Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 96 | pmbaty | 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
| 5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
| 6 | |||
| 7 | Stockfish is free software: you can redistribute it and/or modify |
||
| 8 | it under the terms of the GNU General Public License as published by |
||
| 9 | the Free Software Foundation, either version 3 of the License, or |
||
| 10 | (at your option) any later version. |
||
| 11 | |||
| 12 | Stockfish is distributed in the hope that it will be useful, |
||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 15 | GNU General Public License for more details. |
||
| 16 | |||
| 17 | You should have received a copy of the GNU General Public License |
||
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
| 19 | */ |
||
| 20 | |||
| 21 | #include <algorithm> |
||
| 22 | #include <cassert> |
||
| 23 | #include <cstring> // For std::memset, std::memcmp |
||
| 24 | #include <iomanip> |
||
| 25 | #include <sstream> |
||
| 26 | |||
| 27 | #include "bitcount.h" |
||
| 28 | #include "misc.h" |
||
| 29 | #include "movegen.h" |
||
| 30 | #include "position.h" |
||
| 31 | #include "thread.h" |
||
| 32 | #include "tt.h" |
||
| 33 | #include "uci.h" |
||
| 34 | |||
| 35 | using std::string; |
||
| 36 | |||
| 37 | Value PieceValue[PHASE_NB][PIECE_NB] = { |
||
| 38 | { VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg }, |
||
| 39 | { VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } }; |
||
| 40 | |||
| 41 | namespace Zobrist { |
||
| 42 | |||
| 43 | Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB]; |
||
| 44 | Key enpassant[FILE_NB]; |
||
| 45 | Key castling[CASTLING_RIGHT_NB]; |
||
| 46 | Key side; |
||
| 47 | Key exclusion; |
||
| 48 | } |
||
| 49 | |||
| 50 | Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion; } |
||
| 51 | |||
| 52 | namespace { |
||
| 53 | |||
| 54 | const string PieceToChar(" PNBRQK pnbrqk"); |
||
| 55 | |||
| 56 | // min_attacker() is a helper function used by see() to locate the least |
||
| 57 | // valuable attacker for the side to move, remove the attacker we just found |
||
| 58 | // from the bitboards and scan for new X-ray attacks behind it. |
||
| 59 | |||
| 60 | template<int Pt> |
||
| 61 | PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers, |
||
| 62 | Bitboard& occupied, Bitboard& attackers) { |
||
| 63 | |||
| 64 | Bitboard b = stmAttackers & bb[Pt]; |
||
| 65 | if (!b) |
||
| 66 | return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers); |
||
| 67 | |||
| 68 | occupied ^= b & ~(b - 1); |
||
| 69 | |||
| 70 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) |
||
| 71 | attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]); |
||
| 72 | |||
| 73 | if (Pt == ROOK || Pt == QUEEN) |
||
| 74 | attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]); |
||
| 75 | |||
| 76 | attackers &= occupied; // After X-ray that may add already processed pieces |
||
| 77 | return (PieceType)Pt; |
||
| 78 | } |
||
| 79 | |||
| 80 | template<> |
||
| 81 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { |
||
| 82 | return KING; // No need to update bitboards: it is the last cycle |
||
| 83 | } |
||
| 84 | |||
| 85 | } // namespace |
||
| 86 | |||
| 87 | |||
| 88 | /// CheckInfo constructor |
||
| 89 | |||
| 90 | CheckInfo::CheckInfo(const Position& pos) { |
||
| 91 | |||
| 92 | Color them = ~pos.side_to_move(); |
||
| 93 | ksq = pos.square<KING>(them); |
||
| 94 | |||
| 95 | pinned = pos.pinned_pieces(pos.side_to_move()); |
||
| 96 | dcCandidates = pos.discovered_check_candidates(); |
||
| 97 | |||
| 98 | checkSquares[PAWN] = pos.attacks_from<PAWN>(ksq, them); |
||
| 99 | checkSquares[KNIGHT] = pos.attacks_from<KNIGHT>(ksq); |
||
| 100 | checkSquares[BISHOP] = pos.attacks_from<BISHOP>(ksq); |
||
| 101 | checkSquares[ROOK] = pos.attacks_from<ROOK>(ksq); |
||
| 102 | checkSquares[QUEEN] = checkSquares[BISHOP] | checkSquares[ROOK]; |
||
| 103 | checkSquares[KING] = 0; |
||
| 104 | } |
||
| 105 | |||
| 106 | |||
| 107 | /// operator<<(Position) returns an ASCII representation of the position |
||
| 108 | |||
| 109 | std::ostream& operator<<(std::ostream& os, const Position& pos) { |
||
| 110 | |||
| 111 | os << "\n +---+---+---+---+---+---+---+---+\n"; |
||
| 112 | |||
| 113 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
| 114 | { |
||
| 115 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
| 116 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; |
||
| 117 | |||
| 118 | os << " |\n +---+---+---+---+---+---+---+---+\n"; |
||
| 119 | } |
||
| 120 | |||
| 121 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase |
||
| 122 | << std::setfill('0') << std::setw(16) << pos.key() << std::dec << "\nCheckers: "; |
||
| 123 | |||
| 124 | for (Bitboard b = pos.checkers(); b; ) |
||
| 125 | os << UCI::square(pop_lsb(&b)) << " "; |
||
| 126 | |||
| 127 | return os; |
||
| 128 | } |
||
| 129 | |||
| 130 | |||
| 131 | /// Position::init() initializes at startup the various arrays used to compute |
||
| 132 | /// hash keys. |
||
| 133 | |||
| 134 | void Position::init() { |
||
| 135 | |||
| 136 | PRNG rng(1070372); |
||
| 137 | |||
| 138 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 139 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
| 140 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
| 141 | Zobrist::psq[c][pt][s] = rng.rand<Key>(); |
||
| 142 | |||
| 143 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
| 144 | Zobrist::enpassant[f] = rng.rand<Key>(); |
||
| 145 | |||
| 146 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) |
||
| 147 | { |
||
| 148 | Zobrist::castling[cr] = 0; |
||
| 149 | Bitboard b = cr; |
||
| 150 | while (b) |
||
| 151 | { |
||
| 152 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; |
||
| 153 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); |
||
| 154 | } |
||
| 155 | } |
||
| 156 | |||
| 157 | Zobrist::side = rng.rand<Key>(); |
||
| 158 | Zobrist::exclusion = rng.rand<Key>(); |
||
| 159 | } |
||
| 160 | |||
| 161 | |||
| 162 | /// Position::operator=() creates a copy of 'pos' but detaching the state pointer |
||
| 163 | /// from the source to be self-consistent and not depending on any external data. |
||
| 164 | |||
| 165 | Position& Position::operator=(const Position& pos) { |
||
| 166 | |||
| 167 | std::memcpy(this, &pos, sizeof(Position)); |
||
| 168 | std::memcpy(&startState, st, sizeof(StateInfo)); |
||
| 169 | st = &startState; |
||
| 170 | nodes = 0; |
||
| 171 | |||
| 172 | assert(pos_is_ok()); |
||
| 173 | |||
| 174 | return *this; |
||
| 175 | } |
||
| 176 | |||
| 177 | |||
| 178 | /// Position::clear() erases the position object to a pristine state, with an |
||
| 179 | /// empty board, white to move, and no castling rights. |
||
| 180 | |||
| 181 | void Position::clear() { |
||
| 182 | |||
| 183 | std::memset(this, 0, sizeof(Position)); |
||
| 184 | startState.epSquare = SQ_NONE; |
||
| 185 | st = &startState; |
||
| 186 | |||
| 187 | for (int i = 0; i < PIECE_TYPE_NB; ++i) |
||
| 188 | for (int j = 0; j < 16; ++j) |
||
| 189 | pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE; |
||
| 190 | } |
||
| 191 | |||
| 192 | |||
| 193 | /// Position::set() initializes the position object with the given FEN string. |
||
| 194 | /// This function is not very robust - make sure that input FENs are correct, |
||
| 195 | /// this is assumed to be the responsibility of the GUI. |
||
| 196 | |||
| 197 | void Position::set(const string& fenStr, bool isChess960, Thread* th) { |
||
| 198 | /* |
||
| 199 | A FEN string defines a particular position using only the ASCII character set. |
||
| 200 | |||
| 201 | A FEN string contains six fields separated by a space. The fields are: |
||
| 202 | |||
| 203 | 1) Piece placement (from white's perspective). Each rank is described, starting |
||
| 204 | with rank 8 and ending with rank 1. Within each rank, the contents of each |
||
| 205 | square are described from file A through file H. Following the Standard |
||
| 206 | Algebraic Notation (SAN), each piece is identified by a single letter taken |
||
| 207 | from the standard English names. White pieces are designated using upper-case |
||
| 208 | letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are |
||
| 209 | noted using digits 1 through 8 (the number of blank squares), and "/" |
||
| 210 | separates ranks. |
||
| 211 | |||
| 212 | 2) Active color. "w" means white moves next, "b" means black. |
||
| 213 | |||
| 214 | 3) Castling availability. If neither side can castle, this is "-". Otherwise, |
||
| 215 | this has one or more letters: "K" (White can castle kingside), "Q" (White |
||
| 216 | can castle queenside), "k" (Black can castle kingside), and/or "q" (Black |
||
| 217 | can castle queenside). |
||
| 218 | |||
| 219 | 4) En passant target square (in algebraic notation). If there's no en passant |
||
| 220 | target square, this is "-". If a pawn has just made a 2-square move, this |
||
| 221 | is the position "behind" the pawn. This is recorded regardless of whether |
||
| 222 | there is a pawn in position to make an en passant capture. |
||
| 223 | |||
| 224 | 5) Halfmove clock. This is the number of halfmoves since the last pawn advance |
||
| 225 | or capture. This is used to determine if a draw can be claimed under the |
||
| 226 | fifty-move rule. |
||
| 227 | |||
| 228 | 6) Fullmove number. The number of the full move. It starts at 1, and is |
||
| 229 | incremented after Black's move. |
||
| 230 | */ |
||
| 231 | |||
| 232 | unsigned char col, row, token; |
||
| 233 | size_t idx; |
||
| 234 | Square sq = SQ_A8; |
||
| 235 | std::istringstream ss(fenStr); |
||
| 236 | |||
| 237 | clear(); |
||
| 238 | ss >> std::noskipws; |
||
| 239 | |||
| 240 | // 1. Piece placement |
||
| 241 | while ((ss >> token) && !isspace(token)) |
||
| 242 | { |
||
| 243 | if (isdigit(token)) |
||
| 244 | sq += Square(token - '0'); // Advance the given number of files |
||
| 245 | |||
| 246 | else if (token == '/') |
||
| 247 | sq -= Square(16); |
||
| 248 | |||
| 249 | else if ((idx = PieceToChar.find(token)) != string::npos) |
||
| 250 | { |
||
| 251 | put_piece(color_of(Piece(idx)), type_of(Piece(idx)), sq); |
||
| 252 | ++sq; |
||
| 253 | } |
||
| 254 | } |
||
| 255 | |||
| 256 | // 2. Active color |
||
| 257 | ss >> token; |
||
| 258 | sideToMove = (token == 'w' ? WHITE : BLACK); |
||
| 259 | ss >> token; |
||
| 260 | |||
| 261 | // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, |
||
| 262 | // Shredder-FEN that uses the letters of the columns on which the rooks began |
||
| 263 | // the game instead of KQkq and also X-FEN standard that, in case of Chess960, |
||
| 264 | // if an inner rook is associated with the castling right, the castling tag is |
||
| 265 | // replaced by the file letter of the involved rook, as for the Shredder-FEN. |
||
| 266 | while ((ss >> token) && !isspace(token)) |
||
| 267 | { |
||
| 268 | Square rsq; |
||
| 269 | Color c = islower(token) ? BLACK : WHITE; |
||
| 270 | Piece rook = make_piece(c, ROOK); |
||
| 271 | |||
| 272 | token = char(toupper(token)); |
||
| 273 | |||
| 274 | if (token == 'K') |
||
| 275 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} |
||
| 276 | |||
| 277 | else if (token == 'Q') |
||
| 278 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} |
||
| 279 | |||
| 280 | else if (token >= 'A' && token <= 'H') |
||
| 281 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); |
||
| 282 | |||
| 283 | else |
||
| 284 | continue; |
||
| 285 | |||
| 286 | set_castling_right(c, rsq); |
||
| 287 | } |
||
| 288 | |||
| 289 | // 4. En passant square. Ignore if no pawn capture is possible |
||
| 290 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) |
||
| 291 | && ((ss >> row) && (row == '3' || row == '6'))) |
||
| 292 | { |
||
| 293 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); |
||
| 294 | |||
| 295 | if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))) |
||
| 296 | st->epSquare = SQ_NONE; |
||
| 297 | } |
||
| 298 | |||
| 299 | // 5-6. Halfmove clock and fullmove number |
||
| 300 | ss >> std::skipws >> st->rule50 >> gamePly; |
||
| 301 | |||
| 302 | // Convert from fullmove starting from 1 to ply starting from 0, |
||
| 303 | // handle also common incorrect FEN with fullmove = 0. |
||
| 304 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); |
||
| 305 | |||
| 306 | chess960 = isChess960; |
||
| 307 | thisThread = th; |
||
| 308 | set_state(st); |
||
| 309 | |||
| 310 | assert(pos_is_ok()); |
||
| 311 | } |
||
| 312 | |||
| 313 | |||
| 314 | /// Position::set_castling_right() is a helper function used to set castling |
||
| 315 | /// rights given the corresponding color and the rook starting square. |
||
| 316 | |||
| 317 | void Position::set_castling_right(Color c, Square rfrom) { |
||
| 318 | |||
| 319 | Square kfrom = square<KING>(c); |
||
| 320 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; |
||
| 321 | CastlingRight cr = (c | cs); |
||
| 322 | |||
| 323 | st->castlingRights |= cr; |
||
| 324 | castlingRightsMask[kfrom] |= cr; |
||
| 325 | castlingRightsMask[rfrom] |= cr; |
||
| 326 | castlingRookSquare[cr] = rfrom; |
||
| 327 | |||
| 328 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); |
||
| 329 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); |
||
| 330 | |||
| 331 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) |
||
| 332 | if (s != kfrom && s != rfrom) |
||
| 333 | castlingPath[cr] |= s; |
||
| 334 | |||
| 335 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) |
||
| 336 | if (s != kfrom && s != rfrom) |
||
| 337 | castlingPath[cr] |= s; |
||
| 338 | } |
||
| 339 | |||
| 340 | |||
| 341 | /// Position::set_state() computes the hash keys of the position, and other |
||
| 342 | /// data that once computed is updated incrementally as moves are made. |
||
| 343 | /// The function is only used when a new position is set up, and to verify |
||
| 344 | /// the correctness of the StateInfo data when running in debug mode. |
||
| 345 | |||
| 346 | void Position::set_state(StateInfo* si) const { |
||
| 347 | |||
| 348 | si->key = si->pawnKey = si->materialKey = 0; |
||
| 349 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; |
||
| 350 | si->psq = SCORE_ZERO; |
||
| 351 | |||
| 352 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); |
||
| 353 | |||
| 354 | for (Bitboard b = pieces(); b; ) |
||
| 355 | { |
||
| 356 | Square s = pop_lsb(&b); |
||
| 357 | Piece pc = piece_on(s); |
||
| 358 | si->key ^= Zobrist::psq[color_of(pc)][type_of(pc)][s]; |
||
| 359 | si->psq += PSQT::psq[color_of(pc)][type_of(pc)][s]; |
||
| 360 | } |
||
| 361 | |||
| 362 | if (si->epSquare != SQ_NONE) |
||
| 363 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; |
||
| 364 | |||
| 365 | if (sideToMove == BLACK) |
||
| 366 | si->key ^= Zobrist::side; |
||
| 367 | |||
| 368 | si->key ^= Zobrist::castling[si->castlingRights]; |
||
| 369 | |||
| 370 | for (Bitboard b = pieces(PAWN); b; ) |
||
| 371 | { |
||
| 372 | Square s = pop_lsb(&b); |
||
| 373 | si->pawnKey ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s]; |
||
| 374 | } |
||
| 375 | |||
| 376 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 377 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
| 378 | for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt) |
||
| 379 | si->materialKey ^= Zobrist::psq[c][pt][cnt]; |
||
| 380 | |||
| 381 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 382 | for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt) |
||
| 383 | si->nonPawnMaterial[c] += pieceCount[c][pt] * PieceValue[MG][pt]; |
||
| 384 | } |
||
| 385 | |||
| 386 | |||
| 387 | /// Position::fen() returns a FEN representation of the position. In case of |
||
| 388 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. |
||
| 389 | |||
| 390 | const string Position::fen() const { |
||
| 391 | |||
| 392 | int emptyCnt; |
||
| 393 | std::ostringstream ss; |
||
| 394 | |||
| 395 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
| 396 | { |
||
| 397 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
| 398 | { |
||
| 399 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) |
||
| 400 | ++emptyCnt; |
||
| 401 | |||
| 402 | if (emptyCnt) |
||
| 403 | ss << emptyCnt; |
||
| 404 | |||
| 405 | if (f <= FILE_H) |
||
| 406 | ss << PieceToChar[piece_on(make_square(f, r))]; |
||
| 407 | } |
||
| 408 | |||
| 409 | if (r > RANK_1) |
||
| 410 | ss << '/'; |
||
| 411 | } |
||
| 412 | |||
| 413 | ss << (sideToMove == WHITE ? " w " : " b "); |
||
| 414 | |||
| 415 | if (can_castle(WHITE_OO)) |
||
| 416 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); |
||
| 417 | |||
| 418 | if (can_castle(WHITE_OOO)) |
||
| 419 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); |
||
| 420 | |||
| 421 | if (can_castle(BLACK_OO)) |
||
| 422 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); |
||
| 423 | |||
| 424 | if (can_castle(BLACK_OOO)) |
||
| 425 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); |
||
| 426 | |||
| 427 | if (!can_castle(WHITE) && !can_castle(BLACK)) |
||
| 428 | ss << '-'; |
||
| 429 | |||
| 430 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") |
||
| 431 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; |
||
| 432 | |||
| 433 | return ss.str(); |
||
| 434 | } |
||
| 435 | |||
| 436 | |||
| 437 | /// Position::game_phase() calculates the game phase interpolating total non-pawn |
||
| 438 | /// material between endgame and midgame limits. |
||
| 439 | |||
| 440 | Phase Position::game_phase() const { |
||
| 441 | |||
| 442 | Value npm = st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK]; |
||
| 443 | |||
| 444 | npm = std::max(EndgameLimit, std::min(npm, MidgameLimit)); |
||
| 445 | |||
| 446 | return Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); |
||
| 447 | } |
||
| 448 | |||
| 449 | |||
| 450 | /// Position::check_blockers() returns a bitboard of all the pieces with color |
||
| 451 | /// 'c' that are blocking check on the king with color 'kingColor'. A piece |
||
| 452 | /// blocks a check if removing that piece from the board would result in a |
||
| 453 | /// position where the king is in check. A check blocking piece can be either a |
||
| 454 | /// pinned or a discovered check piece, according if its color 'c' is the same |
||
| 455 | /// or the opposite of 'kingColor'. |
||
| 456 | |||
| 457 | Bitboard Position::check_blockers(Color c, Color kingColor) const { |
||
| 458 | |||
| 459 | Bitboard b, pinners, result = 0; |
||
| 460 | Square ksq = square<KING>(kingColor); |
||
| 461 | |||
| 462 | // Pinners are sliders that give check when a pinned piece is removed |
||
| 463 | pinners = ( (pieces( ROOK, QUEEN) & PseudoAttacks[ROOK ][ksq]) |
||
| 464 | | (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq])) & pieces(~kingColor); |
||
| 465 | |||
| 466 | while (pinners) |
||
| 467 | { |
||
| 468 | b = between_bb(ksq, pop_lsb(&pinners)) & pieces(); |
||
| 469 | |||
| 470 | if (!more_than_one(b)) |
||
| 471 | result |= b & pieces(c); |
||
| 472 | } |
||
| 473 | return result; |
||
| 474 | } |
||
| 475 | |||
| 476 | |||
| 477 | /// Position::attackers_to() computes a bitboard of all pieces which attack a |
||
| 478 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. |
||
| 479 | |||
| 480 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { |
||
| 481 | |||
| 482 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) |
||
| 483 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) |
||
| 484 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) |
||
| 485 | | (attacks_bb<ROOK >(s, occupied) & pieces(ROOK, QUEEN)) |
||
| 486 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) |
||
| 487 | | (attacks_from<KING>(s) & pieces(KING)); |
||
| 488 | } |
||
| 489 | |||
| 490 | |||
| 491 | /// Position::legal() tests whether a pseudo-legal move is legal |
||
| 492 | |||
| 493 | bool Position::legal(Move m, Bitboard pinned) const { |
||
| 494 | |||
| 495 | assert(is_ok(m)); |
||
| 496 | assert(pinned == pinned_pieces(sideToMove)); |
||
| 497 | |||
| 498 | Color us = sideToMove; |
||
| 499 | Square from = from_sq(m); |
||
| 500 | |||
| 501 | assert(color_of(moved_piece(m)) == us); |
||
| 502 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); |
||
| 503 | |||
| 504 | // En passant captures are a tricky special case. Because they are rather |
||
| 505 | // uncommon, we do it simply by testing whether the king is attacked after |
||
| 506 | // the move is made. |
||
| 507 | if (type_of(m) == ENPASSANT) |
||
| 508 | { |
||
| 509 | Square ksq = square<KING>(us); |
||
| 510 | Square to = to_sq(m); |
||
| 511 | Square capsq = to - pawn_push(us); |
||
| 512 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; |
||
| 513 | |||
| 514 | assert(to == ep_square()); |
||
| 515 | assert(moved_piece(m) == make_piece(us, PAWN)); |
||
| 516 | assert(piece_on(capsq) == make_piece(~us, PAWN)); |
||
| 517 | assert(piece_on(to) == NO_PIECE); |
||
| 518 | |||
| 519 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) |
||
| 520 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); |
||
| 521 | } |
||
| 522 | |||
| 523 | // If the moving piece is a king, check whether the destination |
||
| 524 | // square is attacked by the opponent. Castling moves are checked |
||
| 525 | // for legality during move generation. |
||
| 526 | if (type_of(piece_on(from)) == KING) |
||
| 527 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); |
||
| 528 | |||
| 529 | // A non-king move is legal if and only if it is not pinned or it |
||
| 530 | // is moving along the ray towards or away from the king. |
||
| 531 | return !pinned |
||
| 532 | || !(pinned & from) |
||
| 533 | || aligned(from, to_sq(m), square<KING>(us)); |
||
| 534 | } |
||
| 535 | |||
| 536 | |||
| 537 | /// Position::pseudo_legal() takes a random move and tests whether the move is |
||
| 538 | /// pseudo legal. It is used to validate moves from TT that can be corrupted |
||
| 539 | /// due to SMP concurrent access or hash position key aliasing. |
||
| 540 | |||
| 541 | bool Position::pseudo_legal(const Move m) const { |
||
| 542 | |||
| 543 | Color us = sideToMove; |
||
| 544 | Square from = from_sq(m); |
||
| 545 | Square to = to_sq(m); |
||
| 546 | Piece pc = moved_piece(m); |
||
| 547 | |||
| 548 | // Use a slower but simpler function for uncommon cases |
||
| 549 | if (type_of(m) != NORMAL) |
||
| 550 | return MoveList<LEGAL>(*this).contains(m); |
||
| 551 | |||
| 552 | // Is not a promotion, so promotion piece must be empty |
||
| 553 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) |
||
| 554 | return false; |
||
| 555 | |||
| 556 | // If the 'from' square is not occupied by a piece belonging to the side to |
||
| 557 | // move, the move is obviously not legal. |
||
| 558 | if (pc == NO_PIECE || color_of(pc) != us) |
||
| 559 | return false; |
||
| 560 | |||
| 561 | // The destination square cannot be occupied by a friendly piece |
||
| 562 | if (pieces(us) & to) |
||
| 563 | return false; |
||
| 564 | |||
| 565 | // Handle the special case of a pawn move |
||
| 566 | if (type_of(pc) == PAWN) |
||
| 567 | { |
||
| 568 | // We have already handled promotion moves, so destination |
||
| 569 | // cannot be on the 8th/1st rank. |
||
| 570 | if (rank_of(to) == relative_rank(us, RANK_8)) |
||
| 571 | return false; |
||
| 572 | |||
| 573 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture |
||
| 574 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push |
||
| 575 | && !( (from + 2 * pawn_push(us) == to) // Not a double push |
||
| 576 | && (rank_of(from) == relative_rank(us, RANK_2)) |
||
| 577 | && empty(to) |
||
| 578 | && empty(to - pawn_push(us)))) |
||
| 579 | return false; |
||
| 580 | } |
||
| 581 | else if (!(attacks_from(pc, from) & to)) |
||
| 582 | return false; |
||
| 583 | |||
| 584 | // Evasions generator already takes care to avoid some kind of illegal moves |
||
| 585 | // and legal() relies on this. We therefore have to take care that the same |
||
| 586 | // kind of moves are filtered out here. |
||
| 587 | if (checkers()) |
||
| 588 | { |
||
| 589 | if (type_of(pc) != KING) |
||
| 590 | { |
||
| 591 | // Double check? In this case a king move is required |
||
| 592 | if (more_than_one(checkers())) |
||
| 593 | return false; |
||
| 594 | |||
| 595 | // Our move must be a blocking evasion or a capture of the checking piece |
||
| 596 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) |
||
| 597 | return false; |
||
| 598 | } |
||
| 599 | // In case of king moves under check we have to remove king so as to catch |
||
| 600 | // invalid moves like b1a1 when opposite queen is on c1. |
||
| 601 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) |
||
| 602 | return false; |
||
| 603 | } |
||
| 604 | |||
| 605 | return true; |
||
| 606 | } |
||
| 607 | |||
| 608 | |||
| 609 | /// Position::gives_check() tests whether a pseudo-legal move gives a check |
||
| 610 | |||
| 611 | bool Position::gives_check(Move m, const CheckInfo& ci) const { |
||
| 612 | |||
| 613 | assert(is_ok(m)); |
||
| 614 | assert(ci.dcCandidates == discovered_check_candidates()); |
||
| 615 | assert(color_of(moved_piece(m)) == sideToMove); |
||
| 616 | |||
| 617 | Square from = from_sq(m); |
||
| 618 | Square to = to_sq(m); |
||
| 619 | |||
| 620 | // Is there a direct check? |
||
| 621 | if (ci.checkSquares[type_of(piece_on(from))] & to) |
||
| 622 | return true; |
||
| 623 | |||
| 624 | // Is there a discovered check? |
||
| 625 | if ( ci.dcCandidates |
||
| 626 | && (ci.dcCandidates & from) |
||
| 627 | && !aligned(from, to, ci.ksq)) |
||
| 628 | return true; |
||
| 629 | |||
| 630 | switch (type_of(m)) |
||
| 631 | { |
||
| 632 | case NORMAL: |
||
| 633 | return false; |
||
| 634 | |||
| 635 | case PROMOTION: |
||
| 636 | return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & ci.ksq; |
||
| 637 | |||
| 638 | // En passant capture with check? We have already handled the case |
||
| 639 | // of direct checks and ordinary discovered check, so the only case we |
||
| 640 | // need to handle is the unusual case of a discovered check through |
||
| 641 | // the captured pawn. |
||
| 642 | case ENPASSANT: |
||
| 643 | { |
||
| 644 | Square capsq = make_square(file_of(to), rank_of(from)); |
||
| 645 | Bitboard b = (pieces() ^ from ^ capsq) | to; |
||
| 646 | |||
| 647 | return (attacks_bb< ROOK>(ci.ksq, b) & pieces(sideToMove, QUEEN, ROOK)) |
||
| 648 | | (attacks_bb<BISHOP>(ci.ksq, b) & pieces(sideToMove, QUEEN, BISHOP)); |
||
| 649 | } |
||
| 650 | case CASTLING: |
||
| 651 | { |
||
| 652 | Square kfrom = from; |
||
| 653 | Square rfrom = to; // Castling is encoded as 'King captures the rook' |
||
| 654 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); |
||
| 655 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); |
||
| 656 | |||
| 657 | return (PseudoAttacks[ROOK][rto] & ci.ksq) |
||
| 658 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & ci.ksq); |
||
| 659 | } |
||
| 660 | default: |
||
| 661 | assert(false); |
||
| 662 | return false; |
||
| 663 | } |
||
| 664 | } |
||
| 665 | |||
| 666 | |||
| 667 | /// Position::do_move() makes a move, and saves all information necessary |
||
| 668 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal |
||
| 669 | /// moves should be filtered out before this function is called. |
||
| 670 | |||
| 671 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { |
||
| 672 | |||
| 673 | assert(is_ok(m)); |
||
| 674 | assert(&newSt != st); |
||
| 675 | |||
| 676 | ++nodes; |
||
| 677 | Key k = st->key ^ Zobrist::side; |
||
| 678 | |||
| 679 | // Copy some fields of the old state to our new StateInfo object except the |
||
| 680 | // ones which are going to be recalculated from scratch anyway and then switch |
||
| 681 | // our state pointer to point to the new (ready to be updated) state. |
||
| 682 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); |
||
| 683 | newSt.previous = st; |
||
| 684 | st = &newSt; |
||
| 685 | |||
| 686 | // Increment ply counters. In particular, rule50 will be reset to zero later on |
||
| 687 | // in case of a capture or a pawn move. |
||
| 688 | ++gamePly; |
||
| 689 | ++st->rule50; |
||
| 690 | ++st->pliesFromNull; |
||
| 691 | |||
| 692 | Color us = sideToMove; |
||
| 693 | Color them = ~us; |
||
| 694 | Square from = from_sq(m); |
||
| 695 | Square to = to_sq(m); |
||
| 696 | PieceType pt = type_of(piece_on(from)); |
||
| 697 | PieceType captured = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to)); |
||
| 698 | |||
| 699 | assert(color_of(piece_on(from)) == us); |
||
| 700 | assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == (type_of(m) != CASTLING ? them : us)); |
||
| 701 | assert(captured != KING); |
||
| 702 | |||
| 703 | if (type_of(m) == CASTLING) |
||
| 704 | { |
||
| 705 | assert(pt == KING); |
||
| 706 | |||
| 707 | Square rfrom, rto; |
||
| 708 | do_castling<true>(us, from, to, rfrom, rto); |
||
| 709 | |||
| 710 | captured = NO_PIECE_TYPE; |
||
| 711 | st->psq += PSQT::psq[us][ROOK][rto] - PSQT::psq[us][ROOK][rfrom]; |
||
| 712 | k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto]; |
||
| 713 | } |
||
| 714 | |||
| 715 | if (captured) |
||
| 716 | { |
||
| 717 | Square capsq = to; |
||
| 718 | |||
| 719 | // If the captured piece is a pawn, update pawn hash key, otherwise |
||
| 720 | // update non-pawn material. |
||
| 721 | if (captured == PAWN) |
||
| 722 | { |
||
| 723 | if (type_of(m) == ENPASSANT) |
||
| 724 | { |
||
| 725 | capsq -= pawn_push(us); |
||
| 726 | |||
| 727 | assert(pt == PAWN); |
||
| 728 | assert(to == st->epSquare); |
||
| 729 | assert(relative_rank(us, to) == RANK_6); |
||
| 730 | assert(piece_on(to) == NO_PIECE); |
||
| 731 | assert(piece_on(capsq) == make_piece(them, PAWN)); |
||
| 732 | |||
| 733 | board[capsq] = NO_PIECE; // Not done by remove_piece() |
||
| 734 | } |
||
| 735 | |||
| 736 | st->pawnKey ^= Zobrist::psq[them][PAWN][capsq]; |
||
| 737 | } |
||
| 738 | else |
||
| 739 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; |
||
| 740 | |||
| 741 | // Update board and piece lists |
||
| 742 | remove_piece(them, captured, capsq); |
||
| 743 | |||
| 744 | // Update material hash key and prefetch access to materialTable |
||
| 745 | k ^= Zobrist::psq[them][captured][capsq]; |
||
| 746 | st->materialKey ^= Zobrist::psq[them][captured][pieceCount[them][captured]]; |
||
| 747 | prefetch(thisThread->materialTable[st->materialKey]); |
||
| 748 | |||
| 749 | // Update incremental scores |
||
| 750 | st->psq -= PSQT::psq[them][captured][capsq]; |
||
| 751 | |||
| 752 | // Reset rule 50 counter |
||
| 753 | st->rule50 = 0; |
||
| 754 | } |
||
| 755 | |||
| 756 | // Update hash key |
||
| 757 | k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to]; |
||
| 758 | |||
| 759 | // Reset en passant square |
||
| 760 | if (st->epSquare != SQ_NONE) |
||
| 761 | { |
||
| 762 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
| 763 | st->epSquare = SQ_NONE; |
||
| 764 | } |
||
| 765 | |||
| 766 | // Update castling rights if needed |
||
| 767 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) |
||
| 768 | { |
||
| 769 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; |
||
| 770 | k ^= Zobrist::castling[st->castlingRights & cr]; |
||
| 771 | st->castlingRights &= ~cr; |
||
| 772 | } |
||
| 773 | |||
| 774 | // Move the piece. The tricky Chess960 castling is handled earlier |
||
| 775 | if (type_of(m) != CASTLING) |
||
| 776 | move_piece(us, pt, from, to); |
||
| 777 | |||
| 778 | // If the moving piece is a pawn do some special extra work |
||
| 779 | if (pt == PAWN) |
||
| 780 | { |
||
| 781 | // Set en-passant square if the moved pawn can be captured |
||
| 782 | if ( (int(to) ^ int(from)) == 16 |
||
| 783 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) |
||
| 784 | { |
||
| 785 | st->epSquare = (from + to) / 2; |
||
| 786 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
| 787 | } |
||
| 788 | |||
| 789 | else if (type_of(m) == PROMOTION) |
||
| 790 | { |
||
| 791 | PieceType promotion = promotion_type(m); |
||
| 792 | |||
| 793 | assert(relative_rank(us, to) == RANK_8); |
||
| 794 | assert(promotion >= KNIGHT && promotion <= QUEEN); |
||
| 795 | |||
| 796 | remove_piece(us, PAWN, to); |
||
| 797 | put_piece(us, promotion, to); |
||
| 798 | |||
| 799 | // Update hash keys |
||
| 800 | k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to]; |
||
| 801 | st->pawnKey ^= Zobrist::psq[us][PAWN][to]; |
||
| 802 | st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]-1] |
||
| 803 | ^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]]; |
||
| 804 | |||
| 805 | // Update incremental score |
||
| 806 | st->psq += PSQT::psq[us][promotion][to] - PSQT::psq[us][PAWN][to]; |
||
| 807 | |||
| 808 | // Update material |
||
| 809 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; |
||
| 810 | } |
||
| 811 | |||
| 812 | // Update pawn hash key and prefetch access to pawnsTable |
||
| 813 | st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to]; |
||
| 814 | prefetch(thisThread->pawnsTable[st->pawnKey]); |
||
| 815 | |||
| 816 | // Reset rule 50 draw counter |
||
| 817 | st->rule50 = 0; |
||
| 818 | } |
||
| 819 | |||
| 820 | // Update incremental scores |
||
| 821 | st->psq += PSQT::psq[us][pt][to] - PSQT::psq[us][pt][from]; |
||
| 822 | |||
| 823 | // Set capture piece |
||
| 824 | st->capturedType = captured; |
||
| 825 | |||
| 826 | // Update the key with the final value |
||
| 827 | st->key = k; |
||
| 828 | |||
| 829 | // Calculate checkers bitboard (if move gives check) |
||
| 830 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; |
||
| 831 | |||
| 832 | sideToMove = ~sideToMove; |
||
| 833 | |||
| 834 | assert(pos_is_ok()); |
||
| 835 | } |
||
| 836 | |||
| 837 | |||
| 838 | /// Position::undo_move() unmakes a move. When it returns, the position should |
||
| 839 | /// be restored to exactly the same state as before the move was made. |
||
| 840 | |||
| 841 | void Position::undo_move(Move m) { |
||
| 842 | |||
| 843 | assert(is_ok(m)); |
||
| 844 | |||
| 845 | sideToMove = ~sideToMove; |
||
| 846 | |||
| 847 | Color us = sideToMove; |
||
| 848 | Square from = from_sq(m); |
||
| 849 | Square to = to_sq(m); |
||
| 850 | PieceType pt = type_of(piece_on(to)); |
||
| 851 | |||
| 852 | assert(empty(from) || type_of(m) == CASTLING); |
||
| 853 | assert(st->capturedType != KING); |
||
| 854 | |||
| 855 | if (type_of(m) == PROMOTION) |
||
| 856 | { |
||
| 857 | assert(relative_rank(us, to) == RANK_8); |
||
| 858 | assert(pt == promotion_type(m)); |
||
| 859 | assert(pt >= KNIGHT && pt <= QUEEN); |
||
| 860 | |||
| 861 | remove_piece(us, pt, to); |
||
| 862 | put_piece(us, PAWN, to); |
||
| 863 | pt = PAWN; |
||
| 864 | } |
||
| 865 | |||
| 866 | if (type_of(m) == CASTLING) |
||
| 867 | { |
||
| 868 | Square rfrom, rto; |
||
| 869 | do_castling<false>(us, from, to, rfrom, rto); |
||
| 870 | } |
||
| 871 | else |
||
| 872 | { |
||
| 873 | move_piece(us, pt, to, from); // Put the piece back at the source square |
||
| 874 | |||
| 875 | if (st->capturedType) |
||
| 876 | { |
||
| 877 | Square capsq = to; |
||
| 878 | |||
| 879 | if (type_of(m) == ENPASSANT) |
||
| 880 | { |
||
| 881 | capsq -= pawn_push(us); |
||
| 882 | |||
| 883 | assert(pt == PAWN); |
||
| 884 | assert(to == st->previous->epSquare); |
||
| 885 | assert(relative_rank(us, to) == RANK_6); |
||
| 886 | assert(piece_on(capsq) == NO_PIECE); |
||
| 887 | assert(st->capturedType == PAWN); |
||
| 888 | } |
||
| 889 | |||
| 890 | put_piece(~us, st->capturedType, capsq); // Restore the captured piece |
||
| 891 | } |
||
| 892 | } |
||
| 893 | |||
| 894 | // Finally point our state pointer back to the previous state |
||
| 895 | st = st->previous; |
||
| 896 | --gamePly; |
||
| 897 | |||
| 898 | assert(pos_is_ok()); |
||
| 899 | } |
||
| 900 | |||
| 901 | |||
| 902 | /// Position::do_castling() is a helper used to do/undo a castling move. This |
||
| 903 | /// is a bit tricky, especially in Chess960. |
||
| 904 | template<bool Do> |
||
| 905 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { |
||
| 906 | |||
| 907 | bool kingSide = to > from; |
||
| 908 | rfrom = to; // Castling is encoded as "king captures friendly rook" |
||
| 909 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); |
||
| 910 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); |
||
| 911 | |||
| 912 | // Remove both pieces first since squares could overlap in Chess960 |
||
| 913 | remove_piece(us, KING, Do ? from : to); |
||
| 914 | remove_piece(us, ROOK, Do ? rfrom : rto); |
||
| 915 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us |
||
| 916 | put_piece(us, KING, Do ? to : from); |
||
| 917 | put_piece(us, ROOK, Do ? rto : rfrom); |
||
| 918 | } |
||
| 919 | |||
| 920 | |||
| 921 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips |
||
| 922 | /// the side to move without executing any move on the board. |
||
| 923 | |||
| 924 | void Position::do_null_move(StateInfo& newSt) { |
||
| 925 | |||
| 926 | assert(!checkers()); |
||
| 927 | assert(&newSt != st); |
||
| 928 | |||
| 929 | std::memcpy(&newSt, st, sizeof(StateInfo)); |
||
| 930 | newSt.previous = st; |
||
| 931 | st = &newSt; |
||
| 932 | |||
| 933 | if (st->epSquare != SQ_NONE) |
||
| 934 | { |
||
| 935 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
| 936 | st->epSquare = SQ_NONE; |
||
| 937 | } |
||
| 938 | |||
| 939 | st->key ^= Zobrist::side; |
||
| 940 | prefetch(TT.first_entry(st->key)); |
||
| 941 | |||
| 942 | ++st->rule50; |
||
| 943 | st->pliesFromNull = 0; |
||
| 944 | |||
| 945 | sideToMove = ~sideToMove; |
||
| 946 | |||
| 947 | assert(pos_is_ok()); |
||
| 948 | } |
||
| 949 | |||
| 950 | void Position::undo_null_move() { |
||
| 951 | |||
| 952 | assert(!checkers()); |
||
| 953 | |||
| 954 | st = st->previous; |
||
| 955 | sideToMove = ~sideToMove; |
||
| 956 | } |
||
| 957 | |||
| 958 | |||
| 959 | /// Position::key_after() computes the new hash key after the given move. Needed |
||
| 960 | /// for speculative prefetch. It doesn't recognize special moves like castling, |
||
| 961 | /// en-passant and promotions. |
||
| 962 | |||
| 963 | Key Position::key_after(Move m) const { |
||
| 964 | |||
| 965 | Color us = sideToMove; |
||
| 966 | Square from = from_sq(m); |
||
| 967 | Square to = to_sq(m); |
||
| 968 | PieceType pt = type_of(piece_on(from)); |
||
| 969 | PieceType captured = type_of(piece_on(to)); |
||
| 970 | Key k = st->key ^ Zobrist::side; |
||
| 971 | |||
| 972 | if (captured) |
||
| 973 | k ^= Zobrist::psq[~us][captured][to]; |
||
| 974 | |||
| 975 | return k ^ Zobrist::psq[us][pt][to] ^ Zobrist::psq[us][pt][from]; |
||
| 976 | } |
||
| 977 | |||
| 978 | |||
| 979 | /// Position::see() is a static exchange evaluator: It tries to estimate the |
||
| 980 | /// material gain or loss resulting from a move. |
||
| 981 | |||
| 982 | Value Position::see_sign(Move m) const { |
||
| 983 | |||
| 984 | assert(is_ok(m)); |
||
| 985 | |||
| 986 | // Early return if SEE cannot be negative because captured piece value |
||
| 987 | // is not less then capturing one. Note that king moves always return |
||
| 988 | // here because king midgame value is set to 0. |
||
| 989 | if (PieceValue[MG][moved_piece(m)] <= PieceValue[MG][piece_on(to_sq(m))]) |
||
| 990 | return VALUE_KNOWN_WIN; |
||
| 991 | |||
| 992 | return see(m); |
||
| 993 | } |
||
| 994 | |||
| 995 | Value Position::see(Move m) const { |
||
| 996 | |||
| 997 | Square from, to; |
||
| 998 | Bitboard occupied, attackers, stmAttackers; |
||
| 999 | Value swapList[32]; |
||
| 1000 | int slIndex = 1; |
||
| 1001 | PieceType captured; |
||
| 1002 | Color stm; |
||
| 1003 | |||
| 1004 | assert(is_ok(m)); |
||
| 1005 | |||
| 1006 | from = from_sq(m); |
||
| 1007 | to = to_sq(m); |
||
| 1008 | swapList[0] = PieceValue[MG][piece_on(to)]; |
||
| 1009 | stm = color_of(piece_on(from)); |
||
| 1010 | occupied = pieces() ^ from; |
||
| 1011 | |||
| 1012 | // Castling moves are implemented as king capturing the rook so cannot |
||
| 1013 | // be handled correctly. Simply return VALUE_ZERO that is always correct |
||
| 1014 | // unless in the rare case the rook ends up under attack. |
||
| 1015 | if (type_of(m) == CASTLING) |
||
| 1016 | return VALUE_ZERO; |
||
| 1017 | |||
| 1018 | if (type_of(m) == ENPASSANT) |
||
| 1019 | { |
||
| 1020 | occupied ^= to - pawn_push(stm); // Remove the captured pawn |
||
| 1021 | swapList[0] = PieceValue[MG][PAWN]; |
||
| 1022 | } |
||
| 1023 | |||
| 1024 | // Find all attackers to the destination square, with the moving piece |
||
| 1025 | // removed, but possibly an X-ray attacker added behind it. |
||
| 1026 | attackers = attackers_to(to, occupied) & occupied; |
||
| 1027 | |||
| 1028 | // If the opponent has no attackers we are finished |
||
| 1029 | stm = ~stm; |
||
| 1030 | stmAttackers = attackers & pieces(stm); |
||
| 1031 | if (!stmAttackers) |
||
| 1032 | return swapList[0]; |
||
| 1033 | |||
| 1034 | // The destination square is defended, which makes things rather more |
||
| 1035 | // difficult to compute. We proceed by building up a "swap list" containing |
||
| 1036 | // the material gain or loss at each stop in a sequence of captures to the |
||
| 1037 | // destination square, where the sides alternately capture, and always |
||
| 1038 | // capture with the least valuable piece. After each capture, we look for |
||
| 1039 | // new X-ray attacks from behind the capturing piece. |
||
| 1040 | captured = type_of(piece_on(from)); |
||
| 1041 | |||
| 1042 | do { |
||
| 1043 | assert(slIndex < 32); |
||
| 1044 | |||
| 1045 | // Add the new entry to the swap list |
||
| 1046 | swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured]; |
||
| 1047 | |||
| 1048 | // Locate and remove the next least valuable attacker |
||
| 1049 | captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); |
||
| 1050 | stm = ~stm; |
||
| 1051 | stmAttackers = attackers & pieces(stm); |
||
| 1052 | ++slIndex; |
||
| 1053 | |||
| 1054 | } while (stmAttackers && (captured != KING || (--slIndex, false))); // Stop before a king capture |
||
| 1055 | |||
| 1056 | // Having built the swap list, we negamax through it to find the best |
||
| 1057 | // achievable score from the point of view of the side to move. |
||
| 1058 | while (--slIndex) |
||
| 1059 | swapList[slIndex - 1] = std::min(-swapList[slIndex], swapList[slIndex - 1]); |
||
| 1060 | |||
| 1061 | return swapList[0]; |
||
| 1062 | } |
||
| 1063 | |||
| 1064 | |||
| 1065 | /// Position::is_draw() tests whether the position is drawn by 50-move rule |
||
| 1066 | /// or by repetition. It does not detect stalemates. |
||
| 1067 | |||
| 1068 | bool Position::is_draw() const { |
||
| 1069 | |||
| 1070 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) |
||
| 1071 | return true; |
||
| 1072 | |||
| 1073 | StateInfo* stp = st; |
||
| 1074 | for (int i = 2, e = std::min(st->rule50, st->pliesFromNull); i <= e; i += 2) |
||
| 1075 | { |
||
| 1076 | stp = stp->previous->previous; |
||
| 1077 | |||
| 1078 | if (stp->key == st->key) |
||
| 1079 | return true; // Draw at first repetition |
||
| 1080 | } |
||
| 1081 | |||
| 1082 | return false; |
||
| 1083 | } |
||
| 1084 | |||
| 1085 | |||
| 1086 | /// Position::flip() flips position with the white and black sides reversed. This |
||
| 1087 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. |
||
| 1088 | |||
| 1089 | void Position::flip() { |
||
| 1090 | |||
| 1091 | string f, token; |
||
| 1092 | std::stringstream ss(fen()); |
||
| 1093 | |||
| 1094 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement |
||
| 1095 | { |
||
| 1096 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); |
||
| 1097 | f.insert(0, token + (f.empty() ? " " : "/")); |
||
| 1098 | } |
||
| 1099 | |||
| 1100 | ss >> token; // Active color |
||
| 1101 | f += (token == "w" ? "B " : "W "); // Will be lowercased later |
||
| 1102 | |||
| 1103 | ss >> token; // Castling availability |
||
| 1104 | f += token + " "; |
||
| 1105 | |||
| 1106 | std::transform(f.begin(), f.end(), f.begin(), |
||
| 1107 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); |
||
| 1108 | |||
| 1109 | ss >> token; // En passant square |
||
| 1110 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); |
||
| 1111 | |||
| 1112 | std::getline(ss, token); // Half and full moves |
||
| 1113 | f += token; |
||
| 1114 | |||
| 1115 | set(f, is_chess960(), this_thread()); |
||
| 1116 | |||
| 1117 | assert(pos_is_ok()); |
||
| 1118 | } |
||
| 1119 | |||
| 1120 | |||
| 1121 | /// Position::pos_is_ok() performs some consistency checks for the position object. |
||
| 1122 | /// This is meant to be helpful when debugging. |
||
| 1123 | |||
| 1124 | bool Position::pos_is_ok(int* failedStep) const { |
||
| 1125 | |||
| 1126 | const bool Fast = true; // Quick (default) or full check? |
||
| 1127 | |||
| 1128 | enum { Default, King, Bitboards, State, Lists, Castling }; |
||
| 1129 | |||
| 1130 | for (int step = Default; step <= (Fast ? Default : Castling); step++) |
||
| 1131 | { |
||
| 1132 | if (failedStep) |
||
| 1133 | *failedStep = step; |
||
| 1134 | |||
| 1135 | if (step == Default) |
||
| 1136 | if ( (sideToMove != WHITE && sideToMove != BLACK) |
||
| 1137 | || piece_on(square<KING>(WHITE)) != W_KING |
||
| 1138 | || piece_on(square<KING>(BLACK)) != B_KING |
||
| 1139 | || ( ep_square() != SQ_NONE |
||
| 1140 | && relative_rank(sideToMove, ep_square()) != RANK_6)) |
||
| 1141 | return false; |
||
| 1142 | |||
| 1143 | if (step == King) |
||
| 1144 | if ( std::count(board, board + SQUARE_NB, W_KING) != 1 |
||
| 1145 | || std::count(board, board + SQUARE_NB, B_KING) != 1 |
||
| 1146 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) |
||
| 1147 | return false; |
||
| 1148 | |||
| 1149 | if (step == Bitboards) |
||
| 1150 | { |
||
| 1151 | if ( (pieces(WHITE) & pieces(BLACK)) |
||
| 1152 | ||(pieces(WHITE) | pieces(BLACK)) != pieces()) |
||
| 1153 | return false; |
||
| 1154 | |||
| 1155 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) |
||
| 1156 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) |
||
| 1157 | if (p1 != p2 && (pieces(p1) & pieces(p2))) |
||
| 1158 | return false; |
||
| 1159 | } |
||
| 1160 | |||
| 1161 | if (step == State) |
||
| 1162 | { |
||
| 1163 | StateInfo si = *st; |
||
| 1164 | set_state(&si); |
||
| 1165 | if (std::memcmp(&si, st, sizeof(StateInfo))) |
||
| 1166 | return false; |
||
| 1167 | } |
||
| 1168 | |||
| 1169 | if (step == Lists) |
||
| 1170 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 1171 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
| 1172 | { |
||
| 1173 | if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt))) |
||
| 1174 | return false; |
||
| 1175 | |||
| 1176 | for (int i = 0; i < pieceCount[c][pt]; ++i) |
||
| 1177 | if ( board[pieceList[c][pt][i]] != make_piece(c, pt) |
||
| 1178 | || index[pieceList[c][pt][i]] != i) |
||
| 1179 | return false; |
||
| 1180 | } |
||
| 1181 | |||
| 1182 | if (step == Castling) |
||
| 1183 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 1184 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) |
||
| 1185 | { |
||
| 1186 | if (!can_castle(c | s)) |
||
| 1187 | continue; |
||
| 1188 | |||
| 1189 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) |
||
| 1190 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) |
||
| 1191 | ||(castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) |
||
| 1192 | return false; |
||
| 1193 | } |
||
| 1194 | } |
||
| 1195 | |||
| 1196 | return true; |
||
| 1197 | } |