
892 | idx += n * d->groupIdx[next]; |
||
893 | groupSq += d->groupLen[next]; |
||
894 | } |
||
895 | |||
896 | // Now that we have the index, decompress the pair and get the score |
||
897 | return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); |
||
96 | pmbaty | 898 | } |
899 | |||
169 | pmbaty | 900 | // Group together pieces that will be encoded together. The general rule is that |
901 | // a group contains pieces of same type and color. The exception is the leading |
||
902 | // group that, in case of positions withouth pawns, can be formed by 3 different |
||
903 | // pieces (default) or by the king pair when there is not a unique piece apart |
||
904 | // from the kings. When there are pawns, pawns are always first in pieces[]. |
||
905 | // |
||
906 | // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K |
||
907 | // |
||
908 | // The actual grouping depends on the TB generator and can be inferred from the |
||
909 | // sequence of pieces in piece[] array. |
||
910 | template<typename T> |
||
911 | void set_groups(T& e, PairsData* d, int order[], File f) { |
||
96 | pmbaty | 912 | |
169 | pmbaty | 913 | int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; |
914 | d->groupLen[n] = 1; |
||
915 | |||
916 | // Number of pieces per group is stored in groupLen[], for instance in KRKN |
||
917 | // the encoder will default on '111', so groupLen[] will be (3, 1). |
||
918 | for (int i = 1; i < e.pieceCount; ++i) |
||
919 | if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) |
||
920 | d->groupLen[n]++; |
||
921 | else |
||
922 | d->groupLen[++n] = 1; |
||
923 | |||
924 | d->groupLen[++n] = 0; // Zero-terminated |
||
925 | |||
926 | // The sequence in pieces[] defines the groups, but not the order in which |
||
927 | // they are encoded. If the pieces in a group g can be combined on the board |
||
928 | // in N(g) different ways, then the position encoding will be of the form: |
||
929 | // |
||
930 | // g1 * N(g2) * N(g3) + g2 * N(g3) + g3 |
||
931 | // |
||
932 | // This ensures unique encoding for the whole position. The order of the |
||
933 | // groups is a per-table parameter and could not follow the canonical leading |
||
934 | // pawns/pieces -> remainig pawns -> remaining pieces. In particular the |
||
935 | // first group is at order[0] position and the remaining pawns, when present, |
||
936 | // are at order[1] position. |
||
937 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides |
||
938 | int next = pp ? 2 : 1; |
||
939 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); |
||
940 | uint64_t idx = 1; |
||
941 | |||
942 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) |
||
943 | if (k == order[0]) // Leading pawns or pieces |
||
944 | { |
||
945 | d->groupIdx[0] = idx; |
||
946 | idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] |
||
947 | : e.hasUniquePieces ? 31332 : 462; |
||
948 | } |
||
949 | else if (k == order[1]) // Remaining pawns |
||
950 | { |
||
951 | d->groupIdx[1] = idx; |
||
952 | idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; |
||
953 | } |
||
954 | else // Remainig pieces |
||
955 | { |
||
956 | d->groupIdx[next] = idx; |
||
957 | idx *= Binomial[d->groupLen[next]][freeSquares]; |
||
958 | freeSquares -= d->groupLen[next++]; |
||
959 | } |
||
960 | |||
961 | d->groupIdx[n] = idx; |
||
962 | } |
||
963 | |||
964 | // In Recursive Pairing each symbol represents a pair of childern symbols. So |
||
965 | // read d->btree[] symbols data and expand each one in his left and right child |
||
966 | // symbol until reaching the leafs that represent the symbol value. |
||
967 | uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { |
||
968 | |||
969 | visited[s] = true; // We can set it now because tree is acyclic |
||
970 | Sym sr = d->btree[s].get<LR::Right>(); |
||
971 | |||
972 | if (sr == 0xFFF) |
||
973 | return 0; |
||
974 | |||
975 | Sym sl = d->btree[s].get<LR::Left>(); |
||
976 | |||
977 | if (!visited[sl]) |
||
978 | d->symlen[sl] = set_symlen(d, sl, visited); |
||
979 | |||
980 | if (!visited[sr]) |
||
981 | d->symlen[sr] = set_symlen(d, sr, visited); |
||
982 | |||
983 | return d->symlen[sl] + d->symlen[sr] + 1; |
||
984 | } |
||
985 | |||
986 | uint8_t* set_sizes(PairsData* d, uint8_t* data) { |
||
987 | |||
988 | d->flags = *data++; |
||
989 | |||
990 | if (d->flags & TBFlag::SingleValue) { |
||
991 | d->blocksNum = d->blockLengthSize = 0; |
||
992 | d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init |
||
993 | d->minSymLen = *data++; // Here we store the single value |
||
994 | return data; |
||
96 | pmbaty | 995 | } |
996 | |||
169 | pmbaty | 997 | // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] |
998 | // element stores the biggest index that is the tb size. |
||
999 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; |
||
1000 | |||
1001 | d->sizeofBlock = 1ULL << *data++; |
||
1002 | d->span = 1ULL << *data++; |
||
1003 | d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast |
||
1004 | int padding = number<uint8_t, LittleEndian>(data++); |
||
1005 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); |
||
1006 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] |
||
1007 | // does not point out of range. |
||
1008 | d->maxSymLen = *data++; |
||
1009 | d->minSymLen = *data++; |
||
1010 | d->lowestSym = (Sym*)data; |
||
1011 | d->base64.resize(d->maxSymLen - d->minSymLen + 1); |
||
1012 | |||
1013 | // The canonical code is ordered such that longer symbols (in terms of |
||
1014 | // the number of bits of their Huffman code) have lower numeric value, |
||
1015 | // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). |
||
1016 | // Starting from this we compute a base64[] table indexed by symbol length |
||
1017 | // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. |
||
1018 | // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf |
||
1019 | for (int i = d->base64.size() - 2; i >= 0; --i) { |
||
1020 | d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) |
||
1021 | - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; |
||
1022 | |||
1023 | assert(d->base64[i] * 2 >= d->base64[i+1]); |
||
1024 | } |
||
1025 | |||
1026 | // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more |
||
1027 | // than d->base64[i+1] and given the above assert condition, we ensure that |
||
1028 | // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i |
||
1029 | // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. |
||
1030 | for (size_t i = 0; i < d->base64.size(); ++i) |
||
1031 | d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits |
||
1032 | |||
1033 | data += d->base64.size() * sizeof(Sym); |
||
1034 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); |
||
1035 | d->btree = (LR*)data; |
||
1036 | |||
1037 | // The comrpession scheme used is "Recursive Pairing", that replaces the most |
||
1038 | // frequent adjacent pair of symbols in the source message by a new symbol, |
||
1039 | // reevaluating the frequencies of all of the symbol pairs with respect to |
||
1040 | // the extended alphabet, and then repeating the process. |
||
1041 | // See http://www.larsson.dogma.net/dcc99.pdf |
||
1042 | std::vector<bool> visited(d->symlen.size()); |
||
1043 | |||
1044 | for (Sym sym = 0; sym < d->symlen.size(); ++sym) |
||
1045 | if (!visited[sym]) |
||
1046 | d->symlen[sym] = set_symlen(d, sym, visited); |
||
1047 | |||
1048 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); |
||
96 | pmbaty | 1049 | } |
1050 | |||
169 | pmbaty | 1051 | template<typename T> |
1052 | uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; } |
||
96 | pmbaty | 1053 | |
169 | pmbaty | 1054 | template<typename T> |
1055 | uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) { |
||
96 | pmbaty | 1056 | |
169 | pmbaty | 1057 | p.map = data; |
1058 | |||
1059 | for (File f = FILE_A; f <= maxFile; ++f) { |
||
1060 | if (item(p, 0, f).precomp->flags & TBFlag::Mapped) |
||
1061 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x |
||
1062 | item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1); |
||
1063 | data += *data + 1; |
||
1064 | } |
||
96 | pmbaty | 1065 | } |
1066 | |||
169 | pmbaty | 1067 | return data += (uintptr_t)data & 1; // Word alignment |
96 | pmbaty | 1068 | } |
1069 | |||
169 | pmbaty | 1070 | template<typename Entry, typename T> |
1071 | void do_init(Entry& e, T& p, uint8_t* data) { |
||
96 | pmbaty | 1072 | |
169 | pmbaty | 1073 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
96 | pmbaty | 1074 | |
169 | pmbaty | 1075 | PairsData* d; |
96 | pmbaty | 1076 | |
169 | pmbaty | 1077 | enum { Split = 1, HasPawns = 2 }; |
96 | pmbaty | 1078 | |
169 | pmbaty | 1079 | assert(e.hasPawns == !!(*data & HasPawns)); |
1080 | assert((e.key != e.key2) == !!(*data & Split)); |
||
96 | pmbaty | 1081 | |
169 | pmbaty | 1082 | data++; // First byte stores flags |
1083 | |||
1084 | const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1; |
||
1085 | const File MaxFile = e.hasPawns ? FILE_D : FILE_A; |
||
1086 | |||
1087 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides |
||
1088 | |||
1089 | assert(!pp || e.pawnTable.pawnCount[0]); |
||
1090 | |||
1091 | for (File f = FILE_A; f <= MaxFile; ++f) { |
||
1092 | |||
1093 | for (int i = 0; i < Sides; i++) |
||
1094 | item(p, i, f).precomp = new PairsData(); |
||
1095 | |||
1096 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, |
||
1097 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; |
||
1098 | data += 1 + pp; |
||
1099 | |||
1100 | for (int k = 0; k < e.pieceCount; ++k, ++data) |
||
1101 | for (int i = 0; i < Sides; i++) |
||
1102 | item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); |
||
1103 | |||
1104 | for (int i = 0; i < Sides; ++i) |
||
1105 | set_groups(e, item(p, i, f).precomp, order[i], f); |
||
1106 | } |
||
1107 | |||
1108 | data += (uintptr_t)data & 1; // Word alignment |
||
1109 | |||
1110 | for (File f = FILE_A; f <= MaxFile; ++f) |
||
1111 | for (int i = 0; i < Sides; i++) |
||
1112 | data = set_sizes(item(p, i, f).precomp, data); |
||
1113 | |||
1114 | if (!IsWDL) |
||
1115 | data = set_dtz_map(e, p, data, MaxFile); |
||
1116 | |||
1117 | for (File f = FILE_A; f <= MaxFile; ++f) |
||
1118 | for (int i = 0; i < Sides; i++) { |
||
1119 | (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data; |
||
1120 | data += d->sparseIndexSize * sizeof(SparseEntry); |
||
96 | pmbaty | 1121 | } |
169 | pmbaty | 1122 | |
1123 | for (File f = FILE_A; f <= MaxFile; ++f) |
||
1124 | for (int i = 0; i < Sides; i++) { |
||
1125 | (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data; |
||
1126 | data += d->blockLengthSize * sizeof(uint16_t); |
||
1127 | } |
||
1128 | |||
1129 | for (File f = FILE_A; f <= MaxFile; ++f) |
||
1130 | for (int i = 0; i < Sides; i++) { |
||
1131 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment |
||
1132 | (d = item(p, i, f).precomp)->data = data; |
||
1133 | data += d->blocksNum * d->sizeofBlock; |
||
1134 | } |
||
1135 | } |
||
1136 | |||
1137 | template<typename Entry> |
||
1138 | void* init(Entry& e, const Position& pos) { |
||
1139 | |||
1140 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
||
1141 | |||
1142 | static Mutex mutex; |
||
1143 | |||
1144 | // Avoid a thread reads 'ready' == true while another is still in do_init(), |
||
1145 | // this could happen due to compiler reordering. |
||
1146 | if (e.ready.load(std::memory_order_acquire)) |
||
1147 | return e.baseAddress; |
||
1148 | |||
1149 | std::unique_lock<Mutex> lk(mutex); |
||
1150 | |||
1151 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock |
||
1152 | return e.baseAddress; |
||
1153 | |||
1154 | // Pieces strings in decreasing order for each color, like ("KPP","KR") |
||
1155 | std::string fname, w, b; |
||
1156 | for (PieceType pt = KING; pt >= PAWN; --pt) { |
||
1157 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); |
||
1158 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); |
||
96 | pmbaty | 1159 | } |
1160 | |||
169 | pmbaty | 1161 | const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, |
1162 | { 0x71, 0xE8, 0x23, 0x5D } }; |
||
1163 | |||
1164 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) |
||
1165 | + (IsWDL ? ".rtbw" : ".rtbz"); |
||
1166 | |||
1167 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]); |
||
1168 | if (data) |
||
1169 | e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data); |
||
1170 | |||
1171 | e.ready.store(true, std::memory_order_release); |
||
1172 | return e.baseAddress; |
||
96 | pmbaty | 1173 | } |
1174 | |||
169 | pmbaty | 1175 | template<typename E, typename T = typename Ret<E>::type> |
1176 | T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { |
||
96 | pmbaty | 1177 | |
169 | pmbaty | 1178 | if (!(pos.pieces() ^ pos.pieces(KING))) |
1179 | return T(WDLDraw); // KvK |
||
96 | pmbaty | 1180 | |
169 | pmbaty | 1181 | E* entry = EntryTable.get<E>(pos.material_key()); |
96 | pmbaty | 1182 | |
169 | pmbaty | 1183 | if (!entry || !init(*entry, pos)) |
1184 | return *result = FAIL, T(); |
||
96 | pmbaty | 1185 | |
169 | pmbaty | 1186 | return do_probe_table(pos, entry, wdl, result); |
1187 | } |
||
96 | pmbaty | 1188 | |
169 | pmbaty | 1189 | // For a position where the side to move has a winning capture it is not necessary |
1190 | // to store a winning value so the generator treats such positions as "don't cares" |
||
1191 | // and tries to assign to it a value that improves the compression ratio. Similarly, |
||
1192 | // if the side to move has a drawing capture, then the position is at least drawn. |
||
1193 | // If the position is won, then the TB needs to store a win value. But if the |
||
1194 | // position is drawn, the TB may store a loss value if that is better for compression. |
||
1195 | // All of this means that during probing, the engine must look at captures and probe |
||
1196 | // their results and must probe the position itself. The "best" result of these |
||
1197 | // probes is the correct result for the position. |
||
1198 | // DTZ table don't store values when a following move is a zeroing winning move |
||
1199 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions |
||
1200 | // where the best move is an ep-move (even if losing). So in all these cases set |
||
1201 | // the state to ZEROING_BEST_MOVE. |
||
1202 | template<bool CheckZeroingMoves = false> |
||
1203 | WDLScore search(Position& pos, ProbeState* result) { |
||
1204 | |||
1205 | WDLScore value, bestValue = WDLLoss; |
||
1206 | StateInfo st; |
||
1207 | |||
1208 | auto moveList = MoveList<LEGAL>(pos); |
||
1209 | size_t totalCount = moveList.size(), moveCount = 0; |
||
1210 | |||
1211 | for (const Move& move : moveList) |
||
1212 | { |
||
1213 | if ( !pos.capture(move) |
||
1214 | && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) |
||
1215 | continue; |
||
1216 | |||
1217 | moveCount++; |
||
1218 | |||
1219 | pos.do_move(move, st); |
||
1220 | value = -search(pos, result); |
||
1221 | pos.undo_move(move); |
||
1222 | |||
1223 | if (*result == FAIL) |
||
1224 | return WDLDraw; |
||
1225 | |||
1226 | if (value > bestValue) |
||
1227 | { |
||
1228 | bestValue = value; |
||
1229 | |||
1230 | if (value >= WDLWin) |
||
1231 | { |
||
1232 | *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move |
||
1233 | return value; |
||
1234 | } |
||
1235 | } |
||
1236 | } |
||
1237 | |||
1238 | // In case we have already searched all the legal moves we don't have to probe |
||
1239 | // the TB because the stored score could be wrong. For instance TB tables |
||
1240 | // do not contain information on position with ep rights, so in this case |
||
1241 | // the result of probe_wdl_table is wrong. Also in case of only capture |
||
1242 | // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to |
||
1243 | // return with ZEROING_BEST_MOVE set. |
||
1244 | bool noMoreMoves = (moveCount && moveCount == totalCount); |
||
1245 | |||
1246 | if (noMoreMoves) |
||
1247 | value = bestValue; |
||
96 | pmbaty | 1248 | else |
169 | pmbaty | 1249 | { |
1250 | value = probe_table<WDLEntry>(pos, result); |
||
96 | pmbaty | 1251 | |
169 | pmbaty | 1252 | if (*result == FAIL) |
1253 | return WDLDraw; |
||
96 | pmbaty | 1254 | } |
1255 | |||
169 | pmbaty | 1256 | // DTZ stores a "don't care" value if bestValue is a win |
1257 | if (bestValue >= value) |
||
1258 | return *result = ( bestValue > WDLDraw |
||
1259 | || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; |
||
96 | pmbaty | 1260 | |
169 | pmbaty | 1261 | return *result = OK, value; |
1262 | } |
||
1263 | |||
1264 | } // namespace |
||
1265 | |||
1266 | void Tablebases::init(const std::string& paths) { |
||
1267 | |||
1268 | EntryTable.clear(); |
||
1269 | MaxCardinality = 0; |
||
1270 | TBFile::Paths = paths; |
||
1271 | |||
1272 | if (paths.empty() || paths == "<empty>") |
||
1273 | return; |
||
1274 | |||
1275 | // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 |
||
1276 | int code = 0; |
||
1277 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
1278 | if (off_A1H8(s) < 0) |
||
1279 | MapB1H1H7[s] = code++; |
||
1280 | |||
1281 | // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 |
||
1282 | std::vector<Square> diagonal; |
||
1283 | code = 0; |
||
1284 | for (Square s = SQ_A1; s <= SQ_D4; ++s) |
||
1285 | if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) |
||
1286 | MapA1D1D4[s] = code++; |
||
1287 | |||
1288 | else if (!off_A1H8(s) && file_of(s) <= FILE_D) |
||
1289 | diagonal.push_back(s); |
||
1290 | |||
1291 | // Diagonal squares are encoded as last ones |
||
1292 | for (auto s : diagonal) |
||
1293 | MapA1D1D4[s] = code++; |
||
1294 | |||
1295 | // MapKK[] encodes all the 461 possible legal positions of two kings where |
||
1296 | // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 |
||
1297 | // diagonal, the other one shall not to be above the a1-h8 diagonal. |
||
1298 | std::vector<std::pair<int, Square>> bothOnDiagonal; |
||
1299 | code = 0; |
||
1300 | for (int idx = 0; idx < 10; idx++) |
||
1301 | for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) |
||
1302 | if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 |
||
1303 | { |
||
1304 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
||
1305 | if ((PseudoAttacks[KING][s1] | s1) & s2) |
||
1306 | continue; // Illegal position |
||
1307 | |||
1308 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) |
||
1309 | continue; // First on diagonal, second above |
||
1310 | |||
1311 | else if (!off_A1H8(s1) && !off_A1H8(s2)) |
||
1312 | bothOnDiagonal.push_back(std::make_pair(idx, s2)); |
||
1313 | |||
1314 | else |
||
1315 | MapKK[idx][s2] = code++; |
||
1316 | } |
||
1317 | |||
1318 | // Legal positions with both kings on diagonal are encoded as last ones |
||
1319 | for (auto p : bothOnDiagonal) |
||
1320 | MapKK[p.first][p.second] = code++; |
||
1321 | |||
1322 | // Binomial[] stores the Binomial Coefficents using Pascal rule. There |
||
1323 | // are Binomial[k][n] ways to choose k elements from a set of n elements. |
||
1324 | Binomial[0][0] = 1; |
||
1325 | |||
1326 | for (int n = 1; n < 64; n++) // Squares |
||
1327 | for (int k = 0; k < 6 && k <= n; ++k) // Pieces |
||
1328 | Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) |
||
1329 | + (k < n ? Binomial[k ][n - 1] : 0); |
||
1330 | |||
1331 | // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible |
||
1332 | // available squares when the leading one is in 's'. Moreover the pawn with |
||
1333 | // highest MapPawns[] is the leading pawn, the one nearest the edge and, |
||
1334 | // among pawns with same file, the one with lowest rank. |
||
1335 | int availableSquares = 47; // Available squares when lead pawn is in a2 |
||
1336 | |||
1337 | // Init the tables for the encoding of leading pawns group: with 6-men TB we |
||
1338 | // can have up to 4 leading pawns (KPPPPK). |
||
1339 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt) |
||
1340 | for (File f = FILE_A; f <= FILE_D; ++f) |
||
1341 | { |
||
1342 | // Restart the index at every file because TB table is splitted |
||
1343 | // by file, so we can reuse the same index for different files. |
||
1344 | int idx = 0; |
||
1345 | |||
1346 | // Sum all possible combinations for a given file, starting with |
||
1347 | // the leading pawn on rank 2 and increasing the rank. |
||
1348 | for (Rank r = RANK_2; r <= RANK_7; ++r) |
||
1349 | { |
||
1350 | Square sq = make_square(f, r); |
||
1351 | |||
1352 | // Compute MapPawns[] at first pass. |
||
1353 | // If sq is the leading pawn square, any other pawn cannot be |
||
1354 | // below or more toward the edge of sq. There are 47 available |
||
1355 | // squares when sq = a2 and reduced by 2 for any rank increase |
||
1356 | // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 |
||
1357 | if (leadPawnsCnt == 1) |
||
1358 | { |
||
1359 | MapPawns[sq] = availableSquares--; |
||
1360 | MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip |
||
1361 | } |
||
1362 | LeadPawnIdx[leadPawnsCnt][sq] = idx; |
||
1363 | idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; |
||
1364 | } |
||
1365 | // After a file is traversed, store the cumulated per-file index |
||
1366 | LeadPawnsSize[leadPawnsCnt][f] = idx; |
||
96 | pmbaty | 1367 | } |
169 | pmbaty | 1368 | |
1369 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { |
||
1370 | EntryTable.insert({KING, p1, KING}); |
||
1371 | |||
1372 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { |
||
1373 | EntryTable.insert({KING, p1, p2, KING}); |
||
1374 | EntryTable.insert({KING, p1, KING, p2}); |
||
1375 | |||
1376 | for (PieceType p3 = PAWN; p3 < KING; ++p3) |
||
1377 | EntryTable.insert({KING, p1, p2, KING, p3}); |
||
1378 | |||
1379 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { |
||
1380 | EntryTable.insert({KING, p1, p2, p3, KING}); |
||
1381 | |||
1382 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) |
||
1383 | EntryTable.insert({KING, p1, p2, p3, p4, KING}); |
||
1384 | |||
1385 | for (PieceType p4 = PAWN; p4 < KING; ++p4) |
||
1386 | EntryTable.insert({KING, p1, p2, p3, KING, p4}); |
||
1387 | } |
||
1388 | |||
1389 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) |
||
1390 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) |
||
1391 | EntryTable.insert({KING, p1, p2, KING, p3, p4}); |
||
1392 | } |
||
96 | pmbaty | 1393 | } |
169 | pmbaty | 1394 | |
1395 | sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl; |
||
96 | pmbaty | 1396 | } |
1397 | |||
169 | pmbaty | 1398 | // Probe the WDL table for a particular position. |
1399 | // If *result != FAIL, the probe was successful. |
||
1400 | // The return value is from the point of view of the side to move: |
||
1401 | // -2 : loss |
||
1402 | // -1 : loss, but draw under 50-move rule |
||
1403 | // 0 : draw |
||
1404 | // 1 : win, but draw under 50-move rule |
||
1405 | // 2 : win |
||
1406 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { |
||
96 | pmbaty | 1407 | |
169 | pmbaty | 1408 | *result = OK; |
1409 | return search(pos, result); |
||
1410 | } |
||
1411 | |||
96 | pmbaty | 1412 | // Probe the DTZ table for a particular position. |
169 | pmbaty | 1413 | // If *result != FAIL, the probe was successful. |
96 | pmbaty | 1414 | // The return value is from the point of view of the side to move: |
1415 | // n < -100 : loss, but draw under 50-move rule |
||
1416 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
||
1417 | // 0 : draw |
||
1418 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
||
1419 | // 100 < n : win, but draw under 50-move rule |
||
1420 | // |
||
1421 | // The return value n can be off by 1: a return value -n can mean a loss |
||
1422 | // in n+1 ply and a return value +n can mean a win in n+1 ply. This |
||
1423 | // cannot happen for tables with positions exactly on the "edge" of |
||
1424 | // the 50-move rule. |
||
1425 | // |
||
1426 | // This implies that if dtz > 0 is returned, the position is certainly |
||
1427 | // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine |
||
1428 | // picks moves that preserve dtz + 50-move-counter <= 99. |
||
1429 | // |
||
1430 | // If n = 100 immediately after a capture or pawn move, then the position |
||
1431 | // is also certainly a win, and during the whole phase until the next |
||
1432 | // capture or pawn move, the inequality to be preserved is |
||
1433 | // dtz + 50-movecounter <= 100. |
||
1434 | // |
||
1435 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, |
||
1436 | // then do not accept moves leading to dtz + 50-move-counter == 100. |
||
169 | pmbaty | 1437 | int Tablebases::probe_dtz(Position& pos, ProbeState* result) { |
96 | pmbaty | 1438 | |
169 | pmbaty | 1439 | *result = OK; |
1440 | WDLScore wdl = search<true>(pos, result); |
||
96 | pmbaty | 1441 | |
169 | pmbaty | 1442 | if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws |
1443 | return 0; |
||
96 | pmbaty | 1444 | |
169 | pmbaty | 1445 | // DTZ stores a 'don't care' value in this case, or even a plain wrong |
1446 | // one as in case the best move is a losing ep, so it cannot be probed. |
||
1447 | if (*result == ZEROING_BEST_MOVE) |
||
1448 | return dtz_before_zeroing(wdl); |
||
96 | pmbaty | 1449 | |
169 | pmbaty | 1450 | int dtz = probe_table<DTZEntry>(pos, result, wdl); |
96 | pmbaty | 1451 | |
169 | pmbaty | 1452 | if (*result == FAIL) |
1453 | return 0; |
||
1454 | |||
1455 | if (*result != CHANGE_STM) |
||
1456 | return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); |
||
1457 | |||
1458 | // DTZ stores results for the other side, so we need to do a 1-ply search and |
||
1459 | // find the winning move that minimizes DTZ. |
||
1460 | StateInfo st; |
||
1461 | int minDTZ = 0xFFFF; |
||
1462 | |||
1463 | for (const Move& move : MoveList<LEGAL>(pos)) |
||
1464 | { |
||
1465 | bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; |
||
1466 | |||
1467 | pos.do_move(move, st); |
||
1468 | |||
1469 | // For zeroing moves we want the dtz of the move _before_ doing it, |
||
1470 | // otherwise we will get the dtz of the next move sequence. Search the |
||
1471 | // position after the move to get the score sign (because even in a |
||
1472 | // winning position we could make a losing capture or going for a draw). |
||
1473 | dtz = zeroing ? -dtz_before_zeroing(search(pos, result)) |
||
1474 | : -probe_dtz(pos, result); |
||
1475 | |||
1476 | pos.undo_move(move); |
||
1477 | |||
1478 | if (*result == FAIL) |
||
1479 | return 0; |
||
1480 | |||
1481 | // Convert result from 1-ply search. Zeroing moves are already accounted |
||
1482 | // by dtz_before_zeroing() that returns the DTZ of the previous move. |
||
1483 | if (!zeroing) |
||
1484 | dtz += sign_of(dtz); |
||
1485 | |||
1486 | // Skip the draws and if we are winning only pick positive dtz |
||
1487 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) |
||
1488 | minDTZ = dtz; |
||
96 | pmbaty | 1489 | } |
1490 | |||
169 | pmbaty | 1491 | // Special handle a mate position, when there are no legal moves, in this |
1492 | // case return value is somewhat arbitrary, so stick to the original TB code |
||
1493 | // that returns -1 in this case. |
||
1494 | return minDTZ == 0xFFFF ? -1 : minDTZ; |
||
96 | pmbaty | 1495 | } |
1496 | |||
1497 | // Check whether there has been at least one repetition of positions |
||
1498 | // since the last capture or pawn move. |
||
1499 | static int has_repeated(StateInfo *st) |
||
1500 | { |
||
169 | pmbaty | 1501 | while (1) { |
1502 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); |
||
1503 | |||
1504 | if (e < i) |
||
1505 | return 0; |
||
1506 | |||
1507 | StateInfo *stp = st->previous->previous; |
||
1508 | |||
1509 | do { |
||
1510 | stp = stp->previous->previous; |
||
1511 | |||
1512 | if (stp->key == st->key) |
||
1513 | return 1; |
||
1514 | |||
1515 | i += 2; |
||
1516 | } while (i <= e); |
||
1517 | |||
1518 | st = st->previous; |
||
1519 | } |
||
96 | pmbaty | 1520 | } |
1521 | |||
1522 | // Use the DTZ tables to filter out moves that don't preserve the win or draw. |
||
1523 | // If the position is lost, but DTZ is fairly high, only keep moves that |
||
1524 | // maximise DTZ. |
||
1525 | // |
||
1526 | // A return value false indicates that not all probes were successful and that |
||
1527 | // no moves were filtered out. |
||
154 | pmbaty | 1528 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) |
96 | pmbaty | 1529 | { |
169 | pmbaty | 1530 | assert(rootMoves.size()); |
96 | pmbaty | 1531 | |
169 | pmbaty | 1532 | ProbeState result; |
1533 | int dtz = probe_dtz(pos, &result); |
||
96 | pmbaty | 1534 | |
169 | pmbaty | 1535 | if (result == FAIL) |
1536 | return false; |
||
96 | pmbaty | 1537 | |
169 | pmbaty | 1538 | StateInfo st; |
1539 | |||
1540 | // Probe each move |
||
1541 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1542 | Move move = rootMoves[i].pv[0]; |
||
1543 | pos.do_move(move, st); |
||
1544 | int v = 0; |
||
1545 | |||
1546 | if (pos.checkers() && dtz > 0) { |
||
1547 | ExtMove s[MAX_MOVES]; |
||
1548 | |||
1549 | if (generate<LEGAL>(pos, s) == s) |
||
1550 | v = 1; |
||
1551 | } |
||
1552 | |||
1553 | if (!v) { |
||
1554 | if (st.rule50 != 0) { |
||
1555 | v = -probe_dtz(pos, &result); |
||
1556 | |||
1557 | if (v > 0) |
||
1558 | ++v; |
||
1559 | else if (v < 0) |
||
1560 | --v; |
||
1561 | } else { |
||
1562 | v = -probe_wdl(pos, &result); |
||
1563 | v = dtz_before_zeroing(WDLScore(v)); |
||
1564 | } |
||
1565 | } |
||
1566 | |||
1567 | pos.undo_move(move); |
||
1568 | |||
1569 | if (result == FAIL) |
||
1570 | return false; |
||
1571 | |||
1572 | rootMoves[i].score = (Value)v; |
||
96 | pmbaty | 1573 | } |
1574 | |||
169 | pmbaty | 1575 | // Obtain 50-move counter for the root position. |
1576 | // In Stockfish there seems to be no clean way, so we do it like this: |
||
1577 | int cnt50 = st.previous ? st.previous->rule50 : 0; |
||
96 | pmbaty | 1578 | |
169 | pmbaty | 1579 | // Use 50-move counter to determine whether the root position is |
1580 | // won, lost or drawn. |
||
1581 | WDLScore wdl = WDLDraw; |
||
96 | pmbaty | 1582 | |
169 | pmbaty | 1583 | if (dtz > 0) |
1584 | wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin; |
||
1585 | else if (dtz < 0) |
||
1586 | wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss; |
||
96 | pmbaty | 1587 | |
169 | pmbaty | 1588 | // Determine the score to report to the user. |
1589 | score = WDL_to_value[wdl + 2]; |
||
1590 | |||
1591 | // If the position is winning or losing, but too few moves left, adjust the |
||
1592 | // score to show how close it is to winning or losing. |
||
1593 | // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). |
||
1594 | if (wdl == WDLCursedWin && dtz <= 100) |
||
1595 | score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); |
||
1596 | else if (wdl == WDLBlessedLoss && dtz >= -100) |
||
1597 | score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); |
||
1598 | |||
1599 | // Now be a bit smart about filtering out moves. |
||
1600 | size_t j = 0; |
||
1601 | |||
1602 | if (dtz > 0) { // winning (or 50-move rule draw) |
||
1603 | int best = 0xffff; |
||
1604 | |||
1605 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1606 | int v = rootMoves[i].score; |
||
1607 | |||
1608 | if (v > 0 && v < best) |
||
1609 | best = v; |
||
1610 | } |
||
1611 | |||
1612 | int max = best; |
||
1613 | |||
1614 | // If the current phase has not seen repetitions, then try all moves |
||
1615 | // that stay safely within the 50-move budget, if there are any. |
||
1616 | if (!has_repeated(st.previous) && best + cnt50 <= 99) |
||
1617 | max = 99 - cnt50; |
||
1618 | |||
1619 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1620 | int v = rootMoves[i].score; |
||
1621 | |||
1622 | if (v > 0 && v <= max) |
||
1623 | rootMoves[j++] = rootMoves[i]; |
||
1624 | } |
||
1625 | } else if (dtz < 0) { // losing (or 50-move rule draw) |
||
1626 | int best = 0; |
||
1627 | |||
1628 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1629 | int v = rootMoves[i].score; |
||
1630 | |||
1631 | if (v < best) |
||
1632 | best = v; |
||
1633 | } |
||
1634 | |||
1635 | // Try all moves, unless we approach or have a 50-move rule draw. |
||
1636 | if (-best * 2 + cnt50 < 100) |
||
1637 | return true; |
||
1638 | |||
1639 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1640 | if (rootMoves[i].score == best) |
||
1641 | rootMoves[j++] = rootMoves[i]; |
||
1642 | } |
||
1643 | } else { // drawing |
||
1644 | // Try all moves that preserve the draw. |
||
1645 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1646 | if (rootMoves[i].score == 0) |
||
1647 | rootMoves[j++] = rootMoves[i]; |
||
1648 | } |
||
96 | pmbaty | 1649 | } |
1650 | |||
169 | pmbaty | 1651 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
1652 | |||
1653 | return true; |
||
96 | pmbaty | 1654 | } |
1655 | |||
1656 | // Use the WDL tables to filter out moves that don't preserve the win or draw. |
||
1657 | // This is a fallback for the case that some or all DTZ tables are missing. |
||
1658 | // |
||
1659 | // A return value false indicates that not all probes were successful and that |
||
1660 | // no moves were filtered out. |
||
154 | pmbaty | 1661 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) |
96 | pmbaty | 1662 | { |
169 | pmbaty | 1663 | ProbeState result; |
96 | pmbaty | 1664 | |
169 | pmbaty | 1665 | WDLScore wdl = Tablebases::probe_wdl(pos, &result); |
96 | pmbaty | 1666 | |
169 | pmbaty | 1667 | if (result == FAIL) |
1668 | return false; |
||
96 | pmbaty | 1669 | |
169 | pmbaty | 1670 | score = WDL_to_value[wdl + 2]; |
96 | pmbaty | 1671 | |
169 | pmbaty | 1672 | StateInfo st; |
96 | pmbaty | 1673 | |
169 | pmbaty | 1674 | int best = WDLLoss; |
96 | pmbaty | 1675 | |
169 | pmbaty | 1676 | // Probe each move |
1677 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1678 | Move move = rootMoves[i].pv[0]; |
||
1679 | pos.do_move(move, st); |
||
1680 | WDLScore v = -Tablebases::probe_wdl(pos, &result); |
||
1681 | pos.undo_move(move); |
||
1682 | |||
1683 | if (result == FAIL) |
||
1684 | return false; |
||
1685 | |||
1686 | rootMoves[i].score = (Value)v; |
||
1687 | |||
1688 | if (v > best) |
||
1689 | best = v; |
||
1690 | } |
||
1691 | |||
1692 | size_t j = 0; |
||
1693 | |||
1694 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
||
1695 | if (rootMoves[i].score == best) |
||
1696 | rootMoves[j++] = rootMoves[i]; |
||
1697 | } |
||
1698 | |||
1699 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
||
1700 | |||
1701 | return true; |
||
96 | pmbaty | 1702 | } |