Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
23 | #include <cmath> |
||
24 | #include <cstring> // For std::memset |
||
25 | #include <iostream> |
||
26 | #include <sstream> |
||
27 | |||
28 | #include "evaluate.h" |
||
29 | #include "misc.h" |
||
30 | #include "movegen.h" |
||
31 | #include "movepick.h" |
||
154 | pmbaty | 32 | #include "position.h" |
96 | pmbaty | 33 | #include "search.h" |
34 | #include "timeman.h" |
||
35 | #include "thread.h" |
||
36 | #include "tt.h" |
||
37 | #include "uci.h" |
||
38 | #include "syzygy/tbprobe.h" |
||
39 | |||
40 | namespace Search { |
||
41 | |||
42 | SignalsType Signals; |
||
43 | LimitsType Limits; |
||
44 | } |
||
45 | |||
46 | namespace Tablebases { |
||
47 | |||
48 | int Cardinality; |
||
49 | bool RootInTB; |
||
50 | bool UseRule50; |
||
51 | Depth ProbeDepth; |
||
52 | Value Score; |
||
53 | } |
||
54 | |||
55 | namespace TB = Tablebases; |
||
56 | |||
57 | using std::string; |
||
58 | using Eval::evaluate; |
||
59 | using namespace Search; |
||
60 | |||
61 | namespace { |
||
62 | |||
63 | // Different node types, used as a template parameter |
||
64 | enum NodeType { NonPV, PV }; |
||
65 | |||
66 | // Razoring and futility margin based on depth |
||
67 | const int razor_margin[4] = { 483, 570, 603, 554 }; |
||
154 | pmbaty | 68 | Value futility_margin(Depth d) { return Value(150 * d / ONE_PLY); } |
96 | pmbaty | 69 | |
70 | // Futility and reductions lookup tables, initialized at startup |
||
154 | pmbaty | 71 | int FutilityMoveCounts[2][16]; // [improving][depth] |
72 | int Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber] |
||
96 | pmbaty | 73 | |
74 | template <bool PvNode> Depth reduction(bool i, Depth d, int mn) { |
||
154 | pmbaty | 75 | return Reductions[PvNode][i][std::min(d / ONE_PLY, 63)][std::min(mn, 63)] * ONE_PLY; |
96 | pmbaty | 76 | } |
77 | |||
78 | // Skill structure is used to implement strength limit |
||
79 | struct Skill { |
||
80 | Skill(int l) : level(l) {} |
||
81 | bool enabled() const { return level < 20; } |
||
82 | bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; } |
||
83 | Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); } |
||
84 | Move pick_best(size_t multiPV); |
||
85 | |||
86 | int level; |
||
87 | Move best = MOVE_NONE; |
||
88 | }; |
||
89 | |||
90 | // EasyMoveManager structure is used to detect an 'easy move'. When the PV is |
||
91 | // stable across multiple search iterations, we can quickly return the best move. |
||
92 | struct EasyMoveManager { |
||
93 | |||
94 | void clear() { |
||
95 | stableCnt = 0; |
||
96 | expectedPosKey = 0; |
||
97 | pv[0] = pv[1] = pv[2] = MOVE_NONE; |
||
98 | } |
||
99 | |||
100 | Move get(Key key) const { |
||
101 | return expectedPosKey == key ? pv[2] : MOVE_NONE; |
||
102 | } |
||
103 | |||
104 | void update(Position& pos, const std::vector<Move>& newPv) { |
||
105 | |||
106 | assert(newPv.size() >= 3); |
||
107 | |||
108 | // Keep track of how many times in a row the 3rd ply remains stable |
||
109 | stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0; |
||
110 | |||
111 | if (!std::equal(newPv.begin(), newPv.begin() + 3, pv)) |
||
112 | { |
||
113 | std::copy(newPv.begin(), newPv.begin() + 3, pv); |
||
114 | |||
115 | StateInfo st[2]; |
||
154 | pmbaty | 116 | pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0])); |
117 | pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1])); |
||
96 | pmbaty | 118 | expectedPosKey = pos.key(); |
119 | pos.undo_move(newPv[1]); |
||
120 | pos.undo_move(newPv[0]); |
||
121 | } |
||
122 | } |
||
123 | |||
124 | int stableCnt; |
||
125 | Key expectedPosKey; |
||
126 | Move pv[3]; |
||
127 | }; |
||
128 | |||
129 | // Set of rows with half bits set to 1 and half to 0. It is used to allocate |
||
130 | // the search depths across the threads. |
||
131 | typedef std::vector<int> Row; |
||
132 | |||
133 | const Row HalfDensity[] = { |
||
134 | {0, 1}, |
||
135 | {1, 0}, |
||
136 | {0, 0, 1, 1}, |
||
137 | {0, 1, 1, 0}, |
||
138 | {1, 1, 0, 0}, |
||
139 | {1, 0, 0, 1}, |
||
140 | {0, 0, 0, 1, 1, 1}, |
||
141 | {0, 0, 1, 1, 1, 0}, |
||
142 | {0, 1, 1, 1, 0, 0}, |
||
143 | {1, 1, 1, 0, 0, 0}, |
||
144 | {1, 1, 0, 0, 0, 1}, |
||
145 | {1, 0, 0, 0, 1, 1}, |
||
146 | {0, 0, 0, 0, 1, 1, 1, 1}, |
||
147 | {0, 0, 0, 1, 1, 1, 1, 0}, |
||
148 | {0, 0, 1, 1, 1, 1, 0 ,0}, |
||
149 | {0, 1, 1, 1, 1, 0, 0 ,0}, |
||
150 | {1, 1, 1, 1, 0, 0, 0 ,0}, |
||
151 | {1, 1, 1, 0, 0, 0, 0 ,1}, |
||
152 | {1, 1, 0, 0, 0, 0, 1 ,1}, |
||
153 | {1, 0, 0, 0, 0, 1, 1 ,1}, |
||
154 | }; |
||
155 | |||
156 | const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value; |
||
157 | |||
158 | EasyMoveManager EasyMove; |
||
159 | Value DrawValue[COLOR_NB]; |
||
160 | |||
161 | template <NodeType NT> |
||
162 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); |
||
163 | |||
164 | template <NodeType NT, bool InCheck> |
||
165 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); |
||
166 | |||
167 | Value value_to_tt(Value v, int ply); |
||
168 | Value value_from_tt(Value v, int ply); |
||
169 | void update_pv(Move* pv, Move move, Move* childPv); |
||
154 | pmbaty | 170 | void update_cm_stats(Stack* ss, Piece pc, Square s, Value bonus); |
171 | void update_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietsCnt, Value bonus); |
||
96 | pmbaty | 172 | void check_time(); |
173 | |||
174 | } // namespace |
||
175 | |||
176 | |||
177 | /// Search::init() is called during startup to initialize various lookup tables |
||
178 | |||
179 | void Search::init() { |
||
180 | |||
154 | pmbaty | 181 | for (int imp = 0; imp <= 1; ++imp) |
182 | for (int d = 1; d < 64; ++d) |
||
183 | for (int mc = 1; mc < 64; ++mc) |
||
184 | { |
||
185 | double r = log(d) * log(mc) / 2; |
||
186 | if (r < 0.80) |
||
187 | continue; |
||
96 | pmbaty | 188 | |
154 | pmbaty | 189 | Reductions[NonPV][imp][d][mc] = int(std::round(r)); |
190 | Reductions[PV][imp][d][mc] = std::max(Reductions[NonPV][imp][d][mc] - 1, 0); |
||
96 | pmbaty | 191 | |
154 | pmbaty | 192 | // Increase reduction for non-PV nodes when eval is not improving |
193 | if (!imp && Reductions[NonPV][imp][d][mc] >= 2) |
||
194 | Reductions[NonPV][imp][d][mc]++; |
||
195 | } |
||
96 | pmbaty | 196 | |
197 | for (int d = 0; d < 16; ++d) |
||
198 | { |
||
199 | FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8)); |
||
200 | FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8)); |
||
201 | } |
||
202 | } |
||
203 | |||
204 | |||
205 | /// Search::clear() resets search state to zero, to obtain reproducible results |
||
206 | |||
207 | void Search::clear() { |
||
208 | |||
209 | TT.clear(); |
||
210 | |||
211 | for (Thread* th : Threads) |
||
212 | { |
||
213 | th->history.clear(); |
||
214 | th->counterMoves.clear(); |
||
154 | pmbaty | 215 | th->fromTo.clear(); |
216 | th->counterMoveHistory.clear(); |
||
96 | pmbaty | 217 | } |
218 | |||
219 | Threads.main()->previousScore = VALUE_INFINITE; |
||
220 | } |
||
221 | |||
222 | |||
223 | /// Search::perft() is our utility to verify move generation. All the leaf nodes |
||
224 | /// up to the given depth are generated and counted, and the sum is returned. |
||
225 | template<bool Root> |
||
226 | uint64_t Search::perft(Position& pos, Depth depth) { |
||
227 | |||
228 | StateInfo st; |
||
229 | uint64_t cnt, nodes = 0; |
||
230 | const bool leaf = (depth == 2 * ONE_PLY); |
||
231 | |||
232 | for (const auto& m : MoveList<LEGAL>(pos)) |
||
233 | { |
||
234 | if (Root && depth <= ONE_PLY) |
||
235 | cnt = 1, nodes++; |
||
236 | else |
||
237 | { |
||
154 | pmbaty | 238 | pos.do_move(m, st, pos.gives_check(m)); |
96 | pmbaty | 239 | cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY); |
240 | nodes += cnt; |
||
241 | pos.undo_move(m); |
||
242 | } |
||
243 | if (Root) |
||
244 | sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; |
||
245 | } |
||
246 | return nodes; |
||
247 | } |
||
248 | |||
249 | template uint64_t Search::perft<true>(Position&, Depth); |
||
250 | |||
251 | |||
252 | /// MainThread::search() is called by the main thread when the program receives |
||
253 | /// the UCI 'go' command. It searches from the root position and outputs the "bestmove". |
||
254 | |||
255 | void MainThread::search() { |
||
256 | |||
257 | Color us = rootPos.side_to_move(); |
||
258 | Time.init(Limits, us, rootPos.game_ply()); |
||
259 | |||
260 | int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns |
||
261 | DrawValue[ us] = VALUE_DRAW - Value(contempt); |
||
262 | DrawValue[~us] = VALUE_DRAW + Value(contempt); |
||
263 | |||
264 | if (rootMoves.empty()) |
||
265 | { |
||
266 | rootMoves.push_back(RootMove(MOVE_NONE)); |
||
267 | sync_cout << "info depth 0 score " |
||
268 | << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) |
||
269 | << sync_endl; |
||
270 | } |
||
271 | else |
||
272 | { |
||
273 | for (Thread* th : Threads) |
||
274 | if (th != this) |
||
275 | th->start_searching(); |
||
276 | |||
277 | Thread::search(); // Let's start searching! |
||
278 | } |
||
279 | |||
280 | // When playing in 'nodes as time' mode, subtract the searched nodes from |
||
281 | // the available ones before exiting. |
||
282 | if (Limits.npmsec) |
||
283 | Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); |
||
284 | |||
285 | // When we reach the maximum depth, we can arrive here without a raise of |
||
286 | // Signals.stop. However, if we are pondering or in an infinite search, |
||
287 | // the UCI protocol states that we shouldn't print the best move before the |
||
288 | // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here |
||
289 | // until the GUI sends one of those commands (which also raises Signals.stop). |
||
290 | if (!Signals.stop && (Limits.ponder || Limits.infinite)) |
||
291 | { |
||
292 | Signals.stopOnPonderhit = true; |
||
293 | wait(Signals.stop); |
||
294 | } |
||
295 | |||
296 | // Stop the threads if not already stopped |
||
297 | Signals.stop = true; |
||
298 | |||
299 | // Wait until all threads have finished |
||
300 | for (Thread* th : Threads) |
||
301 | if (th != this) |
||
302 | th->wait_for_search_finished(); |
||
303 | |||
304 | // Check if there are threads with a better score than main thread |
||
305 | Thread* bestThread = this; |
||
306 | if ( !this->easyMovePlayed |
||
307 | && Options["MultiPV"] == 1 |
||
154 | pmbaty | 308 | && !Limits.depth |
309 | && !Skill(Options["Skill Level"]).enabled() |
||
310 | && rootMoves[0].pv[0] != MOVE_NONE) |
||
96 | pmbaty | 311 | { |
312 | for (Thread* th : Threads) |
||
313 | if ( th->completedDepth > bestThread->completedDepth |
||
314 | && th->rootMoves[0].score > bestThread->rootMoves[0].score) |
||
315 | bestThread = th; |
||
316 | } |
||
317 | |||
318 | previousScore = bestThread->rootMoves[0].score; |
||
319 | |||
320 | // Send new PV when needed |
||
321 | if (bestThread != this) |
||
322 | sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; |
||
323 | |||
324 | sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); |
||
325 | |||
326 | if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) |
||
327 | std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); |
||
328 | |||
329 | std::cout << sync_endl; |
||
330 | } |
||
331 | |||
332 | |||
333 | // Thread::search() is the main iterative deepening loop. It calls search() |
||
334 | // repeatedly with increasing depth until the allocated thinking time has been |
||
335 | // consumed, the user stops the search, or the maximum search depth is reached. |
||
336 | |||
337 | void Thread::search() { |
||
338 | |||
154 | pmbaty | 339 | Stack stack[MAX_PLY+7], *ss = stack+5; // To allow referencing (ss-5) and (ss+2) |
96 | pmbaty | 340 | Value bestValue, alpha, beta, delta; |
341 | Move easyMove = MOVE_NONE; |
||
342 | MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); |
||
343 | |||
154 | pmbaty | 344 | std::memset(ss-5, 0, 8 * sizeof(Stack)); |
96 | pmbaty | 345 | |
346 | bestValue = delta = alpha = -VALUE_INFINITE; |
||
347 | beta = VALUE_INFINITE; |
||
348 | completedDepth = DEPTH_ZERO; |
||
349 | |||
350 | if (mainThread) |
||
351 | { |
||
352 | easyMove = EasyMove.get(rootPos.key()); |
||
353 | EasyMove.clear(); |
||
354 | mainThread->easyMovePlayed = mainThread->failedLow = false; |
||
355 | mainThread->bestMoveChanges = 0; |
||
356 | TT.new_search(); |
||
357 | } |
||
358 | |||
359 | size_t multiPV = Options["MultiPV"]; |
||
360 | Skill skill(Options["Skill Level"]); |
||
361 | |||
362 | // When playing with strength handicap enable MultiPV search that we will |
||
363 | // use behind the scenes to retrieve a set of possible moves. |
||
364 | if (skill.enabled()) |
||
365 | multiPV = std::max(multiPV, (size_t)4); |
||
366 | |||
367 | multiPV = std::min(multiPV, rootMoves.size()); |
||
368 | |||
154 | pmbaty | 369 | // Iterative deepening loop until requested to stop or the target depth is reached |
370 | while ( (rootDepth += ONE_PLY) < DEPTH_MAX |
||
371 | && !Signals.stop |
||
372 | && (!Limits.depth || Threads.main()->rootDepth / ONE_PLY <= Limits.depth)) |
||
96 | pmbaty | 373 | { |
374 | // Set up the new depths for the helper threads skipping on average every |
||
375 | // 2nd ply (using a half-density matrix). |
||
376 | if (!mainThread) |
||
377 | { |
||
378 | const Row& row = HalfDensity[(idx - 1) % HalfDensitySize]; |
||
154 | pmbaty | 379 | if (row[(rootDepth / ONE_PLY + rootPos.game_ply()) % row.size()]) |
96 | pmbaty | 380 | continue; |
381 | } |
||
382 | |||
383 | // Age out PV variability metric |
||
384 | if (mainThread) |
||
385 | mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false; |
||
386 | |||
387 | // Save the last iteration's scores before first PV line is searched and |
||
388 | // all the move scores except the (new) PV are set to -VALUE_INFINITE. |
||
389 | for (RootMove& rm : rootMoves) |
||
390 | rm.previousScore = rm.score; |
||
391 | |||
392 | // MultiPV loop. We perform a full root search for each PV line |
||
393 | for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx) |
||
394 | { |
||
395 | // Reset aspiration window starting size |
||
396 | if (rootDepth >= 5 * ONE_PLY) |
||
397 | { |
||
398 | delta = Value(18); |
||
399 | alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE); |
||
400 | beta = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE); |
||
401 | } |
||
402 | |||
403 | // Start with a small aspiration window and, in the case of a fail |
||
404 | // high/low, re-search with a bigger window until we're not failing |
||
405 | // high/low anymore. |
||
406 | while (true) |
||
407 | { |
||
408 | bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false); |
||
409 | |||
410 | // Bring the best move to the front. It is critical that sorting |
||
411 | // is done with a stable algorithm because all the values but the |
||
412 | // first and eventually the new best one are set to -VALUE_INFINITE |
||
413 | // and we want to keep the same order for all the moves except the |
||
414 | // new PV that goes to the front. Note that in case of MultiPV |
||
415 | // search the already searched PV lines are preserved. |
||
416 | std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end()); |
||
417 | |||
418 | // If search has been stopped, break immediately. Sorting and |
||
419 | // writing PV back to TT is safe because RootMoves is still |
||
420 | // valid, although it refers to the previous iteration. |
||
421 | if (Signals.stop) |
||
422 | break; |
||
423 | |||
424 | // When failing high/low give some update (without cluttering |
||
425 | // the UI) before a re-search. |
||
426 | if ( mainThread |
||
427 | && multiPV == 1 |
||
428 | && (bestValue <= alpha || bestValue >= beta) |
||
429 | && Time.elapsed() > 3000) |
||
430 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
||
431 | |||
432 | // In case of failing low/high increase aspiration window and |
||
433 | // re-search, otherwise exit the loop. |
||
434 | if (bestValue <= alpha) |
||
435 | { |
||
436 | beta = (alpha + beta) / 2; |
||
437 | alpha = std::max(bestValue - delta, -VALUE_INFINITE); |
||
438 | |||
439 | if (mainThread) |
||
440 | { |
||
441 | mainThread->failedLow = true; |
||
442 | Signals.stopOnPonderhit = false; |
||
443 | } |
||
444 | } |
||
445 | else if (bestValue >= beta) |
||
446 | { |
||
447 | alpha = (alpha + beta) / 2; |
||
448 | beta = std::min(bestValue + delta, VALUE_INFINITE); |
||
449 | } |
||
450 | else |
||
451 | break; |
||
452 | |||
453 | delta += delta / 4 + 5; |
||
454 | |||
455 | assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); |
||
456 | } |
||
457 | |||
458 | // Sort the PV lines searched so far and update the GUI |
||
459 | std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1); |
||
460 | |||
461 | if (!mainThread) |
||
154 | pmbaty | 462 | continue; |
96 | pmbaty | 463 | |
154 | pmbaty | 464 | if (Signals.stop || PVIdx + 1 == multiPV || Time.elapsed() > 3000) |
96 | pmbaty | 465 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
466 | } |
||
467 | |||
468 | if (!Signals.stop) |
||
469 | completedDepth = rootDepth; |
||
470 | |||
471 | if (!mainThread) |
||
472 | continue; |
||
473 | |||
474 | // If skill level is enabled and time is up, pick a sub-optimal best move |
||
475 | if (skill.enabled() && skill.time_to_pick(rootDepth)) |
||
476 | skill.pick_best(multiPV); |
||
477 | |||
478 | // Have we found a "mate in x"? |
||
479 | if ( Limits.mate |
||
480 | && bestValue >= VALUE_MATE_IN_MAX_PLY |
||
481 | && VALUE_MATE - bestValue <= 2 * Limits.mate) |
||
482 | Signals.stop = true; |
||
483 | |||
484 | // Do we have time for the next iteration? Can we stop searching now? |
||
485 | if (Limits.use_time_management()) |
||
486 | { |
||
487 | if (!Signals.stop && !Signals.stopOnPonderhit) |
||
488 | { |
||
489 | // Stop the search if only one legal move is available, or if all |
||
490 | // of the available time has been used, or if we matched an easyMove |
||
491 | // from the previous search and just did a fast verification. |
||
154 | pmbaty | 492 | const int F[] = { mainThread->failedLow, |
493 | bestValue - mainThread->previousScore }; |
||
96 | pmbaty | 494 | |
154 | pmbaty | 495 | int improvingFactor = std::max(229, std::min(715, 357 + 119 * F[0] - 6 * F[1])); |
96 | pmbaty | 496 | double unstablePvFactor = 1 + mainThread->bestMoveChanges; |
497 | |||
498 | bool doEasyMove = rootMoves[0].pv[0] == easyMove |
||
499 | && mainThread->bestMoveChanges < 0.03 |
||
154 | pmbaty | 500 | && Time.elapsed() > Time.optimum() * 5 / 42; |
96 | pmbaty | 501 | |
502 | if ( rootMoves.size() == 1 |
||
154 | pmbaty | 503 | || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 628 |
504 | || (mainThread->easyMovePlayed = doEasyMove, doEasyMove)) |
||
96 | pmbaty | 505 | { |
506 | // If we are allowed to ponder do not stop the search now but |
||
507 | // keep pondering until the GUI sends "ponderhit" or "stop". |
||
508 | if (Limits.ponder) |
||
509 | Signals.stopOnPonderhit = true; |
||
510 | else |
||
511 | Signals.stop = true; |
||
512 | } |
||
513 | } |
||
514 | |||
515 | if (rootMoves[0].pv.size() >= 3) |
||
516 | EasyMove.update(rootPos, rootMoves[0].pv); |
||
517 | else |
||
518 | EasyMove.clear(); |
||
519 | } |
||
520 | } |
||
521 | |||
522 | if (!mainThread) |
||
523 | return; |
||
524 | |||
525 | // Clear any candidate easy move that wasn't stable for the last search |
||
526 | // iterations; the second condition prevents consecutive fast moves. |
||
527 | if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed) |
||
528 | EasyMove.clear(); |
||
529 | |||
530 | // If skill level is enabled, swap best PV line with the sub-optimal one |
||
531 | if (skill.enabled()) |
||
532 | std::swap(rootMoves[0], *std::find(rootMoves.begin(), |
||
533 | rootMoves.end(), skill.best_move(multiPV))); |
||
534 | } |
||
535 | |||
536 | |||
537 | namespace { |
||
538 | |||
539 | // search<>() is the main search function for both PV and non-PV nodes |
||
540 | |||
541 | template <NodeType NT> |
||
542 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { |
||
543 | |||
544 | const bool PvNode = NT == PV; |
||
545 | const bool rootNode = PvNode && (ss-1)->ply == 0; |
||
546 | |||
547 | assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); |
||
548 | assert(PvNode || (alpha == beta - 1)); |
||
549 | assert(DEPTH_ZERO < depth && depth < DEPTH_MAX); |
||
154 | pmbaty | 550 | assert(!(PvNode && cutNode)); |
551 | assert(depth / ONE_PLY * ONE_PLY == depth); |
||
96 | pmbaty | 552 | |
553 | Move pv[MAX_PLY+1], quietsSearched[64]; |
||
554 | StateInfo st; |
||
555 | TTEntry* tte; |
||
556 | Key posKey; |
||
557 | Move ttMove, move, excludedMove, bestMove; |
||
154 | pmbaty | 558 | Depth extension, newDepth; |
559 | Value bestValue, value, ttValue, eval, nullValue; |
||
96 | pmbaty | 560 | bool ttHit, inCheck, givesCheck, singularExtensionNode, improving; |
154 | pmbaty | 561 | bool captureOrPromotion, doFullDepthSearch, moveCountPruning; |
562 | Piece moved_piece; |
||
96 | pmbaty | 563 | int moveCount, quietCount; |
564 | |||
565 | // Step 1. Initialize node |
||
566 | Thread* thisThread = pos.this_thread(); |
||
567 | inCheck = pos.checkers(); |
||
568 | moveCount = quietCount = ss->moveCount = 0; |
||
154 | pmbaty | 569 | ss->history = VALUE_ZERO; |
96 | pmbaty | 570 | bestValue = -VALUE_INFINITE; |
571 | ss->ply = (ss-1)->ply + 1; |
||
572 | |||
573 | // Check for the available remaining time |
||
574 | if (thisThread->resetCalls.load(std::memory_order_relaxed)) |
||
575 | { |
||
576 | thisThread->resetCalls = false; |
||
577 | thisThread->callsCnt = 0; |
||
578 | } |
||
579 | if (++thisThread->callsCnt > 4096) |
||
580 | { |
||
581 | for (Thread* th : Threads) |
||
582 | th->resetCalls = true; |
||
583 | |||
584 | check_time(); |
||
585 | } |
||
586 | |||
587 | // Used to send selDepth info to GUI |
||
588 | if (PvNode && thisThread->maxPly < ss->ply) |
||
589 | thisThread->maxPly = ss->ply; |
||
590 | |||
591 | if (!rootNode) |
||
592 | { |
||
593 | // Step 2. Check for aborted search and immediate draw |
||
594 | if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY) |
||
595 | return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos) |
||
596 | : DrawValue[pos.side_to_move()]; |
||
597 | |||
598 | // Step 3. Mate distance pruning. Even if we mate at the next move our score |
||
599 | // would be at best mate_in(ss->ply+1), but if alpha is already bigger because |
||
600 | // a shorter mate was found upward in the tree then there is no need to search |
||
601 | // because we will never beat the current alpha. Same logic but with reversed |
||
602 | // signs applies also in the opposite condition of being mated instead of giving |
||
603 | // mate. In this case return a fail-high score. |
||
604 | alpha = std::max(mated_in(ss->ply), alpha); |
||
605 | beta = std::min(mate_in(ss->ply+1), beta); |
||
606 | if (alpha >= beta) |
||
607 | return alpha; |
||
608 | } |
||
609 | |||
610 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
||
611 | |||
612 | ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; |
||
154 | pmbaty | 613 | ss->counterMoves = nullptr; |
96 | pmbaty | 614 | (ss+1)->skipEarlyPruning = false; |
615 | (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; |
||
616 | |||
617 | // Step 4. Transposition table lookup. We don't want the score of a partial |
||
618 | // search to overwrite a previous full search TT value, so we use a different |
||
619 | // position key in case of an excluded move. |
||
620 | excludedMove = ss->excludedMove; |
||
154 | pmbaty | 621 | posKey = pos.key() ^ Key(excludedMove); |
96 | pmbaty | 622 | tte = TT.probe(posKey, ttHit); |
623 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
||
624 | ttMove = rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0] |
||
625 | : ttHit ? tte->move() : MOVE_NONE; |
||
626 | |||
627 | // At non-PV nodes we check for an early TT cutoff |
||
628 | if ( !PvNode |
||
629 | && ttHit |
||
630 | && tte->depth() >= depth |
||
631 | && ttValue != VALUE_NONE // Possible in case of TT access race |
||
632 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
||
633 | : (tte->bound() & BOUND_UPPER))) |
||
634 | { |
||
635 | // If ttMove is quiet, update killers, history, counter move on TT hit |
||
154 | pmbaty | 636 | if (ttValue >= beta && ttMove) |
637 | { |
||
638 | int d = depth / ONE_PLY; |
||
96 | pmbaty | 639 | |
154 | pmbaty | 640 | if (!pos.capture_or_promotion(ttMove)) |
641 | { |
||
642 | Value bonus = Value(d * d + 2 * d - 2); |
||
643 | update_stats(pos, ss, ttMove, nullptr, 0, bonus); |
||
644 | } |
||
645 | |||
646 | // Extra penalty for a quiet TT move in previous ply when it gets refuted |
||
647 | if ((ss-1)->moveCount == 1 && !pos.captured_piece()) |
||
648 | { |
||
649 | Value penalty = Value(d * d + 4 * d + 1); |
||
650 | Square prevSq = to_sq((ss-1)->currentMove); |
||
651 | update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -penalty); |
||
652 | } |
||
653 | } |
||
96 | pmbaty | 654 | return ttValue; |
655 | } |
||
656 | |||
657 | // Step 4a. Tablebase probe |
||
658 | if (!rootNode && TB::Cardinality) |
||
659 | { |
||
660 | int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK); |
||
661 | |||
662 | if ( piecesCnt <= TB::Cardinality |
||
663 | && (piecesCnt < TB::Cardinality || depth >= TB::ProbeDepth) |
||
664 | && pos.rule50_count() == 0 |
||
665 | && !pos.can_castle(ANY_CASTLING)) |
||
666 | { |
||
667 | int found, v = Tablebases::probe_wdl(pos, &found); |
||
668 | |||
669 | if (found) |
||
670 | { |
||
154 | pmbaty | 671 | thisThread->tbHits++; |
96 | pmbaty | 672 | |
673 | int drawScore = TB::UseRule50 ? 1 : 0; |
||
674 | |||
675 | value = v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply |
||
676 | : v > drawScore ? VALUE_MATE - MAX_PLY - ss->ply |
||
677 | : VALUE_DRAW + 2 * v * drawScore; |
||
678 | |||
679 | tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT, |
||
680 | std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY), |
||
681 | MOVE_NONE, VALUE_NONE, TT.generation()); |
||
682 | |||
683 | return value; |
||
684 | } |
||
685 | } |
||
686 | } |
||
687 | |||
688 | // Step 5. Evaluate the position statically |
||
689 | if (inCheck) |
||
690 | { |
||
691 | ss->staticEval = eval = VALUE_NONE; |
||
692 | goto moves_loop; |
||
693 | } |
||
694 | |||
695 | else if (ttHit) |
||
696 | { |
||
697 | // Never assume anything on values stored in TT |
||
698 | if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE) |
||
699 | eval = ss->staticEval = evaluate(pos); |
||
700 | |||
701 | // Can ttValue be used as a better position evaluation? |
||
702 | if (ttValue != VALUE_NONE) |
||
703 | if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)) |
||
704 | eval = ttValue; |
||
705 | } |
||
706 | else |
||
707 | { |
||
708 | eval = ss->staticEval = |
||
709 | (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) |
||
710 | : -(ss-1)->staticEval + 2 * Eval::Tempo; |
||
711 | |||
712 | tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, |
||
713 | ss->staticEval, TT.generation()); |
||
714 | } |
||
715 | |||
716 | if (ss->skipEarlyPruning) |
||
717 | goto moves_loop; |
||
718 | |||
719 | // Step 6. Razoring (skipped when in check) |
||
720 | if ( !PvNode |
||
721 | && depth < 4 * ONE_PLY |
||
154 | pmbaty | 722 | && ttMove == MOVE_NONE |
723 | && eval + razor_margin[depth / ONE_PLY] <= alpha) |
||
96 | pmbaty | 724 | { |
154 | pmbaty | 725 | if (depth <= ONE_PLY) |
96 | pmbaty | 726 | return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO); |
727 | |||
154 | pmbaty | 728 | Value ralpha = alpha - razor_margin[depth / ONE_PLY]; |
96 | pmbaty | 729 | Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO); |
730 | if (v <= ralpha) |
||
731 | return v; |
||
732 | } |
||
733 | |||
734 | // Step 7. Futility pruning: child node (skipped when in check) |
||
735 | if ( !rootNode |
||
736 | && depth < 7 * ONE_PLY |
||
737 | && eval - futility_margin(depth) >= beta |
||
738 | && eval < VALUE_KNOWN_WIN // Do not return unproven wins |
||
739 | && pos.non_pawn_material(pos.side_to_move())) |
||
154 | pmbaty | 740 | return eval; |
96 | pmbaty | 741 | |
742 | // Step 8. Null move search with verification search (is omitted in PV nodes) |
||
743 | if ( !PvNode |
||
744 | && eval >= beta |
||
154 | pmbaty | 745 | && (ss->staticEval >= beta - 35 * (depth / ONE_PLY - 6) || depth >= 13 * ONE_PLY) |
96 | pmbaty | 746 | && pos.non_pawn_material(pos.side_to_move())) |
747 | { |
||
748 | ss->currentMove = MOVE_NULL; |
||
154 | pmbaty | 749 | ss->counterMoves = nullptr; |
96 | pmbaty | 750 | |
751 | assert(eval - beta >= 0); |
||
752 | |||
753 | // Null move dynamic reduction based on depth and value |
||
154 | pmbaty | 754 | Depth R = ((823 + 67 * depth / ONE_PLY) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY; |
96 | pmbaty | 755 | |
756 | pos.do_null_move(st); |
||
757 | (ss+1)->skipEarlyPruning = true; |
||
758 | nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) |
||
759 | : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); |
||
760 | (ss+1)->skipEarlyPruning = false; |
||
761 | pos.undo_null_move(); |
||
762 | |||
763 | if (nullValue >= beta) |
||
764 | { |
||
765 | // Do not return unproven mate scores |
||
766 | if (nullValue >= VALUE_MATE_IN_MAX_PLY) |
||
767 | nullValue = beta; |
||
768 | |||
769 | if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN) |
||
770 | return nullValue; |
||
771 | |||
772 | // Do verification search at high depths |
||
773 | ss->skipEarlyPruning = true; |
||
774 | Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO) |
||
775 | : search<NonPV>(pos, ss, beta-1, beta, depth-R, false); |
||
776 | ss->skipEarlyPruning = false; |
||
777 | |||
778 | if (v >= beta) |
||
779 | return nullValue; |
||
780 | } |
||
781 | } |
||
782 | |||
783 | // Step 9. ProbCut (skipped when in check) |
||
154 | pmbaty | 784 | // If we have a good enough capture and a reduced search returns a value |
785 | // much above beta, we can (almost) safely prune the previous move. |
||
96 | pmbaty | 786 | if ( !PvNode |
787 | && depth >= 5 * ONE_PLY |
||
788 | && abs(beta) < VALUE_MATE_IN_MAX_PLY) |
||
789 | { |
||
790 | Value rbeta = std::min(beta + 200, VALUE_INFINITE); |
||
791 | Depth rdepth = depth - 4 * ONE_PLY; |
||
792 | |||
793 | assert(rdepth >= ONE_PLY); |
||
794 | assert((ss-1)->currentMove != MOVE_NONE); |
||
795 | assert((ss-1)->currentMove != MOVE_NULL); |
||
796 | |||
154 | pmbaty | 797 | MovePicker mp(pos, ttMove, rbeta - ss->staticEval); |
96 | pmbaty | 798 | |
799 | while ((move = mp.next_move()) != MOVE_NONE) |
||
154 | pmbaty | 800 | if (pos.legal(move)) |
96 | pmbaty | 801 | { |
802 | ss->currentMove = move; |
||
154 | pmbaty | 803 | ss->counterMoves = &thisThread->counterMoveHistory[pos.moved_piece(move)][to_sq(move)]; |
804 | pos.do_move(move, st, pos.gives_check(move)); |
||
96 | pmbaty | 805 | value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); |
806 | pos.undo_move(move); |
||
807 | if (value >= rbeta) |
||
808 | return value; |
||
809 | } |
||
810 | } |
||
811 | |||
812 | // Step 10. Internal iterative deepening (skipped when in check) |
||
154 | pmbaty | 813 | if ( depth >= 6 * ONE_PLY |
96 | pmbaty | 814 | && !ttMove |
815 | && (PvNode || ss->staticEval + 256 >= beta)) |
||
816 | { |
||
154 | pmbaty | 817 | Depth d = (3 * depth / (4 * ONE_PLY) - 2) * ONE_PLY; |
96 | pmbaty | 818 | ss->skipEarlyPruning = true; |
154 | pmbaty | 819 | search<NT>(pos, ss, alpha, beta, d, cutNode); |
96 | pmbaty | 820 | ss->skipEarlyPruning = false; |
821 | |||
822 | tte = TT.probe(posKey, ttHit); |
||
823 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
||
824 | } |
||
825 | |||
826 | moves_loop: // When in check search starts from here |
||
827 | |||
154 | pmbaty | 828 | const CounterMoveStats* cmh = (ss-1)->counterMoves; |
829 | const CounterMoveStats* fmh = (ss-2)->counterMoves; |
||
830 | const CounterMoveStats* fmh2 = (ss-4)->counterMoves; |
||
96 | pmbaty | 831 | |
154 | pmbaty | 832 | MovePicker mp(pos, ttMove, depth, ss); |
96 | pmbaty | 833 | value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc |
834 | improving = ss->staticEval >= (ss-2)->staticEval |
||
154 | pmbaty | 835 | /* || ss->staticEval == VALUE_NONE Already implicit in the previous condition */ |
96 | pmbaty | 836 | ||(ss-2)->staticEval == VALUE_NONE; |
837 | |||
838 | singularExtensionNode = !rootNode |
||
839 | && depth >= 8 * ONE_PLY |
||
840 | && ttMove != MOVE_NONE |
||
154 | pmbaty | 841 | && ttValue != VALUE_NONE |
96 | pmbaty | 842 | && !excludedMove // Recursive singular search is not allowed |
843 | && (tte->bound() & BOUND_LOWER) |
||
844 | && tte->depth() >= depth - 3 * ONE_PLY; |
||
845 | |||
846 | // Step 11. Loop through moves |
||
847 | // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs |
||
848 | while ((move = mp.next_move()) != MOVE_NONE) |
||
849 | { |
||
850 | assert(is_ok(move)); |
||
851 | |||
852 | if (move == excludedMove) |
||
853 | continue; |
||
854 | |||
855 | // At root obey the "searchmoves" option and skip moves not listed in Root |
||
856 | // Move List. As a consequence any illegal move is also skipped. In MultiPV |
||
857 | // mode we also skip PV moves which have been already searched. |
||
858 | if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx, |
||
859 | thisThread->rootMoves.end(), move)) |
||
860 | continue; |
||
861 | |||
862 | ss->moveCount = ++moveCount; |
||
863 | |||
864 | if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) |
||
865 | sync_cout << "info depth " << depth / ONE_PLY |
||
866 | << " currmove " << UCI::move(move, pos.is_chess960()) |
||
867 | << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl; |
||
868 | |||
869 | if (PvNode) |
||
870 | (ss+1)->pv = nullptr; |
||
871 | |||
872 | extension = DEPTH_ZERO; |
||
873 | captureOrPromotion = pos.capture_or_promotion(move); |
||
154 | pmbaty | 874 | moved_piece = pos.moved_piece(move); |
96 | pmbaty | 875 | |
154 | pmbaty | 876 | givesCheck = type_of(move) == NORMAL && !pos.discovered_check_candidates() |
877 | ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move) |
||
878 | : pos.gives_check(move); |
||
96 | pmbaty | 879 | |
154 | pmbaty | 880 | moveCountPruning = depth < 16 * ONE_PLY |
881 | && moveCount >= FutilityMoveCounts[improving][depth / ONE_PLY]; |
||
882 | |||
96 | pmbaty | 883 | // Step 12. Extend checks |
154 | pmbaty | 884 | if ( givesCheck |
885 | && !moveCountPruning |
||
886 | && pos.see_ge(move, VALUE_ZERO)) |
||
96 | pmbaty | 887 | extension = ONE_PLY; |
888 | |||
889 | // Singular extension search. If all moves but one fail low on a search of |
||
890 | // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move |
||
891 | // is singular and should be extended. To verify this we do a reduced search |
||
892 | // on all the other moves but the ttMove and if the result is lower than |
||
893 | // ttValue minus a margin then we extend the ttMove. |
||
894 | if ( singularExtensionNode |
||
895 | && move == ttMove |
||
896 | && !extension |
||
154 | pmbaty | 897 | && pos.legal(move)) |
96 | pmbaty | 898 | { |
154 | pmbaty | 899 | Value rBeta = std::max(ttValue - 2 * depth / ONE_PLY, -VALUE_MATE); |
900 | Depth d = (depth / (2 * ONE_PLY)) * ONE_PLY; |
||
96 | pmbaty | 901 | ss->excludedMove = move; |
902 | ss->skipEarlyPruning = true; |
||
154 | pmbaty | 903 | value = search<NonPV>(pos, ss, rBeta - 1, rBeta, d, cutNode); |
96 | pmbaty | 904 | ss->skipEarlyPruning = false; |
905 | ss->excludedMove = MOVE_NONE; |
||
906 | |||
907 | if (value < rBeta) |
||
908 | extension = ONE_PLY; |
||
909 | } |
||
910 | |||
911 | // Update the current move (this must be done after singular extension search) |
||
912 | newDepth = depth - ONE_PLY + extension; |
||
913 | |||
914 | // Step 13. Pruning at shallow depth |
||
154 | pmbaty | 915 | if ( !rootNode |
916 | && bestValue > VALUE_MATED_IN_MAX_PLY) |
||
96 | pmbaty | 917 | { |
154 | pmbaty | 918 | if ( !captureOrPromotion |
919 | && !givesCheck |
||
920 | && !pos.advanced_pawn_push(move)) |
||
921 | { |
||
922 | // Move count based pruning |
||
923 | if (moveCountPruning) |
||
924 | continue; |
||
96 | pmbaty | 925 | |
154 | pmbaty | 926 | // Reduced depth of the next LMR search |
927 | int lmrDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO) / ONE_PLY; |
||
96 | pmbaty | 928 | |
154 | pmbaty | 929 | // Countermoves based pruning |
930 | if ( lmrDepth < 3 |
||
931 | && (!cmh || (*cmh )[moved_piece][to_sq(move)] < VALUE_ZERO) |
||
932 | && (!fmh || (*fmh )[moved_piece][to_sq(move)] < VALUE_ZERO) |
||
933 | && (!fmh2 || (*fmh2)[moved_piece][to_sq(move)] < VALUE_ZERO || (cmh && fmh))) |
||
934 | continue; |
||
96 | pmbaty | 935 | |
154 | pmbaty | 936 | // Futility pruning: parent node |
937 | if ( lmrDepth < 7 |
||
938 | && !inCheck |
||
939 | && ss->staticEval + 256 + 200 * lmrDepth <= alpha) |
||
940 | continue; |
||
96 | pmbaty | 941 | |
154 | pmbaty | 942 | // Prune moves with negative SEE |
943 | if ( lmrDepth < 8 |
||
944 | && !pos.see_ge(move, Value(-35 * lmrDepth * lmrDepth))) |
||
96 | pmbaty | 945 | continue; |
946 | } |
||
154 | pmbaty | 947 | else if ( depth < 7 * ONE_PLY |
948 | && !extension |
||
949 | && !pos.see_ge(move, Value(-35 * depth / ONE_PLY * depth / ONE_PLY))) |
||
950 | continue; |
||
96 | pmbaty | 951 | } |
952 | |||
953 | // Speculative prefetch as early as possible |
||
954 | prefetch(TT.first_entry(pos.key_after(move))); |
||
955 | |||
956 | // Check for legality just before making the move |
||
154 | pmbaty | 957 | if (!rootNode && !pos.legal(move)) |
96 | pmbaty | 958 | { |
959 | ss->moveCount = --moveCount; |
||
960 | continue; |
||
961 | } |
||
962 | |||
963 | ss->currentMove = move; |
||
154 | pmbaty | 964 | ss->counterMoves = &thisThread->counterMoveHistory[moved_piece][to_sq(move)]; |
96 | pmbaty | 965 | |
966 | // Step 14. Make the move |
||
967 | pos.do_move(move, st, givesCheck); |
||
968 | |||
969 | // Step 15. Reduced depth search (LMR). If the move fails high it will be |
||
970 | // re-searched at full depth. |
||
971 | if ( depth >= 3 * ONE_PLY |
||
972 | && moveCount > 1 |
||
154 | pmbaty | 973 | && (!captureOrPromotion || moveCountPruning)) |
96 | pmbaty | 974 | { |
975 | Depth r = reduction<PvNode>(improving, depth, moveCount); |
||
976 | |||
154 | pmbaty | 977 | if (captureOrPromotion) |
978 | r -= r ? ONE_PLY : DEPTH_ZERO; |
||
979 | else |
||
980 | { |
||
981 | // Increase reduction for cut nodes |
||
982 | if (cutNode) |
||
983 | r += 2 * ONE_PLY; |
||
96 | pmbaty | 984 | |
154 | pmbaty | 985 | // Decrease reduction for moves that escape a capture. Filter out |
986 | // castling moves, because they are coded as "king captures rook" and |
||
987 | // hence break make_move(). Also use see() instead of see_sign(), |
||
988 | // because the destination square is empty. |
||
989 | else if ( type_of(move) == NORMAL |
||
990 | && type_of(pos.piece_on(to_sq(move))) != PAWN |
||
991 | && !pos.see_ge(make_move(to_sq(move), from_sq(move)), VALUE_ZERO)) |
||
992 | r -= 2 * ONE_PLY; |
||
96 | pmbaty | 993 | |
154 | pmbaty | 994 | ss->history = thisThread->history[moved_piece][to_sq(move)] |
995 | + (cmh ? (*cmh )[moved_piece][to_sq(move)] : VALUE_ZERO) |
||
996 | + (fmh ? (*fmh )[moved_piece][to_sq(move)] : VALUE_ZERO) |
||
997 | + (fmh2 ? (*fmh2)[moved_piece][to_sq(move)] : VALUE_ZERO) |
||
998 | + thisThread->fromTo.get(~pos.side_to_move(), move) |
||
999 | - 8000; // Correction factor |
||
96 | pmbaty | 1000 | |
154 | pmbaty | 1001 | // Decrease/increase reduction by comparing opponent's stat score |
1002 | if (ss->history > VALUE_ZERO && (ss-1)->history < VALUE_ZERO) |
||
1003 | r -= ONE_PLY; |
||
1004 | |||
1005 | else if (ss->history < VALUE_ZERO && (ss-1)->history > VALUE_ZERO) |
||
1006 | r += ONE_PLY; |
||
1007 | |||
1008 | // Decrease/increase reduction for moves with a good/bad history |
||
1009 | r = std::max(DEPTH_ZERO, (r / ONE_PLY - ss->history / 20000) * ONE_PLY); |
||
1010 | } |
||
1011 | |||
96 | pmbaty | 1012 | Depth d = std::max(newDepth - r, ONE_PLY); |
1013 | |||
1014 | value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true); |
||
1015 | |||
154 | pmbaty | 1016 | doFullDepthSearch = (value > alpha && d != newDepth); |
96 | pmbaty | 1017 | } |
1018 | else |
||
1019 | doFullDepthSearch = !PvNode || moveCount > 1; |
||
1020 | |||
1021 | // Step 16. Full depth search when LMR is skipped or fails high |
||
1022 | if (doFullDepthSearch) |
||
1023 | value = newDepth < ONE_PLY ? |
||
1024 | givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) |
||
1025 | : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) |
||
1026 | : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); |
||
1027 | |||
1028 | // For PV nodes only, do a full PV search on the first move or after a fail |
||
1029 | // high (in the latter case search only if value < beta), otherwise let the |
||
1030 | // parent node fail low with value <= alpha and try another move. |
||
1031 | if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) |
||
1032 | { |
||
1033 | (ss+1)->pv = pv; |
||
1034 | (ss+1)->pv[0] = MOVE_NONE; |
||
1035 | |||
1036 | value = newDepth < ONE_PLY ? |
||
1037 | givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO) |
||
1038 | : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO) |
||
1039 | : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false); |
||
1040 | } |
||
1041 | |||
1042 | // Step 17. Undo move |
||
1043 | pos.undo_move(move); |
||
1044 | |||
1045 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
||
1046 | |||
1047 | // Step 18. Check for a new best move |
||
1048 | // Finished searching the move. If a stop occurred, the return value of |
||
1049 | // the search cannot be trusted, and we return immediately without |
||
1050 | // updating best move, PV and TT. |
||
1051 | if (Signals.stop.load(std::memory_order_relaxed)) |
||
1052 | return VALUE_ZERO; |
||
1053 | |||
1054 | if (rootNode) |
||
1055 | { |
||
1056 | RootMove& rm = *std::find(thisThread->rootMoves.begin(), |
||
1057 | thisThread->rootMoves.end(), move); |
||
1058 | |||
1059 | // PV move or new best move ? |
||
1060 | if (moveCount == 1 || value > alpha) |
||
1061 | { |
||
1062 | rm.score = value; |
||
1063 | rm.pv.resize(1); |
||
1064 | |||
1065 | assert((ss+1)->pv); |
||
1066 | |||
1067 | for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) |
||
1068 | rm.pv.push_back(*m); |
||
1069 | |||
1070 | // We record how often the best move has been changed in each |
||
1071 | // iteration. This information is used for time management: When |
||
1072 | // the best move changes frequently, we allocate some more time. |
||
1073 | if (moveCount > 1 && thisThread == Threads.main()) |
||
1074 | ++static_cast<MainThread*>(thisThread)->bestMoveChanges; |
||
1075 | } |
||
1076 | else |
||
1077 | // All other moves but the PV are set to the lowest value: this is |
||
1078 | // not a problem when sorting because the sort is stable and the |
||
1079 | // move position in the list is preserved - just the PV is pushed up. |
||
1080 | rm.score = -VALUE_INFINITE; |
||
1081 | } |
||
1082 | |||
1083 | if (value > bestValue) |
||
1084 | { |
||
1085 | bestValue = value; |
||
1086 | |||
1087 | if (value > alpha) |
||
1088 | { |
||
1089 | // If there is an easy move for this position, clear it if unstable |
||
1090 | if ( PvNode |
||
1091 | && thisThread == Threads.main() |
||
1092 | && EasyMove.get(pos.key()) |
||
1093 | && (move != EasyMove.get(pos.key()) || moveCount > 1)) |
||
1094 | EasyMove.clear(); |
||
1095 | |||
1096 | bestMove = move; |
||
1097 | |||
1098 | if (PvNode && !rootNode) // Update pv even in fail-high case |
||
1099 | update_pv(ss->pv, move, (ss+1)->pv); |
||
1100 | |||
1101 | if (PvNode && value < beta) // Update alpha! Always alpha < beta |
||
1102 | alpha = value; |
||
1103 | else |
||
1104 | { |
||
1105 | assert(value >= beta); // Fail high |
||
1106 | break; |
||
1107 | } |
||
1108 | } |
||
1109 | } |
||
1110 | |||
1111 | if (!captureOrPromotion && move != bestMove && quietCount < 64) |
||
1112 | quietsSearched[quietCount++] = move; |
||
1113 | } |
||
1114 | |||
1115 | // The following condition would detect a stop only after move loop has been |
||
1116 | // completed. But in this case bestValue is valid because we have fully |
||
1117 | // searched our subtree, and we can anyhow save the result in TT. |
||
1118 | /* |
||
1119 | if (Signals.stop) |
||
1120 | return VALUE_DRAW; |
||
1121 | */ |
||
1122 | |||
1123 | // Step 20. Check for mate and stalemate |
||
1124 | // All legal moves have been searched and if there are no legal moves, it |
||
1125 | // must be a mate or a stalemate. If we are in a singular extension search then |
||
1126 | // return a fail low score. |
||
154 | pmbaty | 1127 | |
1128 | assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size()); |
||
1129 | |||
96 | pmbaty | 1130 | if (!moveCount) |
1131 | bestValue = excludedMove ? alpha |
||
1132 | : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; |
||
154 | pmbaty | 1133 | else if (bestMove) |
1134 | { |
||
1135 | int d = depth / ONE_PLY; |
||
96 | pmbaty | 1136 | |
154 | pmbaty | 1137 | // Quiet best move: update killers, history and countermoves |
1138 | if (!pos.capture_or_promotion(bestMove)) |
||
1139 | { |
||
1140 | Value bonus = Value(d * d + 2 * d - 2); |
||
1141 | update_stats(pos, ss, bestMove, quietsSearched, quietCount, bonus); |
||
1142 | } |
||
96 | pmbaty | 1143 | |
154 | pmbaty | 1144 | // Extra penalty for a quiet TT move in previous ply when it gets refuted |
1145 | if ((ss-1)->moveCount == 1 && !pos.captured_piece()) |
||
1146 | { |
||
1147 | Value penalty = Value(d * d + 4 * d + 1); |
||
1148 | Square prevSq = to_sq((ss-1)->currentMove); |
||
1149 | update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -penalty); |
||
1150 | } |
||
1151 | } |
||
96 | pmbaty | 1152 | // Bonus for prior countermove that caused the fail low |
1153 | else if ( depth >= 3 * ONE_PLY |
||
154 | pmbaty | 1154 | && !pos.captured_piece() |
1155 | && is_ok((ss-1)->currentMove)) |
||
96 | pmbaty | 1156 | { |
154 | pmbaty | 1157 | int d = depth / ONE_PLY; |
1158 | Value bonus = Value(d * d + 2 * d - 2); |
||
1159 | Square prevSq = to_sq((ss-1)->currentMove); |
||
1160 | update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, bonus); |
||
96 | pmbaty | 1161 | } |
1162 | |||
1163 | tte->save(posKey, value_to_tt(bestValue, ss->ply), |
||
1164 | bestValue >= beta ? BOUND_LOWER : |
||
1165 | PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, |
||
1166 | depth, bestMove, ss->staticEval, TT.generation()); |
||
1167 | |||
1168 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
||
1169 | |||
1170 | return bestValue; |
||
1171 | } |
||
1172 | |||
1173 | |||
1174 | // qsearch() is the quiescence search function, which is called by the main |
||
1175 | // search function when the remaining depth is zero (or, to be more precise, |
||
1176 | // less than ONE_PLY). |
||
1177 | |||
1178 | template <NodeType NT, bool InCheck> |
||
1179 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { |
||
1180 | |||
1181 | const bool PvNode = NT == PV; |
||
1182 | |||
1183 | assert(InCheck == !!pos.checkers()); |
||
1184 | assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); |
||
1185 | assert(PvNode || (alpha == beta - 1)); |
||
1186 | assert(depth <= DEPTH_ZERO); |
||
154 | pmbaty | 1187 | assert(depth / ONE_PLY * ONE_PLY == depth); |
96 | pmbaty | 1188 | |
1189 | Move pv[MAX_PLY+1]; |
||
1190 | StateInfo st; |
||
1191 | TTEntry* tte; |
||
1192 | Key posKey; |
||
1193 | Move ttMove, move, bestMove; |
||
1194 | Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; |
||
1195 | bool ttHit, givesCheck, evasionPrunable; |
||
1196 | Depth ttDepth; |
||
1197 | |||
1198 | if (PvNode) |
||
1199 | { |
||
1200 | oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves |
||
1201 | (ss+1)->pv = pv; |
||
1202 | ss->pv[0] = MOVE_NONE; |
||
1203 | } |
||
1204 | |||
1205 | ss->currentMove = bestMove = MOVE_NONE; |
||
1206 | ss->ply = (ss-1)->ply + 1; |
||
1207 | |||
1208 | // Check for an instant draw or if the maximum ply has been reached |
||
1209 | if (pos.is_draw() || ss->ply >= MAX_PLY) |
||
1210 | return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos) |
||
1211 | : DrawValue[pos.side_to_move()]; |
||
1212 | |||
1213 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
||
1214 | |||
1215 | // Decide whether or not to include checks: this fixes also the type of |
||
1216 | // TT entry depth that we are going to use. Note that in qsearch we use |
||
1217 | // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. |
||
1218 | ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS |
||
1219 | : DEPTH_QS_NO_CHECKS; |
||
1220 | |||
1221 | // Transposition table lookup |
||
1222 | posKey = pos.key(); |
||
1223 | tte = TT.probe(posKey, ttHit); |
||
1224 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
||
1225 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
||
1226 | |||
1227 | if ( !PvNode |
||
1228 | && ttHit |
||
1229 | && tte->depth() >= ttDepth |
||
1230 | && ttValue != VALUE_NONE // Only in case of TT access race |
||
1231 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
||
1232 | : (tte->bound() & BOUND_UPPER))) |
||
1233 | return ttValue; |
||
1234 | |||
1235 | // Evaluate the position statically |
||
1236 | if (InCheck) |
||
1237 | { |
||
1238 | ss->staticEval = VALUE_NONE; |
||
1239 | bestValue = futilityBase = -VALUE_INFINITE; |
||
1240 | } |
||
1241 | else |
||
1242 | { |
||
1243 | if (ttHit) |
||
1244 | { |
||
1245 | // Never assume anything on values stored in TT |
||
1246 | if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) |
||
1247 | ss->staticEval = bestValue = evaluate(pos); |
||
1248 | |||
1249 | // Can ttValue be used as a better position evaluation? |
||
1250 | if (ttValue != VALUE_NONE) |
||
1251 | if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)) |
||
1252 | bestValue = ttValue; |
||
1253 | } |
||
1254 | else |
||
1255 | ss->staticEval = bestValue = |
||
1256 | (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) |
||
1257 | : -(ss-1)->staticEval + 2 * Eval::Tempo; |
||
1258 | |||
1259 | // Stand pat. Return immediately if static value is at least beta |
||
1260 | if (bestValue >= beta) |
||
1261 | { |
||
1262 | if (!ttHit) |
||
1263 | tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, |
||
1264 | DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation()); |
||
1265 | |||
1266 | return bestValue; |
||
1267 | } |
||
1268 | |||
1269 | if (PvNode && bestValue > alpha) |
||
1270 | alpha = bestValue; |
||
1271 | |||
1272 | futilityBase = bestValue + 128; |
||
1273 | } |
||
1274 | |||
1275 | // Initialize a MovePicker object for the current position, and prepare |
||
1276 | // to search the moves. Because the depth is <= 0 here, only captures, |
||
1277 | // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will |
||
1278 | // be generated. |
||
154 | pmbaty | 1279 | MovePicker mp(pos, ttMove, depth, to_sq((ss-1)->currentMove)); |
96 | pmbaty | 1280 | |
1281 | // Loop through the moves until no moves remain or a beta cutoff occurs |
||
1282 | while ((move = mp.next_move()) != MOVE_NONE) |
||
1283 | { |
||
1284 | assert(is_ok(move)); |
||
1285 | |||
154 | pmbaty | 1286 | givesCheck = type_of(move) == NORMAL && !pos.discovered_check_candidates() |
1287 | ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move) |
||
1288 | : pos.gives_check(move); |
||
96 | pmbaty | 1289 | |
1290 | // Futility pruning |
||
1291 | if ( !InCheck |
||
1292 | && !givesCheck |
||
1293 | && futilityBase > -VALUE_KNOWN_WIN |
||
1294 | && !pos.advanced_pawn_push(move)) |
||
1295 | { |
||
1296 | assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push |
||
1297 | |||
1298 | futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; |
||
1299 | |||
1300 | if (futilityValue <= alpha) |
||
1301 | { |
||
1302 | bestValue = std::max(bestValue, futilityValue); |
||
1303 | continue; |
||
1304 | } |
||
1305 | |||
154 | pmbaty | 1306 | if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) |
96 | pmbaty | 1307 | { |
1308 | bestValue = std::max(bestValue, futilityBase); |
||
1309 | continue; |
||
1310 | } |
||
1311 | } |
||
1312 | |||
1313 | // Detect non-capture evasions that are candidates to be pruned |
||
1314 | evasionPrunable = InCheck |
||
1315 | && bestValue > VALUE_MATED_IN_MAX_PLY |
||
1316 | && !pos.capture(move); |
||
1317 | |||
1318 | // Don't search moves with negative SEE values |
||
1319 | if ( (!InCheck || evasionPrunable) |
||
1320 | && type_of(move) != PROMOTION |
||
154 | pmbaty | 1321 | && !pos.see_ge(move, VALUE_ZERO)) |
96 | pmbaty | 1322 | continue; |
1323 | |||
1324 | // Speculative prefetch as early as possible |
||
1325 | prefetch(TT.first_entry(pos.key_after(move))); |
||
1326 | |||
1327 | // Check for legality just before making the move |
||
154 | pmbaty | 1328 | if (!pos.legal(move)) |
96 | pmbaty | 1329 | continue; |
1330 | |||
1331 | ss->currentMove = move; |
||
1332 | |||
1333 | // Make and search the move |
||
1334 | pos.do_move(move, st, givesCheck); |
||
1335 | value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY) |
||
1336 | : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY); |
||
1337 | pos.undo_move(move); |
||
1338 | |||
1339 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
||
1340 | |||
1341 | // Check for a new best move |
||
1342 | if (value > bestValue) |
||
1343 | { |
||
1344 | bestValue = value; |
||
1345 | |||
1346 | if (value > alpha) |
||
1347 | { |
||
1348 | if (PvNode) // Update pv even in fail-high case |
||
1349 | update_pv(ss->pv, move, (ss+1)->pv); |
||
1350 | |||
1351 | if (PvNode && value < beta) // Update alpha here! |
||
1352 | { |
||
1353 | alpha = value; |
||
1354 | bestMove = move; |
||
1355 | } |
||
1356 | else // Fail high |
||
1357 | { |
||
1358 | tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER, |
||
1359 | ttDepth, move, ss->staticEval, TT.generation()); |
||
1360 | |||
1361 | return value; |
||
1362 | } |
||
1363 | } |
||
1364 | } |
||
1365 | } |
||
1366 | |||
1367 | // All legal moves have been searched. A special case: If we're in check |
||
1368 | // and no legal moves were found, it is checkmate. |
||
1369 | if (InCheck && bestValue == -VALUE_INFINITE) |
||
1370 | return mated_in(ss->ply); // Plies to mate from the root |
||
1371 | |||
1372 | tte->save(posKey, value_to_tt(bestValue, ss->ply), |
||
1373 | PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, |
||
1374 | ttDepth, bestMove, ss->staticEval, TT.generation()); |
||
1375 | |||
1376 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
||
1377 | |||
1378 | return bestValue; |
||
1379 | } |
||
1380 | |||
1381 | |||
1382 | // value_to_tt() adjusts a mate score from "plies to mate from the root" to |
||
1383 | // "plies to mate from the current position". Non-mate scores are unchanged. |
||
1384 | // The function is called before storing a value in the transposition table. |
||
1385 | |||
1386 | Value value_to_tt(Value v, int ply) { |
||
1387 | |||
1388 | assert(v != VALUE_NONE); |
||
1389 | |||
1390 | return v >= VALUE_MATE_IN_MAX_PLY ? v + ply |
||
1391 | : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; |
||
1392 | } |
||
1393 | |||
1394 | |||
1395 | // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score |
||
1396 | // from the transposition table (which refers to the plies to mate/be mated |
||
1397 | // from current position) to "plies to mate/be mated from the root". |
||
1398 | |||
1399 | Value value_from_tt(Value v, int ply) { |
||
1400 | |||
1401 | return v == VALUE_NONE ? VALUE_NONE |
||
1402 | : v >= VALUE_MATE_IN_MAX_PLY ? v - ply |
||
1403 | : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v; |
||
1404 | } |
||
1405 | |||
1406 | |||
1407 | // update_pv() adds current move and appends child pv[] |
||
1408 | |||
1409 | void update_pv(Move* pv, Move move, Move* childPv) { |
||
1410 | |||
1411 | for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) |
||
1412 | *pv++ = *childPv++; |
||
1413 | *pv = MOVE_NONE; |
||
1414 | } |
||
1415 | |||
1416 | |||
154 | pmbaty | 1417 | // update_cm_stats() updates countermove and follow-up move history |
96 | pmbaty | 1418 | |
154 | pmbaty | 1419 | void update_cm_stats(Stack* ss, Piece pc, Square s, Value bonus) { |
1420 | |||
1421 | CounterMoveStats* cmh = (ss-1)->counterMoves; |
||
1422 | CounterMoveStats* fmh1 = (ss-2)->counterMoves; |
||
1423 | CounterMoveStats* fmh2 = (ss-4)->counterMoves; |
||
1424 | |||
1425 | if (cmh) |
||
1426 | cmh->update(pc, s, bonus); |
||
1427 | |||
1428 | if (fmh1) |
||
1429 | fmh1->update(pc, s, bonus); |
||
1430 | |||
1431 | if (fmh2) |
||
1432 | fmh2->update(pc, s, bonus); |
||
1433 | } |
||
1434 | |||
1435 | |||
1436 | // update_stats() updates killers, history, countermove and countermove plus |
||
1437 | // follow-up move history when a new quiet best move is found. |
||
1438 | |||
96 | pmbaty | 1439 | void update_stats(const Position& pos, Stack* ss, Move move, |
154 | pmbaty | 1440 | Move* quiets, int quietsCnt, Value bonus) { |
96 | pmbaty | 1441 | |
1442 | if (ss->killers[0] != move) |
||
1443 | { |
||
1444 | ss->killers[1] = ss->killers[0]; |
||
1445 | ss->killers[0] = move; |
||
1446 | } |
||
1447 | |||
154 | pmbaty | 1448 | Color c = pos.side_to_move(); |
96 | pmbaty | 1449 | Thread* thisThread = pos.this_thread(); |
154 | pmbaty | 1450 | thisThread->fromTo.update(c, move, bonus); |
96 | pmbaty | 1451 | thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus); |
154 | pmbaty | 1452 | update_cm_stats(ss, pos.moved_piece(move), to_sq(move), bonus); |
96 | pmbaty | 1453 | |
154 | pmbaty | 1454 | if ((ss-1)->counterMoves) |
96 | pmbaty | 1455 | { |
154 | pmbaty | 1456 | Square prevSq = to_sq((ss-1)->currentMove); |
96 | pmbaty | 1457 | thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move); |
1458 | } |
||
1459 | |||
1460 | // Decrease all the other played quiet moves |
||
1461 | for (int i = 0; i < quietsCnt; ++i) |
||
1462 | { |
||
154 | pmbaty | 1463 | thisThread->fromTo.update(c, quiets[i], -bonus); |
96 | pmbaty | 1464 | thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); |
154 | pmbaty | 1465 | update_cm_stats(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); |
96 | pmbaty | 1466 | } |
1467 | } |
||
1468 | |||
1469 | |||
1470 | // When playing with strength handicap, choose best move among a set of RootMoves |
||
1471 | // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. |
||
1472 | |||
1473 | Move Skill::pick_best(size_t multiPV) { |
||
1474 | |||
154 | pmbaty | 1475 | const RootMoves& rootMoves = Threads.main()->rootMoves; |
96 | pmbaty | 1476 | static PRNG rng(now()); // PRNG sequence should be non-deterministic |
1477 | |||
1478 | // RootMoves are already sorted by score in descending order |
||
1479 | Value topScore = rootMoves[0].score; |
||
1480 | int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); |
||
1481 | int weakness = 120 - 2 * level; |
||
1482 | int maxScore = -VALUE_INFINITE; |
||
1483 | |||
1484 | // Choose best move. For each move score we add two terms, both dependent on |
||
1485 | // weakness. One is deterministic and bigger for weaker levels, and one is |
||
1486 | // random. Then we choose the move with the resulting highest score. |
||
1487 | for (size_t i = 0; i < multiPV; ++i) |
||
1488 | { |
||
1489 | // This is our magic formula |
||
1490 | int push = ( weakness * int(topScore - rootMoves[i].score) |
||
1491 | + delta * (rng.rand<unsigned>() % weakness)) / 128; |
||
1492 | |||
1493 | if (rootMoves[i].score + push > maxScore) |
||
1494 | { |
||
1495 | maxScore = rootMoves[i].score + push; |
||
1496 | best = rootMoves[i].pv[0]; |
||
1497 | } |
||
1498 | } |
||
1499 | |||
1500 | return best; |
||
1501 | } |
||
1502 | |||
1503 | |||
1504 | // check_time() is used to print debug info and, more importantly, to detect |
||
1505 | // when we are out of available time and thus stop the search. |
||
1506 | |||
1507 | void check_time() { |
||
1508 | |||
1509 | static TimePoint lastInfoTime = now(); |
||
1510 | |||
1511 | int elapsed = Time.elapsed(); |
||
1512 | TimePoint tick = Limits.startTime + elapsed; |
||
1513 | |||
1514 | if (tick - lastInfoTime >= 1000) |
||
1515 | { |
||
1516 | lastInfoTime = tick; |
||
1517 | dbg_print(); |
||
1518 | } |
||
1519 | |||
1520 | // An engine may not stop pondering until told so by the GUI |
||
1521 | if (Limits.ponder) |
||
1522 | return; |
||
1523 | |||
1524 | if ( (Limits.use_time_management() && elapsed > Time.maximum() - 10) |
||
1525 | || (Limits.movetime && elapsed >= Limits.movetime) |
||
154 | pmbaty | 1526 | || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) |
96 | pmbaty | 1527 | Signals.stop = true; |
1528 | } |
||
1529 | |||
1530 | } // namespace |
||
1531 | |||
1532 | |||
1533 | /// UCI::pv() formats PV information according to the UCI protocol. UCI requires |
||
1534 | /// that all (if any) unsearched PV lines are sent using a previous search score. |
||
1535 | |||
1536 | string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { |
||
1537 | |||
1538 | std::stringstream ss; |
||
1539 | int elapsed = Time.elapsed() + 1; |
||
154 | pmbaty | 1540 | const RootMoves& rootMoves = pos.this_thread()->rootMoves; |
96 | pmbaty | 1541 | size_t PVIdx = pos.this_thread()->PVIdx; |
1542 | size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size()); |
||
154 | pmbaty | 1543 | uint64_t nodesSearched = Threads.nodes_searched(); |
1544 | uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); |
||
96 | pmbaty | 1545 | |
1546 | for (size_t i = 0; i < multiPV; ++i) |
||
1547 | { |
||
1548 | bool updated = (i <= PVIdx); |
||
1549 | |||
1550 | if (depth == ONE_PLY && !updated) |
||
1551 | continue; |
||
1552 | |||
1553 | Depth d = updated ? depth : depth - ONE_PLY; |
||
1554 | Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore; |
||
1555 | |||
1556 | bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY; |
||
1557 | v = tb ? TB::Score : v; |
||
1558 | |||
1559 | if (ss.rdbuf()->in_avail()) // Not at first line |
||
1560 | ss << "\n"; |
||
1561 | |||
1562 | ss << "info" |
||
1563 | << " depth " << d / ONE_PLY |
||
1564 | << " seldepth " << pos.this_thread()->maxPly |
||
1565 | << " multipv " << i + 1 |
||
1566 | << " score " << UCI::value(v); |
||
1567 | |||
1568 | if (!tb && i == PVIdx) |
||
1569 | ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : ""); |
||
1570 | |||
154 | pmbaty | 1571 | ss << " nodes " << nodesSearched |
1572 | << " nps " << nodesSearched * 1000 / elapsed; |
||
96 | pmbaty | 1573 | |
1574 | if (elapsed > 1000) // Earlier makes little sense |
||
1575 | ss << " hashfull " << TT.hashfull(); |
||
1576 | |||
154 | pmbaty | 1577 | ss << " tbhits " << tbHits |
96 | pmbaty | 1578 | << " time " << elapsed |
1579 | << " pv"; |
||
1580 | |||
1581 | for (Move m : rootMoves[i].pv) |
||
1582 | ss << " " << UCI::move(m, pos.is_chess960()); |
||
1583 | } |
||
1584 | |||
1585 | return ss.str(); |
||
1586 | } |
||
1587 | |||
1588 | |||
1589 | /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move |
||
1590 | /// before exiting the search, for instance, in case we stop the search during a |
||
1591 | /// fail high at root. We try hard to have a ponder move to return to the GUI, |
||
1592 | /// otherwise in case of 'ponder on' we have nothing to think on. |
||
1593 | |||
154 | pmbaty | 1594 | bool RootMove::extract_ponder_from_tt(Position& pos) { |
1595 | |||
96 | pmbaty | 1596 | StateInfo st; |
1597 | bool ttHit; |
||
1598 | |||
1599 | assert(pv.size() == 1); |
||
1600 | |||
154 | pmbaty | 1601 | if (!pv[0]) |
1602 | return false; |
||
1603 | |||
1604 | pos.do_move(pv[0], st, pos.gives_check(pv[0])); |
||
96 | pmbaty | 1605 | TTEntry* tte = TT.probe(pos.key(), ttHit); |
1606 | |||
1607 | if (ttHit) |
||
1608 | { |
||
1609 | Move m = tte->move(); // Local copy to be SMP safe |
||
1610 | if (MoveList<LEGAL>(pos).contains(m)) |
||
154 | pmbaty | 1611 | pv.push_back(m); |
96 | pmbaty | 1612 | } |
1613 | |||
154 | pmbaty | 1614 | pos.undo_move(pv[0]); |
1615 | return pv.size() > 1; |
||
96 | pmbaty | 1616 | } |
154 | pmbaty | 1617 | |
1618 | void Tablebases::filter_root_moves(Position& pos, Search::RootMoves& rootMoves) { |
||
1619 | |||
1620 | RootInTB = false; |
||
1621 | UseRule50 = Options["Syzygy50MoveRule"]; |
||
1622 | ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY; |
||
1623 | Cardinality = Options["SyzygyProbeLimit"]; |
||
1624 | |||
1625 | // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality |
||
1626 | if (Cardinality > MaxCardinality) |
||
1627 | { |
||
1628 | Cardinality = MaxCardinality; |
||
1629 | ProbeDepth = DEPTH_ZERO; |
||
1630 | } |
||
1631 | |||
1632 | if (Cardinality < popcount(pos.pieces()) || pos.can_castle(ANY_CASTLING)) |
||
1633 | return; |
||
1634 | |||
1635 | // If the current root position is in the tablebases, then RootMoves |
||
1636 | // contains only moves that preserve the draw or the win. |
||
1637 | RootInTB = root_probe(pos, rootMoves, TB::Score); |
||
1638 | |||
1639 | if (RootInTB) |
||
1640 | Cardinality = 0; // Do not probe tablebases during the search |
||
1641 | |||
1642 | else // If DTZ tables are missing, use WDL tables as a fallback |
||
1643 | { |
||
1644 | // Filter out moves that do not preserve the draw or the win. |
||
1645 | RootInTB = root_probe_wdl(pos, rootMoves, TB::Score); |
||
1646 | |||
1647 | // Only probe during search if winning |
||
1648 | if (RootInTB && TB::Score <= VALUE_DRAW) |
||
1649 | Cardinality = 0; |
||
1650 | } |
||
1651 | |||
1652 | if (RootInTB && !UseRule50) |
||
1653 | TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1 |
||
1654 | : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1 |
||
1655 | : VALUE_DRAW; |
||
1656 | } |