Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#include <algorithm>
22
#include <cassert>
23
#include <cmath>
24
#include <cstring>   // For std::memset
25
#include <iostream>
26
#include <sstream>
27
 
28
#include "evaluate.h"
29
#include "misc.h"
30
#include "movegen.h"
31
#include "movepick.h"
32
#include "search.h"
33
#include "timeman.h"
34
#include "thread.h"
35
#include "tt.h"
36
#include "uci.h"
37
#include "syzygy/tbprobe.h"
38
 
39
namespace Search {
40
 
41
  SignalsType Signals;
42
  LimitsType Limits;
43
  StateStackPtr SetupStates;
44
}
45
 
46
namespace Tablebases {
47
 
48
  int Cardinality;
49
  uint64_t Hits;
50
  bool RootInTB;
51
  bool UseRule50;
52
  Depth ProbeDepth;
53
  Value Score;
54
}
55
 
56
namespace TB = Tablebases;
57
 
58
using std::string;
59
using Eval::evaluate;
60
using namespace Search;
61
 
62
namespace {
63
 
64
  // Different node types, used as a template parameter
65
  enum NodeType { NonPV, PV };
66
 
67
  // Razoring and futility margin based on depth
68
  const int razor_margin[4] = { 483, 570, 603, 554 };
69
  Value futility_margin(Depth d) { return Value(200 * d); }
70
 
71
  // Futility and reductions lookup tables, initialized at startup
72
  int FutilityMoveCounts[2][16];  // [improving][depth]
73
  Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
74
 
75
  template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
76
    return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)];
77
  }
78
 
79
  // Skill structure is used to implement strength limit
80
  struct Skill {
81
    Skill(int l) : level(l) {}
82
    bool enabled() const { return level < 20; }
83
    bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
84
    Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
85
    Move pick_best(size_t multiPV);
86
 
87
    int level;
88
    Move best = MOVE_NONE;
89
  };
90
 
91
  // EasyMoveManager structure is used to detect an 'easy move'. When the PV is
92
  // stable across multiple search iterations, we can quickly return the best move.
93
  struct EasyMoveManager {
94
 
95
    void clear() {
96
      stableCnt = 0;
97
      expectedPosKey = 0;
98
      pv[0] = pv[1] = pv[2] = MOVE_NONE;
99
    }
100
 
101
    Move get(Key key) const {
102
      return expectedPosKey == key ? pv[2] : MOVE_NONE;
103
    }
104
 
105
    void update(Position& pos, const std::vector<Move>& newPv) {
106
 
107
      assert(newPv.size() >= 3);
108
 
109
      // Keep track of how many times in a row the 3rd ply remains stable
110
      stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
111
 
112
      if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
113
      {
114
          std::copy(newPv.begin(), newPv.begin() + 3, pv);
115
 
116
          StateInfo st[2];
117
          pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos)));
118
          pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos)));
119
          expectedPosKey = pos.key();
120
          pos.undo_move(newPv[1]);
121
          pos.undo_move(newPv[0]);
122
      }
123
    }
124
 
125
    int stableCnt;
126
    Key expectedPosKey;
127
    Move pv[3];
128
  };
129
 
130
  // Set of rows with half bits set to 1 and half to 0. It is used to allocate
131
  // the search depths across the threads.
132
  typedef std::vector<int> Row;
133
 
134
  const Row HalfDensity[] = {
135
    {0, 1},
136
    {1, 0},
137
    {0, 0, 1, 1},
138
    {0, 1, 1, 0},
139
    {1, 1, 0, 0},
140
    {1, 0, 0, 1},
141
    {0, 0, 0, 1, 1, 1},
142
    {0, 0, 1, 1, 1, 0},
143
    {0, 1, 1, 1, 0, 0},
144
    {1, 1, 1, 0, 0, 0},
145
    {1, 1, 0, 0, 0, 1},
146
    {1, 0, 0, 0, 1, 1},
147
    {0, 0, 0, 0, 1, 1, 1, 1},
148
    {0, 0, 0, 1, 1, 1, 1, 0},
149
    {0, 0, 1, 1, 1, 1, 0 ,0},
150
    {0, 1, 1, 1, 1, 0, 0 ,0},
151
    {1, 1, 1, 1, 0, 0, 0 ,0},
152
    {1, 1, 1, 0, 0, 0, 0 ,1},
153
    {1, 1, 0, 0, 0, 0, 1 ,1},
154
    {1, 0, 0, 0, 0, 1, 1 ,1},
155
  };
156
 
157
  const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value;
158
 
159
  EasyMoveManager EasyMove;
160
  Value DrawValue[COLOR_NB];
161
  CounterMoveHistoryStats CounterMoveHistory;
162
 
163
  template <NodeType NT>
164
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
165
 
166
  template <NodeType NT, bool InCheck>
167
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
168
 
169
  Value value_to_tt(Value v, int ply);
170
  Value value_from_tt(Value v, int ply);
171
  void update_pv(Move* pv, Move move, Move* childPv);
172
  void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
173
  void check_time();
174
 
175
} // namespace
176
 
177
 
178
/// Search::init() is called during startup to initialize various lookup tables
179
 
180
void Search::init() {
181
 
182
  const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }};
183
 
184
  for (int pv = 0; pv <= 1; ++pv)
185
      for (int imp = 0; imp <= 1; ++imp)
186
          for (int d = 1; d < 64; ++d)
187
              for (int mc = 1; mc < 64; ++mc)
188
              {
189
                  double r = K[pv][0] + log(d) * log(mc) / K[pv][1];
190
 
191
                  if (r >= 1.5)
192
                      Reductions[pv][imp][d][mc] = int(r) * ONE_PLY;
193
 
194
                  // Increase reduction when eval is not improving
195
                  if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY)
196
                      Reductions[pv][imp][d][mc] += ONE_PLY;
197
              }
198
 
199
  for (int d = 0; d < 16; ++d)
200
  {
201
      FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
202
      FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
203
  }
204
}
205
 
206
 
207
/// Search::clear() resets search state to zero, to obtain reproducible results
208
 
209
void Search::clear() {
210
 
211
  TT.clear();
212
  CounterMoveHistory.clear();
213
 
214
  for (Thread* th : Threads)
215
  {
216
      th->history.clear();
217
      th->counterMoves.clear();
218
  }
219
 
220
  Threads.main()->previousScore = VALUE_INFINITE;
221
}
222
 
223
 
224
/// Search::perft() is our utility to verify move generation. All the leaf nodes
225
/// up to the given depth are generated and counted, and the sum is returned.
226
template<bool Root>
227
uint64_t Search::perft(Position& pos, Depth depth) {
228
 
229
  StateInfo st;
230
  uint64_t cnt, nodes = 0;
231
  CheckInfo ci(pos);
232
  const bool leaf = (depth == 2 * ONE_PLY);
233
 
234
  for (const auto& m : MoveList<LEGAL>(pos))
235
  {
236
      if (Root && depth <= ONE_PLY)
237
          cnt = 1, nodes++;
238
      else
239
      {
240
          pos.do_move(m, st, pos.gives_check(m, ci));
241
          cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
242
          nodes += cnt;
243
          pos.undo_move(m);
244
      }
245
      if (Root)
246
          sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
247
  }
248
  return nodes;
249
}
250
 
251
template uint64_t Search::perft<true>(Position&, Depth);
252
 
253
 
254
/// MainThread::search() is called by the main thread when the program receives
255
/// the UCI 'go' command. It searches from the root position and outputs the "bestmove".
256
 
257
void MainThread::search() {
258
 
259
  Color us = rootPos.side_to_move();
260
  Time.init(Limits, us, rootPos.game_ply());
261
 
262
  int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
263
  DrawValue[ us] = VALUE_DRAW - Value(contempt);
264
  DrawValue[~us] = VALUE_DRAW + Value(contempt);
265
 
266
  TB::Hits = 0;
267
  TB::RootInTB = false;
268
  TB::UseRule50 = Options["Syzygy50MoveRule"];
269
  TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
270
  TB::Cardinality = Options["SyzygyProbeLimit"];
271
 
272
  // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
273
  if (TB::Cardinality > TB::MaxCardinality)
274
  {
275
      TB::Cardinality = TB::MaxCardinality;
276
      TB::ProbeDepth = DEPTH_ZERO;
277
  }
278
 
279
  if (rootMoves.empty())
280
  {
281
      rootMoves.push_back(RootMove(MOVE_NONE));
282
      sync_cout << "info depth 0 score "
283
                << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
284
                << sync_endl;
285
  }
286
  else
287
  {
288
      if (    TB::Cardinality >=  rootPos.count<ALL_PIECES>(WHITE)
289
                                + rootPos.count<ALL_PIECES>(BLACK)
290
          && !rootPos.can_castle(ANY_CASTLING))
291
      {
292
          // If the current root position is in the tablebases, then RootMoves
293
          // contains only moves that preserve the draw or the win.
294
          TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score);
295
 
296
          if (TB::RootInTB)
297
              TB::Cardinality = 0; // Do not probe tablebases during the search
298
 
299
          else // If DTZ tables are missing, use WDL tables as a fallback
300
          {
301
              // Filter out moves that do not preserve the draw or the win.
302
              TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score);
303
 
304
              // Only probe during search if winning
305
              if (TB::Score <= VALUE_DRAW)
306
                  TB::Cardinality = 0;
307
          }
308
 
309
          if (TB::RootInTB)
310
          {
311
              TB::Hits = rootMoves.size();
312
 
313
              if (!TB::UseRule50)
314
                  TB::Score =  TB::Score > VALUE_DRAW ?  VALUE_MATE - MAX_PLY - 1
315
                             : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1
316
                                                      :  VALUE_DRAW;
317
          }
318
      }
319
 
320
      for (Thread* th : Threads)
321
      {
322
          th->maxPly = 0;
323
          th->rootDepth = DEPTH_ZERO;
324
          if (th != this)
325
          {
326
              th->rootPos = Position(rootPos, th);
327
              th->rootMoves = rootMoves;
328
              th->start_searching();
329
          }
330
      }
331
 
332
      Thread::search(); // Let's start searching!
333
  }
334
 
335
  // When playing in 'nodes as time' mode, subtract the searched nodes from
336
  // the available ones before exiting.
337
  if (Limits.npmsec)
338
      Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
339
 
340
  // When we reach the maximum depth, we can arrive here without a raise of
341
  // Signals.stop. However, if we are pondering or in an infinite search,
342
  // the UCI protocol states that we shouldn't print the best move before the
343
  // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
344
  // until the GUI sends one of those commands (which also raises Signals.stop).
345
  if (!Signals.stop && (Limits.ponder || Limits.infinite))
346
  {
347
      Signals.stopOnPonderhit = true;
348
      wait(Signals.stop);
349
  }
350
 
351
  // Stop the threads if not already stopped
352
  Signals.stop = true;
353
 
354
  // Wait until all threads have finished
355
  for (Thread* th : Threads)
356
      if (th != this)
357
          th->wait_for_search_finished();
358
 
359
  // Check if there are threads with a better score than main thread
360
  Thread* bestThread = this;
361
  if (   !this->easyMovePlayed
362
      &&  Options["MultiPV"] == 1
363
      && !Skill(Options["Skill Level"]).enabled())
364
  {
365
      for (Thread* th : Threads)
366
          if (   th->completedDepth > bestThread->completedDepth
367
              && th->rootMoves[0].score > bestThread->rootMoves[0].score)
368
              bestThread = th;
369
  }
370
 
371
  previousScore = bestThread->rootMoves[0].score;
372
 
373
  // Send new PV when needed
374
  if (bestThread != this)
375
      sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
376
 
377
  sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
378
 
379
  if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
380
      std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
381
 
382
  std::cout << sync_endl;
383
}
384
 
385
 
386
// Thread::search() is the main iterative deepening loop. It calls search()
387
// repeatedly with increasing depth until the allocated thinking time has been
388
// consumed, the user stops the search, or the maximum search depth is reached.
389
 
390
void Thread::search() {
391
 
392
  Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2)
393
  Value bestValue, alpha, beta, delta;
394
  Move easyMove = MOVE_NONE;
395
  MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
396
 
397
  std::memset(ss-2, 0, 5 * sizeof(Stack));
398
 
399
  bestValue = delta = alpha = -VALUE_INFINITE;
400
  beta = VALUE_INFINITE;
401
  completedDepth = DEPTH_ZERO;
402
 
403
  if (mainThread)
404
  {
405
      easyMove = EasyMove.get(rootPos.key());
406
      EasyMove.clear();
407
      mainThread->easyMovePlayed = mainThread->failedLow = false;
408
      mainThread->bestMoveChanges = 0;
409
      TT.new_search();
410
  }
411
 
412
  size_t multiPV = Options["MultiPV"];
413
  Skill skill(Options["Skill Level"]);
414
 
415
  // When playing with strength handicap enable MultiPV search that we will
416
  // use behind the scenes to retrieve a set of possible moves.
417
  if (skill.enabled())
418
      multiPV = std::max(multiPV, (size_t)4);
419
 
420
  multiPV = std::min(multiPV, rootMoves.size());
421
 
422
  // Iterative deepening loop until requested to stop or the target depth is reached.
423
  while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth))
424
  {
425
      // Set up the new depths for the helper threads skipping on average every
426
      // 2nd ply (using a half-density matrix).
427
      if (!mainThread)
428
      {
429
          const Row& row = HalfDensity[(idx - 1) % HalfDensitySize];
430
          if (row[(rootDepth + rootPos.game_ply()) % row.size()])
431
             continue;
432
      }
433
 
434
      // Age out PV variability metric
435
      if (mainThread)
436
          mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
437
 
438
      // Save the last iteration's scores before first PV line is searched and
439
      // all the move scores except the (new) PV are set to -VALUE_INFINITE.
440
      for (RootMove& rm : rootMoves)
441
          rm.previousScore = rm.score;
442
 
443
      // MultiPV loop. We perform a full root search for each PV line
444
      for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
445
      {
446
          // Reset aspiration window starting size
447
          if (rootDepth >= 5 * ONE_PLY)
448
          {
449
              delta = Value(18);
450
              alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
451
              beta  = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
452
          }
453
 
454
          // Start with a small aspiration window and, in the case of a fail
455
          // high/low, re-search with a bigger window until we're not failing
456
          // high/low anymore.
457
          while (true)
458
          {
459
              bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false);
460
 
461
              // Bring the best move to the front. It is critical that sorting
462
              // is done with a stable algorithm because all the values but the
463
              // first and eventually the new best one are set to -VALUE_INFINITE
464
              // and we want to keep the same order for all the moves except the
465
              // new PV that goes to the front. Note that in case of MultiPV
466
              // search the already searched PV lines are preserved.
467
              std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
468
 
469
              // Write PV back to the transposition table in case the relevant
470
              // entries have been overwritten during the search.
471
              for (size_t i = 0; i <= PVIdx; ++i)
472
                  rootMoves[i].insert_pv_in_tt(rootPos);
473
 
474
              // If search has been stopped, break immediately. Sorting and
475
              // writing PV back to TT is safe because RootMoves is still
476
              // valid, although it refers to the previous iteration.
477
              if (Signals.stop)
478
                  break;
479
 
480
              // When failing high/low give some update (without cluttering
481
              // the UI) before a re-search.
482
              if (   mainThread
483
                  && multiPV == 1
484
                  && (bestValue <= alpha || bestValue >= beta)
485
                  && Time.elapsed() > 3000)
486
                  sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
487
 
488
              // In case of failing low/high increase aspiration window and
489
              // re-search, otherwise exit the loop.
490
              if (bestValue <= alpha)
491
              {
492
                  beta = (alpha + beta) / 2;
493
                  alpha = std::max(bestValue - delta, -VALUE_INFINITE);
494
 
495
                  if (mainThread)
496
                  {
497
                      mainThread->failedLow = true;
498
                      Signals.stopOnPonderhit = false;
499
                  }
500
              }
501
              else if (bestValue >= beta)
502
              {
503
                  alpha = (alpha + beta) / 2;
504
                  beta = std::min(bestValue + delta, VALUE_INFINITE);
505
              }
506
              else
507
                  break;
508
 
509
              delta += delta / 4 + 5;
510
 
511
              assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
512
          }
513
 
514
          // Sort the PV lines searched so far and update the GUI
515
          std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
516
 
517
          if (!mainThread)
518
              break;
519
 
520
          if (Signals.stop)
521
              sync_cout << "info nodes " << Threads.nodes_searched()
522
                        << " time " << Time.elapsed() << sync_endl;
523
 
524
          else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000)
525
              sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
526
      }
527
 
528
      if (!Signals.stop)
529
          completedDepth = rootDepth;
530
 
531
      if (!mainThread)
532
          continue;
533
 
534
      // If skill level is enabled and time is up, pick a sub-optimal best move
535
      if (skill.enabled() && skill.time_to_pick(rootDepth))
536
          skill.pick_best(multiPV);
537
 
538
      // Have we found a "mate in x"?
539
      if (   Limits.mate
540
          && bestValue >= VALUE_MATE_IN_MAX_PLY
541
          && VALUE_MATE - bestValue <= 2 * Limits.mate)
542
          Signals.stop = true;
543
 
544
      // Do we have time for the next iteration? Can we stop searching now?
545
      if (Limits.use_time_management())
546
      {
547
          if (!Signals.stop && !Signals.stopOnPonderhit)
548
          {
549
              // Stop the search if only one legal move is available, or if all
550
              // of the available time has been used, or if we matched an easyMove
551
              // from the previous search and just did a fast verification.
552
              const bool F[] = { !mainThread->failedLow,
553
                                 bestValue >= mainThread->previousScore };
554
 
555
              int improvingFactor = 640 - 160*F[0] - 126*F[1] - 124*F[0]*F[1];
556
              double unstablePvFactor = 1 + mainThread->bestMoveChanges;
557
 
558
              bool doEasyMove =   rootMoves[0].pv[0] == easyMove
559
                               && mainThread->bestMoveChanges < 0.03
560
                               && Time.elapsed() > Time.optimum() * 25 / 204;
561
 
562
              if (   rootMoves.size() == 1
563
                  || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 634
564
                  || (mainThread->easyMovePlayed = doEasyMove))
565
              {
566
                  // If we are allowed to ponder do not stop the search now but
567
                  // keep pondering until the GUI sends "ponderhit" or "stop".
568
                  if (Limits.ponder)
569
                      Signals.stopOnPonderhit = true;
570
                  else
571
                      Signals.stop = true;
572
              }
573
          }
574
 
575
          if (rootMoves[0].pv.size() >= 3)
576
              EasyMove.update(rootPos, rootMoves[0].pv);
577
          else
578
              EasyMove.clear();
579
      }
580
  }
581
 
582
  if (!mainThread)
583
      return;
584
 
585
  // Clear any candidate easy move that wasn't stable for the last search
586
  // iterations; the second condition prevents consecutive fast moves.
587
  if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
588
      EasyMove.clear();
589
 
590
  // If skill level is enabled, swap best PV line with the sub-optimal one
591
  if (skill.enabled())
592
      std::swap(rootMoves[0], *std::find(rootMoves.begin(),
593
                rootMoves.end(), skill.best_move(multiPV)));
594
}
595
 
596
 
597
namespace {
598
 
599
  // search<>() is the main search function for both PV and non-PV nodes
600
 
601
  template <NodeType NT>
602
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
603
 
604
    const bool PvNode = NT == PV;
605
    const bool rootNode = PvNode && (ss-1)->ply == 0;
606
 
607
    assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
608
    assert(PvNode || (alpha == beta - 1));
609
    assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
610
 
611
    Move pv[MAX_PLY+1], quietsSearched[64];
612
    StateInfo st;
613
    TTEntry* tte;
614
    Key posKey;
615
    Move ttMove, move, excludedMove, bestMove;
616
    Depth extension, newDepth, predictedDepth;
617
    Value bestValue, value, ttValue, eval, nullValue, futilityValue;
618
    bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
619
    bool captureOrPromotion, doFullDepthSearch;
620
    int moveCount, quietCount;
621
 
622
    // Step 1. Initialize node
623
    Thread* thisThread = pos.this_thread();
624
    inCheck = pos.checkers();
625
    moveCount = quietCount =  ss->moveCount = 0;
626
    bestValue = -VALUE_INFINITE;
627
    ss->ply = (ss-1)->ply + 1;
628
 
629
    // Check for the available remaining time
630
    if (thisThread->resetCalls.load(std::memory_order_relaxed))
631
    {
632
        thisThread->resetCalls = false;
633
        thisThread->callsCnt = 0;
634
    }
635
    if (++thisThread->callsCnt > 4096)
636
    {
637
        for (Thread* th : Threads)
638
            th->resetCalls = true;
639
 
640
        check_time();
641
    }
642
 
643
    // Used to send selDepth info to GUI
644
    if (PvNode && thisThread->maxPly < ss->ply)
645
        thisThread->maxPly = ss->ply;
646
 
647
    if (!rootNode)
648
    {
649
        // Step 2. Check for aborted search and immediate draw
650
        if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY)
651
            return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
652
                                                  : DrawValue[pos.side_to_move()];
653
 
654
        // Step 3. Mate distance pruning. Even if we mate at the next move our score
655
        // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
656
        // a shorter mate was found upward in the tree then there is no need to search
657
        // because we will never beat the current alpha. Same logic but with reversed
658
        // signs applies also in the opposite condition of being mated instead of giving
659
        // mate. In this case return a fail-high score.
660
        alpha = std::max(mated_in(ss->ply), alpha);
661
        beta = std::min(mate_in(ss->ply+1), beta);
662
        if (alpha >= beta)
663
            return alpha;
664
    }
665
 
666
    assert(0 <= ss->ply && ss->ply < MAX_PLY);
667
 
668
    ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
669
    (ss+1)->skipEarlyPruning = false;
670
    (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
671
 
672
    // Step 4. Transposition table lookup. We don't want the score of a partial
673
    // search to overwrite a previous full search TT value, so we use a different
674
    // position key in case of an excluded move.
675
    excludedMove = ss->excludedMove;
676
    posKey = excludedMove ? pos.exclusion_key() : pos.key();
677
    tte = TT.probe(posKey, ttHit);
678
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
679
    ttMove =  rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
680
            : ttHit    ? tte->move() : MOVE_NONE;
681
 
682
    // At non-PV nodes we check for an early TT cutoff
683
    if (  !PvNode
684
        && ttHit
685
        && tte->depth() >= depth
686
        && ttValue != VALUE_NONE // Possible in case of TT access race
687
        && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
688
                            : (tte->bound() & BOUND_UPPER)))
689
    {
690
        ss->currentMove = ttMove; // Can be MOVE_NONE
691
 
692
        // If ttMove is quiet, update killers, history, counter move on TT hit
693
        if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove))
694
            update_stats(pos, ss, ttMove, depth, nullptr, 0);
695
 
696
        return ttValue;
697
    }
698
 
699
    // Step 4a. Tablebase probe
700
    if (!rootNode && TB::Cardinality)
701
    {
702
        int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK);
703
 
704
        if (    piecesCnt <= TB::Cardinality
705
            && (piecesCnt <  TB::Cardinality || depth >= TB::ProbeDepth)
706
            &&  pos.rule50_count() == 0
707
            && !pos.can_castle(ANY_CASTLING))
708
        {
709
            int found, v = Tablebases::probe_wdl(pos, &found);
710
 
711
            if (found)
712
            {
713
                TB::Hits++;
714
 
715
                int drawScore = TB::UseRule50 ? 1 : 0;
716
 
717
                value =  v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
718
                       : v >  drawScore ?  VALUE_MATE - MAX_PLY - ss->ply
719
                                        :  VALUE_DRAW + 2 * v * drawScore;
720
 
721
                tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
722
                          std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
723
                          MOVE_NONE, VALUE_NONE, TT.generation());
724
 
725
                return value;
726
            }
727
        }
728
    }
729
 
730
    // Step 5. Evaluate the position statically
731
    if (inCheck)
732
    {
733
        ss->staticEval = eval = VALUE_NONE;
734
        goto moves_loop;
735
    }
736
 
737
    else if (ttHit)
738
    {
739
        // Never assume anything on values stored in TT
740
        if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
741
            eval = ss->staticEval = evaluate(pos);
742
 
743
        // Can ttValue be used as a better position evaluation?
744
        if (ttValue != VALUE_NONE)
745
            if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
746
                eval = ttValue;
747
    }
748
    else
749
    {
750
        eval = ss->staticEval =
751
        (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
752
                                         : -(ss-1)->staticEval + 2 * Eval::Tempo;
753
 
754
        tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
755
                  ss->staticEval, TT.generation());
756
    }
757
 
758
    if (ss->skipEarlyPruning)
759
        goto moves_loop;
760
 
761
    // Step 6. Razoring (skipped when in check)
762
    if (   !PvNode
763
        &&  depth < 4 * ONE_PLY
764
        &&  eval + razor_margin[depth] <= alpha
765
        &&  ttMove == MOVE_NONE)
766
    {
767
        if (   depth <= ONE_PLY
768
            && eval + razor_margin[3 * ONE_PLY] <= alpha)
769
            return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
770
 
771
        Value ralpha = alpha - razor_margin[depth];
772
        Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
773
        if (v <= ralpha)
774
            return v;
775
    }
776
 
777
    // Step 7. Futility pruning: child node (skipped when in check)
778
    if (   !rootNode
779
        &&  depth < 7 * ONE_PLY
780
        &&  eval - futility_margin(depth) >= beta
781
        &&  eval < VALUE_KNOWN_WIN  // Do not return unproven wins
782
        &&  pos.non_pawn_material(pos.side_to_move()))
783
        return eval - futility_margin(depth);
784
 
785
    // Step 8. Null move search with verification search (is omitted in PV nodes)
786
    if (   !PvNode
787
        &&  depth >= 2 * ONE_PLY
788
        &&  eval >= beta
789
        &&  pos.non_pawn_material(pos.side_to_move()))
790
    {
791
        ss->currentMove = MOVE_NULL;
792
 
793
        assert(eval - beta >= 0);
794
 
795
        // Null move dynamic reduction based on depth and value
796
        Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
797
 
798
        pos.do_null_move(st);
799
        (ss+1)->skipEarlyPruning = true;
800
        nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
801
                                      : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
802
        (ss+1)->skipEarlyPruning = false;
803
        pos.undo_null_move();
804
 
805
        if (nullValue >= beta)
806
        {
807
            // Do not return unproven mate scores
808
            if (nullValue >= VALUE_MATE_IN_MAX_PLY)
809
                nullValue = beta;
810
 
811
            if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
812
                return nullValue;
813
 
814
            // Do verification search at high depths
815
            ss->skipEarlyPruning = true;
816
            Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
817
                                        :  search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
818
            ss->skipEarlyPruning = false;
819
 
820
            if (v >= beta)
821
                return nullValue;
822
        }
823
    }
824
 
825
    // Step 9. ProbCut (skipped when in check)
826
    // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
827
    // and a reduced search returns a value much above beta, we can (almost)
828
    // safely prune the previous move.
829
    if (   !PvNode
830
        &&  depth >= 5 * ONE_PLY
831
        &&  abs(beta) < VALUE_MATE_IN_MAX_PLY)
832
    {
833
        Value rbeta = std::min(beta + 200, VALUE_INFINITE);
834
        Depth rdepth = depth - 4 * ONE_PLY;
835
 
836
        assert(rdepth >= ONE_PLY);
837
        assert((ss-1)->currentMove != MOVE_NONE);
838
        assert((ss-1)->currentMove != MOVE_NULL);
839
 
840
        MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]);
841
        CheckInfo ci(pos);
842
 
843
        while ((move = mp.next_move()) != MOVE_NONE)
844
            if (pos.legal(move, ci.pinned))
845
            {
846
                ss->currentMove = move;
847
                pos.do_move(move, st, pos.gives_check(move, ci));
848
                value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
849
                pos.undo_move(move);
850
                if (value >= rbeta)
851
                    return value;
852
            }
853
    }
854
 
855
    // Step 10. Internal iterative deepening (skipped when in check)
856
    if (    depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
857
        && !ttMove
858
        && (PvNode || ss->staticEval + 256 >= beta))
859
    {
860
        Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
861
        ss->skipEarlyPruning = true;
862
        search<NT>(pos, ss, alpha, beta, d, true);
863
        ss->skipEarlyPruning = false;
864
 
865
        tte = TT.probe(posKey, ttHit);
866
        ttMove = ttHit ? tte->move() : MOVE_NONE;
867
    }
868
 
869
moves_loop: // When in check search starts from here
870
 
871
    Square prevSq = to_sq((ss-1)->currentMove);
872
    Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
873
    const CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq];
874
 
875
    MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss);
876
    CheckInfo ci(pos);
877
    value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
878
    improving =   ss->staticEval >= (ss-2)->staticEval
879
               || ss->staticEval == VALUE_NONE
880
               ||(ss-2)->staticEval == VALUE_NONE;
881
 
882
    singularExtensionNode =   !rootNode
883
                           &&  depth >= 8 * ONE_PLY
884
                           &&  ttMove != MOVE_NONE
885
                       /*  &&  ttValue != VALUE_NONE Already implicit in the next condition */
886
                           &&  abs(ttValue) < VALUE_KNOWN_WIN
887
                           && !excludedMove // Recursive singular search is not allowed
888
                           && (tte->bound() & BOUND_LOWER)
889
                           &&  tte->depth() >= depth - 3 * ONE_PLY;
890
 
891
    // Step 11. Loop through moves
892
    // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
893
    while ((move = mp.next_move()) != MOVE_NONE)
894
    {
895
      assert(is_ok(move));
896
 
897
      if (move == excludedMove)
898
          continue;
899
 
900
      // At root obey the "searchmoves" option and skip moves not listed in Root
901
      // Move List. As a consequence any illegal move is also skipped. In MultiPV
902
      // mode we also skip PV moves which have been already searched.
903
      if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
904
                                  thisThread->rootMoves.end(), move))
905
          continue;
906
 
907
      ss->moveCount = ++moveCount;
908
 
909
      if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
910
          sync_cout << "info depth " << depth / ONE_PLY
911
                    << " currmove " << UCI::move(move, pos.is_chess960())
912
                    << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
913
 
914
      if (PvNode)
915
          (ss+1)->pv = nullptr;
916
 
917
      extension = DEPTH_ZERO;
918
      captureOrPromotion = pos.capture_or_promotion(move);
919
 
920
      givesCheck =  type_of(move) == NORMAL && !ci.dcCandidates
921
                  ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
922
                  : pos.gives_check(move, ci);
923
 
924
      // Step 12. Extend checks
925
      if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
926
          extension = ONE_PLY;
927
 
928
      // Singular extension search. If all moves but one fail low on a search of
929
      // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
930
      // is singular and should be extended. To verify this we do a reduced search
931
      // on all the other moves but the ttMove and if the result is lower than
932
      // ttValue minus a margin then we extend the ttMove.
933
      if (    singularExtensionNode
934
          &&  move == ttMove
935
          && !extension
936
          &&  pos.legal(move, ci.pinned))
937
      {
938
          Value rBeta = ttValue - 2 * depth / ONE_PLY;
939
          ss->excludedMove = move;
940
          ss->skipEarlyPruning = true;
941
          value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
942
          ss->skipEarlyPruning = false;
943
          ss->excludedMove = MOVE_NONE;
944
 
945
          if (value < rBeta)
946
              extension = ONE_PLY;
947
      }
948
 
949
      // Update the current move (this must be done after singular extension search)
950
      newDepth = depth - ONE_PLY + extension;
951
 
952
      // Step 13. Pruning at shallow depth
953
      if (   !rootNode
954
          && !captureOrPromotion
955
          && !inCheck
956
          && !givesCheck
957
          && !pos.advanced_pawn_push(move)
958
          &&  bestValue > VALUE_MATED_IN_MAX_PLY)
959
      {
960
          // Move count based pruning
961
          if (   depth < 16 * ONE_PLY
962
              && moveCount >= FutilityMoveCounts[improving][depth])
963
              continue;
964
 
965
          // History based pruning
966
          if (   depth <= 4 * ONE_PLY
967
              && move != ss->killers[0]
968
              && thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO
969
              && cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO)
970
              continue;
971
 
972
          predictedDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO);
973
 
974
          // Futility pruning: parent node
975
          if (predictedDepth < 7 * ONE_PLY)
976
          {
977
              futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256;
978
 
979
              if (futilityValue <= alpha)
980
              {
981
                  bestValue = std::max(bestValue, futilityValue);
982
                  continue;
983
              }
984
          }
985
 
986
          // Prune moves with negative SEE at low depths
987
          if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
988
              continue;
989
      }
990
 
991
      // Speculative prefetch as early as possible
992
      prefetch(TT.first_entry(pos.key_after(move)));
993
 
994
      // Check for legality just before making the move
995
      if (!rootNode && !pos.legal(move, ci.pinned))
996
      {
997
          ss->moveCount = --moveCount;
998
          continue;
999
      }
1000
 
1001
      ss->currentMove = move;
1002
 
1003
      // Step 14. Make the move
1004
      pos.do_move(move, st, givesCheck);
1005
 
1006
      // Step 15. Reduced depth search (LMR). If the move fails high it will be
1007
      // re-searched at full depth.
1008
      if (    depth >= 3 * ONE_PLY
1009
          &&  moveCount > 1
1010
          && !captureOrPromotion)
1011
      {
1012
          Depth r = reduction<PvNode>(improving, depth, moveCount);
1013
 
1014
          // Increase reduction for cut nodes and moves with a bad history
1015
          if (   (!PvNode && cutNode)
1016
              || (   thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO
1017
                  && cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO))
1018
              r += ONE_PLY;
1019
 
1020
          // Decrease/increase reduction for moves with a good/bad history
1021
          int rHist = (  thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)]
1022
                       + cmh[pos.piece_on(to_sq(move))][to_sq(move)]) / 14980;
1023
          r = std::max(DEPTH_ZERO, r - rHist * ONE_PLY);
1024
 
1025
          // Decrease reduction for moves that escape a capture. Filter out
1026
          // castling moves, because they are coded as "king captures rook" and
1027
          // hence break make_move(). Also use see() instead of see_sign(),
1028
          // because the destination square is empty.
1029
          if (   r
1030
              && type_of(move) == NORMAL
1031
              && type_of(pos.piece_on(to_sq(move))) != PAWN
1032
              && pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO)
1033
              r = std::max(DEPTH_ZERO, r - ONE_PLY);
1034
 
1035
          Depth d = std::max(newDepth - r, ONE_PLY);
1036
 
1037
          value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
1038
 
1039
          doFullDepthSearch = (value > alpha && r != DEPTH_ZERO);
1040
      }
1041
      else
1042
          doFullDepthSearch = !PvNode || moveCount > 1;
1043
 
1044
      // Step 16. Full depth search when LMR is skipped or fails high
1045
      if (doFullDepthSearch)
1046
          value = newDepth <   ONE_PLY ?
1047
                            givesCheck ? -qsearch<NonPV,  true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
1048
                                       : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
1049
                                       : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
1050
 
1051
      // For PV nodes only, do a full PV search on the first move or after a fail
1052
      // high (in the latter case search only if value < beta), otherwise let the
1053
      // parent node fail low with value <= alpha and try another move.
1054
      if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
1055
      {
1056
          (ss+1)->pv = pv;
1057
          (ss+1)->pv[0] = MOVE_NONE;
1058
 
1059
          value = newDepth <   ONE_PLY ?
1060
                            givesCheck ? -qsearch<PV,  true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
1061
                                       : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
1062
                                       : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
1063
      }
1064
 
1065
      // Step 17. Undo move
1066
      pos.undo_move(move);
1067
 
1068
      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1069
 
1070
      // Step 18. Check for a new best move
1071
      // Finished searching the move. If a stop occurred, the return value of
1072
      // the search cannot be trusted, and we return immediately without
1073
      // updating best move, PV and TT.
1074
      if (Signals.stop.load(std::memory_order_relaxed))
1075
          return VALUE_ZERO;
1076
 
1077
      if (rootNode)
1078
      {
1079
          RootMove& rm = *std::find(thisThread->rootMoves.begin(),
1080
                                    thisThread->rootMoves.end(), move);
1081
 
1082
          // PV move or new best move ?
1083
          if (moveCount == 1 || value > alpha)
1084
          {
1085
              rm.score = value;
1086
              rm.pv.resize(1);
1087
 
1088
              assert((ss+1)->pv);
1089
 
1090
              for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
1091
                  rm.pv.push_back(*m);
1092
 
1093
              // We record how often the best move has been changed in each
1094
              // iteration. This information is used for time management: When
1095
              // the best move changes frequently, we allocate some more time.
1096
              if (moveCount > 1 && thisThread == Threads.main())
1097
                  ++static_cast<MainThread*>(thisThread)->bestMoveChanges;
1098
          }
1099
          else
1100
              // All other moves but the PV are set to the lowest value: this is
1101
              // not a problem when sorting because the sort is stable and the
1102
              // move position in the list is preserved - just the PV is pushed up.
1103
              rm.score = -VALUE_INFINITE;
1104
      }
1105
 
1106
      if (value > bestValue)
1107
      {
1108
          bestValue = value;
1109
 
1110
          if (value > alpha)
1111
          {
1112
              // If there is an easy move for this position, clear it if unstable
1113
              if (    PvNode
1114
                  &&  thisThread == Threads.main()
1115
                  &&  EasyMove.get(pos.key())
1116
                  && (move != EasyMove.get(pos.key()) || moveCount > 1))
1117
                  EasyMove.clear();
1118
 
1119
              bestMove = move;
1120
 
1121
              if (PvNode && !rootNode) // Update pv even in fail-high case
1122
                  update_pv(ss->pv, move, (ss+1)->pv);
1123
 
1124
              if (PvNode && value < beta) // Update alpha! Always alpha < beta
1125
                  alpha = value;
1126
              else
1127
              {
1128
                  assert(value >= beta); // Fail high
1129
                  break;
1130
              }
1131
          }
1132
      }
1133
 
1134
      if (!captureOrPromotion && move != bestMove && quietCount < 64)
1135
          quietsSearched[quietCount++] = move;
1136
    }
1137
 
1138
    // The following condition would detect a stop only after move loop has been
1139
    // completed. But in this case bestValue is valid because we have fully
1140
    // searched our subtree, and we can anyhow save the result in TT.
1141
    /*
1142
       if (Signals.stop)
1143
        return VALUE_DRAW;
1144
    */
1145
 
1146
    // Step 20. Check for mate and stalemate
1147
    // All legal moves have been searched and if there are no legal moves, it
1148
    // must be a mate or a stalemate. If we are in a singular extension search then
1149
    // return a fail low score.
1150
    if (!moveCount)
1151
        bestValue = excludedMove ? alpha
1152
                   :     inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
1153
 
1154
    // Quiet best move: update killers, history and countermoves
1155
    else if (bestMove && !pos.capture_or_promotion(bestMove))
1156
        update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount);
1157
 
1158
    // Bonus for prior countermove that caused the fail low
1159
    else if (    depth >= 3 * ONE_PLY
1160
             && !bestMove
1161
             && !inCheck
1162
             && !pos.captured_piece_type()
1163
             && is_ok((ss - 1)->currentMove)
1164
             && is_ok((ss - 2)->currentMove))
1165
    {
1166
        Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
1167
        Square prevPrevSq = to_sq((ss - 2)->currentMove);
1168
        CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
1169
        prevCmh.update(pos.piece_on(prevSq), prevSq, bonus);
1170
    }
1171
 
1172
    tte->save(posKey, value_to_tt(bestValue, ss->ply),
1173
              bestValue >= beta ? BOUND_LOWER :
1174
              PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
1175
              depth, bestMove, ss->staticEval, TT.generation());
1176
 
1177
    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1178
 
1179
    return bestValue;
1180
  }
1181
 
1182
 
1183
  // qsearch() is the quiescence search function, which is called by the main
1184
  // search function when the remaining depth is zero (or, to be more precise,
1185
  // less than ONE_PLY).
1186
 
1187
  template <NodeType NT, bool InCheck>
1188
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1189
 
1190
    const bool PvNode = NT == PV;
1191
 
1192
    assert(InCheck == !!pos.checkers());
1193
    assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1194
    assert(PvNode || (alpha == beta - 1));
1195
    assert(depth <= DEPTH_ZERO);
1196
 
1197
    Move pv[MAX_PLY+1];
1198
    StateInfo st;
1199
    TTEntry* tte;
1200
    Key posKey;
1201
    Move ttMove, move, bestMove;
1202
    Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
1203
    bool ttHit, givesCheck, evasionPrunable;
1204
    Depth ttDepth;
1205
 
1206
    if (PvNode)
1207
    {
1208
        oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
1209
        (ss+1)->pv = pv;
1210
        ss->pv[0] = MOVE_NONE;
1211
    }
1212
 
1213
    ss->currentMove = bestMove = MOVE_NONE;
1214
    ss->ply = (ss-1)->ply + 1;
1215
 
1216
    // Check for an instant draw or if the maximum ply has been reached
1217
    if (pos.is_draw() || ss->ply >= MAX_PLY)
1218
        return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
1219
                                              : DrawValue[pos.side_to_move()];
1220
 
1221
    assert(0 <= ss->ply && ss->ply < MAX_PLY);
1222
 
1223
    // Decide whether or not to include checks: this fixes also the type of
1224
    // TT entry depth that we are going to use. Note that in qsearch we use
1225
    // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1226
    ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1227
                                                  : DEPTH_QS_NO_CHECKS;
1228
 
1229
    // Transposition table lookup
1230
    posKey = pos.key();
1231
    tte = TT.probe(posKey, ttHit);
1232
    ttMove = ttHit ? tte->move() : MOVE_NONE;
1233
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
1234
 
1235
    if (  !PvNode
1236
        && ttHit
1237
        && tte->depth() >= ttDepth
1238
        && ttValue != VALUE_NONE // Only in case of TT access race
1239
        && (ttValue >= beta ? (tte->bound() &  BOUND_LOWER)
1240
                            : (tte->bound() &  BOUND_UPPER)))
1241
    {
1242
        ss->currentMove = ttMove; // Can be MOVE_NONE
1243
        return ttValue;
1244
    }
1245
 
1246
    // Evaluate the position statically
1247
    if (InCheck)
1248
    {
1249
        ss->staticEval = VALUE_NONE;
1250
        bestValue = futilityBase = -VALUE_INFINITE;
1251
    }
1252
    else
1253
    {
1254
        if (ttHit)
1255
        {
1256
            // Never assume anything on values stored in TT
1257
            if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
1258
                ss->staticEval = bestValue = evaluate(pos);
1259
 
1260
            // Can ttValue be used as a better position evaluation?
1261
            if (ttValue != VALUE_NONE)
1262
                if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
1263
                    bestValue = ttValue;
1264
        }
1265
        else
1266
            ss->staticEval = bestValue =
1267
            (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
1268
                                             : -(ss-1)->staticEval + 2 * Eval::Tempo;
1269
 
1270
        // Stand pat. Return immediately if static value is at least beta
1271
        if (bestValue >= beta)
1272
        {
1273
            if (!ttHit)
1274
                tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
1275
                          DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
1276
 
1277
            return bestValue;
1278
        }
1279
 
1280
        if (PvNode && bestValue > alpha)
1281
            alpha = bestValue;
1282
 
1283
        futilityBase = bestValue + 128;
1284
    }
1285
 
1286
    // Initialize a MovePicker object for the current position, and prepare
1287
    // to search the moves. Because the depth is <= 0 here, only captures,
1288
    // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1289
    // be generated.
1290
    MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove));
1291
    CheckInfo ci(pos);
1292
 
1293
    // Loop through the moves until no moves remain or a beta cutoff occurs
1294
    while ((move = mp.next_move()) != MOVE_NONE)
1295
    {
1296
      assert(is_ok(move));
1297
 
1298
      givesCheck =  type_of(move) == NORMAL && !ci.dcCandidates
1299
                  ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
1300
                  : pos.gives_check(move, ci);
1301
 
1302
      // Futility pruning
1303
      if (   !InCheck
1304
          && !givesCheck
1305
          &&  futilityBase > -VALUE_KNOWN_WIN
1306
          && !pos.advanced_pawn_push(move))
1307
      {
1308
          assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
1309
 
1310
          futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
1311
 
1312
          if (futilityValue <= alpha)
1313
          {
1314
              bestValue = std::max(bestValue, futilityValue);
1315
              continue;
1316
          }
1317
 
1318
          if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO)
1319
          {
1320
              bestValue = std::max(bestValue, futilityBase);
1321
              continue;
1322
          }
1323
      }
1324
 
1325
      // Detect non-capture evasions that are candidates to be pruned
1326
      evasionPrunable =    InCheck
1327
                       &&  bestValue > VALUE_MATED_IN_MAX_PLY
1328
                       && !pos.capture(move);
1329
 
1330
      // Don't search moves with negative SEE values
1331
      if (  (!InCheck || evasionPrunable)
1332
          &&  type_of(move) != PROMOTION
1333
          &&  pos.see_sign(move) < VALUE_ZERO)
1334
          continue;
1335
 
1336
      // Speculative prefetch as early as possible
1337
      prefetch(TT.first_entry(pos.key_after(move)));
1338
 
1339
      // Check for legality just before making the move
1340
      if (!pos.legal(move, ci.pinned))
1341
          continue;
1342
 
1343
      ss->currentMove = move;
1344
 
1345
      // Make and search the move
1346
      pos.do_move(move, st, givesCheck);
1347
      value = givesCheck ? -qsearch<NT,  true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
1348
                         : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
1349
      pos.undo_move(move);
1350
 
1351
      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1352
 
1353
      // Check for a new best move
1354
      if (value > bestValue)
1355
      {
1356
          bestValue = value;
1357
 
1358
          if (value > alpha)
1359
          {
1360
              if (PvNode) // Update pv even in fail-high case
1361
                  update_pv(ss->pv, move, (ss+1)->pv);
1362
 
1363
              if (PvNode && value < beta) // Update alpha here!
1364
              {
1365
                  alpha = value;
1366
                  bestMove = move;
1367
              }
1368
              else // Fail high
1369
              {
1370
                  tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
1371
                            ttDepth, move, ss->staticEval, TT.generation());
1372
 
1373
                  return value;
1374
              }
1375
          }
1376
       }
1377
    }
1378
 
1379
    // All legal moves have been searched. A special case: If we're in check
1380
    // and no legal moves were found, it is checkmate.
1381
    if (InCheck && bestValue == -VALUE_INFINITE)
1382
        return mated_in(ss->ply); // Plies to mate from the root
1383
 
1384
    tte->save(posKey, value_to_tt(bestValue, ss->ply),
1385
              PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
1386
              ttDepth, bestMove, ss->staticEval, TT.generation());
1387
 
1388
    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1389
 
1390
    return bestValue;
1391
  }
1392
 
1393
 
1394
  // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1395
  // "plies to mate from the current position". Non-mate scores are unchanged.
1396
  // The function is called before storing a value in the transposition table.
1397
 
1398
  Value value_to_tt(Value v, int ply) {
1399
 
1400
    assert(v != VALUE_NONE);
1401
 
1402
    return  v >= VALUE_MATE_IN_MAX_PLY  ? v + ply
1403
          : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
1404
  }
1405
 
1406
 
1407
  // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1408
  // from the transposition table (which refers to the plies to mate/be mated
1409
  // from current position) to "plies to mate/be mated from the root".
1410
 
1411
  Value value_from_tt(Value v, int ply) {
1412
 
1413
    return  v == VALUE_NONE             ? VALUE_NONE
1414
          : v >= VALUE_MATE_IN_MAX_PLY  ? v - ply
1415
          : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
1416
  }
1417
 
1418
 
1419
  // update_pv() adds current move and appends child pv[]
1420
 
1421
  void update_pv(Move* pv, Move move, Move* childPv) {
1422
 
1423
    for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
1424
        *pv++ = *childPv++;
1425
    *pv = MOVE_NONE;
1426
  }
1427
 
1428
 
1429
  // update_stats() updates killers, history, countermove and countermove
1430
  // history when a new quiet best move is found.
1431
 
1432
  void update_stats(const Position& pos, Stack* ss, Move move,
1433
                    Depth depth, Move* quiets, int quietsCnt) {
1434
 
1435
    if (ss->killers[0] != move)
1436
    {
1437
        ss->killers[1] = ss->killers[0];
1438
        ss->killers[0] = move;
1439
    }
1440
 
1441
    Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
1442
 
1443
    Square prevSq = to_sq((ss-1)->currentMove);
1444
    CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq];
1445
    Thread* thisThread = pos.this_thread();
1446
 
1447
    thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus);
1448
 
1449
    if (is_ok((ss-1)->currentMove))
1450
    {
1451
        thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move);
1452
        cmh.update(pos.moved_piece(move), to_sq(move), bonus);
1453
    }
1454
 
1455
    // Decrease all the other played quiet moves
1456
    for (int i = 0; i < quietsCnt; ++i)
1457
    {
1458
        thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
1459
 
1460
        if (is_ok((ss-1)->currentMove))
1461
            cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
1462
    }
1463
 
1464
    // Extra penalty for a quiet TT move in previous ply when it gets refuted
1465
    if (   (ss-1)->moveCount == 1
1466
        && !pos.captured_piece_type()
1467
        && is_ok((ss-2)->currentMove))
1468
    {
1469
        Square prevPrevSq = to_sq((ss-2)->currentMove);
1470
        CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
1471
        prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY);
1472
    }
1473
  }
1474
 
1475
 
1476
  // When playing with strength handicap, choose best move among a set of RootMoves
1477
  // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1478
 
1479
  Move Skill::pick_best(size_t multiPV) {
1480
 
1481
    const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves;
1482
    static PRNG rng(now()); // PRNG sequence should be non-deterministic
1483
 
1484
    // RootMoves are already sorted by score in descending order
1485
    Value topScore = rootMoves[0].score;
1486
    int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
1487
    int weakness = 120 - 2 * level;
1488
    int maxScore = -VALUE_INFINITE;
1489
 
1490
    // Choose best move. For each move score we add two terms, both dependent on
1491
    // weakness. One is deterministic and bigger for weaker levels, and one is
1492
    // random. Then we choose the move with the resulting highest score.
1493
    for (size_t i = 0; i < multiPV; ++i)
1494
    {
1495
        // This is our magic formula
1496
        int push = (  weakness * int(topScore - rootMoves[i].score)
1497
                    + delta * (rng.rand<unsigned>() % weakness)) / 128;
1498
 
1499
        if (rootMoves[i].score + push > maxScore)
1500
        {
1501
            maxScore = rootMoves[i].score + push;
1502
            best = rootMoves[i].pv[0];
1503
        }
1504
    }
1505
 
1506
    return best;
1507
  }
1508
 
1509
 
1510
  // check_time() is used to print debug info and, more importantly, to detect
1511
  // when we are out of available time and thus stop the search.
1512
 
1513
  void check_time() {
1514
 
1515
    static TimePoint lastInfoTime = now();
1516
 
1517
    int elapsed = Time.elapsed();
1518
    TimePoint tick = Limits.startTime + elapsed;
1519
 
1520
    if (tick - lastInfoTime >= 1000)
1521
    {
1522
        lastInfoTime = tick;
1523
        dbg_print();
1524
    }
1525
 
1526
    // An engine may not stop pondering until told so by the GUI
1527
    if (Limits.ponder)
1528
        return;
1529
 
1530
    if (   (Limits.use_time_management() && elapsed > Time.maximum() - 10)
1531
        || (Limits.movetime && elapsed >= Limits.movetime)
1532
        || (Limits.nodes && Threads.nodes_searched() >= Limits.nodes))
1533
            Signals.stop = true;
1534
  }
1535
 
1536
} // namespace
1537
 
1538
 
1539
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
1540
/// that all (if any) unsearched PV lines are sent using a previous search score.
1541
 
1542
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
1543
 
1544
  std::stringstream ss;
1545
  int elapsed = Time.elapsed() + 1;
1546
  const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves;
1547
  size_t PVIdx = pos.this_thread()->PVIdx;
1548
  size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
1549
  uint64_t nodes_searched = Threads.nodes_searched();
1550
 
1551
  for (size_t i = 0; i < multiPV; ++i)
1552
  {
1553
      bool updated = (i <= PVIdx);
1554
 
1555
      if (depth == ONE_PLY && !updated)
1556
          continue;
1557
 
1558
      Depth d = updated ? depth : depth - ONE_PLY;
1559
      Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
1560
 
1561
      bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
1562
      v = tb ? TB::Score : v;
1563
 
1564
      if (ss.rdbuf()->in_avail()) // Not at first line
1565
          ss << "\n";
1566
 
1567
      ss << "info"
1568
         << " depth "    << d / ONE_PLY
1569
         << " seldepth " << pos.this_thread()->maxPly
1570
         << " multipv "  << i + 1
1571
         << " score "    << UCI::value(v);
1572
 
1573
      if (!tb && i == PVIdx)
1574
          ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
1575
 
1576
      ss << " nodes "    << nodes_searched
1577
         << " nps "      << nodes_searched * 1000 / elapsed;
1578
 
1579
      if (elapsed > 1000) // Earlier makes little sense
1580
          ss << " hashfull " << TT.hashfull();
1581
 
1582
      ss << " tbhits "   << TB::Hits
1583
         << " time "     << elapsed
1584
         << " pv";
1585
 
1586
      for (Move m : rootMoves[i].pv)
1587
          ss << " " << UCI::move(m, pos.is_chess960());
1588
  }
1589
 
1590
  return ss.str();
1591
}
1592
 
1593
 
1594
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
1595
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
1596
/// first, even if the old TT entries have been overwritten.
1597
 
1598
void RootMove::insert_pv_in_tt(Position& pos) {
1599
 
1600
  StateInfo state[MAX_PLY], *st = state;
1601
  bool ttHit;
1602
 
1603
  for (Move m : pv)
1604
  {
1605
      assert(MoveList<LEGAL>(pos).contains(m));
1606
 
1607
      TTEntry* tte = TT.probe(pos.key(), ttHit);
1608
 
1609
      if (!ttHit || tte->move() != m) // Don't overwrite correct entries
1610
          tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE,
1611
                    m, VALUE_NONE, TT.generation());
1612
 
1613
      pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos)));
1614
  }
1615
 
1616
  for (size_t i = pv.size(); i > 0; )
1617
      pos.undo_move(pv[--i]);
1618
}
1619
 
1620
 
1621
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
1622
/// before exiting the search, for instance, in case we stop the search during a
1623
/// fail high at root. We try hard to have a ponder move to return to the GUI,
1624
/// otherwise in case of 'ponder on' we have nothing to think on.
1625
 
1626
bool RootMove::extract_ponder_from_tt(Position& pos)
1627
{
1628
    StateInfo st;
1629
    bool ttHit;
1630
 
1631
    assert(pv.size() == 1);
1632
 
1633
    pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos)));
1634
    TTEntry* tte = TT.probe(pos.key(), ttHit);
1635
    pos.undo_move(pv[0]);
1636
 
1637
    if (ttHit)
1638
    {
1639
        Move m = tte->move(); // Local copy to be SMP safe
1640
        if (MoveList<LEGAL>(pos).contains(m))
1641
           return pv.push_back(m), true;
1642
    }
1643
 
1644
    return false;
1645
}