Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
23 | #include <cmath> |
||
24 | #include <cstring> // For std::memset |
||
25 | #include <iostream> |
||
26 | #include <sstream> |
||
27 | |||
28 | #include "evaluate.h" |
||
29 | #include "misc.h" |
||
30 | #include "movegen.h" |
||
31 | #include "movepick.h" |
||
32 | #include "search.h" |
||
33 | #include "timeman.h" |
||
34 | #include "thread.h" |
||
35 | #include "tt.h" |
||
36 | #include "uci.h" |
||
37 | #include "syzygy/tbprobe.h" |
||
38 | |||
39 | namespace Search { |
||
40 | |||
41 | SignalsType Signals; |
||
42 | LimitsType Limits; |
||
43 | StateStackPtr SetupStates; |
||
44 | } |
||
45 | |||
46 | namespace Tablebases { |
||
47 | |||
48 | int Cardinality; |
||
49 | uint64_t Hits; |
||
50 | bool RootInTB; |
||
51 | bool UseRule50; |
||
52 | Depth ProbeDepth; |
||
53 | Value Score; |
||
54 | } |
||
55 | |||
56 | namespace TB = Tablebases; |
||
57 | |||
58 | using std::string; |
||
59 | using Eval::evaluate; |
||
60 | using namespace Search; |
||
61 | |||
62 | namespace { |
||
63 | |||
64 | // Different node types, used as a template parameter |
||
65 | enum NodeType { NonPV, PV }; |
||
66 | |||
67 | // Razoring and futility margin based on depth |
||
68 | const int razor_margin[4] = { 483, 570, 603, 554 }; |
||
69 | Value futility_margin(Depth d) { return Value(200 * d); } |
||
70 | |||
71 | // Futility and reductions lookup tables, initialized at startup |
||
72 | int FutilityMoveCounts[2][16]; // [improving][depth] |
||
73 | Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber] |
||
74 | |||
75 | template <bool PvNode> Depth reduction(bool i, Depth d, int mn) { |
||
76 | return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)]; |
||
77 | } |
||
78 | |||
79 | // Skill structure is used to implement strength limit |
||
80 | struct Skill { |
||
81 | Skill(int l) : level(l) {} |
||
82 | bool enabled() const { return level < 20; } |
||
83 | bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; } |
||
84 | Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); } |
||
85 | Move pick_best(size_t multiPV); |
||
86 | |||
87 | int level; |
||
88 | Move best = MOVE_NONE; |
||
89 | }; |
||
90 | |||
91 | // EasyMoveManager structure is used to detect an 'easy move'. When the PV is |
||
92 | // stable across multiple search iterations, we can quickly return the best move. |
||
93 | struct EasyMoveManager { |
||
94 | |||
95 | void clear() { |
||
96 | stableCnt = 0; |
||
97 | expectedPosKey = 0; |
||
98 | pv[0] = pv[1] = pv[2] = MOVE_NONE; |
||
99 | } |
||
100 | |||
101 | Move get(Key key) const { |
||
102 | return expectedPosKey == key ? pv[2] : MOVE_NONE; |
||
103 | } |
||
104 | |||
105 | void update(Position& pos, const std::vector<Move>& newPv) { |
||
106 | |||
107 | assert(newPv.size() >= 3); |
||
108 | |||
109 | // Keep track of how many times in a row the 3rd ply remains stable |
||
110 | stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0; |
||
111 | |||
112 | if (!std::equal(newPv.begin(), newPv.begin() + 3, pv)) |
||
113 | { |
||
114 | std::copy(newPv.begin(), newPv.begin() + 3, pv); |
||
115 | |||
116 | StateInfo st[2]; |
||
117 | pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos))); |
||
118 | pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos))); |
||
119 | expectedPosKey = pos.key(); |
||
120 | pos.undo_move(newPv[1]); |
||
121 | pos.undo_move(newPv[0]); |
||
122 | } |
||
123 | } |
||
124 | |||
125 | int stableCnt; |
||
126 | Key expectedPosKey; |
||
127 | Move pv[3]; |
||
128 | }; |
||
129 | |||
130 | // Set of rows with half bits set to 1 and half to 0. It is used to allocate |
||
131 | // the search depths across the threads. |
||
132 | typedef std::vector<int> Row; |
||
133 | |||
134 | const Row HalfDensity[] = { |
||
135 | {0, 1}, |
||
136 | {1, 0}, |
||
137 | {0, 0, 1, 1}, |
||
138 | {0, 1, 1, 0}, |
||
139 | {1, 1, 0, 0}, |
||
140 | {1, 0, 0, 1}, |
||
141 | {0, 0, 0, 1, 1, 1}, |
||
142 | {0, 0, 1, 1, 1, 0}, |
||
143 | {0, 1, 1, 1, 0, 0}, |
||
144 | {1, 1, 1, 0, 0, 0}, |
||
145 | {1, 1, 0, 0, 0, 1}, |
||
146 | {1, 0, 0, 0, 1, 1}, |
||
147 | {0, 0, 0, 0, 1, 1, 1, 1}, |
||
148 | {0, 0, 0, 1, 1, 1, 1, 0}, |
||
149 | {0, 0, 1, 1, 1, 1, 0 ,0}, |
||
150 | {0, 1, 1, 1, 1, 0, 0 ,0}, |
||
151 | {1, 1, 1, 1, 0, 0, 0 ,0}, |
||
152 | {1, 1, 1, 0, 0, 0, 0 ,1}, |
||
153 | {1, 1, 0, 0, 0, 0, 1 ,1}, |
||
154 | {1, 0, 0, 0, 0, 1, 1 ,1}, |
||
155 | }; |
||
156 | |||
157 | const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value; |
||
158 | |||
159 | EasyMoveManager EasyMove; |
||
160 | Value DrawValue[COLOR_NB]; |
||
161 | CounterMoveHistoryStats CounterMoveHistory; |
||
162 | |||
163 | template <NodeType NT> |
||
164 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); |
||
165 | |||
166 | template <NodeType NT, bool InCheck> |
||
167 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); |
||
168 | |||
169 | Value value_to_tt(Value v, int ply); |
||
170 | Value value_from_tt(Value v, int ply); |
||
171 | void update_pv(Move* pv, Move move, Move* childPv); |
||
172 | void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt); |
||
173 | void check_time(); |
||
174 | |||
175 | } // namespace |
||
176 | |||
177 | |||
178 | /// Search::init() is called during startup to initialize various lookup tables |
||
179 | |||
180 | void Search::init() { |
||
181 | |||
182 | const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }}; |
||
183 | |||
184 | for (int pv = 0; pv <= 1; ++pv) |
||
185 | for (int imp = 0; imp <= 1; ++imp) |
||
186 | for (int d = 1; d < 64; ++d) |
||
187 | for (int mc = 1; mc < 64; ++mc) |
||
188 | { |
||
189 | double r = K[pv][0] + log(d) * log(mc) / K[pv][1]; |
||
190 | |||
191 | if (r >= 1.5) |
||
192 | Reductions[pv][imp][d][mc] = int(r) * ONE_PLY; |
||
193 | |||
194 | // Increase reduction when eval is not improving |
||
195 | if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY) |
||
196 | Reductions[pv][imp][d][mc] += ONE_PLY; |
||
197 | } |
||
198 | |||
199 | for (int d = 0; d < 16; ++d) |
||
200 | { |
||
201 | FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8)); |
||
202 | FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8)); |
||
203 | } |
||
204 | } |
||
205 | |||
206 | |||
207 | /// Search::clear() resets search state to zero, to obtain reproducible results |
||
208 | |||
209 | void Search::clear() { |
||
210 | |||
211 | TT.clear(); |
||
212 | CounterMoveHistory.clear(); |
||
213 | |||
214 | for (Thread* th : Threads) |
||
215 | { |
||
216 | th->history.clear(); |
||
217 | th->counterMoves.clear(); |
||
218 | } |
||
219 | |||
220 | Threads.main()->previousScore = VALUE_INFINITE; |
||
221 | } |
||
222 | |||
223 | |||
224 | /// Search::perft() is our utility to verify move generation. All the leaf nodes |
||
225 | /// up to the given depth are generated and counted, and the sum is returned. |
||
226 | template<bool Root> |
||
227 | uint64_t Search::perft(Position& pos, Depth depth) { |
||
228 | |||
229 | StateInfo st; |
||
230 | uint64_t cnt, nodes = 0; |
||
231 | CheckInfo ci(pos); |
||
232 | const bool leaf = (depth == 2 * ONE_PLY); |
||
233 | |||
234 | for (const auto& m : MoveList<LEGAL>(pos)) |
||
235 | { |
||
236 | if (Root && depth <= ONE_PLY) |
||
237 | cnt = 1, nodes++; |
||
238 | else |
||
239 | { |
||
240 | pos.do_move(m, st, pos.gives_check(m, ci)); |
||
241 | cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY); |
||
242 | nodes += cnt; |
||
243 | pos.undo_move(m); |
||
244 | } |
||
245 | if (Root) |
||
246 | sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; |
||
247 | } |
||
248 | return nodes; |
||
249 | } |
||
250 | |||
251 | template uint64_t Search::perft<true>(Position&, Depth); |
||
252 | |||
253 | |||
254 | /// MainThread::search() is called by the main thread when the program receives |
||
255 | /// the UCI 'go' command. It searches from the root position and outputs the "bestmove". |
||
256 | |||
257 | void MainThread::search() { |
||
258 | |||
259 | Color us = rootPos.side_to_move(); |
||
260 | Time.init(Limits, us, rootPos.game_ply()); |
||
261 | |||
262 | int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns |
||
263 | DrawValue[ us] = VALUE_DRAW - Value(contempt); |
||
264 | DrawValue[~us] = VALUE_DRAW + Value(contempt); |
||
265 | |||
266 | TB::Hits = 0; |
||
267 | TB::RootInTB = false; |
||
268 | TB::UseRule50 = Options["Syzygy50MoveRule"]; |
||
269 | TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY; |
||
270 | TB::Cardinality = Options["SyzygyProbeLimit"]; |
||
271 | |||
272 | // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality |
||
273 | if (TB::Cardinality > TB::MaxCardinality) |
||
274 | { |
||
275 | TB::Cardinality = TB::MaxCardinality; |
||
276 | TB::ProbeDepth = DEPTH_ZERO; |
||
277 | } |
||
278 | |||
279 | if (rootMoves.empty()) |
||
280 | { |
||
281 | rootMoves.push_back(RootMove(MOVE_NONE)); |
||
282 | sync_cout << "info depth 0 score " |
||
283 | << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) |
||
284 | << sync_endl; |
||
285 | } |
||
286 | else |
||
287 | { |
||
288 | if ( TB::Cardinality >= rootPos.count<ALL_PIECES>(WHITE) |
||
289 | + rootPos.count<ALL_PIECES>(BLACK) |
||
290 | && !rootPos.can_castle(ANY_CASTLING)) |
||
291 | { |
||
292 | // If the current root position is in the tablebases, then RootMoves |
||
293 | // contains only moves that preserve the draw or the win. |
||
294 | TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score); |
||
295 | |||
296 | if (TB::RootInTB) |
||
297 | TB::Cardinality = 0; // Do not probe tablebases during the search |
||
298 | |||
299 | else // If DTZ tables are missing, use WDL tables as a fallback |
||
300 | { |
||
301 | // Filter out moves that do not preserve the draw or the win. |
||
302 | TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score); |
||
303 | |||
304 | // Only probe during search if winning |
||
305 | if (TB::Score <= VALUE_DRAW) |
||
306 | TB::Cardinality = 0; |
||
307 | } |
||
308 | |||
309 | if (TB::RootInTB) |
||
310 | { |
||
311 | TB::Hits = rootMoves.size(); |
||
312 | |||
313 | if (!TB::UseRule50) |
||
314 | TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1 |
||
315 | : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1 |
||
316 | : VALUE_DRAW; |
||
317 | } |
||
318 | } |
||
319 | |||
320 | for (Thread* th : Threads) |
||
321 | { |
||
322 | th->maxPly = 0; |
||
323 | th->rootDepth = DEPTH_ZERO; |
||
324 | if (th != this) |
||
325 | { |
||
326 | th->rootPos = Position(rootPos, th); |
||
327 | th->rootMoves = rootMoves; |
||
328 | th->start_searching(); |
||
329 | } |
||
330 | } |
||
331 | |||
332 | Thread::search(); // Let's start searching! |
||
333 | } |
||
334 | |||
335 | // When playing in 'nodes as time' mode, subtract the searched nodes from |
||
336 | // the available ones before exiting. |
||
337 | if (Limits.npmsec) |
||
338 | Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); |
||
339 | |||
340 | // When we reach the maximum depth, we can arrive here without a raise of |
||
341 | // Signals.stop. However, if we are pondering or in an infinite search, |
||
342 | // the UCI protocol states that we shouldn't print the best move before the |
||
343 | // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here |
||
344 | // until the GUI sends one of those commands (which also raises Signals.stop). |
||
345 | if (!Signals.stop && (Limits.ponder || Limits.infinite)) |
||
346 | { |
||
347 | Signals.stopOnPonderhit = true; |
||
348 | wait(Signals.stop); |
||
349 | } |
||
350 | |||
351 | // Stop the threads if not already stopped |
||
352 | Signals.stop = true; |
||
353 | |||
354 | // Wait until all threads have finished |
||
355 | for (Thread* th : Threads) |
||
356 | if (th != this) |
||
357 | th->wait_for_search_finished(); |
||
358 | |||
359 | // Check if there are threads with a better score than main thread |
||
360 | Thread* bestThread = this; |
||
361 | if ( !this->easyMovePlayed |
||
362 | && Options["MultiPV"] == 1 |
||
363 | && !Skill(Options["Skill Level"]).enabled()) |
||
364 | { |
||
365 | for (Thread* th : Threads) |
||
366 | if ( th->completedDepth > bestThread->completedDepth |
||
367 | && th->rootMoves[0].score > bestThread->rootMoves[0].score) |
||
368 | bestThread = th; |
||
369 | } |
||
370 | |||
371 | previousScore = bestThread->rootMoves[0].score; |
||
372 | |||
373 | // Send new PV when needed |
||
374 | if (bestThread != this) |
||
375 | sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; |
||
376 | |||
377 | sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); |
||
378 | |||
379 | if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) |
||
380 | std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); |
||
381 | |||
382 | std::cout << sync_endl; |
||
383 | } |
||
384 | |||
385 | |||
386 | // Thread::search() is the main iterative deepening loop. It calls search() |
||
387 | // repeatedly with increasing depth until the allocated thinking time has been |
||
388 | // consumed, the user stops the search, or the maximum search depth is reached. |
||
389 | |||
390 | void Thread::search() { |
||
391 | |||
392 | Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2) |
||
393 | Value bestValue, alpha, beta, delta; |
||
394 | Move easyMove = MOVE_NONE; |
||
395 | MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); |
||
396 | |||
397 | std::memset(ss-2, 0, 5 * sizeof(Stack)); |
||
398 | |||
399 | bestValue = delta = alpha = -VALUE_INFINITE; |
||
400 | beta = VALUE_INFINITE; |
||
401 | completedDepth = DEPTH_ZERO; |
||
402 | |||
403 | if (mainThread) |
||
404 | { |
||
405 | easyMove = EasyMove.get(rootPos.key()); |
||
406 | EasyMove.clear(); |
||
407 | mainThread->easyMovePlayed = mainThread->failedLow = false; |
||
408 | mainThread->bestMoveChanges = 0; |
||
409 | TT.new_search(); |
||
410 | } |
||
411 | |||
412 | size_t multiPV = Options["MultiPV"]; |
||
413 | Skill skill(Options["Skill Level"]); |
||
414 | |||
415 | // When playing with strength handicap enable MultiPV search that we will |
||
416 | // use behind the scenes to retrieve a set of possible moves. |
||
417 | if (skill.enabled()) |
||
418 | multiPV = std::max(multiPV, (size_t)4); |
||
419 | |||
420 | multiPV = std::min(multiPV, rootMoves.size()); |
||
421 | |||
422 | // Iterative deepening loop until requested to stop or the target depth is reached. |
||
423 | while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth)) |
||
424 | { |
||
425 | // Set up the new depths for the helper threads skipping on average every |
||
426 | // 2nd ply (using a half-density matrix). |
||
427 | if (!mainThread) |
||
428 | { |
||
429 | const Row& row = HalfDensity[(idx - 1) % HalfDensitySize]; |
||
430 | if (row[(rootDepth + rootPos.game_ply()) % row.size()]) |
||
431 | continue; |
||
432 | } |
||
433 | |||
434 | // Age out PV variability metric |
||
435 | if (mainThread) |
||
436 | mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false; |
||
437 | |||
438 | // Save the last iteration's scores before first PV line is searched and |
||
439 | // all the move scores except the (new) PV are set to -VALUE_INFINITE. |
||
440 | for (RootMove& rm : rootMoves) |
||
441 | rm.previousScore = rm.score; |
||
442 | |||
443 | // MultiPV loop. We perform a full root search for each PV line |
||
444 | for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx) |
||
445 | { |
||
446 | // Reset aspiration window starting size |
||
447 | if (rootDepth >= 5 * ONE_PLY) |
||
448 | { |
||
449 | delta = Value(18); |
||
450 | alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE); |
||
451 | beta = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE); |
||
452 | } |
||
453 | |||
454 | // Start with a small aspiration window and, in the case of a fail |
||
455 | // high/low, re-search with a bigger window until we're not failing |
||
456 | // high/low anymore. |
||
457 | while (true) |
||
458 | { |
||
459 | bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false); |
||
460 | |||
461 | // Bring the best move to the front. It is critical that sorting |
||
462 | // is done with a stable algorithm because all the values but the |
||
463 | // first and eventually the new best one are set to -VALUE_INFINITE |
||
464 | // and we want to keep the same order for all the moves except the |
||
465 | // new PV that goes to the front. Note that in case of MultiPV |
||
466 | // search the already searched PV lines are preserved. |
||
467 | std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end()); |
||
468 | |||
469 | // Write PV back to the transposition table in case the relevant |
||
470 | // entries have been overwritten during the search. |
||
471 | for (size_t i = 0; i <= PVIdx; ++i) |
||
472 | rootMoves[i].insert_pv_in_tt(rootPos); |
||
473 | |||
474 | // If search has been stopped, break immediately. Sorting and |
||
475 | // writing PV back to TT is safe because RootMoves is still |
||
476 | // valid, although it refers to the previous iteration. |
||
477 | if (Signals.stop) |
||
478 | break; |
||
479 | |||
480 | // When failing high/low give some update (without cluttering |
||
481 | // the UI) before a re-search. |
||
482 | if ( mainThread |
||
483 | && multiPV == 1 |
||
484 | && (bestValue <= alpha || bestValue >= beta) |
||
485 | && Time.elapsed() > 3000) |
||
486 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
||
487 | |||
488 | // In case of failing low/high increase aspiration window and |
||
489 | // re-search, otherwise exit the loop. |
||
490 | if (bestValue <= alpha) |
||
491 | { |
||
492 | beta = (alpha + beta) / 2; |
||
493 | alpha = std::max(bestValue - delta, -VALUE_INFINITE); |
||
494 | |||
495 | if (mainThread) |
||
496 | { |
||
497 | mainThread->failedLow = true; |
||
498 | Signals.stopOnPonderhit = false; |
||
499 | } |
||
500 | } |
||
501 | else if (bestValue >= beta) |
||
502 | { |
||
503 | alpha = (alpha + beta) / 2; |
||
504 | beta = std::min(bestValue + delta, VALUE_INFINITE); |
||
505 | } |
||
506 | else |
||
507 | break; |
||
508 | |||
509 | delta += delta / 4 + 5; |
||
510 | |||
511 | assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); |
||
512 | } |
||
513 | |||
514 | // Sort the PV lines searched so far and update the GUI |
||
515 | std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1); |
||
516 | |||
517 | if (!mainThread) |
||
518 | break; |
||
519 | |||
520 | if (Signals.stop) |
||
521 | sync_cout << "info nodes " << Threads.nodes_searched() |
||
522 | << " time " << Time.elapsed() << sync_endl; |
||
523 | |||
524 | else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000) |
||
525 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
||
526 | } |
||
527 | |||
528 | if (!Signals.stop) |
||
529 | completedDepth = rootDepth; |
||
530 | |||
531 | if (!mainThread) |
||
532 | continue; |
||
533 | |||
534 | // If skill level is enabled and time is up, pick a sub-optimal best move |
||
535 | if (skill.enabled() && skill.time_to_pick(rootDepth)) |
||
536 | skill.pick_best(multiPV); |
||
537 | |||
538 | // Have we found a "mate in x"? |
||
539 | if ( Limits.mate |
||
540 | && bestValue >= VALUE_MATE_IN_MAX_PLY |
||
541 | && VALUE_MATE - bestValue <= 2 * Limits.mate) |
||
542 | Signals.stop = true; |
||
543 | |||
544 | // Do we have time for the next iteration? Can we stop searching now? |
||
545 | if (Limits.use_time_management()) |
||
546 | { |
||
547 | if (!Signals.stop && !Signals.stopOnPonderhit) |
||
548 | { |
||
549 | // Stop the search if only one legal move is available, or if all |
||
550 | // of the available time has been used, or if we matched an easyMove |
||
551 | // from the previous search and just did a fast verification. |
||
552 | const bool F[] = { !mainThread->failedLow, |
||
553 | bestValue >= mainThread->previousScore }; |
||
554 | |||
555 | int improvingFactor = 640 - 160*F[0] - 126*F[1] - 124*F[0]*F[1]; |
||
556 | double unstablePvFactor = 1 + mainThread->bestMoveChanges; |
||
557 | |||
558 | bool doEasyMove = rootMoves[0].pv[0] == easyMove |
||
559 | && mainThread->bestMoveChanges < 0.03 |
||
560 | && Time.elapsed() > Time.optimum() * 25 / 204; |
||
561 | |||
562 | if ( rootMoves.size() == 1 |
||
563 | || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 634 |
||
564 | || (mainThread->easyMovePlayed = doEasyMove)) |
||
565 | { |
||
566 | // If we are allowed to ponder do not stop the search now but |
||
567 | // keep pondering until the GUI sends "ponderhit" or "stop". |
||
568 | if (Limits.ponder) |
||
569 | Signals.stopOnPonderhit = true; |
||
570 | else |
||
571 | Signals.stop = true; |
||
572 | } |
||
573 | } |
||
574 | |||
575 | if (rootMoves[0].pv.size() >= 3) |
||
576 | EasyMove.update(rootPos, rootMoves[0].pv); |
||
577 | else |
||
578 | EasyMove.clear(); |
||
579 | } |
||
580 | } |
||
581 | |||
582 | if (!mainThread) |
||
583 | return; |
||
584 | |||
585 | // Clear any candidate easy move that wasn't stable for the last search |
||
586 | // iterations; the second condition prevents consecutive fast moves. |
||
587 | if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed) |
||
588 | EasyMove.clear(); |
||
589 | |||
590 | // If skill level is enabled, swap best PV line with the sub-optimal one |
||
591 | if (skill.enabled()) |
||
592 | std::swap(rootMoves[0], *std::find(rootMoves.begin(), |
||
593 | rootMoves.end(), skill.best_move(multiPV))); |
||
594 | } |
||
595 | |||
596 | |||
597 | namespace { |
||
598 | |||
599 | // search<>() is the main search function for both PV and non-PV nodes |
||
600 | |||
601 | template <NodeType NT> |
||
602 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { |
||
603 | |||
604 | const bool PvNode = NT == PV; |
||
605 | const bool rootNode = PvNode && (ss-1)->ply == 0; |
||
606 | |||
607 | assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); |
||
608 | assert(PvNode || (alpha == beta - 1)); |
||
609 | assert(DEPTH_ZERO < depth && depth < DEPTH_MAX); |
||
610 | |||
611 | Move pv[MAX_PLY+1], quietsSearched[64]; |
||
612 | StateInfo st; |
||
613 | TTEntry* tte; |
||
614 | Key posKey; |
||
615 | Move ttMove, move, excludedMove, bestMove; |
||
616 | Depth extension, newDepth, predictedDepth; |
||
617 | Value bestValue, value, ttValue, eval, nullValue, futilityValue; |
||
618 | bool ttHit, inCheck, givesCheck, singularExtensionNode, improving; |
||
619 | bool captureOrPromotion, doFullDepthSearch; |
||
620 | int moveCount, quietCount; |
||
621 | |||
622 | // Step 1. Initialize node |
||
623 | Thread* thisThread = pos.this_thread(); |
||
624 | inCheck = pos.checkers(); |
||
625 | moveCount = quietCount = ss->moveCount = 0; |
||
626 | bestValue = -VALUE_INFINITE; |
||
627 | ss->ply = (ss-1)->ply + 1; |
||
628 | |||
629 | // Check for the available remaining time |
||
630 | if (thisThread->resetCalls.load(std::memory_order_relaxed)) |
||
631 | { |
||
632 | thisThread->resetCalls = false; |
||
633 | thisThread->callsCnt = 0; |
||
634 | } |
||
635 | if (++thisThread->callsCnt > 4096) |
||
636 | { |
||
637 | for (Thread* th : Threads) |
||
638 | th->resetCalls = true; |
||
639 | |||
640 | check_time(); |
||
641 | } |
||
642 | |||
643 | // Used to send selDepth info to GUI |
||
644 | if (PvNode && thisThread->maxPly < ss->ply) |
||
645 | thisThread->maxPly = ss->ply; |
||
646 | |||
647 | if (!rootNode) |
||
648 | { |
||
649 | // Step 2. Check for aborted search and immediate draw |
||
650 | if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY) |
||
651 | return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos) |
||
652 | : DrawValue[pos.side_to_move()]; |
||
653 | |||
654 | // Step 3. Mate distance pruning. Even if we mate at the next move our score |
||
655 | // would be at best mate_in(ss->ply+1), but if alpha is already bigger because |
||
656 | // a shorter mate was found upward in the tree then there is no need to search |
||
657 | // because we will never beat the current alpha. Same logic but with reversed |
||
658 | // signs applies also in the opposite condition of being mated instead of giving |
||
659 | // mate. In this case return a fail-high score. |
||
660 | alpha = std::max(mated_in(ss->ply), alpha); |
||
661 | beta = std::min(mate_in(ss->ply+1), beta); |
||
662 | if (alpha >= beta) |
||
663 | return alpha; |
||
664 | } |
||
665 | |||
666 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
||
667 | |||
668 | ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; |
||
669 | (ss+1)->skipEarlyPruning = false; |
||
670 | (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; |
||
671 | |||
672 | // Step 4. Transposition table lookup. We don't want the score of a partial |
||
673 | // search to overwrite a previous full search TT value, so we use a different |
||
674 | // position key in case of an excluded move. |
||
675 | excludedMove = ss->excludedMove; |
||
676 | posKey = excludedMove ? pos.exclusion_key() : pos.key(); |
||
677 | tte = TT.probe(posKey, ttHit); |
||
678 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
||
679 | ttMove = rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0] |
||
680 | : ttHit ? tte->move() : MOVE_NONE; |
||
681 | |||
682 | // At non-PV nodes we check for an early TT cutoff |
||
683 | if ( !PvNode |
||
684 | && ttHit |
||
685 | && tte->depth() >= depth |
||
686 | && ttValue != VALUE_NONE // Possible in case of TT access race |
||
687 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
||
688 | : (tte->bound() & BOUND_UPPER))) |
||
689 | { |
||
690 | ss->currentMove = ttMove; // Can be MOVE_NONE |
||
691 | |||
692 | // If ttMove is quiet, update killers, history, counter move on TT hit |
||
693 | if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove)) |
||
694 | update_stats(pos, ss, ttMove, depth, nullptr, 0); |
||
695 | |||
696 | return ttValue; |
||
697 | } |
||
698 | |||
699 | // Step 4a. Tablebase probe |
||
700 | if (!rootNode && TB::Cardinality) |
||
701 | { |
||
702 | int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK); |
||
703 | |||
704 | if ( piecesCnt <= TB::Cardinality |
||
705 | && (piecesCnt < TB::Cardinality || depth >= TB::ProbeDepth) |
||
706 | && pos.rule50_count() == 0 |
||
707 | && !pos.can_castle(ANY_CASTLING)) |
||
708 | { |
||
709 | int found, v = Tablebases::probe_wdl(pos, &found); |
||
710 | |||
711 | if (found) |
||
712 | { |
||
713 | TB::Hits++; |
||
714 | |||
715 | int drawScore = TB::UseRule50 ? 1 : 0; |
||
716 | |||
717 | value = v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply |
||
718 | : v > drawScore ? VALUE_MATE - MAX_PLY - ss->ply |
||
719 | : VALUE_DRAW + 2 * v * drawScore; |
||
720 | |||
721 | tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT, |
||
722 | std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY), |
||
723 | MOVE_NONE, VALUE_NONE, TT.generation()); |
||
724 | |||
725 | return value; |
||
726 | } |
||
727 | } |
||
728 | } |
||
729 | |||
730 | // Step 5. Evaluate the position statically |
||
731 | if (inCheck) |
||
732 | { |
||
733 | ss->staticEval = eval = VALUE_NONE; |
||
734 | goto moves_loop; |
||
735 | } |
||
736 | |||
737 | else if (ttHit) |
||
738 | { |
||
739 | // Never assume anything on values stored in TT |
||
740 | if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE) |
||
741 | eval = ss->staticEval = evaluate(pos); |
||
742 | |||
743 | // Can ttValue be used as a better position evaluation? |
||
744 | if (ttValue != VALUE_NONE) |
||
745 | if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)) |
||
746 | eval = ttValue; |
||
747 | } |
||
748 | else |
||
749 | { |
||
750 | eval = ss->staticEval = |
||
751 | (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) |
||
752 | : -(ss-1)->staticEval + 2 * Eval::Tempo; |
||
753 | |||
754 | tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, |
||
755 | ss->staticEval, TT.generation()); |
||
756 | } |
||
757 | |||
758 | if (ss->skipEarlyPruning) |
||
759 | goto moves_loop; |
||
760 | |||
761 | // Step 6. Razoring (skipped when in check) |
||
762 | if ( !PvNode |
||
763 | && depth < 4 * ONE_PLY |
||
764 | && eval + razor_margin[depth] <= alpha |
||
765 | && ttMove == MOVE_NONE) |
||
766 | { |
||
767 | if ( depth <= ONE_PLY |
||
768 | && eval + razor_margin[3 * ONE_PLY] <= alpha) |
||
769 | return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO); |
||
770 | |||
771 | Value ralpha = alpha - razor_margin[depth]; |
||
772 | Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO); |
||
773 | if (v <= ralpha) |
||
774 | return v; |
||
775 | } |
||
776 | |||
777 | // Step 7. Futility pruning: child node (skipped when in check) |
||
778 | if ( !rootNode |
||
779 | && depth < 7 * ONE_PLY |
||
780 | && eval - futility_margin(depth) >= beta |
||
781 | && eval < VALUE_KNOWN_WIN // Do not return unproven wins |
||
782 | && pos.non_pawn_material(pos.side_to_move())) |
||
783 | return eval - futility_margin(depth); |
||
784 | |||
785 | // Step 8. Null move search with verification search (is omitted in PV nodes) |
||
786 | if ( !PvNode |
||
787 | && depth >= 2 * ONE_PLY |
||
788 | && eval >= beta |
||
789 | && pos.non_pawn_material(pos.side_to_move())) |
||
790 | { |
||
791 | ss->currentMove = MOVE_NULL; |
||
792 | |||
793 | assert(eval - beta >= 0); |
||
794 | |||
795 | // Null move dynamic reduction based on depth and value |
||
796 | Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY; |
||
797 | |||
798 | pos.do_null_move(st); |
||
799 | (ss+1)->skipEarlyPruning = true; |
||
800 | nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) |
||
801 | : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); |
||
802 | (ss+1)->skipEarlyPruning = false; |
||
803 | pos.undo_null_move(); |
||
804 | |||
805 | if (nullValue >= beta) |
||
806 | { |
||
807 | // Do not return unproven mate scores |
||
808 | if (nullValue >= VALUE_MATE_IN_MAX_PLY) |
||
809 | nullValue = beta; |
||
810 | |||
811 | if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN) |
||
812 | return nullValue; |
||
813 | |||
814 | // Do verification search at high depths |
||
815 | ss->skipEarlyPruning = true; |
||
816 | Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO) |
||
817 | : search<NonPV>(pos, ss, beta-1, beta, depth-R, false); |
||
818 | ss->skipEarlyPruning = false; |
||
819 | |||
820 | if (v >= beta) |
||
821 | return nullValue; |
||
822 | } |
||
823 | } |
||
824 | |||
825 | // Step 9. ProbCut (skipped when in check) |
||
826 | // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type]) |
||
827 | // and a reduced search returns a value much above beta, we can (almost) |
||
828 | // safely prune the previous move. |
||
829 | if ( !PvNode |
||
830 | && depth >= 5 * ONE_PLY |
||
831 | && abs(beta) < VALUE_MATE_IN_MAX_PLY) |
||
832 | { |
||
833 | Value rbeta = std::min(beta + 200, VALUE_INFINITE); |
||
834 | Depth rdepth = depth - 4 * ONE_PLY; |
||
835 | |||
836 | assert(rdepth >= ONE_PLY); |
||
837 | assert((ss-1)->currentMove != MOVE_NONE); |
||
838 | assert((ss-1)->currentMove != MOVE_NULL); |
||
839 | |||
840 | MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]); |
||
841 | CheckInfo ci(pos); |
||
842 | |||
843 | while ((move = mp.next_move()) != MOVE_NONE) |
||
844 | if (pos.legal(move, ci.pinned)) |
||
845 | { |
||
846 | ss->currentMove = move; |
||
847 | pos.do_move(move, st, pos.gives_check(move, ci)); |
||
848 | value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); |
||
849 | pos.undo_move(move); |
||
850 | if (value >= rbeta) |
||
851 | return value; |
||
852 | } |
||
853 | } |
||
854 | |||
855 | // Step 10. Internal iterative deepening (skipped when in check) |
||
856 | if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY) |
||
857 | && !ttMove |
||
858 | && (PvNode || ss->staticEval + 256 >= beta)) |
||
859 | { |
||
860 | Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4); |
||
861 | ss->skipEarlyPruning = true; |
||
862 | search<NT>(pos, ss, alpha, beta, d, true); |
||
863 | ss->skipEarlyPruning = false; |
||
864 | |||
865 | tte = TT.probe(posKey, ttHit); |
||
866 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
||
867 | } |
||
868 | |||
869 | moves_loop: // When in check search starts from here |
||
870 | |||
871 | Square prevSq = to_sq((ss-1)->currentMove); |
||
872 | Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]; |
||
873 | const CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq]; |
||
874 | |||
875 | MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss); |
||
876 | CheckInfo ci(pos); |
||
877 | value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc |
||
878 | improving = ss->staticEval >= (ss-2)->staticEval |
||
879 | || ss->staticEval == VALUE_NONE |
||
880 | ||(ss-2)->staticEval == VALUE_NONE; |
||
881 | |||
882 | singularExtensionNode = !rootNode |
||
883 | && depth >= 8 * ONE_PLY |
||
884 | && ttMove != MOVE_NONE |
||
885 | /* && ttValue != VALUE_NONE Already implicit in the next condition */ |
||
886 | && abs(ttValue) < VALUE_KNOWN_WIN |
||
887 | && !excludedMove // Recursive singular search is not allowed |
||
888 | && (tte->bound() & BOUND_LOWER) |
||
889 | && tte->depth() >= depth - 3 * ONE_PLY; |
||
890 | |||
891 | // Step 11. Loop through moves |
||
892 | // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs |
||
893 | while ((move = mp.next_move()) != MOVE_NONE) |
||
894 | { |
||
895 | assert(is_ok(move)); |
||
896 | |||
897 | if (move == excludedMove) |
||
898 | continue; |
||
899 | |||
900 | // At root obey the "searchmoves" option and skip moves not listed in Root |
||
901 | // Move List. As a consequence any illegal move is also skipped. In MultiPV |
||
902 | // mode we also skip PV moves which have been already searched. |
||
903 | if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx, |
||
904 | thisThread->rootMoves.end(), move)) |
||
905 | continue; |
||
906 | |||
907 | ss->moveCount = ++moveCount; |
||
908 | |||
909 | if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) |
||
910 | sync_cout << "info depth " << depth / ONE_PLY |
||
911 | << " currmove " << UCI::move(move, pos.is_chess960()) |
||
912 | << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl; |
||
913 | |||
914 | if (PvNode) |
||
915 | (ss+1)->pv = nullptr; |
||
916 | |||
917 | extension = DEPTH_ZERO; |
||
918 | captureOrPromotion = pos.capture_or_promotion(move); |
||
919 | |||
920 | givesCheck = type_of(move) == NORMAL && !ci.dcCandidates |
||
921 | ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move) |
||
922 | : pos.gives_check(move, ci); |
||
923 | |||
924 | // Step 12. Extend checks |
||
925 | if (givesCheck && pos.see_sign(move) >= VALUE_ZERO) |
||
926 | extension = ONE_PLY; |
||
927 | |||
928 | // Singular extension search. If all moves but one fail low on a search of |
||
929 | // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move |
||
930 | // is singular and should be extended. To verify this we do a reduced search |
||
931 | // on all the other moves but the ttMove and if the result is lower than |
||
932 | // ttValue minus a margin then we extend the ttMove. |
||
933 | if ( singularExtensionNode |
||
934 | && move == ttMove |
||
935 | && !extension |
||
936 | && pos.legal(move, ci.pinned)) |
||
937 | { |
||
938 | Value rBeta = ttValue - 2 * depth / ONE_PLY; |
||
939 | ss->excludedMove = move; |
||
940 | ss->skipEarlyPruning = true; |
||
941 | value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); |
||
942 | ss->skipEarlyPruning = false; |
||
943 | ss->excludedMove = MOVE_NONE; |
||
944 | |||
945 | if (value < rBeta) |
||
946 | extension = ONE_PLY; |
||
947 | } |
||
948 | |||
949 | // Update the current move (this must be done after singular extension search) |
||
950 | newDepth = depth - ONE_PLY + extension; |
||
951 | |||
952 | // Step 13. Pruning at shallow depth |
||
953 | if ( !rootNode |
||
954 | && !captureOrPromotion |
||
955 | && !inCheck |
||
956 | && !givesCheck |
||
957 | && !pos.advanced_pawn_push(move) |
||
958 | && bestValue > VALUE_MATED_IN_MAX_PLY) |
||
959 | { |
||
960 | // Move count based pruning |
||
961 | if ( depth < 16 * ONE_PLY |
||
962 | && moveCount >= FutilityMoveCounts[improving][depth]) |
||
963 | continue; |
||
964 | |||
965 | // History based pruning |
||
966 | if ( depth <= 4 * ONE_PLY |
||
967 | && move != ss->killers[0] |
||
968 | && thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO |
||
969 | && cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO) |
||
970 | continue; |
||
971 | |||
972 | predictedDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO); |
||
973 | |||
974 | // Futility pruning: parent node |
||
975 | if (predictedDepth < 7 * ONE_PLY) |
||
976 | { |
||
977 | futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256; |
||
978 | |||
979 | if (futilityValue <= alpha) |
||
980 | { |
||
981 | bestValue = std::max(bestValue, futilityValue); |
||
982 | continue; |
||
983 | } |
||
984 | } |
||
985 | |||
986 | // Prune moves with negative SEE at low depths |
||
987 | if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO) |
||
988 | continue; |
||
989 | } |
||
990 | |||
991 | // Speculative prefetch as early as possible |
||
992 | prefetch(TT.first_entry(pos.key_after(move))); |
||
993 | |||
994 | // Check for legality just before making the move |
||
995 | if (!rootNode && !pos.legal(move, ci.pinned)) |
||
996 | { |
||
997 | ss->moveCount = --moveCount; |
||
998 | continue; |
||
999 | } |
||
1000 | |||
1001 | ss->currentMove = move; |
||
1002 | |||
1003 | // Step 14. Make the move |
||
1004 | pos.do_move(move, st, givesCheck); |
||
1005 | |||
1006 | // Step 15. Reduced depth search (LMR). If the move fails high it will be |
||
1007 | // re-searched at full depth. |
||
1008 | if ( depth >= 3 * ONE_PLY |
||
1009 | && moveCount > 1 |
||
1010 | && !captureOrPromotion) |
||
1011 | { |
||
1012 | Depth r = reduction<PvNode>(improving, depth, moveCount); |
||
1013 | |||
1014 | // Increase reduction for cut nodes and moves with a bad history |
||
1015 | if ( (!PvNode && cutNode) |
||
1016 | || ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO |
||
1017 | && cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO)) |
||
1018 | r += ONE_PLY; |
||
1019 | |||
1020 | // Decrease/increase reduction for moves with a good/bad history |
||
1021 | int rHist = ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] |
||
1022 | + cmh[pos.piece_on(to_sq(move))][to_sq(move)]) / 14980; |
||
1023 | r = std::max(DEPTH_ZERO, r - rHist * ONE_PLY); |
||
1024 | |||
1025 | // Decrease reduction for moves that escape a capture. Filter out |
||
1026 | // castling moves, because they are coded as "king captures rook" and |
||
1027 | // hence break make_move(). Also use see() instead of see_sign(), |
||
1028 | // because the destination square is empty. |
||
1029 | if ( r |
||
1030 | && type_of(move) == NORMAL |
||
1031 | && type_of(pos.piece_on(to_sq(move))) != PAWN |
||
1032 | && pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO) |
||
1033 | r = std::max(DEPTH_ZERO, r - ONE_PLY); |
||
1034 | |||
1035 | Depth d = std::max(newDepth - r, ONE_PLY); |
||
1036 | |||
1037 | value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true); |
||
1038 | |||
1039 | doFullDepthSearch = (value > alpha && r != DEPTH_ZERO); |
||
1040 | } |
||
1041 | else |
||
1042 | doFullDepthSearch = !PvNode || moveCount > 1; |
||
1043 | |||
1044 | // Step 16. Full depth search when LMR is skipped or fails high |
||
1045 | if (doFullDepthSearch) |
||
1046 | value = newDepth < ONE_PLY ? |
||
1047 | givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) |
||
1048 | : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) |
||
1049 | : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); |
||
1050 | |||
1051 | // For PV nodes only, do a full PV search on the first move or after a fail |
||
1052 | // high (in the latter case search only if value < beta), otherwise let the |
||
1053 | // parent node fail low with value <= alpha and try another move. |
||
1054 | if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) |
||
1055 | { |
||
1056 | (ss+1)->pv = pv; |
||
1057 | (ss+1)->pv[0] = MOVE_NONE; |
||
1058 | |||
1059 | value = newDepth < ONE_PLY ? |
||
1060 | givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO) |
||
1061 | : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO) |
||
1062 | : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false); |
||
1063 | } |
||
1064 | |||
1065 | // Step 17. Undo move |
||
1066 | pos.undo_move(move); |
||
1067 | |||
1068 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
||
1069 | |||
1070 | // Step 18. Check for a new best move |
||
1071 | // Finished searching the move. If a stop occurred, the return value of |
||
1072 | // the search cannot be trusted, and we return immediately without |
||
1073 | // updating best move, PV and TT. |
||
1074 | if (Signals.stop.load(std::memory_order_relaxed)) |
||
1075 | return VALUE_ZERO; |
||
1076 | |||
1077 | if (rootNode) |
||
1078 | { |
||
1079 | RootMove& rm = *std::find(thisThread->rootMoves.begin(), |
||
1080 | thisThread->rootMoves.end(), move); |
||
1081 | |||
1082 | // PV move or new best move ? |
||
1083 | if (moveCount == 1 || value > alpha) |
||
1084 | { |
||
1085 | rm.score = value; |
||
1086 | rm.pv.resize(1); |
||
1087 | |||
1088 | assert((ss+1)->pv); |
||
1089 | |||
1090 | for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) |
||
1091 | rm.pv.push_back(*m); |
||
1092 | |||
1093 | // We record how often the best move has been changed in each |
||
1094 | // iteration. This information is used for time management: When |
||
1095 | // the best move changes frequently, we allocate some more time. |
||
1096 | if (moveCount > 1 && thisThread == Threads.main()) |
||
1097 | ++static_cast<MainThread*>(thisThread)->bestMoveChanges; |
||
1098 | } |
||
1099 | else |
||
1100 | // All other moves but the PV are set to the lowest value: this is |
||
1101 | // not a problem when sorting because the sort is stable and the |
||
1102 | // move position in the list is preserved - just the PV is pushed up. |
||
1103 | rm.score = -VALUE_INFINITE; |
||
1104 | } |
||
1105 | |||
1106 | if (value > bestValue) |
||
1107 | { |
||
1108 | bestValue = value; |
||
1109 | |||
1110 | if (value > alpha) |
||
1111 | { |
||
1112 | // If there is an easy move for this position, clear it if unstable |
||
1113 | if ( PvNode |
||
1114 | && thisThread == Threads.main() |
||
1115 | && EasyMove.get(pos.key()) |
||
1116 | && (move != EasyMove.get(pos.key()) || moveCount > 1)) |
||
1117 | EasyMove.clear(); |
||
1118 | |||
1119 | bestMove = move; |
||
1120 | |||
1121 | if (PvNode && !rootNode) // Update pv even in fail-high case |
||
1122 | update_pv(ss->pv, move, (ss+1)->pv); |
||
1123 | |||
1124 | if (PvNode && value < beta) // Update alpha! Always alpha < beta |
||
1125 | alpha = value; |
||
1126 | else |
||
1127 | { |
||
1128 | assert(value >= beta); // Fail high |
||
1129 | break; |
||
1130 | } |
||
1131 | } |
||
1132 | } |
||
1133 | |||
1134 | if (!captureOrPromotion && move != bestMove && quietCount < 64) |
||
1135 | quietsSearched[quietCount++] = move; |
||
1136 | } |
||
1137 | |||
1138 | // The following condition would detect a stop only after move loop has been |
||
1139 | // completed. But in this case bestValue is valid because we have fully |
||
1140 | // searched our subtree, and we can anyhow save the result in TT. |
||
1141 | /* |
||
1142 | if (Signals.stop) |
||
1143 | return VALUE_DRAW; |
||
1144 | */ |
||
1145 | |||
1146 | // Step 20. Check for mate and stalemate |
||
1147 | // All legal moves have been searched and if there are no legal moves, it |
||
1148 | // must be a mate or a stalemate. If we are in a singular extension search then |
||
1149 | // return a fail low score. |
||
1150 | if (!moveCount) |
||
1151 | bestValue = excludedMove ? alpha |
||
1152 | : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; |
||
1153 | |||
1154 | // Quiet best move: update killers, history and countermoves |
||
1155 | else if (bestMove && !pos.capture_or_promotion(bestMove)) |
||
1156 | update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount); |
||
1157 | |||
1158 | // Bonus for prior countermove that caused the fail low |
||
1159 | else if ( depth >= 3 * ONE_PLY |
||
1160 | && !bestMove |
||
1161 | && !inCheck |
||
1162 | && !pos.captured_piece_type() |
||
1163 | && is_ok((ss - 1)->currentMove) |
||
1164 | && is_ok((ss - 2)->currentMove)) |
||
1165 | { |
||
1166 | Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1); |
||
1167 | Square prevPrevSq = to_sq((ss - 2)->currentMove); |
||
1168 | CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq]; |
||
1169 | prevCmh.update(pos.piece_on(prevSq), prevSq, bonus); |
||
1170 | } |
||
1171 | |||
1172 | tte->save(posKey, value_to_tt(bestValue, ss->ply), |
||
1173 | bestValue >= beta ? BOUND_LOWER : |
||
1174 | PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, |
||
1175 | depth, bestMove, ss->staticEval, TT.generation()); |
||
1176 | |||
1177 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
||
1178 | |||
1179 | return bestValue; |
||
1180 | } |
||
1181 | |||
1182 | |||
1183 | // qsearch() is the quiescence search function, which is called by the main |
||
1184 | // search function when the remaining depth is zero (or, to be more precise, |
||
1185 | // less than ONE_PLY). |
||
1186 | |||
1187 | template <NodeType NT, bool InCheck> |
||
1188 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { |
||
1189 | |||
1190 | const bool PvNode = NT == PV; |
||
1191 | |||
1192 | assert(InCheck == !!pos.checkers()); |
||
1193 | assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); |
||
1194 | assert(PvNode || (alpha == beta - 1)); |
||
1195 | assert(depth <= DEPTH_ZERO); |
||
1196 | |||
1197 | Move pv[MAX_PLY+1]; |
||
1198 | StateInfo st; |
||
1199 | TTEntry* tte; |
||
1200 | Key posKey; |
||
1201 | Move ttMove, move, bestMove; |
||
1202 | Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; |
||
1203 | bool ttHit, givesCheck, evasionPrunable; |
||
1204 | Depth ttDepth; |
||
1205 | |||
1206 | if (PvNode) |
||
1207 | { |
||
1208 | oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves |
||
1209 | (ss+1)->pv = pv; |
||
1210 | ss->pv[0] = MOVE_NONE; |
||
1211 | } |
||
1212 | |||
1213 | ss->currentMove = bestMove = MOVE_NONE; |
||
1214 | ss->ply = (ss-1)->ply + 1; |
||
1215 | |||
1216 | // Check for an instant draw or if the maximum ply has been reached |
||
1217 | if (pos.is_draw() || ss->ply >= MAX_PLY) |
||
1218 | return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos) |
||
1219 | : DrawValue[pos.side_to_move()]; |
||
1220 | |||
1221 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
||
1222 | |||
1223 | // Decide whether or not to include checks: this fixes also the type of |
||
1224 | // TT entry depth that we are going to use. Note that in qsearch we use |
||
1225 | // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. |
||
1226 | ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS |
||
1227 | : DEPTH_QS_NO_CHECKS; |
||
1228 | |||
1229 | // Transposition table lookup |
||
1230 | posKey = pos.key(); |
||
1231 | tte = TT.probe(posKey, ttHit); |
||
1232 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
||
1233 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
||
1234 | |||
1235 | if ( !PvNode |
||
1236 | && ttHit |
||
1237 | && tte->depth() >= ttDepth |
||
1238 | && ttValue != VALUE_NONE // Only in case of TT access race |
||
1239 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
||
1240 | : (tte->bound() & BOUND_UPPER))) |
||
1241 | { |
||
1242 | ss->currentMove = ttMove; // Can be MOVE_NONE |
||
1243 | return ttValue; |
||
1244 | } |
||
1245 | |||
1246 | // Evaluate the position statically |
||
1247 | if (InCheck) |
||
1248 | { |
||
1249 | ss->staticEval = VALUE_NONE; |
||
1250 | bestValue = futilityBase = -VALUE_INFINITE; |
||
1251 | } |
||
1252 | else |
||
1253 | { |
||
1254 | if (ttHit) |
||
1255 | { |
||
1256 | // Never assume anything on values stored in TT |
||
1257 | if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) |
||
1258 | ss->staticEval = bestValue = evaluate(pos); |
||
1259 | |||
1260 | // Can ttValue be used as a better position evaluation? |
||
1261 | if (ttValue != VALUE_NONE) |
||
1262 | if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)) |
||
1263 | bestValue = ttValue; |
||
1264 | } |
||
1265 | else |
||
1266 | ss->staticEval = bestValue = |
||
1267 | (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) |
||
1268 | : -(ss-1)->staticEval + 2 * Eval::Tempo; |
||
1269 | |||
1270 | // Stand pat. Return immediately if static value is at least beta |
||
1271 | if (bestValue >= beta) |
||
1272 | { |
||
1273 | if (!ttHit) |
||
1274 | tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, |
||
1275 | DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation()); |
||
1276 | |||
1277 | return bestValue; |
||
1278 | } |
||
1279 | |||
1280 | if (PvNode && bestValue > alpha) |
||
1281 | alpha = bestValue; |
||
1282 | |||
1283 | futilityBase = bestValue + 128; |
||
1284 | } |
||
1285 | |||
1286 | // Initialize a MovePicker object for the current position, and prepare |
||
1287 | // to search the moves. Because the depth is <= 0 here, only captures, |
||
1288 | // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will |
||
1289 | // be generated. |
||
1290 | MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove)); |
||
1291 | CheckInfo ci(pos); |
||
1292 | |||
1293 | // Loop through the moves until no moves remain or a beta cutoff occurs |
||
1294 | while ((move = mp.next_move()) != MOVE_NONE) |
||
1295 | { |
||
1296 | assert(is_ok(move)); |
||
1297 | |||
1298 | givesCheck = type_of(move) == NORMAL && !ci.dcCandidates |
||
1299 | ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move) |
||
1300 | : pos.gives_check(move, ci); |
||
1301 | |||
1302 | // Futility pruning |
||
1303 | if ( !InCheck |
||
1304 | && !givesCheck |
||
1305 | && futilityBase > -VALUE_KNOWN_WIN |
||
1306 | && !pos.advanced_pawn_push(move)) |
||
1307 | { |
||
1308 | assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push |
||
1309 | |||
1310 | futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; |
||
1311 | |||
1312 | if (futilityValue <= alpha) |
||
1313 | { |
||
1314 | bestValue = std::max(bestValue, futilityValue); |
||
1315 | continue; |
||
1316 | } |
||
1317 | |||
1318 | if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO) |
||
1319 | { |
||
1320 | bestValue = std::max(bestValue, futilityBase); |
||
1321 | continue; |
||
1322 | } |
||
1323 | } |
||
1324 | |||
1325 | // Detect non-capture evasions that are candidates to be pruned |
||
1326 | evasionPrunable = InCheck |
||
1327 | && bestValue > VALUE_MATED_IN_MAX_PLY |
||
1328 | && !pos.capture(move); |
||
1329 | |||
1330 | // Don't search moves with negative SEE values |
||
1331 | if ( (!InCheck || evasionPrunable) |
||
1332 | && type_of(move) != PROMOTION |
||
1333 | && pos.see_sign(move) < VALUE_ZERO) |
||
1334 | continue; |
||
1335 | |||
1336 | // Speculative prefetch as early as possible |
||
1337 | prefetch(TT.first_entry(pos.key_after(move))); |
||
1338 | |||
1339 | // Check for legality just before making the move |
||
1340 | if (!pos.legal(move, ci.pinned)) |
||
1341 | continue; |
||
1342 | |||
1343 | ss->currentMove = move; |
||
1344 | |||
1345 | // Make and search the move |
||
1346 | pos.do_move(move, st, givesCheck); |
||
1347 | value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY) |
||
1348 | : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY); |
||
1349 | pos.undo_move(move); |
||
1350 | |||
1351 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
||
1352 | |||
1353 | // Check for a new best move |
||
1354 | if (value > bestValue) |
||
1355 | { |
||
1356 | bestValue = value; |
||
1357 | |||
1358 | if (value > alpha) |
||
1359 | { |
||
1360 | if (PvNode) // Update pv even in fail-high case |
||
1361 | update_pv(ss->pv, move, (ss+1)->pv); |
||
1362 | |||
1363 | if (PvNode && value < beta) // Update alpha here! |
||
1364 | { |
||
1365 | alpha = value; |
||
1366 | bestMove = move; |
||
1367 | } |
||
1368 | else // Fail high |
||
1369 | { |
||
1370 | tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER, |
||
1371 | ttDepth, move, ss->staticEval, TT.generation()); |
||
1372 | |||
1373 | return value; |
||
1374 | } |
||
1375 | } |
||
1376 | } |
||
1377 | } |
||
1378 | |||
1379 | // All legal moves have been searched. A special case: If we're in check |
||
1380 | // and no legal moves were found, it is checkmate. |
||
1381 | if (InCheck && bestValue == -VALUE_INFINITE) |
||
1382 | return mated_in(ss->ply); // Plies to mate from the root |
||
1383 | |||
1384 | tte->save(posKey, value_to_tt(bestValue, ss->ply), |
||
1385 | PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, |
||
1386 | ttDepth, bestMove, ss->staticEval, TT.generation()); |
||
1387 | |||
1388 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
||
1389 | |||
1390 | return bestValue; |
||
1391 | } |
||
1392 | |||
1393 | |||
1394 | // value_to_tt() adjusts a mate score from "plies to mate from the root" to |
||
1395 | // "plies to mate from the current position". Non-mate scores are unchanged. |
||
1396 | // The function is called before storing a value in the transposition table. |
||
1397 | |||
1398 | Value value_to_tt(Value v, int ply) { |
||
1399 | |||
1400 | assert(v != VALUE_NONE); |
||
1401 | |||
1402 | return v >= VALUE_MATE_IN_MAX_PLY ? v + ply |
||
1403 | : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; |
||
1404 | } |
||
1405 | |||
1406 | |||
1407 | // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score |
||
1408 | // from the transposition table (which refers to the plies to mate/be mated |
||
1409 | // from current position) to "plies to mate/be mated from the root". |
||
1410 | |||
1411 | Value value_from_tt(Value v, int ply) { |
||
1412 | |||
1413 | return v == VALUE_NONE ? VALUE_NONE |
||
1414 | : v >= VALUE_MATE_IN_MAX_PLY ? v - ply |
||
1415 | : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v; |
||
1416 | } |
||
1417 | |||
1418 | |||
1419 | // update_pv() adds current move and appends child pv[] |
||
1420 | |||
1421 | void update_pv(Move* pv, Move move, Move* childPv) { |
||
1422 | |||
1423 | for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) |
||
1424 | *pv++ = *childPv++; |
||
1425 | *pv = MOVE_NONE; |
||
1426 | } |
||
1427 | |||
1428 | |||
1429 | // update_stats() updates killers, history, countermove and countermove |
||
1430 | // history when a new quiet best move is found. |
||
1431 | |||
1432 | void update_stats(const Position& pos, Stack* ss, Move move, |
||
1433 | Depth depth, Move* quiets, int quietsCnt) { |
||
1434 | |||
1435 | if (ss->killers[0] != move) |
||
1436 | { |
||
1437 | ss->killers[1] = ss->killers[0]; |
||
1438 | ss->killers[0] = move; |
||
1439 | } |
||
1440 | |||
1441 | Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1); |
||
1442 | |||
1443 | Square prevSq = to_sq((ss-1)->currentMove); |
||
1444 | CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq]; |
||
1445 | Thread* thisThread = pos.this_thread(); |
||
1446 | |||
1447 | thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus); |
||
1448 | |||
1449 | if (is_ok((ss-1)->currentMove)) |
||
1450 | { |
||
1451 | thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move); |
||
1452 | cmh.update(pos.moved_piece(move), to_sq(move), bonus); |
||
1453 | } |
||
1454 | |||
1455 | // Decrease all the other played quiet moves |
||
1456 | for (int i = 0; i < quietsCnt; ++i) |
||
1457 | { |
||
1458 | thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); |
||
1459 | |||
1460 | if (is_ok((ss-1)->currentMove)) |
||
1461 | cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); |
||
1462 | } |
||
1463 | |||
1464 | // Extra penalty for a quiet TT move in previous ply when it gets refuted |
||
1465 | if ( (ss-1)->moveCount == 1 |
||
1466 | && !pos.captured_piece_type() |
||
1467 | && is_ok((ss-2)->currentMove)) |
||
1468 | { |
||
1469 | Square prevPrevSq = to_sq((ss-2)->currentMove); |
||
1470 | CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq]; |
||
1471 | prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY); |
||
1472 | } |
||
1473 | } |
||
1474 | |||
1475 | |||
1476 | // When playing with strength handicap, choose best move among a set of RootMoves |
||
1477 | // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. |
||
1478 | |||
1479 | Move Skill::pick_best(size_t multiPV) { |
||
1480 | |||
1481 | const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves; |
||
1482 | static PRNG rng(now()); // PRNG sequence should be non-deterministic |
||
1483 | |||
1484 | // RootMoves are already sorted by score in descending order |
||
1485 | Value topScore = rootMoves[0].score; |
||
1486 | int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); |
||
1487 | int weakness = 120 - 2 * level; |
||
1488 | int maxScore = -VALUE_INFINITE; |
||
1489 | |||
1490 | // Choose best move. For each move score we add two terms, both dependent on |
||
1491 | // weakness. One is deterministic and bigger for weaker levels, and one is |
||
1492 | // random. Then we choose the move with the resulting highest score. |
||
1493 | for (size_t i = 0; i < multiPV; ++i) |
||
1494 | { |
||
1495 | // This is our magic formula |
||
1496 | int push = ( weakness * int(topScore - rootMoves[i].score) |
||
1497 | + delta * (rng.rand<unsigned>() % weakness)) / 128; |
||
1498 | |||
1499 | if (rootMoves[i].score + push > maxScore) |
||
1500 | { |
||
1501 | maxScore = rootMoves[i].score + push; |
||
1502 | best = rootMoves[i].pv[0]; |
||
1503 | } |
||
1504 | } |
||
1505 | |||
1506 | return best; |
||
1507 | } |
||
1508 | |||
1509 | |||
1510 | // check_time() is used to print debug info and, more importantly, to detect |
||
1511 | // when we are out of available time and thus stop the search. |
||
1512 | |||
1513 | void check_time() { |
||
1514 | |||
1515 | static TimePoint lastInfoTime = now(); |
||
1516 | |||
1517 | int elapsed = Time.elapsed(); |
||
1518 | TimePoint tick = Limits.startTime + elapsed; |
||
1519 | |||
1520 | if (tick - lastInfoTime >= 1000) |
||
1521 | { |
||
1522 | lastInfoTime = tick; |
||
1523 | dbg_print(); |
||
1524 | } |
||
1525 | |||
1526 | // An engine may not stop pondering until told so by the GUI |
||
1527 | if (Limits.ponder) |
||
1528 | return; |
||
1529 | |||
1530 | if ( (Limits.use_time_management() && elapsed > Time.maximum() - 10) |
||
1531 | || (Limits.movetime && elapsed >= Limits.movetime) |
||
1532 | || (Limits.nodes && Threads.nodes_searched() >= Limits.nodes)) |
||
1533 | Signals.stop = true; |
||
1534 | } |
||
1535 | |||
1536 | } // namespace |
||
1537 | |||
1538 | |||
1539 | /// UCI::pv() formats PV information according to the UCI protocol. UCI requires |
||
1540 | /// that all (if any) unsearched PV lines are sent using a previous search score. |
||
1541 | |||
1542 | string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { |
||
1543 | |||
1544 | std::stringstream ss; |
||
1545 | int elapsed = Time.elapsed() + 1; |
||
1546 | const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves; |
||
1547 | size_t PVIdx = pos.this_thread()->PVIdx; |
||
1548 | size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size()); |
||
1549 | uint64_t nodes_searched = Threads.nodes_searched(); |
||
1550 | |||
1551 | for (size_t i = 0; i < multiPV; ++i) |
||
1552 | { |
||
1553 | bool updated = (i <= PVIdx); |
||
1554 | |||
1555 | if (depth == ONE_PLY && !updated) |
||
1556 | continue; |
||
1557 | |||
1558 | Depth d = updated ? depth : depth - ONE_PLY; |
||
1559 | Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore; |
||
1560 | |||
1561 | bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY; |
||
1562 | v = tb ? TB::Score : v; |
||
1563 | |||
1564 | if (ss.rdbuf()->in_avail()) // Not at first line |
||
1565 | ss << "\n"; |
||
1566 | |||
1567 | ss << "info" |
||
1568 | << " depth " << d / ONE_PLY |
||
1569 | << " seldepth " << pos.this_thread()->maxPly |
||
1570 | << " multipv " << i + 1 |
||
1571 | << " score " << UCI::value(v); |
||
1572 | |||
1573 | if (!tb && i == PVIdx) |
||
1574 | ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : ""); |
||
1575 | |||
1576 | ss << " nodes " << nodes_searched |
||
1577 | << " nps " << nodes_searched * 1000 / elapsed; |
||
1578 | |||
1579 | if (elapsed > 1000) // Earlier makes little sense |
||
1580 | ss << " hashfull " << TT.hashfull(); |
||
1581 | |||
1582 | ss << " tbhits " << TB::Hits |
||
1583 | << " time " << elapsed |
||
1584 | << " pv"; |
||
1585 | |||
1586 | for (Move m : rootMoves[i].pv) |
||
1587 | ss << " " << UCI::move(m, pos.is_chess960()); |
||
1588 | } |
||
1589 | |||
1590 | return ss.str(); |
||
1591 | } |
||
1592 | |||
1593 | |||
1594 | /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and |
||
1595 | /// inserts the PV back into the TT. This makes sure the old PV moves are searched |
||
1596 | /// first, even if the old TT entries have been overwritten. |
||
1597 | |||
1598 | void RootMove::insert_pv_in_tt(Position& pos) { |
||
1599 | |||
1600 | StateInfo state[MAX_PLY], *st = state; |
||
1601 | bool ttHit; |
||
1602 | |||
1603 | for (Move m : pv) |
||
1604 | { |
||
1605 | assert(MoveList<LEGAL>(pos).contains(m)); |
||
1606 | |||
1607 | TTEntry* tte = TT.probe(pos.key(), ttHit); |
||
1608 | |||
1609 | if (!ttHit || tte->move() != m) // Don't overwrite correct entries |
||
1610 | tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, |
||
1611 | m, VALUE_NONE, TT.generation()); |
||
1612 | |||
1613 | pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos))); |
||
1614 | } |
||
1615 | |||
1616 | for (size_t i = pv.size(); i > 0; ) |
||
1617 | pos.undo_move(pv[--i]); |
||
1618 | } |
||
1619 | |||
1620 | |||
1621 | /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move |
||
1622 | /// before exiting the search, for instance, in case we stop the search during a |
||
1623 | /// fail high at root. We try hard to have a ponder move to return to the GUI, |
||
1624 | /// otherwise in case of 'ponder on' we have nothing to think on. |
||
1625 | |||
1626 | bool RootMove::extract_ponder_from_tt(Position& pos) |
||
1627 | { |
||
1628 | StateInfo st; |
||
1629 | bool ttHit; |
||
1630 | |||
1631 | assert(pv.size() == 1); |
||
1632 | |||
1633 | pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos))); |
||
1634 | TTEntry* tte = TT.probe(pos.key(), ttHit); |
||
1635 | pos.undo_move(pv[0]); |
||
1636 | |||
1637 | if (ttHit) |
||
1638 | { |
||
1639 | Move m = tte->move(); // Local copy to be SMP safe |
||
1640 | if (MoveList<LEGAL>(pos).contains(m)) |
||
1641 | return pv.push_back(m), true; |
||
1642 | } |
||
1643 | |||
1644 | return false; |
||
1645 | } |