Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
23 | #include <cstring> // For std::memset, std::memcmp |
||
24 | #include <iomanip> |
||
25 | #include <sstream> |
||
26 | |||
27 | #include "bitcount.h" |
||
28 | #include "misc.h" |
||
29 | #include "movegen.h" |
||
30 | #include "position.h" |
||
31 | #include "thread.h" |
||
32 | #include "tt.h" |
||
33 | #include "uci.h" |
||
34 | |||
35 | using std::string; |
||
36 | |||
37 | Value PieceValue[PHASE_NB][PIECE_NB] = { |
||
38 | { VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg }, |
||
39 | { VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } }; |
||
40 | |||
41 | namespace Zobrist { |
||
42 | |||
43 | Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB]; |
||
44 | Key enpassant[FILE_NB]; |
||
45 | Key castling[CASTLING_RIGHT_NB]; |
||
46 | Key side; |
||
47 | Key exclusion; |
||
48 | } |
||
49 | |||
50 | Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion; } |
||
51 | |||
52 | namespace { |
||
53 | |||
54 | const string PieceToChar(" PNBRQK pnbrqk"); |
||
55 | |||
56 | // min_attacker() is a helper function used by see() to locate the least |
||
57 | // valuable attacker for the side to move, remove the attacker we just found |
||
58 | // from the bitboards and scan for new X-ray attacks behind it. |
||
59 | |||
60 | template<int Pt> |
||
61 | PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers, |
||
62 | Bitboard& occupied, Bitboard& attackers) { |
||
63 | |||
64 | Bitboard b = stmAttackers & bb[Pt]; |
||
65 | if (!b) |
||
66 | return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers); |
||
67 | |||
68 | occupied ^= b & ~(b - 1); |
||
69 | |||
70 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) |
||
71 | attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]); |
||
72 | |||
73 | if (Pt == ROOK || Pt == QUEEN) |
||
74 | attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]); |
||
75 | |||
76 | attackers &= occupied; // After X-ray that may add already processed pieces |
||
77 | return (PieceType)Pt; |
||
78 | } |
||
79 | |||
80 | template<> |
||
81 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { |
||
82 | return KING; // No need to update bitboards: it is the last cycle |
||
83 | } |
||
84 | |||
85 | } // namespace |
||
86 | |||
87 | |||
88 | /// CheckInfo constructor |
||
89 | |||
90 | CheckInfo::CheckInfo(const Position& pos) { |
||
91 | |||
92 | Color them = ~pos.side_to_move(); |
||
93 | ksq = pos.square<KING>(them); |
||
94 | |||
95 | pinned = pos.pinned_pieces(pos.side_to_move()); |
||
96 | dcCandidates = pos.discovered_check_candidates(); |
||
97 | |||
98 | checkSquares[PAWN] = pos.attacks_from<PAWN>(ksq, them); |
||
99 | checkSquares[KNIGHT] = pos.attacks_from<KNIGHT>(ksq); |
||
100 | checkSquares[BISHOP] = pos.attacks_from<BISHOP>(ksq); |
||
101 | checkSquares[ROOK] = pos.attacks_from<ROOK>(ksq); |
||
102 | checkSquares[QUEEN] = checkSquares[BISHOP] | checkSquares[ROOK]; |
||
103 | checkSquares[KING] = 0; |
||
104 | } |
||
105 | |||
106 | |||
107 | /// operator<<(Position) returns an ASCII representation of the position |
||
108 | |||
109 | std::ostream& operator<<(std::ostream& os, const Position& pos) { |
||
110 | |||
111 | os << "\n +---+---+---+---+---+---+---+---+\n"; |
||
112 | |||
113 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
114 | { |
||
115 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
116 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; |
||
117 | |||
118 | os << " |\n +---+---+---+---+---+---+---+---+\n"; |
||
119 | } |
||
120 | |||
121 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase |
||
122 | << std::setfill('0') << std::setw(16) << pos.key() << std::dec << "\nCheckers: "; |
||
123 | |||
124 | for (Bitboard b = pos.checkers(); b; ) |
||
125 | os << UCI::square(pop_lsb(&b)) << " "; |
||
126 | |||
127 | return os; |
||
128 | } |
||
129 | |||
130 | |||
131 | /// Position::init() initializes at startup the various arrays used to compute |
||
132 | /// hash keys. |
||
133 | |||
134 | void Position::init() { |
||
135 | |||
136 | PRNG rng(1070372); |
||
137 | |||
138 | for (Color c = WHITE; c <= BLACK; ++c) |
||
139 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
140 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
141 | Zobrist::psq[c][pt][s] = rng.rand<Key>(); |
||
142 | |||
143 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
144 | Zobrist::enpassant[f] = rng.rand<Key>(); |
||
145 | |||
146 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) |
||
147 | { |
||
148 | Zobrist::castling[cr] = 0; |
||
149 | Bitboard b = cr; |
||
150 | while (b) |
||
151 | { |
||
152 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; |
||
153 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); |
||
154 | } |
||
155 | } |
||
156 | |||
157 | Zobrist::side = rng.rand<Key>(); |
||
158 | Zobrist::exclusion = rng.rand<Key>(); |
||
159 | } |
||
160 | |||
161 | |||
162 | /// Position::operator=() creates a copy of 'pos' but detaching the state pointer |
||
163 | /// from the source to be self-consistent and not depending on any external data. |
||
164 | |||
165 | Position& Position::operator=(const Position& pos) { |
||
166 | |||
167 | std::memcpy(this, &pos, sizeof(Position)); |
||
168 | std::memcpy(&startState, st, sizeof(StateInfo)); |
||
169 | st = &startState; |
||
170 | nodes = 0; |
||
171 | |||
172 | assert(pos_is_ok()); |
||
173 | |||
174 | return *this; |
||
175 | } |
||
176 | |||
177 | |||
178 | /// Position::clear() erases the position object to a pristine state, with an |
||
179 | /// empty board, white to move, and no castling rights. |
||
180 | |||
181 | void Position::clear() { |
||
182 | |||
183 | std::memset(this, 0, sizeof(Position)); |
||
184 | startState.epSquare = SQ_NONE; |
||
185 | st = &startState; |
||
186 | |||
187 | for (int i = 0; i < PIECE_TYPE_NB; ++i) |
||
188 | for (int j = 0; j < 16; ++j) |
||
189 | pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE; |
||
190 | } |
||
191 | |||
192 | |||
193 | /// Position::set() initializes the position object with the given FEN string. |
||
194 | /// This function is not very robust - make sure that input FENs are correct, |
||
195 | /// this is assumed to be the responsibility of the GUI. |
||
196 | |||
197 | void Position::set(const string& fenStr, bool isChess960, Thread* th) { |
||
198 | /* |
||
199 | A FEN string defines a particular position using only the ASCII character set. |
||
200 | |||
201 | A FEN string contains six fields separated by a space. The fields are: |
||
202 | |||
203 | 1) Piece placement (from white's perspective). Each rank is described, starting |
||
204 | with rank 8 and ending with rank 1. Within each rank, the contents of each |
||
205 | square are described from file A through file H. Following the Standard |
||
206 | Algebraic Notation (SAN), each piece is identified by a single letter taken |
||
207 | from the standard English names. White pieces are designated using upper-case |
||
208 | letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are |
||
209 | noted using digits 1 through 8 (the number of blank squares), and "/" |
||
210 | separates ranks. |
||
211 | |||
212 | 2) Active color. "w" means white moves next, "b" means black. |
||
213 | |||
214 | 3) Castling availability. If neither side can castle, this is "-". Otherwise, |
||
215 | this has one or more letters: "K" (White can castle kingside), "Q" (White |
||
216 | can castle queenside), "k" (Black can castle kingside), and/or "q" (Black |
||
217 | can castle queenside). |
||
218 | |||
219 | 4) En passant target square (in algebraic notation). If there's no en passant |
||
220 | target square, this is "-". If a pawn has just made a 2-square move, this |
||
221 | is the position "behind" the pawn. This is recorded regardless of whether |
||
222 | there is a pawn in position to make an en passant capture. |
||
223 | |||
224 | 5) Halfmove clock. This is the number of halfmoves since the last pawn advance |
||
225 | or capture. This is used to determine if a draw can be claimed under the |
||
226 | fifty-move rule. |
||
227 | |||
228 | 6) Fullmove number. The number of the full move. It starts at 1, and is |
||
229 | incremented after Black's move. |
||
230 | */ |
||
231 | |||
232 | unsigned char col, row, token; |
||
233 | size_t idx; |
||
234 | Square sq = SQ_A8; |
||
235 | std::istringstream ss(fenStr); |
||
236 | |||
237 | clear(); |
||
238 | ss >> std::noskipws; |
||
239 | |||
240 | // 1. Piece placement |
||
241 | while ((ss >> token) && !isspace(token)) |
||
242 | { |
||
243 | if (isdigit(token)) |
||
244 | sq += Square(token - '0'); // Advance the given number of files |
||
245 | |||
246 | else if (token == '/') |
||
247 | sq -= Square(16); |
||
248 | |||
249 | else if ((idx = PieceToChar.find(token)) != string::npos) |
||
250 | { |
||
251 | put_piece(color_of(Piece(idx)), type_of(Piece(idx)), sq); |
||
252 | ++sq; |
||
253 | } |
||
254 | } |
||
255 | |||
256 | // 2. Active color |
||
257 | ss >> token; |
||
258 | sideToMove = (token == 'w' ? WHITE : BLACK); |
||
259 | ss >> token; |
||
260 | |||
261 | // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, |
||
262 | // Shredder-FEN that uses the letters of the columns on which the rooks began |
||
263 | // the game instead of KQkq and also X-FEN standard that, in case of Chess960, |
||
264 | // if an inner rook is associated with the castling right, the castling tag is |
||
265 | // replaced by the file letter of the involved rook, as for the Shredder-FEN. |
||
266 | while ((ss >> token) && !isspace(token)) |
||
267 | { |
||
268 | Square rsq; |
||
269 | Color c = islower(token) ? BLACK : WHITE; |
||
270 | Piece rook = make_piece(c, ROOK); |
||
271 | |||
272 | token = char(toupper(token)); |
||
273 | |||
274 | if (token == 'K') |
||
275 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} |
||
276 | |||
277 | else if (token == 'Q') |
||
278 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} |
||
279 | |||
280 | else if (token >= 'A' && token <= 'H') |
||
281 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); |
||
282 | |||
283 | else |
||
284 | continue; |
||
285 | |||
286 | set_castling_right(c, rsq); |
||
287 | } |
||
288 | |||
289 | // 4. En passant square. Ignore if no pawn capture is possible |
||
290 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) |
||
291 | && ((ss >> row) && (row == '3' || row == '6'))) |
||
292 | { |
||
293 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); |
||
294 | |||
295 | if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))) |
||
296 | st->epSquare = SQ_NONE; |
||
297 | } |
||
298 | |||
299 | // 5-6. Halfmove clock and fullmove number |
||
300 | ss >> std::skipws >> st->rule50 >> gamePly; |
||
301 | |||
302 | // Convert from fullmove starting from 1 to ply starting from 0, |
||
303 | // handle also common incorrect FEN with fullmove = 0. |
||
304 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); |
||
305 | |||
306 | chess960 = isChess960; |
||
307 | thisThread = th; |
||
308 | set_state(st); |
||
309 | |||
310 | assert(pos_is_ok()); |
||
311 | } |
||
312 | |||
313 | |||
314 | /// Position::set_castling_right() is a helper function used to set castling |
||
315 | /// rights given the corresponding color and the rook starting square. |
||
316 | |||
317 | void Position::set_castling_right(Color c, Square rfrom) { |
||
318 | |||
319 | Square kfrom = square<KING>(c); |
||
320 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; |
||
321 | CastlingRight cr = (c | cs); |
||
322 | |||
323 | st->castlingRights |= cr; |
||
324 | castlingRightsMask[kfrom] |= cr; |
||
325 | castlingRightsMask[rfrom] |= cr; |
||
326 | castlingRookSquare[cr] = rfrom; |
||
327 | |||
328 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); |
||
329 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); |
||
330 | |||
331 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) |
||
332 | if (s != kfrom && s != rfrom) |
||
333 | castlingPath[cr] |= s; |
||
334 | |||
335 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) |
||
336 | if (s != kfrom && s != rfrom) |
||
337 | castlingPath[cr] |= s; |
||
338 | } |
||
339 | |||
340 | |||
341 | /// Position::set_state() computes the hash keys of the position, and other |
||
342 | /// data that once computed is updated incrementally as moves are made. |
||
343 | /// The function is only used when a new position is set up, and to verify |
||
344 | /// the correctness of the StateInfo data when running in debug mode. |
||
345 | |||
346 | void Position::set_state(StateInfo* si) const { |
||
347 | |||
348 | si->key = si->pawnKey = si->materialKey = 0; |
||
349 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; |
||
350 | si->psq = SCORE_ZERO; |
||
351 | |||
352 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); |
||
353 | |||
354 | for (Bitboard b = pieces(); b; ) |
||
355 | { |
||
356 | Square s = pop_lsb(&b); |
||
357 | Piece pc = piece_on(s); |
||
358 | si->key ^= Zobrist::psq[color_of(pc)][type_of(pc)][s]; |
||
359 | si->psq += PSQT::psq[color_of(pc)][type_of(pc)][s]; |
||
360 | } |
||
361 | |||
362 | if (si->epSquare != SQ_NONE) |
||
363 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; |
||
364 | |||
365 | if (sideToMove == BLACK) |
||
366 | si->key ^= Zobrist::side; |
||
367 | |||
368 | si->key ^= Zobrist::castling[si->castlingRights]; |
||
369 | |||
370 | for (Bitboard b = pieces(PAWN); b; ) |
||
371 | { |
||
372 | Square s = pop_lsb(&b); |
||
373 | si->pawnKey ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s]; |
||
374 | } |
||
375 | |||
376 | for (Color c = WHITE; c <= BLACK; ++c) |
||
377 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
378 | for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt) |
||
379 | si->materialKey ^= Zobrist::psq[c][pt][cnt]; |
||
380 | |||
381 | for (Color c = WHITE; c <= BLACK; ++c) |
||
382 | for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt) |
||
383 | si->nonPawnMaterial[c] += pieceCount[c][pt] * PieceValue[MG][pt]; |
||
384 | } |
||
385 | |||
386 | |||
387 | /// Position::fen() returns a FEN representation of the position. In case of |
||
388 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. |
||
389 | |||
390 | const string Position::fen() const { |
||
391 | |||
392 | int emptyCnt; |
||
393 | std::ostringstream ss; |
||
394 | |||
395 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
396 | { |
||
397 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
398 | { |
||
399 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) |
||
400 | ++emptyCnt; |
||
401 | |||
402 | if (emptyCnt) |
||
403 | ss << emptyCnt; |
||
404 | |||
405 | if (f <= FILE_H) |
||
406 | ss << PieceToChar[piece_on(make_square(f, r))]; |
||
407 | } |
||
408 | |||
409 | if (r > RANK_1) |
||
410 | ss << '/'; |
||
411 | } |
||
412 | |||
413 | ss << (sideToMove == WHITE ? " w " : " b "); |
||
414 | |||
415 | if (can_castle(WHITE_OO)) |
||
416 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); |
||
417 | |||
418 | if (can_castle(WHITE_OOO)) |
||
419 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); |
||
420 | |||
421 | if (can_castle(BLACK_OO)) |
||
422 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); |
||
423 | |||
424 | if (can_castle(BLACK_OOO)) |
||
425 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); |
||
426 | |||
427 | if (!can_castle(WHITE) && !can_castle(BLACK)) |
||
428 | ss << '-'; |
||
429 | |||
430 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") |
||
431 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; |
||
432 | |||
433 | return ss.str(); |
||
434 | } |
||
435 | |||
436 | |||
437 | /// Position::game_phase() calculates the game phase interpolating total non-pawn |
||
438 | /// material between endgame and midgame limits. |
||
439 | |||
440 | Phase Position::game_phase() const { |
||
441 | |||
442 | Value npm = st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK]; |
||
443 | |||
444 | npm = std::max(EndgameLimit, std::min(npm, MidgameLimit)); |
||
445 | |||
446 | return Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); |
||
447 | } |
||
448 | |||
449 | |||
450 | /// Position::check_blockers() returns a bitboard of all the pieces with color |
||
451 | /// 'c' that are blocking check on the king with color 'kingColor'. A piece |
||
452 | /// blocks a check if removing that piece from the board would result in a |
||
453 | /// position where the king is in check. A check blocking piece can be either a |
||
454 | /// pinned or a discovered check piece, according if its color 'c' is the same |
||
455 | /// or the opposite of 'kingColor'. |
||
456 | |||
457 | Bitboard Position::check_blockers(Color c, Color kingColor) const { |
||
458 | |||
459 | Bitboard b, pinners, result = 0; |
||
460 | Square ksq = square<KING>(kingColor); |
||
461 | |||
462 | // Pinners are sliders that give check when a pinned piece is removed |
||
463 | pinners = ( (pieces( ROOK, QUEEN) & PseudoAttacks[ROOK ][ksq]) |
||
464 | | (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq])) & pieces(~kingColor); |
||
465 | |||
466 | while (pinners) |
||
467 | { |
||
468 | b = between_bb(ksq, pop_lsb(&pinners)) & pieces(); |
||
469 | |||
470 | if (!more_than_one(b)) |
||
471 | result |= b & pieces(c); |
||
472 | } |
||
473 | return result; |
||
474 | } |
||
475 | |||
476 | |||
477 | /// Position::attackers_to() computes a bitboard of all pieces which attack a |
||
478 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. |
||
479 | |||
480 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { |
||
481 | |||
482 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) |
||
483 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) |
||
484 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) |
||
485 | | (attacks_bb<ROOK >(s, occupied) & pieces(ROOK, QUEEN)) |
||
486 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) |
||
487 | | (attacks_from<KING>(s) & pieces(KING)); |
||
488 | } |
||
489 | |||
490 | |||
491 | /// Position::legal() tests whether a pseudo-legal move is legal |
||
492 | |||
493 | bool Position::legal(Move m, Bitboard pinned) const { |
||
494 | |||
495 | assert(is_ok(m)); |
||
496 | assert(pinned == pinned_pieces(sideToMove)); |
||
497 | |||
498 | Color us = sideToMove; |
||
499 | Square from = from_sq(m); |
||
500 | |||
501 | assert(color_of(moved_piece(m)) == us); |
||
502 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); |
||
503 | |||
504 | // En passant captures are a tricky special case. Because they are rather |
||
505 | // uncommon, we do it simply by testing whether the king is attacked after |
||
506 | // the move is made. |
||
507 | if (type_of(m) == ENPASSANT) |
||
508 | { |
||
509 | Square ksq = square<KING>(us); |
||
510 | Square to = to_sq(m); |
||
511 | Square capsq = to - pawn_push(us); |
||
512 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; |
||
513 | |||
514 | assert(to == ep_square()); |
||
515 | assert(moved_piece(m) == make_piece(us, PAWN)); |
||
516 | assert(piece_on(capsq) == make_piece(~us, PAWN)); |
||
517 | assert(piece_on(to) == NO_PIECE); |
||
518 | |||
519 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) |
||
520 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); |
||
521 | } |
||
522 | |||
523 | // If the moving piece is a king, check whether the destination |
||
524 | // square is attacked by the opponent. Castling moves are checked |
||
525 | // for legality during move generation. |
||
526 | if (type_of(piece_on(from)) == KING) |
||
527 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); |
||
528 | |||
529 | // A non-king move is legal if and only if it is not pinned or it |
||
530 | // is moving along the ray towards or away from the king. |
||
531 | return !pinned |
||
532 | || !(pinned & from) |
||
533 | || aligned(from, to_sq(m), square<KING>(us)); |
||
534 | } |
||
535 | |||
536 | |||
537 | /// Position::pseudo_legal() takes a random move and tests whether the move is |
||
538 | /// pseudo legal. It is used to validate moves from TT that can be corrupted |
||
539 | /// due to SMP concurrent access or hash position key aliasing. |
||
540 | |||
541 | bool Position::pseudo_legal(const Move m) const { |
||
542 | |||
543 | Color us = sideToMove; |
||
544 | Square from = from_sq(m); |
||
545 | Square to = to_sq(m); |
||
546 | Piece pc = moved_piece(m); |
||
547 | |||
548 | // Use a slower but simpler function for uncommon cases |
||
549 | if (type_of(m) != NORMAL) |
||
550 | return MoveList<LEGAL>(*this).contains(m); |
||
551 | |||
552 | // Is not a promotion, so promotion piece must be empty |
||
553 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) |
||
554 | return false; |
||
555 | |||
556 | // If the 'from' square is not occupied by a piece belonging to the side to |
||
557 | // move, the move is obviously not legal. |
||
558 | if (pc == NO_PIECE || color_of(pc) != us) |
||
559 | return false; |
||
560 | |||
561 | // The destination square cannot be occupied by a friendly piece |
||
562 | if (pieces(us) & to) |
||
563 | return false; |
||
564 | |||
565 | // Handle the special case of a pawn move |
||
566 | if (type_of(pc) == PAWN) |
||
567 | { |
||
568 | // We have already handled promotion moves, so destination |
||
569 | // cannot be on the 8th/1st rank. |
||
570 | if (rank_of(to) == relative_rank(us, RANK_8)) |
||
571 | return false; |
||
572 | |||
573 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture |
||
574 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push |
||
575 | && !( (from + 2 * pawn_push(us) == to) // Not a double push |
||
576 | && (rank_of(from) == relative_rank(us, RANK_2)) |
||
577 | && empty(to) |
||
578 | && empty(to - pawn_push(us)))) |
||
579 | return false; |
||
580 | } |
||
581 | else if (!(attacks_from(pc, from) & to)) |
||
582 | return false; |
||
583 | |||
584 | // Evasions generator already takes care to avoid some kind of illegal moves |
||
585 | // and legal() relies on this. We therefore have to take care that the same |
||
586 | // kind of moves are filtered out here. |
||
587 | if (checkers()) |
||
588 | { |
||
589 | if (type_of(pc) != KING) |
||
590 | { |
||
591 | // Double check? In this case a king move is required |
||
592 | if (more_than_one(checkers())) |
||
593 | return false; |
||
594 | |||
595 | // Our move must be a blocking evasion or a capture of the checking piece |
||
596 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) |
||
597 | return false; |
||
598 | } |
||
599 | // In case of king moves under check we have to remove king so as to catch |
||
600 | // invalid moves like b1a1 when opposite queen is on c1. |
||
601 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) |
||
602 | return false; |
||
603 | } |
||
604 | |||
605 | return true; |
||
606 | } |
||
607 | |||
608 | |||
609 | /// Position::gives_check() tests whether a pseudo-legal move gives a check |
||
610 | |||
611 | bool Position::gives_check(Move m, const CheckInfo& ci) const { |
||
612 | |||
613 | assert(is_ok(m)); |
||
614 | assert(ci.dcCandidates == discovered_check_candidates()); |
||
615 | assert(color_of(moved_piece(m)) == sideToMove); |
||
616 | |||
617 | Square from = from_sq(m); |
||
618 | Square to = to_sq(m); |
||
619 | |||
620 | // Is there a direct check? |
||
621 | if (ci.checkSquares[type_of(piece_on(from))] & to) |
||
622 | return true; |
||
623 | |||
624 | // Is there a discovered check? |
||
625 | if ( ci.dcCandidates |
||
626 | && (ci.dcCandidates & from) |
||
627 | && !aligned(from, to, ci.ksq)) |
||
628 | return true; |
||
629 | |||
630 | switch (type_of(m)) |
||
631 | { |
||
632 | case NORMAL: |
||
633 | return false; |
||
634 | |||
635 | case PROMOTION: |
||
636 | return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & ci.ksq; |
||
637 | |||
638 | // En passant capture with check? We have already handled the case |
||
639 | // of direct checks and ordinary discovered check, so the only case we |
||
640 | // need to handle is the unusual case of a discovered check through |
||
641 | // the captured pawn. |
||
642 | case ENPASSANT: |
||
643 | { |
||
644 | Square capsq = make_square(file_of(to), rank_of(from)); |
||
645 | Bitboard b = (pieces() ^ from ^ capsq) | to; |
||
646 | |||
647 | return (attacks_bb< ROOK>(ci.ksq, b) & pieces(sideToMove, QUEEN, ROOK)) |
||
648 | | (attacks_bb<BISHOP>(ci.ksq, b) & pieces(sideToMove, QUEEN, BISHOP)); |
||
649 | } |
||
650 | case CASTLING: |
||
651 | { |
||
652 | Square kfrom = from; |
||
653 | Square rfrom = to; // Castling is encoded as 'King captures the rook' |
||
654 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); |
||
655 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); |
||
656 | |||
657 | return (PseudoAttacks[ROOK][rto] & ci.ksq) |
||
658 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & ci.ksq); |
||
659 | } |
||
660 | default: |
||
661 | assert(false); |
||
662 | return false; |
||
663 | } |
||
664 | } |
||
665 | |||
666 | |||
667 | /// Position::do_move() makes a move, and saves all information necessary |
||
668 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal |
||
669 | /// moves should be filtered out before this function is called. |
||
670 | |||
671 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { |
||
672 | |||
673 | assert(is_ok(m)); |
||
674 | assert(&newSt != st); |
||
675 | |||
676 | ++nodes; |
||
677 | Key k = st->key ^ Zobrist::side; |
||
678 | |||
679 | // Copy some fields of the old state to our new StateInfo object except the |
||
680 | // ones which are going to be recalculated from scratch anyway and then switch |
||
681 | // our state pointer to point to the new (ready to be updated) state. |
||
682 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); |
||
683 | newSt.previous = st; |
||
684 | st = &newSt; |
||
685 | |||
686 | // Increment ply counters. In particular, rule50 will be reset to zero later on |
||
687 | // in case of a capture or a pawn move. |
||
688 | ++gamePly; |
||
689 | ++st->rule50; |
||
690 | ++st->pliesFromNull; |
||
691 | |||
692 | Color us = sideToMove; |
||
693 | Color them = ~us; |
||
694 | Square from = from_sq(m); |
||
695 | Square to = to_sq(m); |
||
696 | PieceType pt = type_of(piece_on(from)); |
||
697 | PieceType captured = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to)); |
||
698 | |||
699 | assert(color_of(piece_on(from)) == us); |
||
700 | assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == (type_of(m) != CASTLING ? them : us)); |
||
701 | assert(captured != KING); |
||
702 | |||
703 | if (type_of(m) == CASTLING) |
||
704 | { |
||
705 | assert(pt == KING); |
||
706 | |||
707 | Square rfrom, rto; |
||
708 | do_castling<true>(us, from, to, rfrom, rto); |
||
709 | |||
710 | captured = NO_PIECE_TYPE; |
||
711 | st->psq += PSQT::psq[us][ROOK][rto] - PSQT::psq[us][ROOK][rfrom]; |
||
712 | k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto]; |
||
713 | } |
||
714 | |||
715 | if (captured) |
||
716 | { |
||
717 | Square capsq = to; |
||
718 | |||
719 | // If the captured piece is a pawn, update pawn hash key, otherwise |
||
720 | // update non-pawn material. |
||
721 | if (captured == PAWN) |
||
722 | { |
||
723 | if (type_of(m) == ENPASSANT) |
||
724 | { |
||
725 | capsq -= pawn_push(us); |
||
726 | |||
727 | assert(pt == PAWN); |
||
728 | assert(to == st->epSquare); |
||
729 | assert(relative_rank(us, to) == RANK_6); |
||
730 | assert(piece_on(to) == NO_PIECE); |
||
731 | assert(piece_on(capsq) == make_piece(them, PAWN)); |
||
732 | |||
733 | board[capsq] = NO_PIECE; // Not done by remove_piece() |
||
734 | } |
||
735 | |||
736 | st->pawnKey ^= Zobrist::psq[them][PAWN][capsq]; |
||
737 | } |
||
738 | else |
||
739 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; |
||
740 | |||
741 | // Update board and piece lists |
||
742 | remove_piece(them, captured, capsq); |
||
743 | |||
744 | // Update material hash key and prefetch access to materialTable |
||
745 | k ^= Zobrist::psq[them][captured][capsq]; |
||
746 | st->materialKey ^= Zobrist::psq[them][captured][pieceCount[them][captured]]; |
||
747 | prefetch(thisThread->materialTable[st->materialKey]); |
||
748 | |||
749 | // Update incremental scores |
||
750 | st->psq -= PSQT::psq[them][captured][capsq]; |
||
751 | |||
752 | // Reset rule 50 counter |
||
753 | st->rule50 = 0; |
||
754 | } |
||
755 | |||
756 | // Update hash key |
||
757 | k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to]; |
||
758 | |||
759 | // Reset en passant square |
||
760 | if (st->epSquare != SQ_NONE) |
||
761 | { |
||
762 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
763 | st->epSquare = SQ_NONE; |
||
764 | } |
||
765 | |||
766 | // Update castling rights if needed |
||
767 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) |
||
768 | { |
||
769 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; |
||
770 | k ^= Zobrist::castling[st->castlingRights & cr]; |
||
771 | st->castlingRights &= ~cr; |
||
772 | } |
||
773 | |||
774 | // Move the piece. The tricky Chess960 castling is handled earlier |
||
775 | if (type_of(m) != CASTLING) |
||
776 | move_piece(us, pt, from, to); |
||
777 | |||
778 | // If the moving piece is a pawn do some special extra work |
||
779 | if (pt == PAWN) |
||
780 | { |
||
781 | // Set en-passant square if the moved pawn can be captured |
||
782 | if ( (int(to) ^ int(from)) == 16 |
||
783 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) |
||
784 | { |
||
785 | st->epSquare = (from + to) / 2; |
||
786 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
787 | } |
||
788 | |||
789 | else if (type_of(m) == PROMOTION) |
||
790 | { |
||
791 | PieceType promotion = promotion_type(m); |
||
792 | |||
793 | assert(relative_rank(us, to) == RANK_8); |
||
794 | assert(promotion >= KNIGHT && promotion <= QUEEN); |
||
795 | |||
796 | remove_piece(us, PAWN, to); |
||
797 | put_piece(us, promotion, to); |
||
798 | |||
799 | // Update hash keys |
||
800 | k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to]; |
||
801 | st->pawnKey ^= Zobrist::psq[us][PAWN][to]; |
||
802 | st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]-1] |
||
803 | ^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]]; |
||
804 | |||
805 | // Update incremental score |
||
806 | st->psq += PSQT::psq[us][promotion][to] - PSQT::psq[us][PAWN][to]; |
||
807 | |||
808 | // Update material |
||
809 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; |
||
810 | } |
||
811 | |||
812 | // Update pawn hash key and prefetch access to pawnsTable |
||
813 | st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to]; |
||
814 | prefetch(thisThread->pawnsTable[st->pawnKey]); |
||
815 | |||
816 | // Reset rule 50 draw counter |
||
817 | st->rule50 = 0; |
||
818 | } |
||
819 | |||
820 | // Update incremental scores |
||
821 | st->psq += PSQT::psq[us][pt][to] - PSQT::psq[us][pt][from]; |
||
822 | |||
823 | // Set capture piece |
||
824 | st->capturedType = captured; |
||
825 | |||
826 | // Update the key with the final value |
||
827 | st->key = k; |
||
828 | |||
829 | // Calculate checkers bitboard (if move gives check) |
||
830 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; |
||
831 | |||
832 | sideToMove = ~sideToMove; |
||
833 | |||
834 | assert(pos_is_ok()); |
||
835 | } |
||
836 | |||
837 | |||
838 | /// Position::undo_move() unmakes a move. When it returns, the position should |
||
839 | /// be restored to exactly the same state as before the move was made. |
||
840 | |||
841 | void Position::undo_move(Move m) { |
||
842 | |||
843 | assert(is_ok(m)); |
||
844 | |||
845 | sideToMove = ~sideToMove; |
||
846 | |||
847 | Color us = sideToMove; |
||
848 | Square from = from_sq(m); |
||
849 | Square to = to_sq(m); |
||
850 | PieceType pt = type_of(piece_on(to)); |
||
851 | |||
852 | assert(empty(from) || type_of(m) == CASTLING); |
||
853 | assert(st->capturedType != KING); |
||
854 | |||
855 | if (type_of(m) == PROMOTION) |
||
856 | { |
||
857 | assert(relative_rank(us, to) == RANK_8); |
||
858 | assert(pt == promotion_type(m)); |
||
859 | assert(pt >= KNIGHT && pt <= QUEEN); |
||
860 | |||
861 | remove_piece(us, pt, to); |
||
862 | put_piece(us, PAWN, to); |
||
863 | pt = PAWN; |
||
864 | } |
||
865 | |||
866 | if (type_of(m) == CASTLING) |
||
867 | { |
||
868 | Square rfrom, rto; |
||
869 | do_castling<false>(us, from, to, rfrom, rto); |
||
870 | } |
||
871 | else |
||
872 | { |
||
873 | move_piece(us, pt, to, from); // Put the piece back at the source square |
||
874 | |||
875 | if (st->capturedType) |
||
876 | { |
||
877 | Square capsq = to; |
||
878 | |||
879 | if (type_of(m) == ENPASSANT) |
||
880 | { |
||
881 | capsq -= pawn_push(us); |
||
882 | |||
883 | assert(pt == PAWN); |
||
884 | assert(to == st->previous->epSquare); |
||
885 | assert(relative_rank(us, to) == RANK_6); |
||
886 | assert(piece_on(capsq) == NO_PIECE); |
||
887 | assert(st->capturedType == PAWN); |
||
888 | } |
||
889 | |||
890 | put_piece(~us, st->capturedType, capsq); // Restore the captured piece |
||
891 | } |
||
892 | } |
||
893 | |||
894 | // Finally point our state pointer back to the previous state |
||
895 | st = st->previous; |
||
896 | --gamePly; |
||
897 | |||
898 | assert(pos_is_ok()); |
||
899 | } |
||
900 | |||
901 | |||
902 | /// Position::do_castling() is a helper used to do/undo a castling move. This |
||
903 | /// is a bit tricky, especially in Chess960. |
||
904 | template<bool Do> |
||
905 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { |
||
906 | |||
907 | bool kingSide = to > from; |
||
908 | rfrom = to; // Castling is encoded as "king captures friendly rook" |
||
909 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); |
||
910 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); |
||
911 | |||
912 | // Remove both pieces first since squares could overlap in Chess960 |
||
913 | remove_piece(us, KING, Do ? from : to); |
||
914 | remove_piece(us, ROOK, Do ? rfrom : rto); |
||
915 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us |
||
916 | put_piece(us, KING, Do ? to : from); |
||
917 | put_piece(us, ROOK, Do ? rto : rfrom); |
||
918 | } |
||
919 | |||
920 | |||
921 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips |
||
922 | /// the side to move without executing any move on the board. |
||
923 | |||
924 | void Position::do_null_move(StateInfo& newSt) { |
||
925 | |||
926 | assert(!checkers()); |
||
927 | assert(&newSt != st); |
||
928 | |||
929 | std::memcpy(&newSt, st, sizeof(StateInfo)); |
||
930 | newSt.previous = st; |
||
931 | st = &newSt; |
||
932 | |||
933 | if (st->epSquare != SQ_NONE) |
||
934 | { |
||
935 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
936 | st->epSquare = SQ_NONE; |
||
937 | } |
||
938 | |||
939 | st->key ^= Zobrist::side; |
||
940 | prefetch(TT.first_entry(st->key)); |
||
941 | |||
942 | ++st->rule50; |
||
943 | st->pliesFromNull = 0; |
||
944 | |||
945 | sideToMove = ~sideToMove; |
||
946 | |||
947 | assert(pos_is_ok()); |
||
948 | } |
||
949 | |||
950 | void Position::undo_null_move() { |
||
951 | |||
952 | assert(!checkers()); |
||
953 | |||
954 | st = st->previous; |
||
955 | sideToMove = ~sideToMove; |
||
956 | } |
||
957 | |||
958 | |||
959 | /// Position::key_after() computes the new hash key after the given move. Needed |
||
960 | /// for speculative prefetch. It doesn't recognize special moves like castling, |
||
961 | /// en-passant and promotions. |
||
962 | |||
963 | Key Position::key_after(Move m) const { |
||
964 | |||
965 | Color us = sideToMove; |
||
966 | Square from = from_sq(m); |
||
967 | Square to = to_sq(m); |
||
968 | PieceType pt = type_of(piece_on(from)); |
||
969 | PieceType captured = type_of(piece_on(to)); |
||
970 | Key k = st->key ^ Zobrist::side; |
||
971 | |||
972 | if (captured) |
||
973 | k ^= Zobrist::psq[~us][captured][to]; |
||
974 | |||
975 | return k ^ Zobrist::psq[us][pt][to] ^ Zobrist::psq[us][pt][from]; |
||
976 | } |
||
977 | |||
978 | |||
979 | /// Position::see() is a static exchange evaluator: It tries to estimate the |
||
980 | /// material gain or loss resulting from a move. |
||
981 | |||
982 | Value Position::see_sign(Move m) const { |
||
983 | |||
984 | assert(is_ok(m)); |
||
985 | |||
986 | // Early return if SEE cannot be negative because captured piece value |
||
987 | // is not less then capturing one. Note that king moves always return |
||
988 | // here because king midgame value is set to 0. |
||
989 | if (PieceValue[MG][moved_piece(m)] <= PieceValue[MG][piece_on(to_sq(m))]) |
||
990 | return VALUE_KNOWN_WIN; |
||
991 | |||
992 | return see(m); |
||
993 | } |
||
994 | |||
995 | Value Position::see(Move m) const { |
||
996 | |||
997 | Square from, to; |
||
998 | Bitboard occupied, attackers, stmAttackers; |
||
999 | Value swapList[32]; |
||
1000 | int slIndex = 1; |
||
1001 | PieceType captured; |
||
1002 | Color stm; |
||
1003 | |||
1004 | assert(is_ok(m)); |
||
1005 | |||
1006 | from = from_sq(m); |
||
1007 | to = to_sq(m); |
||
1008 | swapList[0] = PieceValue[MG][piece_on(to)]; |
||
1009 | stm = color_of(piece_on(from)); |
||
1010 | occupied = pieces() ^ from; |
||
1011 | |||
1012 | // Castling moves are implemented as king capturing the rook so cannot |
||
1013 | // be handled correctly. Simply return VALUE_ZERO that is always correct |
||
1014 | // unless in the rare case the rook ends up under attack. |
||
1015 | if (type_of(m) == CASTLING) |
||
1016 | return VALUE_ZERO; |
||
1017 | |||
1018 | if (type_of(m) == ENPASSANT) |
||
1019 | { |
||
1020 | occupied ^= to - pawn_push(stm); // Remove the captured pawn |
||
1021 | swapList[0] = PieceValue[MG][PAWN]; |
||
1022 | } |
||
1023 | |||
1024 | // Find all attackers to the destination square, with the moving piece |
||
1025 | // removed, but possibly an X-ray attacker added behind it. |
||
1026 | attackers = attackers_to(to, occupied) & occupied; |
||
1027 | |||
1028 | // If the opponent has no attackers we are finished |
||
1029 | stm = ~stm; |
||
1030 | stmAttackers = attackers & pieces(stm); |
||
1031 | if (!stmAttackers) |
||
1032 | return swapList[0]; |
||
1033 | |||
1034 | // The destination square is defended, which makes things rather more |
||
1035 | // difficult to compute. We proceed by building up a "swap list" containing |
||
1036 | // the material gain or loss at each stop in a sequence of captures to the |
||
1037 | // destination square, where the sides alternately capture, and always |
||
1038 | // capture with the least valuable piece. After each capture, we look for |
||
1039 | // new X-ray attacks from behind the capturing piece. |
||
1040 | captured = type_of(piece_on(from)); |
||
1041 | |||
1042 | do { |
||
1043 | assert(slIndex < 32); |
||
1044 | |||
1045 | // Add the new entry to the swap list |
||
1046 | swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured]; |
||
1047 | |||
1048 | // Locate and remove the next least valuable attacker |
||
1049 | captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); |
||
1050 | stm = ~stm; |
||
1051 | stmAttackers = attackers & pieces(stm); |
||
1052 | ++slIndex; |
||
1053 | |||
1054 | } while (stmAttackers && (captured != KING || (--slIndex, false))); // Stop before a king capture |
||
1055 | |||
1056 | // Having built the swap list, we negamax through it to find the best |
||
1057 | // achievable score from the point of view of the side to move. |
||
1058 | while (--slIndex) |
||
1059 | swapList[slIndex - 1] = std::min(-swapList[slIndex], swapList[slIndex - 1]); |
||
1060 | |||
1061 | return swapList[0]; |
||
1062 | } |
||
1063 | |||
1064 | |||
1065 | /// Position::is_draw() tests whether the position is drawn by 50-move rule |
||
1066 | /// or by repetition. It does not detect stalemates. |
||
1067 | |||
1068 | bool Position::is_draw() const { |
||
1069 | |||
1070 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) |
||
1071 | return true; |
||
1072 | |||
1073 | StateInfo* stp = st; |
||
1074 | for (int i = 2, e = std::min(st->rule50, st->pliesFromNull); i <= e; i += 2) |
||
1075 | { |
||
1076 | stp = stp->previous->previous; |
||
1077 | |||
1078 | if (stp->key == st->key) |
||
1079 | return true; // Draw at first repetition |
||
1080 | } |
||
1081 | |||
1082 | return false; |
||
1083 | } |
||
1084 | |||
1085 | |||
1086 | /// Position::flip() flips position with the white and black sides reversed. This |
||
1087 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. |
||
1088 | |||
1089 | void Position::flip() { |
||
1090 | |||
1091 | string f, token; |
||
1092 | std::stringstream ss(fen()); |
||
1093 | |||
1094 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement |
||
1095 | { |
||
1096 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); |
||
1097 | f.insert(0, token + (f.empty() ? " " : "/")); |
||
1098 | } |
||
1099 | |||
1100 | ss >> token; // Active color |
||
1101 | f += (token == "w" ? "B " : "W "); // Will be lowercased later |
||
1102 | |||
1103 | ss >> token; // Castling availability |
||
1104 | f += token + " "; |
||
1105 | |||
1106 | std::transform(f.begin(), f.end(), f.begin(), |
||
1107 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); |
||
1108 | |||
1109 | ss >> token; // En passant square |
||
1110 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); |
||
1111 | |||
1112 | std::getline(ss, token); // Half and full moves |
||
1113 | f += token; |
||
1114 | |||
1115 | set(f, is_chess960(), this_thread()); |
||
1116 | |||
1117 | assert(pos_is_ok()); |
||
1118 | } |
||
1119 | |||
1120 | |||
1121 | /// Position::pos_is_ok() performs some consistency checks for the position object. |
||
1122 | /// This is meant to be helpful when debugging. |
||
1123 | |||
1124 | bool Position::pos_is_ok(int* failedStep) const { |
||
1125 | |||
1126 | const bool Fast = true; // Quick (default) or full check? |
||
1127 | |||
1128 | enum { Default, King, Bitboards, State, Lists, Castling }; |
||
1129 | |||
1130 | for (int step = Default; step <= (Fast ? Default : Castling); step++) |
||
1131 | { |
||
1132 | if (failedStep) |
||
1133 | *failedStep = step; |
||
1134 | |||
1135 | if (step == Default) |
||
1136 | if ( (sideToMove != WHITE && sideToMove != BLACK) |
||
1137 | || piece_on(square<KING>(WHITE)) != W_KING |
||
1138 | || piece_on(square<KING>(BLACK)) != B_KING |
||
1139 | || ( ep_square() != SQ_NONE |
||
1140 | && relative_rank(sideToMove, ep_square()) != RANK_6)) |
||
1141 | return false; |
||
1142 | |||
1143 | if (step == King) |
||
1144 | if ( std::count(board, board + SQUARE_NB, W_KING) != 1 |
||
1145 | || std::count(board, board + SQUARE_NB, B_KING) != 1 |
||
1146 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) |
||
1147 | return false; |
||
1148 | |||
1149 | if (step == Bitboards) |
||
1150 | { |
||
1151 | if ( (pieces(WHITE) & pieces(BLACK)) |
||
1152 | ||(pieces(WHITE) | pieces(BLACK)) != pieces()) |
||
1153 | return false; |
||
1154 | |||
1155 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) |
||
1156 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) |
||
1157 | if (p1 != p2 && (pieces(p1) & pieces(p2))) |
||
1158 | return false; |
||
1159 | } |
||
1160 | |||
1161 | if (step == State) |
||
1162 | { |
||
1163 | StateInfo si = *st; |
||
1164 | set_state(&si); |
||
1165 | if (std::memcmp(&si, st, sizeof(StateInfo))) |
||
1166 | return false; |
||
1167 | } |
||
1168 | |||
1169 | if (step == Lists) |
||
1170 | for (Color c = WHITE; c <= BLACK; ++c) |
||
1171 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
1172 | { |
||
1173 | if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt))) |
||
1174 | return false; |
||
1175 | |||
1176 | for (int i = 0; i < pieceCount[c][pt]; ++i) |
||
1177 | if ( board[pieceList[c][pt][i]] != make_piece(c, pt) |
||
1178 | || index[pieceList[c][pt][i]] != i) |
||
1179 | return false; |
||
1180 | } |
||
1181 | |||
1182 | if (step == Castling) |
||
1183 | for (Color c = WHITE; c <= BLACK; ++c) |
||
1184 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) |
||
1185 | { |
||
1186 | if (!can_castle(c | s)) |
||
1187 | continue; |
||
1188 | |||
1189 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) |
||
1190 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) |
||
1191 | ||(castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) |
||
1192 | return false; |
||
1193 | } |
||
1194 | } |
||
1195 | |||
1196 | return true; |
||
1197 | } |