Subversion Repositories Games.Chess Giants

Rev

Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#include <algorithm>
22
#include <cassert>
23
#include <cmath>
24
#include <cstring>   // For std::memset
25
#include <iostream>
26
#include <sstream>
27
 
28
#include "evaluate.h"
29
#include "misc.h"
30
#include "movegen.h"
31
#include "movepick.h"
154 pmbaty 32
#include "position.h"
96 pmbaty 33
#include "search.h"
34
#include "timeman.h"
35
#include "thread.h"
36
#include "tt.h"
37
#include "uci.h"
38
#include "syzygy/tbprobe.h"
39
 
40
namespace Search {
41
 
42
  SignalsType Signals;
43
  LimitsType Limits;
44
}
45
 
46
namespace Tablebases {
47
 
48
  int Cardinality;
49
  bool RootInTB;
50
  bool UseRule50;
51
  Depth ProbeDepth;
52
  Value Score;
53
}
54
 
55
namespace TB = Tablebases;
56
 
57
using std::string;
58
using Eval::evaluate;
59
using namespace Search;
60
 
61
namespace {
62
 
63
  // Different node types, used as a template parameter
64
  enum NodeType { NonPV, PV };
65
 
66
  // Razoring and futility margin based on depth
67
  const int razor_margin[4] = { 483, 570, 603, 554 };
154 pmbaty 68
  Value futility_margin(Depth d) { return Value(150 * d / ONE_PLY); }
96 pmbaty 69
 
70
  // Futility and reductions lookup tables, initialized at startup
154 pmbaty 71
  int FutilityMoveCounts[2][16]; // [improving][depth]
72
  int Reductions[2][2][64][64];  // [pv][improving][depth][moveNumber]
96 pmbaty 73
 
74
  template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
154 pmbaty 75
    return Reductions[PvNode][i][std::min(d / ONE_PLY, 63)][std::min(mn, 63)] * ONE_PLY;
96 pmbaty 76
  }
77
 
78
  // Skill structure is used to implement strength limit
79
  struct Skill {
80
    Skill(int l) : level(l) {}
81
    bool enabled() const { return level < 20; }
82
    bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
83
    Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
84
    Move pick_best(size_t multiPV);
85
 
86
    int level;
87
    Move best = MOVE_NONE;
88
  };
89
 
90
  // EasyMoveManager structure is used to detect an 'easy move'. When the PV is
91
  // stable across multiple search iterations, we can quickly return the best move.
92
  struct EasyMoveManager {
93
 
94
    void clear() {
95
      stableCnt = 0;
96
      expectedPosKey = 0;
97
      pv[0] = pv[1] = pv[2] = MOVE_NONE;
98
    }
99
 
100
    Move get(Key key) const {
101
      return expectedPosKey == key ? pv[2] : MOVE_NONE;
102
    }
103
 
104
    void update(Position& pos, const std::vector<Move>& newPv) {
105
 
106
      assert(newPv.size() >= 3);
107
 
108
      // Keep track of how many times in a row the 3rd ply remains stable
109
      stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
110
 
111
      if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
112
      {
113
          std::copy(newPv.begin(), newPv.begin() + 3, pv);
114
 
115
          StateInfo st[2];
154 pmbaty 116
          pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0]));
117
          pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1]));
96 pmbaty 118
          expectedPosKey = pos.key();
119
          pos.undo_move(newPv[1]);
120
          pos.undo_move(newPv[0]);
121
      }
122
    }
123
 
124
    int stableCnt;
125
    Key expectedPosKey;
126
    Move pv[3];
127
  };
128
 
129
  // Set of rows with half bits set to 1 and half to 0. It is used to allocate
130
  // the search depths across the threads.
131
  typedef std::vector<int> Row;
132
 
133
  const Row HalfDensity[] = {
134
    {0, 1},
135
    {1, 0},
136
    {0, 0, 1, 1},
137
    {0, 1, 1, 0},
138
    {1, 1, 0, 0},
139
    {1, 0, 0, 1},
140
    {0, 0, 0, 1, 1, 1},
141
    {0, 0, 1, 1, 1, 0},
142
    {0, 1, 1, 1, 0, 0},
143
    {1, 1, 1, 0, 0, 0},
144
    {1, 1, 0, 0, 0, 1},
145
    {1, 0, 0, 0, 1, 1},
146
    {0, 0, 0, 0, 1, 1, 1, 1},
147
    {0, 0, 0, 1, 1, 1, 1, 0},
148
    {0, 0, 1, 1, 1, 1, 0 ,0},
149
    {0, 1, 1, 1, 1, 0, 0 ,0},
150
    {1, 1, 1, 1, 0, 0, 0 ,0},
151
    {1, 1, 1, 0, 0, 0, 0 ,1},
152
    {1, 1, 0, 0, 0, 0, 1 ,1},
153
    {1, 0, 0, 0, 0, 1, 1 ,1},
154
  };
155
 
156
  const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value;
157
 
158
  EasyMoveManager EasyMove;
159
  Value DrawValue[COLOR_NB];
160
 
161
  template <NodeType NT>
162
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
163
 
164
  template <NodeType NT, bool InCheck>
165
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
166
 
167
  Value value_to_tt(Value v, int ply);
168
  Value value_from_tt(Value v, int ply);
169
  void update_pv(Move* pv, Move move, Move* childPv);
154 pmbaty 170
  void update_cm_stats(Stack* ss, Piece pc, Square s, Value bonus);
171
  void update_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietsCnt, Value bonus);
96 pmbaty 172
  void check_time();
173
 
174
} // namespace
175
 
176
 
177
/// Search::init() is called during startup to initialize various lookup tables
178
 
179
void Search::init() {
180
 
154 pmbaty 181
  for (int imp = 0; imp <= 1; ++imp)
182
      for (int d = 1; d < 64; ++d)
183
          for (int mc = 1; mc < 64; ++mc)
184
          {
185
              double r = log(d) * log(mc) / 2;
186
              if (r < 0.80)
187
                continue;
96 pmbaty 188
 
154 pmbaty 189
              Reductions[NonPV][imp][d][mc] = int(std::round(r));
190
              Reductions[PV][imp][d][mc] = std::max(Reductions[NonPV][imp][d][mc] - 1, 0);
96 pmbaty 191
 
154 pmbaty 192
              // Increase reduction for non-PV nodes when eval is not improving
193
              if (!imp && Reductions[NonPV][imp][d][mc] >= 2)
194
                Reductions[NonPV][imp][d][mc]++;
195
          }
96 pmbaty 196
 
197
  for (int d = 0; d < 16; ++d)
198
  {
199
      FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
200
      FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
201
  }
202
}
203
 
204
 
205
/// Search::clear() resets search state to zero, to obtain reproducible results
206
 
207
void Search::clear() {
208
 
209
  TT.clear();
210
 
211
  for (Thread* th : Threads)
212
  {
213
      th->history.clear();
214
      th->counterMoves.clear();
154 pmbaty 215
      th->fromTo.clear();
216
      th->counterMoveHistory.clear();
96 pmbaty 217
  }
218
 
219
  Threads.main()->previousScore = VALUE_INFINITE;
220
}
221
 
222
 
223
/// Search::perft() is our utility to verify move generation. All the leaf nodes
224
/// up to the given depth are generated and counted, and the sum is returned.
225
template<bool Root>
226
uint64_t Search::perft(Position& pos, Depth depth) {
227
 
228
  StateInfo st;
229
  uint64_t cnt, nodes = 0;
230
  const bool leaf = (depth == 2 * ONE_PLY);
231
 
232
  for (const auto& m : MoveList<LEGAL>(pos))
233
  {
234
      if (Root && depth <= ONE_PLY)
235
          cnt = 1, nodes++;
236
      else
237
      {
154 pmbaty 238
          pos.do_move(m, st, pos.gives_check(m));
96 pmbaty 239
          cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
240
          nodes += cnt;
241
          pos.undo_move(m);
242
      }
243
      if (Root)
244
          sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
245
  }
246
  return nodes;
247
}
248
 
249
template uint64_t Search::perft<true>(Position&, Depth);
250
 
251
 
252
/// MainThread::search() is called by the main thread when the program receives
253
/// the UCI 'go' command. It searches from the root position and outputs the "bestmove".
254
 
255
void MainThread::search() {
256
 
257
  Color us = rootPos.side_to_move();
258
  Time.init(Limits, us, rootPos.game_ply());
259
 
260
  int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
261
  DrawValue[ us] = VALUE_DRAW - Value(contempt);
262
  DrawValue[~us] = VALUE_DRAW + Value(contempt);
263
 
264
  if (rootMoves.empty())
265
  {
266
      rootMoves.push_back(RootMove(MOVE_NONE));
267
      sync_cout << "info depth 0 score "
268
                << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
269
                << sync_endl;
270
  }
271
  else
272
  {
273
      for (Thread* th : Threads)
274
          if (th != this)
275
              th->start_searching();
276
 
277
      Thread::search(); // Let's start searching!
278
  }
279
 
280
  // When playing in 'nodes as time' mode, subtract the searched nodes from
281
  // the available ones before exiting.
282
  if (Limits.npmsec)
283
      Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
284
 
285
  // When we reach the maximum depth, we can arrive here without a raise of
286
  // Signals.stop. However, if we are pondering or in an infinite search,
287
  // the UCI protocol states that we shouldn't print the best move before the
288
  // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
289
  // until the GUI sends one of those commands (which also raises Signals.stop).
290
  if (!Signals.stop && (Limits.ponder || Limits.infinite))
291
  {
292
      Signals.stopOnPonderhit = true;
293
      wait(Signals.stop);
294
  }
295
 
296
  // Stop the threads if not already stopped
297
  Signals.stop = true;
298
 
299
  // Wait until all threads have finished
300
  for (Thread* th : Threads)
301
      if (th != this)
302
          th->wait_for_search_finished();
303
 
304
  // Check if there are threads with a better score than main thread
305
  Thread* bestThread = this;
306
  if (   !this->easyMovePlayed
307
      &&  Options["MultiPV"] == 1
154 pmbaty 308
      && !Limits.depth
309
      && !Skill(Options["Skill Level"]).enabled()
310
      &&  rootMoves[0].pv[0] != MOVE_NONE)
96 pmbaty 311
  {
312
      for (Thread* th : Threads)
313
          if (   th->completedDepth > bestThread->completedDepth
314
              && th->rootMoves[0].score > bestThread->rootMoves[0].score)
315
              bestThread = th;
316
  }
317
 
318
  previousScore = bestThread->rootMoves[0].score;
319
 
320
  // Send new PV when needed
321
  if (bestThread != this)
322
      sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
323
 
324
  sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
325
 
326
  if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
327
      std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
328
 
329
  std::cout << sync_endl;
330
}
331
 
332
 
333
// Thread::search() is the main iterative deepening loop. It calls search()
334
// repeatedly with increasing depth until the allocated thinking time has been
335
// consumed, the user stops the search, or the maximum search depth is reached.
336
 
337
void Thread::search() {
338
 
154 pmbaty 339
  Stack stack[MAX_PLY+7], *ss = stack+5; // To allow referencing (ss-5) and (ss+2)
96 pmbaty 340
  Value bestValue, alpha, beta, delta;
341
  Move easyMove = MOVE_NONE;
342
  MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
343
 
154 pmbaty 344
  std::memset(ss-5, 0, 8 * sizeof(Stack));
96 pmbaty 345
 
346
  bestValue = delta = alpha = -VALUE_INFINITE;
347
  beta = VALUE_INFINITE;
348
  completedDepth = DEPTH_ZERO;
349
 
350
  if (mainThread)
351
  {
352
      easyMove = EasyMove.get(rootPos.key());
353
      EasyMove.clear();
354
      mainThread->easyMovePlayed = mainThread->failedLow = false;
355
      mainThread->bestMoveChanges = 0;
356
      TT.new_search();
357
  }
358
 
359
  size_t multiPV = Options["MultiPV"];
360
  Skill skill(Options["Skill Level"]);
361
 
362
  // When playing with strength handicap enable MultiPV search that we will
363
  // use behind the scenes to retrieve a set of possible moves.
364
  if (skill.enabled())
365
      multiPV = std::max(multiPV, (size_t)4);
366
 
367
  multiPV = std::min(multiPV, rootMoves.size());
368
 
154 pmbaty 369
  // Iterative deepening loop until requested to stop or the target depth is reached
370
  while (   (rootDepth += ONE_PLY) < DEPTH_MAX
371
         && !Signals.stop
372
         && (!Limits.depth || Threads.main()->rootDepth / ONE_PLY <= Limits.depth))
96 pmbaty 373
  {
374
      // Set up the new depths for the helper threads skipping on average every
375
      // 2nd ply (using a half-density matrix).
376
      if (!mainThread)
377
      {
378
          const Row& row = HalfDensity[(idx - 1) % HalfDensitySize];
154 pmbaty 379
          if (row[(rootDepth / ONE_PLY + rootPos.game_ply()) % row.size()])
96 pmbaty 380
             continue;
381
      }
382
 
383
      // Age out PV variability metric
384
      if (mainThread)
385
          mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
386
 
387
      // Save the last iteration's scores before first PV line is searched and
388
      // all the move scores except the (new) PV are set to -VALUE_INFINITE.
389
      for (RootMove& rm : rootMoves)
390
          rm.previousScore = rm.score;
391
 
392
      // MultiPV loop. We perform a full root search for each PV line
393
      for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
394
      {
395
          // Reset aspiration window starting size
396
          if (rootDepth >= 5 * ONE_PLY)
397
          {
398
              delta = Value(18);
399
              alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
400
              beta  = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
401
          }
402
 
403
          // Start with a small aspiration window and, in the case of a fail
404
          // high/low, re-search with a bigger window until we're not failing
405
          // high/low anymore.
406
          while (true)
407
          {
408
              bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false);
409
 
410
              // Bring the best move to the front. It is critical that sorting
411
              // is done with a stable algorithm because all the values but the
412
              // first and eventually the new best one are set to -VALUE_INFINITE
413
              // and we want to keep the same order for all the moves except the
414
              // new PV that goes to the front. Note that in case of MultiPV
415
              // search the already searched PV lines are preserved.
416
              std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
417
 
418
              // If search has been stopped, break immediately. Sorting and
419
              // writing PV back to TT is safe because RootMoves is still
420
              // valid, although it refers to the previous iteration.
421
              if (Signals.stop)
422
                  break;
423
 
424
              // When failing high/low give some update (without cluttering
425
              // the UI) before a re-search.
426
              if (   mainThread
427
                  && multiPV == 1
428
                  && (bestValue <= alpha || bestValue >= beta)
429
                  && Time.elapsed() > 3000)
430
                  sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
431
 
432
              // In case of failing low/high increase aspiration window and
433
              // re-search, otherwise exit the loop.
434
              if (bestValue <= alpha)
435
              {
436
                  beta = (alpha + beta) / 2;
437
                  alpha = std::max(bestValue - delta, -VALUE_INFINITE);
438
 
439
                  if (mainThread)
440
                  {
441
                      mainThread->failedLow = true;
442
                      Signals.stopOnPonderhit = false;
443
                  }
444
              }
445
              else if (bestValue >= beta)
446
              {
447
                  alpha = (alpha + beta) / 2;
448
                  beta = std::min(bestValue + delta, VALUE_INFINITE);
449
              }
450
              else
451
                  break;
452
 
453
              delta += delta / 4 + 5;
454
 
455
              assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
456
          }
457
 
458
          // Sort the PV lines searched so far and update the GUI
459
          std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
460
 
461
          if (!mainThread)
154 pmbaty 462
              continue;
96 pmbaty 463
 
154 pmbaty 464
          if (Signals.stop || PVIdx + 1 == multiPV || Time.elapsed() > 3000)
96 pmbaty 465
              sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
466
      }
467
 
468
      if (!Signals.stop)
469
          completedDepth = rootDepth;
470
 
471
      if (!mainThread)
472
          continue;
473
 
474
      // If skill level is enabled and time is up, pick a sub-optimal best move
475
      if (skill.enabled() && skill.time_to_pick(rootDepth))
476
          skill.pick_best(multiPV);
477
 
478
      // Have we found a "mate in x"?
479
      if (   Limits.mate
480
          && bestValue >= VALUE_MATE_IN_MAX_PLY
481
          && VALUE_MATE - bestValue <= 2 * Limits.mate)
482
          Signals.stop = true;
483
 
484
      // Do we have time for the next iteration? Can we stop searching now?
485
      if (Limits.use_time_management())
486
      {
487
          if (!Signals.stop && !Signals.stopOnPonderhit)
488
          {
489
              // Stop the search if only one legal move is available, or if all
490
              // of the available time has been used, or if we matched an easyMove
491
              // from the previous search and just did a fast verification.
154 pmbaty 492
              const int F[] = { mainThread->failedLow,
493
                                bestValue - mainThread->previousScore };
96 pmbaty 494
 
154 pmbaty 495
              int improvingFactor = std::max(229, std::min(715, 357 + 119 * F[0] - 6 * F[1]));
96 pmbaty 496
              double unstablePvFactor = 1 + mainThread->bestMoveChanges;
497
 
498
              bool doEasyMove =   rootMoves[0].pv[0] == easyMove
499
                               && mainThread->bestMoveChanges < 0.03
154 pmbaty 500
                               && Time.elapsed() > Time.optimum() * 5 / 42;
96 pmbaty 501
 
502
              if (   rootMoves.size() == 1
154 pmbaty 503
                  || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 628
504
                  || (mainThread->easyMovePlayed = doEasyMove, doEasyMove))
96 pmbaty 505
              {
506
                  // If we are allowed to ponder do not stop the search now but
507
                  // keep pondering until the GUI sends "ponderhit" or "stop".
508
                  if (Limits.ponder)
509
                      Signals.stopOnPonderhit = true;
510
                  else
511
                      Signals.stop = true;
512
              }
513
          }
514
 
515
          if (rootMoves[0].pv.size() >= 3)
516
              EasyMove.update(rootPos, rootMoves[0].pv);
517
          else
518
              EasyMove.clear();
519
      }
520
  }
521
 
522
  if (!mainThread)
523
      return;
524
 
525
  // Clear any candidate easy move that wasn't stable for the last search
526
  // iterations; the second condition prevents consecutive fast moves.
527
  if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
528
      EasyMove.clear();
529
 
530
  // If skill level is enabled, swap best PV line with the sub-optimal one
531
  if (skill.enabled())
532
      std::swap(rootMoves[0], *std::find(rootMoves.begin(),
533
                rootMoves.end(), skill.best_move(multiPV)));
534
}
535
 
536
 
537
namespace {
538
 
539
  // search<>() is the main search function for both PV and non-PV nodes
540
 
541
  template <NodeType NT>
542
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
543
 
544
    const bool PvNode = NT == PV;
545
    const bool rootNode = PvNode && (ss-1)->ply == 0;
546
 
547
    assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
548
    assert(PvNode || (alpha == beta - 1));
549
    assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
154 pmbaty 550
    assert(!(PvNode && cutNode));
551
    assert(depth / ONE_PLY * ONE_PLY == depth);
96 pmbaty 552
 
553
    Move pv[MAX_PLY+1], quietsSearched[64];
554
    StateInfo st;
555
    TTEntry* tte;
556
    Key posKey;
557
    Move ttMove, move, excludedMove, bestMove;
154 pmbaty 558
    Depth extension, newDepth;
559
    Value bestValue, value, ttValue, eval, nullValue;
96 pmbaty 560
    bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
154 pmbaty 561
    bool captureOrPromotion, doFullDepthSearch, moveCountPruning;
562
    Piece moved_piece;
96 pmbaty 563
    int moveCount, quietCount;
564
 
565
    // Step 1. Initialize node
566
    Thread* thisThread = pos.this_thread();
567
    inCheck = pos.checkers();
568
    moveCount = quietCount =  ss->moveCount = 0;
154 pmbaty 569
    ss->history = VALUE_ZERO;
96 pmbaty 570
    bestValue = -VALUE_INFINITE;
571
    ss->ply = (ss-1)->ply + 1;
572
 
573
    // Check for the available remaining time
574
    if (thisThread->resetCalls.load(std::memory_order_relaxed))
575
    {
576
        thisThread->resetCalls = false;
577
        thisThread->callsCnt = 0;
578
    }
579
    if (++thisThread->callsCnt > 4096)
580
    {
581
        for (Thread* th : Threads)
582
            th->resetCalls = true;
583
 
584
        check_time();
585
    }
586
 
587
    // Used to send selDepth info to GUI
588
    if (PvNode && thisThread->maxPly < ss->ply)
589
        thisThread->maxPly = ss->ply;
590
 
591
    if (!rootNode)
592
    {
593
        // Step 2. Check for aborted search and immediate draw
594
        if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY)
595
            return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
596
                                                  : DrawValue[pos.side_to_move()];
597
 
598
        // Step 3. Mate distance pruning. Even if we mate at the next move our score
599
        // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
600
        // a shorter mate was found upward in the tree then there is no need to search
601
        // because we will never beat the current alpha. Same logic but with reversed
602
        // signs applies also in the opposite condition of being mated instead of giving
603
        // mate. In this case return a fail-high score.
604
        alpha = std::max(mated_in(ss->ply), alpha);
605
        beta = std::min(mate_in(ss->ply+1), beta);
606
        if (alpha >= beta)
607
            return alpha;
608
    }
609
 
610
    assert(0 <= ss->ply && ss->ply < MAX_PLY);
611
 
612
    ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
154 pmbaty 613
    ss->counterMoves = nullptr;
96 pmbaty 614
    (ss+1)->skipEarlyPruning = false;
615
    (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
616
 
617
    // Step 4. Transposition table lookup. We don't want the score of a partial
618
    // search to overwrite a previous full search TT value, so we use a different
619
    // position key in case of an excluded move.
620
    excludedMove = ss->excludedMove;
154 pmbaty 621
    posKey = pos.key() ^ Key(excludedMove);
96 pmbaty 622
    tte = TT.probe(posKey, ttHit);
623
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
624
    ttMove =  rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
625
            : ttHit    ? tte->move() : MOVE_NONE;
626
 
627
    // At non-PV nodes we check for an early TT cutoff
628
    if (  !PvNode
629
        && ttHit
630
        && tte->depth() >= depth
631
        && ttValue != VALUE_NONE // Possible in case of TT access race
632
        && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
633
                            : (tte->bound() & BOUND_UPPER)))
634
    {
635
        // If ttMove is quiet, update killers, history, counter move on TT hit
154 pmbaty 636
        if (ttValue >= beta && ttMove)
637
        {
638
            int d = depth / ONE_PLY;
96 pmbaty 639
 
154 pmbaty 640
            if (!pos.capture_or_promotion(ttMove))
641
            {
642
                Value bonus = Value(d * d + 2 * d - 2);
643
                update_stats(pos, ss, ttMove, nullptr, 0, bonus);
644
            }
645
 
646
            // Extra penalty for a quiet TT move in previous ply when it gets refuted
647
            if ((ss-1)->moveCount == 1 && !pos.captured_piece())
648
            {
649
                Value penalty = Value(d * d + 4 * d + 1);
650
                Square prevSq = to_sq((ss-1)->currentMove);
651
                update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -penalty);
652
            }
653
        }
96 pmbaty 654
        return ttValue;
655
    }
656
 
657
    // Step 4a. Tablebase probe
658
    if (!rootNode && TB::Cardinality)
659
    {
660
        int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK);
661
 
662
        if (    piecesCnt <= TB::Cardinality
663
            && (piecesCnt <  TB::Cardinality || depth >= TB::ProbeDepth)
664
            &&  pos.rule50_count() == 0
665
            && !pos.can_castle(ANY_CASTLING))
666
        {
667
            int found, v = Tablebases::probe_wdl(pos, &found);
668
 
669
            if (found)
670
            {
154 pmbaty 671
                thisThread->tbHits++;
96 pmbaty 672
 
673
                int drawScore = TB::UseRule50 ? 1 : 0;
674
 
675
                value =  v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
676
                       : v >  drawScore ?  VALUE_MATE - MAX_PLY - ss->ply
677
                                        :  VALUE_DRAW + 2 * v * drawScore;
678
 
679
                tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
680
                          std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
681
                          MOVE_NONE, VALUE_NONE, TT.generation());
682
 
683
                return value;
684
            }
685
        }
686
    }
687
 
688
    // Step 5. Evaluate the position statically
689
    if (inCheck)
690
    {
691
        ss->staticEval = eval = VALUE_NONE;
692
        goto moves_loop;
693
    }
694
 
695
    else if (ttHit)
696
    {
697
        // Never assume anything on values stored in TT
698
        if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
699
            eval = ss->staticEval = evaluate(pos);
700
 
701
        // Can ttValue be used as a better position evaluation?
702
        if (ttValue != VALUE_NONE)
703
            if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
704
                eval = ttValue;
705
    }
706
    else
707
    {
708
        eval = ss->staticEval =
709
        (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
710
                                         : -(ss-1)->staticEval + 2 * Eval::Tempo;
711
 
712
        tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
713
                  ss->staticEval, TT.generation());
714
    }
715
 
716
    if (ss->skipEarlyPruning)
717
        goto moves_loop;
718
 
719
    // Step 6. Razoring (skipped when in check)
720
    if (   !PvNode
721
        &&  depth < 4 * ONE_PLY
154 pmbaty 722
        &&  ttMove == MOVE_NONE
723
        &&  eval + razor_margin[depth / ONE_PLY] <= alpha)
96 pmbaty 724
    {
154 pmbaty 725
        if (depth <= ONE_PLY)
96 pmbaty 726
            return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
727
 
154 pmbaty 728
        Value ralpha = alpha - razor_margin[depth / ONE_PLY];
96 pmbaty 729
        Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
730
        if (v <= ralpha)
731
            return v;
732
    }
733
 
734
    // Step 7. Futility pruning: child node (skipped when in check)
735
    if (   !rootNode
736
        &&  depth < 7 * ONE_PLY
737
        &&  eval - futility_margin(depth) >= beta
738
        &&  eval < VALUE_KNOWN_WIN  // Do not return unproven wins
739
        &&  pos.non_pawn_material(pos.side_to_move()))
154 pmbaty 740
        return eval;
96 pmbaty 741
 
742
    // Step 8. Null move search with verification search (is omitted in PV nodes)
743
    if (   !PvNode
744
        &&  eval >= beta
154 pmbaty 745
        && (ss->staticEval >= beta - 35 * (depth / ONE_PLY - 6) || depth >= 13 * ONE_PLY)
96 pmbaty 746
        &&  pos.non_pawn_material(pos.side_to_move()))
747
    {
748
        ss->currentMove = MOVE_NULL;
154 pmbaty 749
        ss->counterMoves = nullptr;
96 pmbaty 750
 
751
        assert(eval - beta >= 0);
752
 
753
        // Null move dynamic reduction based on depth and value
154 pmbaty 754
        Depth R = ((823 + 67 * depth / ONE_PLY) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
96 pmbaty 755
 
756
        pos.do_null_move(st);
757
        (ss+1)->skipEarlyPruning = true;
758
        nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
759
                                      : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
760
        (ss+1)->skipEarlyPruning = false;
761
        pos.undo_null_move();
762
 
763
        if (nullValue >= beta)
764
        {
765
            // Do not return unproven mate scores
766
            if (nullValue >= VALUE_MATE_IN_MAX_PLY)
767
                nullValue = beta;
768
 
769
            if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
770
                return nullValue;
771
 
772
            // Do verification search at high depths
773
            ss->skipEarlyPruning = true;
774
            Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
775
                                        :  search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
776
            ss->skipEarlyPruning = false;
777
 
778
            if (v >= beta)
779
                return nullValue;
780
        }
781
    }
782
 
783
    // Step 9. ProbCut (skipped when in check)
154 pmbaty 784
    // If we have a good enough capture and a reduced search returns a value
785
    // much above beta, we can (almost) safely prune the previous move.
96 pmbaty 786
    if (   !PvNode
787
        &&  depth >= 5 * ONE_PLY
788
        &&  abs(beta) < VALUE_MATE_IN_MAX_PLY)
789
    {
790
        Value rbeta = std::min(beta + 200, VALUE_INFINITE);
791
        Depth rdepth = depth - 4 * ONE_PLY;
792
 
793
        assert(rdepth >= ONE_PLY);
794
        assert((ss-1)->currentMove != MOVE_NONE);
795
        assert((ss-1)->currentMove != MOVE_NULL);
796
 
154 pmbaty 797
        MovePicker mp(pos, ttMove, rbeta - ss->staticEval);
96 pmbaty 798
 
799
        while ((move = mp.next_move()) != MOVE_NONE)
154 pmbaty 800
            if (pos.legal(move))
96 pmbaty 801
            {
802
                ss->currentMove = move;
154 pmbaty 803
                ss->counterMoves = &thisThread->counterMoveHistory[pos.moved_piece(move)][to_sq(move)];
804
                pos.do_move(move, st, pos.gives_check(move));
96 pmbaty 805
                value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
806
                pos.undo_move(move);
807
                if (value >= rbeta)
808
                    return value;
809
            }
810
    }
811
 
812
    // Step 10. Internal iterative deepening (skipped when in check)
154 pmbaty 813
    if (    depth >= 6 * ONE_PLY
96 pmbaty 814
        && !ttMove
815
        && (PvNode || ss->staticEval + 256 >= beta))
816
    {
154 pmbaty 817
        Depth d = (3 * depth / (4 * ONE_PLY) - 2) * ONE_PLY;
96 pmbaty 818
        ss->skipEarlyPruning = true;
154 pmbaty 819
        search<NT>(pos, ss, alpha, beta, d, cutNode);
96 pmbaty 820
        ss->skipEarlyPruning = false;
821
 
822
        tte = TT.probe(posKey, ttHit);
823
        ttMove = ttHit ? tte->move() : MOVE_NONE;
824
    }
825
 
826
moves_loop: // When in check search starts from here
827
 
154 pmbaty 828
    const CounterMoveStats* cmh  = (ss-1)->counterMoves;
829
    const CounterMoveStats* fmh  = (ss-2)->counterMoves;
830
    const CounterMoveStats* fmh2 = (ss-4)->counterMoves;
96 pmbaty 831
 
154 pmbaty 832
    MovePicker mp(pos, ttMove, depth, ss);
96 pmbaty 833
    value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
834
    improving =   ss->staticEval >= (ss-2)->staticEval
154 pmbaty 835
            /* || ss->staticEval == VALUE_NONE Already implicit in the previous condition */
96 pmbaty 836
               ||(ss-2)->staticEval == VALUE_NONE;
837
 
838
    singularExtensionNode =   !rootNode
839
                           &&  depth >= 8 * ONE_PLY
840
                           &&  ttMove != MOVE_NONE
154 pmbaty 841
                           &&  ttValue != VALUE_NONE
96 pmbaty 842
                           && !excludedMove // Recursive singular search is not allowed
843
                           && (tte->bound() & BOUND_LOWER)
844
                           &&  tte->depth() >= depth - 3 * ONE_PLY;
845
 
846
    // Step 11. Loop through moves
847
    // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
848
    while ((move = mp.next_move()) != MOVE_NONE)
849
    {
850
      assert(is_ok(move));
851
 
852
      if (move == excludedMove)
853
          continue;
854
 
855
      // At root obey the "searchmoves" option and skip moves not listed in Root
856
      // Move List. As a consequence any illegal move is also skipped. In MultiPV
857
      // mode we also skip PV moves which have been already searched.
858
      if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
859
                                  thisThread->rootMoves.end(), move))
860
          continue;
861
 
862
      ss->moveCount = ++moveCount;
863
 
864
      if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
865
          sync_cout << "info depth " << depth / ONE_PLY
866
                    << " currmove " << UCI::move(move, pos.is_chess960())
867
                    << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
868
 
869
      if (PvNode)
870
          (ss+1)->pv = nullptr;
871
 
872
      extension = DEPTH_ZERO;
873
      captureOrPromotion = pos.capture_or_promotion(move);
154 pmbaty 874
      moved_piece = pos.moved_piece(move);
96 pmbaty 875
 
154 pmbaty 876
      givesCheck =  type_of(move) == NORMAL && !pos.discovered_check_candidates()
877
                  ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move)
878
                  : pos.gives_check(move);
96 pmbaty 879
 
154 pmbaty 880
      moveCountPruning =   depth < 16 * ONE_PLY
881
                        && moveCount >= FutilityMoveCounts[improving][depth / ONE_PLY];
882
 
96 pmbaty 883
      // Step 12. Extend checks
154 pmbaty 884
      if (    givesCheck
885
          && !moveCountPruning
886
          &&  pos.see_ge(move, VALUE_ZERO))
96 pmbaty 887
          extension = ONE_PLY;
888
 
889
      // Singular extension search. If all moves but one fail low on a search of
890
      // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
891
      // is singular and should be extended. To verify this we do a reduced search
892
      // on all the other moves but the ttMove and if the result is lower than
893
      // ttValue minus a margin then we extend the ttMove.
894
      if (    singularExtensionNode
895
          &&  move == ttMove
896
          && !extension
154 pmbaty 897
          &&  pos.legal(move))
96 pmbaty 898
      {
154 pmbaty 899
          Value rBeta = std::max(ttValue - 2 * depth / ONE_PLY, -VALUE_MATE);
900
          Depth d = (depth / (2 * ONE_PLY)) * ONE_PLY;
96 pmbaty 901
          ss->excludedMove = move;
902
          ss->skipEarlyPruning = true;
154 pmbaty 903
          value = search<NonPV>(pos, ss, rBeta - 1, rBeta, d, cutNode);
96 pmbaty 904
          ss->skipEarlyPruning = false;
905
          ss->excludedMove = MOVE_NONE;
906
 
907
          if (value < rBeta)
908
              extension = ONE_PLY;
909
      }
910
 
911
      // Update the current move (this must be done after singular extension search)
912
      newDepth = depth - ONE_PLY + extension;
913
 
914
      // Step 13. Pruning at shallow depth
154 pmbaty 915
      if (  !rootNode
916
          && bestValue > VALUE_MATED_IN_MAX_PLY)
96 pmbaty 917
      {
154 pmbaty 918
          if (   !captureOrPromotion
919
              && !givesCheck
920
              && !pos.advanced_pawn_push(move))
921
          {
922
              // Move count based pruning
923
              if (moveCountPruning)
924
                  continue;
96 pmbaty 925
 
154 pmbaty 926
              // Reduced depth of the next LMR search
927
              int lmrDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO) / ONE_PLY;
96 pmbaty 928
 
154 pmbaty 929
              // Countermoves based pruning
930
              if (   lmrDepth < 3
931
                  && (!cmh  || (*cmh )[moved_piece][to_sq(move)] < VALUE_ZERO)
932
                  && (!fmh  || (*fmh )[moved_piece][to_sq(move)] < VALUE_ZERO)
933
                  && (!fmh2 || (*fmh2)[moved_piece][to_sq(move)] < VALUE_ZERO || (cmh && fmh)))
934
                  continue;
96 pmbaty 935
 
154 pmbaty 936
              // Futility pruning: parent node
937
              if (   lmrDepth < 7
938
                  && !inCheck
939
                  && ss->staticEval + 256 + 200 * lmrDepth <= alpha)
940
                  continue;
96 pmbaty 941
 
154 pmbaty 942
              // Prune moves with negative SEE
943
              if (   lmrDepth < 8
944
                  && !pos.see_ge(move, Value(-35 * lmrDepth * lmrDepth)))
96 pmbaty 945
                  continue;
946
          }
154 pmbaty 947
          else if (   depth < 7 * ONE_PLY
948
                   && !extension
949
                   && !pos.see_ge(move, Value(-35 * depth / ONE_PLY * depth / ONE_PLY)))
950
                  continue;
96 pmbaty 951
      }
952
 
953
      // Speculative prefetch as early as possible
954
      prefetch(TT.first_entry(pos.key_after(move)));
955
 
956
      // Check for legality just before making the move
154 pmbaty 957
      if (!rootNode && !pos.legal(move))
96 pmbaty 958
      {
959
          ss->moveCount = --moveCount;
960
          continue;
961
      }
962
 
963
      ss->currentMove = move;
154 pmbaty 964
      ss->counterMoves = &thisThread->counterMoveHistory[moved_piece][to_sq(move)];
96 pmbaty 965
 
966
      // Step 14. Make the move
967
      pos.do_move(move, st, givesCheck);
968
 
969
      // Step 15. Reduced depth search (LMR). If the move fails high it will be
970
      // re-searched at full depth.
971
      if (    depth >= 3 * ONE_PLY
972
          &&  moveCount > 1
154 pmbaty 973
          && (!captureOrPromotion || moveCountPruning))
96 pmbaty 974
      {
975
          Depth r = reduction<PvNode>(improving, depth, moveCount);
976
 
154 pmbaty 977
          if (captureOrPromotion)
978
              r -= r ? ONE_PLY : DEPTH_ZERO;
979
          else
980
          {
981
              // Increase reduction for cut nodes
982
              if (cutNode)
983
                  r += 2 * ONE_PLY;
96 pmbaty 984
 
154 pmbaty 985
              // Decrease reduction for moves that escape a capture. Filter out
986
              // castling moves, because they are coded as "king captures rook" and
987
              // hence break make_move(). Also use see() instead of see_sign(),
988
              // because the destination square is empty.
989
              else if (   type_of(move) == NORMAL
990
                       && type_of(pos.piece_on(to_sq(move))) != PAWN
991
                       && !pos.see_ge(make_move(to_sq(move), from_sq(move)),  VALUE_ZERO))
992
                  r -= 2 * ONE_PLY;
96 pmbaty 993
 
154 pmbaty 994
              ss->history = thisThread->history[moved_piece][to_sq(move)]
995
                           +    (cmh  ? (*cmh )[moved_piece][to_sq(move)] : VALUE_ZERO)
996
                           +    (fmh  ? (*fmh )[moved_piece][to_sq(move)] : VALUE_ZERO)
997
                           +    (fmh2 ? (*fmh2)[moved_piece][to_sq(move)] : VALUE_ZERO)
998
                           +    thisThread->fromTo.get(~pos.side_to_move(), move)
999
                           -    8000; // Correction factor
96 pmbaty 1000
 
154 pmbaty 1001
              // Decrease/increase reduction by comparing opponent's stat score
1002
              if (ss->history > VALUE_ZERO && (ss-1)->history < VALUE_ZERO)
1003
                  r -= ONE_PLY;
1004
 
1005
              else if (ss->history < VALUE_ZERO && (ss-1)->history > VALUE_ZERO)
1006
                  r += ONE_PLY;
1007
 
1008
              // Decrease/increase reduction for moves with a good/bad history
1009
              r = std::max(DEPTH_ZERO, (r / ONE_PLY - ss->history / 20000) * ONE_PLY);
1010
          }
1011
 
96 pmbaty 1012
          Depth d = std::max(newDepth - r, ONE_PLY);
1013
 
1014
          value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
1015
 
154 pmbaty 1016
          doFullDepthSearch = (value > alpha && d != newDepth);
96 pmbaty 1017
      }
1018
      else
1019
          doFullDepthSearch = !PvNode || moveCount > 1;
1020
 
1021
      // Step 16. Full depth search when LMR is skipped or fails high
1022
      if (doFullDepthSearch)
1023
          value = newDepth <   ONE_PLY ?
1024
                            givesCheck ? -qsearch<NonPV,  true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
1025
                                       : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
1026
                                       : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
1027
 
1028
      // For PV nodes only, do a full PV search on the first move or after a fail
1029
      // high (in the latter case search only if value < beta), otherwise let the
1030
      // parent node fail low with value <= alpha and try another move.
1031
      if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
1032
      {
1033
          (ss+1)->pv = pv;
1034
          (ss+1)->pv[0] = MOVE_NONE;
1035
 
1036
          value = newDepth <   ONE_PLY ?
1037
                            givesCheck ? -qsearch<PV,  true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
1038
                                       : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
1039
                                       : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
1040
      }
1041
 
1042
      // Step 17. Undo move
1043
      pos.undo_move(move);
1044
 
1045
      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1046
 
1047
      // Step 18. Check for a new best move
1048
      // Finished searching the move. If a stop occurred, the return value of
1049
      // the search cannot be trusted, and we return immediately without
1050
      // updating best move, PV and TT.
1051
      if (Signals.stop.load(std::memory_order_relaxed))
1052
          return VALUE_ZERO;
1053
 
1054
      if (rootNode)
1055
      {
1056
          RootMove& rm = *std::find(thisThread->rootMoves.begin(),
1057
                                    thisThread->rootMoves.end(), move);
1058
 
1059
          // PV move or new best move ?
1060
          if (moveCount == 1 || value > alpha)
1061
          {
1062
              rm.score = value;
1063
              rm.pv.resize(1);
1064
 
1065
              assert((ss+1)->pv);
1066
 
1067
              for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
1068
                  rm.pv.push_back(*m);
1069
 
1070
              // We record how often the best move has been changed in each
1071
              // iteration. This information is used for time management: When
1072
              // the best move changes frequently, we allocate some more time.
1073
              if (moveCount > 1 && thisThread == Threads.main())
1074
                  ++static_cast<MainThread*>(thisThread)->bestMoveChanges;
1075
          }
1076
          else
1077
              // All other moves but the PV are set to the lowest value: this is
1078
              // not a problem when sorting because the sort is stable and the
1079
              // move position in the list is preserved - just the PV is pushed up.
1080
              rm.score = -VALUE_INFINITE;
1081
      }
1082
 
1083
      if (value > bestValue)
1084
      {
1085
          bestValue = value;
1086
 
1087
          if (value > alpha)
1088
          {
1089
              // If there is an easy move for this position, clear it if unstable
1090
              if (    PvNode
1091
                  &&  thisThread == Threads.main()
1092
                  &&  EasyMove.get(pos.key())
1093
                  && (move != EasyMove.get(pos.key()) || moveCount > 1))
1094
                  EasyMove.clear();
1095
 
1096
              bestMove = move;
1097
 
1098
              if (PvNode && !rootNode) // Update pv even in fail-high case
1099
                  update_pv(ss->pv, move, (ss+1)->pv);
1100
 
1101
              if (PvNode && value < beta) // Update alpha! Always alpha < beta
1102
                  alpha = value;
1103
              else
1104
              {
1105
                  assert(value >= beta); // Fail high
1106
                  break;
1107
              }
1108
          }
1109
      }
1110
 
1111
      if (!captureOrPromotion && move != bestMove && quietCount < 64)
1112
          quietsSearched[quietCount++] = move;
1113
    }
1114
 
1115
    // The following condition would detect a stop only after move loop has been
1116
    // completed. But in this case bestValue is valid because we have fully
1117
    // searched our subtree, and we can anyhow save the result in TT.
1118
    /*
1119
       if (Signals.stop)
1120
        return VALUE_DRAW;
1121
    */
1122
 
1123
    // Step 20. Check for mate and stalemate
1124
    // All legal moves have been searched and if there are no legal moves, it
1125
    // must be a mate or a stalemate. If we are in a singular extension search then
1126
    // return a fail low score.
154 pmbaty 1127
 
1128
    assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
1129
 
96 pmbaty 1130
    if (!moveCount)
1131
        bestValue = excludedMove ? alpha
1132
                   :     inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
154 pmbaty 1133
    else if (bestMove)
1134
    {
1135
        int d = depth / ONE_PLY;
96 pmbaty 1136
 
154 pmbaty 1137
        // Quiet best move: update killers, history and countermoves
1138
        if (!pos.capture_or_promotion(bestMove))
1139
        {
1140
            Value bonus = Value(d * d + 2 * d - 2);
1141
            update_stats(pos, ss, bestMove, quietsSearched, quietCount, bonus);
1142
        }
96 pmbaty 1143
 
154 pmbaty 1144
        // Extra penalty for a quiet TT move in previous ply when it gets refuted
1145
        if ((ss-1)->moveCount == 1 && !pos.captured_piece())
1146
        {
1147
            Value penalty = Value(d * d + 4 * d + 1);
1148
            Square prevSq = to_sq((ss-1)->currentMove);
1149
            update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -penalty);
1150
        }
1151
    }
96 pmbaty 1152
    // Bonus for prior countermove that caused the fail low
1153
    else if (    depth >= 3 * ONE_PLY
154 pmbaty 1154
             && !pos.captured_piece()
1155
             && is_ok((ss-1)->currentMove))
96 pmbaty 1156
    {
154 pmbaty 1157
        int d = depth / ONE_PLY;
1158
        Value bonus = Value(d * d + 2 * d - 2);
1159
        Square prevSq = to_sq((ss-1)->currentMove);
1160
        update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, bonus);
96 pmbaty 1161
    }
1162
 
1163
    tte->save(posKey, value_to_tt(bestValue, ss->ply),
1164
              bestValue >= beta ? BOUND_LOWER :
1165
              PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
1166
              depth, bestMove, ss->staticEval, TT.generation());
1167
 
1168
    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1169
 
1170
    return bestValue;
1171
  }
1172
 
1173
 
1174
  // qsearch() is the quiescence search function, which is called by the main
1175
  // search function when the remaining depth is zero (or, to be more precise,
1176
  // less than ONE_PLY).
1177
 
1178
  template <NodeType NT, bool InCheck>
1179
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1180
 
1181
    const bool PvNode = NT == PV;
1182
 
1183
    assert(InCheck == !!pos.checkers());
1184
    assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1185
    assert(PvNode || (alpha == beta - 1));
1186
    assert(depth <= DEPTH_ZERO);
154 pmbaty 1187
    assert(depth / ONE_PLY * ONE_PLY == depth);
96 pmbaty 1188
 
1189
    Move pv[MAX_PLY+1];
1190
    StateInfo st;
1191
    TTEntry* tte;
1192
    Key posKey;
1193
    Move ttMove, move, bestMove;
1194
    Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
1195
    bool ttHit, givesCheck, evasionPrunable;
1196
    Depth ttDepth;
1197
 
1198
    if (PvNode)
1199
    {
1200
        oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
1201
        (ss+1)->pv = pv;
1202
        ss->pv[0] = MOVE_NONE;
1203
    }
1204
 
1205
    ss->currentMove = bestMove = MOVE_NONE;
1206
    ss->ply = (ss-1)->ply + 1;
1207
 
1208
    // Check for an instant draw or if the maximum ply has been reached
1209
    if (pos.is_draw() || ss->ply >= MAX_PLY)
1210
        return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
1211
                                              : DrawValue[pos.side_to_move()];
1212
 
1213
    assert(0 <= ss->ply && ss->ply < MAX_PLY);
1214
 
1215
    // Decide whether or not to include checks: this fixes also the type of
1216
    // TT entry depth that we are going to use. Note that in qsearch we use
1217
    // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1218
    ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1219
                                                  : DEPTH_QS_NO_CHECKS;
1220
 
1221
    // Transposition table lookup
1222
    posKey = pos.key();
1223
    tte = TT.probe(posKey, ttHit);
1224
    ttMove = ttHit ? tte->move() : MOVE_NONE;
1225
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
1226
 
1227
    if (  !PvNode
1228
        && ttHit
1229
        && tte->depth() >= ttDepth
1230
        && ttValue != VALUE_NONE // Only in case of TT access race
1231
        && (ttValue >= beta ? (tte->bound() &  BOUND_LOWER)
1232
                            : (tte->bound() &  BOUND_UPPER)))
1233
        return ttValue;
1234
 
1235
    // Evaluate the position statically
1236
    if (InCheck)
1237
    {
1238
        ss->staticEval = VALUE_NONE;
1239
        bestValue = futilityBase = -VALUE_INFINITE;
1240
    }
1241
    else
1242
    {
1243
        if (ttHit)
1244
        {
1245
            // Never assume anything on values stored in TT
1246
            if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
1247
                ss->staticEval = bestValue = evaluate(pos);
1248
 
1249
            // Can ttValue be used as a better position evaluation?
1250
            if (ttValue != VALUE_NONE)
1251
                if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
1252
                    bestValue = ttValue;
1253
        }
1254
        else
1255
            ss->staticEval = bestValue =
1256
            (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
1257
                                             : -(ss-1)->staticEval + 2 * Eval::Tempo;
1258
 
1259
        // Stand pat. Return immediately if static value is at least beta
1260
        if (bestValue >= beta)
1261
        {
1262
            if (!ttHit)
1263
                tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
1264
                          DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
1265
 
1266
            return bestValue;
1267
        }
1268
 
1269
        if (PvNode && bestValue > alpha)
1270
            alpha = bestValue;
1271
 
1272
        futilityBase = bestValue + 128;
1273
    }
1274
 
1275
    // Initialize a MovePicker object for the current position, and prepare
1276
    // to search the moves. Because the depth is <= 0 here, only captures,
1277
    // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1278
    // be generated.
154 pmbaty 1279
    MovePicker mp(pos, ttMove, depth, to_sq((ss-1)->currentMove));
96 pmbaty 1280
 
1281
    // Loop through the moves until no moves remain or a beta cutoff occurs
1282
    while ((move = mp.next_move()) != MOVE_NONE)
1283
    {
1284
      assert(is_ok(move));
1285
 
154 pmbaty 1286
      givesCheck =  type_of(move) == NORMAL && !pos.discovered_check_candidates()
1287
                  ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move)
1288
                  : pos.gives_check(move);
96 pmbaty 1289
 
1290
      // Futility pruning
1291
      if (   !InCheck
1292
          && !givesCheck
1293
          &&  futilityBase > -VALUE_KNOWN_WIN
1294
          && !pos.advanced_pawn_push(move))
1295
      {
1296
          assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
1297
 
1298
          futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
1299
 
1300
          if (futilityValue <= alpha)
1301
          {
1302
              bestValue = std::max(bestValue, futilityValue);
1303
              continue;
1304
          }
1305
 
154 pmbaty 1306
          if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
96 pmbaty 1307
          {
1308
              bestValue = std::max(bestValue, futilityBase);
1309
              continue;
1310
          }
1311
      }
1312
 
1313
      // Detect non-capture evasions that are candidates to be pruned
1314
      evasionPrunable =    InCheck
1315
                       &&  bestValue > VALUE_MATED_IN_MAX_PLY
1316
                       && !pos.capture(move);
1317
 
1318
      // Don't search moves with negative SEE values
1319
      if (  (!InCheck || evasionPrunable)
1320
          &&  type_of(move) != PROMOTION
154 pmbaty 1321
          &&  !pos.see_ge(move, VALUE_ZERO))
96 pmbaty 1322
          continue;
1323
 
1324
      // Speculative prefetch as early as possible
1325
      prefetch(TT.first_entry(pos.key_after(move)));
1326
 
1327
      // Check for legality just before making the move
154 pmbaty 1328
      if (!pos.legal(move))
96 pmbaty 1329
          continue;
1330
 
1331
      ss->currentMove = move;
1332
 
1333
      // Make and search the move
1334
      pos.do_move(move, st, givesCheck);
1335
      value = givesCheck ? -qsearch<NT,  true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
1336
                         : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
1337
      pos.undo_move(move);
1338
 
1339
      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1340
 
1341
      // Check for a new best move
1342
      if (value > bestValue)
1343
      {
1344
          bestValue = value;
1345
 
1346
          if (value > alpha)
1347
          {
1348
              if (PvNode) // Update pv even in fail-high case
1349
                  update_pv(ss->pv, move, (ss+1)->pv);
1350
 
1351
              if (PvNode && value < beta) // Update alpha here!
1352
              {
1353
                  alpha = value;
1354
                  bestMove = move;
1355
              }
1356
              else // Fail high
1357
              {
1358
                  tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
1359
                            ttDepth, move, ss->staticEval, TT.generation());
1360
 
1361
                  return value;
1362
              }
1363
          }
1364
       }
1365
    }
1366
 
1367
    // All legal moves have been searched. A special case: If we're in check
1368
    // and no legal moves were found, it is checkmate.
1369
    if (InCheck && bestValue == -VALUE_INFINITE)
1370
        return mated_in(ss->ply); // Plies to mate from the root
1371
 
1372
    tte->save(posKey, value_to_tt(bestValue, ss->ply),
1373
              PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
1374
              ttDepth, bestMove, ss->staticEval, TT.generation());
1375
 
1376
    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1377
 
1378
    return bestValue;
1379
  }
1380
 
1381
 
1382
  // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1383
  // "plies to mate from the current position". Non-mate scores are unchanged.
1384
  // The function is called before storing a value in the transposition table.
1385
 
1386
  Value value_to_tt(Value v, int ply) {
1387
 
1388
    assert(v != VALUE_NONE);
1389
 
1390
    return  v >= VALUE_MATE_IN_MAX_PLY  ? v + ply
1391
          : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
1392
  }
1393
 
1394
 
1395
  // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1396
  // from the transposition table (which refers to the plies to mate/be mated
1397
  // from current position) to "plies to mate/be mated from the root".
1398
 
1399
  Value value_from_tt(Value v, int ply) {
1400
 
1401
    return  v == VALUE_NONE             ? VALUE_NONE
1402
          : v >= VALUE_MATE_IN_MAX_PLY  ? v - ply
1403
          : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
1404
  }
1405
 
1406
 
1407
  // update_pv() adds current move and appends child pv[]
1408
 
1409
  void update_pv(Move* pv, Move move, Move* childPv) {
1410
 
1411
    for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
1412
        *pv++ = *childPv++;
1413
    *pv = MOVE_NONE;
1414
  }
1415
 
1416
 
154 pmbaty 1417
  // update_cm_stats() updates countermove and follow-up move history
96 pmbaty 1418
 
154 pmbaty 1419
  void update_cm_stats(Stack* ss, Piece pc, Square s, Value bonus) {
1420
 
1421
    CounterMoveStats* cmh  = (ss-1)->counterMoves;
1422
    CounterMoveStats* fmh1 = (ss-2)->counterMoves;
1423
    CounterMoveStats* fmh2 = (ss-4)->counterMoves;
1424
 
1425
    if (cmh)
1426
        cmh->update(pc, s, bonus);
1427
 
1428
    if (fmh1)
1429
        fmh1->update(pc, s, bonus);
1430
 
1431
    if (fmh2)
1432
        fmh2->update(pc, s, bonus);
1433
  }
1434
 
1435
 
1436
  // update_stats() updates killers, history, countermove and countermove plus
1437
  // follow-up move history when a new quiet best move is found.
1438
 
96 pmbaty 1439
  void update_stats(const Position& pos, Stack* ss, Move move,
154 pmbaty 1440
                    Move* quiets, int quietsCnt, Value bonus) {
96 pmbaty 1441
 
1442
    if (ss->killers[0] != move)
1443
    {
1444
        ss->killers[1] = ss->killers[0];
1445
        ss->killers[0] = move;
1446
    }
1447
 
154 pmbaty 1448
    Color c = pos.side_to_move();
96 pmbaty 1449
    Thread* thisThread = pos.this_thread();
154 pmbaty 1450
    thisThread->fromTo.update(c, move, bonus);
96 pmbaty 1451
    thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus);
154 pmbaty 1452
    update_cm_stats(ss, pos.moved_piece(move), to_sq(move), bonus);
96 pmbaty 1453
 
154 pmbaty 1454
    if ((ss-1)->counterMoves)
96 pmbaty 1455
    {
154 pmbaty 1456
        Square prevSq = to_sq((ss-1)->currentMove);
96 pmbaty 1457
        thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move);
1458
    }
1459
 
1460
    // Decrease all the other played quiet moves
1461
    for (int i = 0; i < quietsCnt; ++i)
1462
    {
154 pmbaty 1463
        thisThread->fromTo.update(c, quiets[i], -bonus);
96 pmbaty 1464
        thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
154 pmbaty 1465
        update_cm_stats(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
96 pmbaty 1466
    }
1467
  }
1468
 
1469
 
1470
  // When playing with strength handicap, choose best move among a set of RootMoves
1471
  // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1472
 
1473
  Move Skill::pick_best(size_t multiPV) {
1474
 
154 pmbaty 1475
    const RootMoves& rootMoves = Threads.main()->rootMoves;
96 pmbaty 1476
    static PRNG rng(now()); // PRNG sequence should be non-deterministic
1477
 
1478
    // RootMoves are already sorted by score in descending order
1479
    Value topScore = rootMoves[0].score;
1480
    int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
1481
    int weakness = 120 - 2 * level;
1482
    int maxScore = -VALUE_INFINITE;
1483
 
1484
    // Choose best move. For each move score we add two terms, both dependent on
1485
    // weakness. One is deterministic and bigger for weaker levels, and one is
1486
    // random. Then we choose the move with the resulting highest score.
1487
    for (size_t i = 0; i < multiPV; ++i)
1488
    {
1489
        // This is our magic formula
1490
        int push = (  weakness * int(topScore - rootMoves[i].score)
1491
                    + delta * (rng.rand<unsigned>() % weakness)) / 128;
1492
 
1493
        if (rootMoves[i].score + push > maxScore)
1494
        {
1495
            maxScore = rootMoves[i].score + push;
1496
            best = rootMoves[i].pv[0];
1497
        }
1498
    }
1499
 
1500
    return best;
1501
  }
1502
 
1503
 
1504
  // check_time() is used to print debug info and, more importantly, to detect
1505
  // when we are out of available time and thus stop the search.
1506
 
1507
  void check_time() {
1508
 
1509
    static TimePoint lastInfoTime = now();
1510
 
1511
    int elapsed = Time.elapsed();
1512
    TimePoint tick = Limits.startTime + elapsed;
1513
 
1514
    if (tick - lastInfoTime >= 1000)
1515
    {
1516
        lastInfoTime = tick;
1517
        dbg_print();
1518
    }
1519
 
1520
    // An engine may not stop pondering until told so by the GUI
1521
    if (Limits.ponder)
1522
        return;
1523
 
1524
    if (   (Limits.use_time_management() && elapsed > Time.maximum() - 10)
1525
        || (Limits.movetime && elapsed >= Limits.movetime)
154 pmbaty 1526
        || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
96 pmbaty 1527
            Signals.stop = true;
1528
  }
1529
 
1530
} // namespace
1531
 
1532
 
1533
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
1534
/// that all (if any) unsearched PV lines are sent using a previous search score.
1535
 
1536
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
1537
 
1538
  std::stringstream ss;
1539
  int elapsed = Time.elapsed() + 1;
154 pmbaty 1540
  const RootMoves& rootMoves = pos.this_thread()->rootMoves;
96 pmbaty 1541
  size_t PVIdx = pos.this_thread()->PVIdx;
1542
  size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
154 pmbaty 1543
  uint64_t nodesSearched = Threads.nodes_searched();
1544
  uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
96 pmbaty 1545
 
1546
  for (size_t i = 0; i < multiPV; ++i)
1547
  {
1548
      bool updated = (i <= PVIdx);
1549
 
1550
      if (depth == ONE_PLY && !updated)
1551
          continue;
1552
 
1553
      Depth d = updated ? depth : depth - ONE_PLY;
1554
      Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
1555
 
1556
      bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
1557
      v = tb ? TB::Score : v;
1558
 
1559
      if (ss.rdbuf()->in_avail()) // Not at first line
1560
          ss << "\n";
1561
 
1562
      ss << "info"
1563
         << " depth "    << d / ONE_PLY
1564
         << " seldepth " << pos.this_thread()->maxPly
1565
         << " multipv "  << i + 1
1566
         << " score "    << UCI::value(v);
1567
 
1568
      if (!tb && i == PVIdx)
1569
          ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
1570
 
154 pmbaty 1571
      ss << " nodes "    << nodesSearched
1572
         << " nps "      << nodesSearched * 1000 / elapsed;
96 pmbaty 1573
 
1574
      if (elapsed > 1000) // Earlier makes little sense
1575
          ss << " hashfull " << TT.hashfull();
1576
 
154 pmbaty 1577
      ss << " tbhits "   << tbHits
96 pmbaty 1578
         << " time "     << elapsed
1579
         << " pv";
1580
 
1581
      for (Move m : rootMoves[i].pv)
1582
          ss << " " << UCI::move(m, pos.is_chess960());
1583
  }
1584
 
1585
  return ss.str();
1586
}
1587
 
1588
 
1589
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
1590
/// before exiting the search, for instance, in case we stop the search during a
1591
/// fail high at root. We try hard to have a ponder move to return to the GUI,
1592
/// otherwise in case of 'ponder on' we have nothing to think on.
1593
 
154 pmbaty 1594
bool RootMove::extract_ponder_from_tt(Position& pos) {
1595
 
96 pmbaty 1596
    StateInfo st;
1597
    bool ttHit;
1598
 
1599
    assert(pv.size() == 1);
1600
 
154 pmbaty 1601
    if (!pv[0])
1602
        return false;
1603
 
1604
    pos.do_move(pv[0], st, pos.gives_check(pv[0]));
96 pmbaty 1605
    TTEntry* tte = TT.probe(pos.key(), ttHit);
1606
 
1607
    if (ttHit)
1608
    {
1609
        Move m = tte->move(); // Local copy to be SMP safe
1610
        if (MoveList<LEGAL>(pos).contains(m))
154 pmbaty 1611
            pv.push_back(m);
96 pmbaty 1612
    }
1613
 
154 pmbaty 1614
    pos.undo_move(pv[0]);
1615
    return pv.size() > 1;
96 pmbaty 1616
}
154 pmbaty 1617
 
1618
void Tablebases::filter_root_moves(Position& pos, Search::RootMoves& rootMoves) {
1619
 
1620
    RootInTB = false;
1621
    UseRule50 = Options["Syzygy50MoveRule"];
1622
    ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
1623
    Cardinality = Options["SyzygyProbeLimit"];
1624
 
1625
    // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
1626
    if (Cardinality > MaxCardinality)
1627
    {
1628
        Cardinality = MaxCardinality;
1629
        ProbeDepth = DEPTH_ZERO;
1630
    }
1631
 
1632
    if (Cardinality < popcount(pos.pieces()) || pos.can_castle(ANY_CASTLING))
1633
        return;
1634
 
1635
    // If the current root position is in the tablebases, then RootMoves
1636
    // contains only moves that preserve the draw or the win.
1637
    RootInTB = root_probe(pos, rootMoves, TB::Score);
1638
 
1639
    if (RootInTB)
1640
        Cardinality = 0; // Do not probe tablebases during the search
1641
 
1642
    else // If DTZ tables are missing, use WDL tables as a fallback
1643
    {
1644
        // Filter out moves that do not preserve the draw or the win.
1645
        RootInTB = root_probe_wdl(pos, rootMoves, TB::Score);
1646
 
1647
        // Only probe during search if winning
1648
        if (RootInTB && TB::Score <= VALUE_DRAW)
1649
            Cardinality = 0;
1650
    }
1651
 
1652
    if (RootInTB && !UseRule50)
1653
        TB::Score =  TB::Score > VALUE_DRAW ?  VALUE_MATE - MAX_PLY - 1
1654
                   : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1
1655
                                            :  VALUE_DRAW;
1656
}