Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
185 | pmbaty | 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
96 | pmbaty | 6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
154 | pmbaty | 23 | #include <cstddef> // For offsetof() |
24 | #include <cstring> // For std::memset, std::memcmp |
||
96 | pmbaty | 25 | #include <iomanip> |
26 | #include <sstream> |
||
27 | |||
154 | pmbaty | 28 | #include "bitboard.h" |
96 | pmbaty | 29 | #include "misc.h" |
30 | #include "movegen.h" |
||
31 | #include "position.h" |
||
32 | #include "thread.h" |
||
33 | #include "tt.h" |
||
34 | #include "uci.h" |
||
169 | pmbaty | 35 | #include "syzygy/tbprobe.h" |
96 | pmbaty | 36 | |
37 | using std::string; |
||
38 | |||
39 | namespace Zobrist { |
||
40 | |||
154 | pmbaty | 41 | Key psq[PIECE_NB][SQUARE_NB]; |
96 | pmbaty | 42 | Key enpassant[FILE_NB]; |
43 | Key castling[CASTLING_RIGHT_NB]; |
||
169 | pmbaty | 44 | Key side, noPawns; |
96 | pmbaty | 45 | } |
46 | |||
47 | namespace { |
||
48 | |||
49 | const string PieceToChar(" PNBRQK pnbrqk"); |
||
50 | |||
185 | pmbaty | 51 | constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, |
52 | B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; |
||
169 | pmbaty | 53 | |
54 | // min_attacker() is a helper function used by see_ge() to locate the least |
||
96 | pmbaty | 55 | // valuable attacker for the side to move, remove the attacker we just found |
56 | // from the bitboards and scan for new X-ray attacks behind it. |
||
57 | |||
58 | template<int Pt> |
||
185 | pmbaty | 59 | PieceType min_attacker(const Bitboard* byTypeBB, Square to, Bitboard stmAttackers, |
96 | pmbaty | 60 | Bitboard& occupied, Bitboard& attackers) { |
61 | |||
185 | pmbaty | 62 | Bitboard b = stmAttackers & byTypeBB[Pt]; |
96 | pmbaty | 63 | if (!b) |
185 | pmbaty | 64 | return min_attacker<Pt + 1>(byTypeBB, to, stmAttackers, occupied, attackers); |
96 | pmbaty | 65 | |
185 | pmbaty | 66 | occupied ^= lsb(b); // Remove the attacker from occupied |
96 | pmbaty | 67 | |
185 | pmbaty | 68 | // Add any X-ray attack behind the just removed piece. For instance with |
69 | // rooks in a8 and a7 attacking a1, after removing a7 we add rook in a8. |
||
70 | // Note that new added attackers can be of any color. |
||
96 | pmbaty | 71 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) |
185 | pmbaty | 72 | attackers |= attacks_bb<BISHOP>(to, occupied) & (byTypeBB[BISHOP] | byTypeBB[QUEEN]); |
96 | pmbaty | 73 | |
74 | if (Pt == ROOK || Pt == QUEEN) |
||
185 | pmbaty | 75 | attackers |= attacks_bb<ROOK>(to, occupied) & (byTypeBB[ROOK] | byTypeBB[QUEEN]); |
96 | pmbaty | 76 | |
185 | pmbaty | 77 | // X-ray may add already processed pieces because byTypeBB[] is constant: in |
78 | // the rook example, now attackers contains _again_ rook in a7, so remove it. |
||
79 | attackers &= occupied; |
||
96 | pmbaty | 80 | return (PieceType)Pt; |
81 | } |
||
82 | |||
83 | template<> |
||
84 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { |
||
85 | return KING; // No need to update bitboards: it is the last cycle |
||
86 | } |
||
87 | |||
88 | } // namespace |
||
89 | |||
90 | |||
91 | /// operator<<(Position) returns an ASCII representation of the position |
||
92 | |||
93 | std::ostream& operator<<(std::ostream& os, const Position& pos) { |
||
94 | |||
95 | os << "\n +---+---+---+---+---+---+---+---+\n"; |
||
96 | |||
97 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
98 | { |
||
99 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
100 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; |
||
101 | |||
102 | os << " |\n +---+---+---+---+---+---+---+---+\n"; |
||
103 | } |
||
104 | |||
105 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase |
||
169 | pmbaty | 106 | << std::setfill('0') << std::setw(16) << pos.key() |
107 | << std::setfill(' ') << std::dec << "\nCheckers: "; |
||
96 | pmbaty | 108 | |
109 | for (Bitboard b = pos.checkers(); b; ) |
||
110 | os << UCI::square(pop_lsb(&b)) << " "; |
||
111 | |||
169 | pmbaty | 112 | if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces()) |
113 | && !pos.can_castle(ANY_CASTLING)) |
||
114 | { |
||
115 | StateInfo st; |
||
116 | Position p; |
||
117 | p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread()); |
||
118 | Tablebases::ProbeState s1, s2; |
||
119 | Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1); |
||
120 | int dtz = Tablebases::probe_dtz(p, &s2); |
||
121 | os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")" |
||
122 | << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")"; |
||
123 | } |
||
124 | |||
96 | pmbaty | 125 | return os; |
126 | } |
||
127 | |||
128 | |||
185 | pmbaty | 129 | // Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition" |
130 | // situations. Description of the algorithm in the following paper: |
||
131 | // https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf |
||
132 | |||
133 | // First and second hash functions for indexing the cuckoo tables |
||
134 | inline int H1(Key h) { return h & 0x1fff; } |
||
135 | inline int H2(Key h) { return (h >> 16) & 0x1fff; } |
||
136 | |||
137 | // Cuckoo tables with Zobrist hashes of valid reversible moves, and the moves themselves |
||
138 | Key cuckoo[8192]; |
||
139 | Move cuckooMove[8192]; |
||
140 | |||
141 | |||
96 | pmbaty | 142 | /// Position::init() initializes at startup the various arrays used to compute |
143 | /// hash keys. |
||
144 | |||
145 | void Position::init() { |
||
146 | |||
147 | PRNG rng(1070372); |
||
148 | |||
154 | pmbaty | 149 | for (Piece pc : Pieces) |
150 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
151 | Zobrist::psq[pc][s] = rng.rand<Key>(); |
||
96 | pmbaty | 152 | |
153 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
154 | Zobrist::enpassant[f] = rng.rand<Key>(); |
||
155 | |||
156 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) |
||
157 | { |
||
158 | Zobrist::castling[cr] = 0; |
||
159 | Bitboard b = cr; |
||
160 | while (b) |
||
161 | { |
||
162 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; |
||
163 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); |
||
164 | } |
||
165 | } |
||
166 | |||
167 | Zobrist::side = rng.rand<Key>(); |
||
169 | pmbaty | 168 | Zobrist::noPawns = rng.rand<Key>(); |
185 | pmbaty | 169 | |
170 | // Prepare the cuckoo tables |
||
171 | std::memset(cuckoo, 0, sizeof(cuckoo)); |
||
172 | std::memset(cuckooMove, 0, sizeof(cuckooMove)); |
||
173 | int count = 0; |
||
174 | for (Piece pc : Pieces) |
||
175 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
176 | for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2) |
||
177 | if (PseudoAttacks[type_of(pc)][s1] & s2) |
||
178 | { |
||
179 | Move move = make_move(s1, s2); |
||
180 | Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side; |
||
181 | int i = H1(key); |
||
182 | while (true) |
||
183 | { |
||
184 | std::swap(cuckoo[i], key); |
||
185 | std::swap(cuckooMove[i], move); |
||
186 | if (move == 0) // Arrived at empty slot ? |
||
187 | break; |
||
188 | i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot |
||
189 | } |
||
190 | count++; |
||
191 | } |
||
192 | assert(count == 3668); |
||
96 | pmbaty | 193 | } |
194 | |||
195 | |||
196 | /// Position::set() initializes the position object with the given FEN string. |
||
197 | /// This function is not very robust - make sure that input FENs are correct, |
||
198 | /// this is assumed to be the responsibility of the GUI. |
||
199 | |||
154 | pmbaty | 200 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { |
96 | pmbaty | 201 | /* |
202 | A FEN string defines a particular position using only the ASCII character set. |
||
203 | |||
204 | A FEN string contains six fields separated by a space. The fields are: |
||
205 | |||
206 | 1) Piece placement (from white's perspective). Each rank is described, starting |
||
207 | with rank 8 and ending with rank 1. Within each rank, the contents of each |
||
208 | square are described from file A through file H. Following the Standard |
||
209 | Algebraic Notation (SAN), each piece is identified by a single letter taken |
||
210 | from the standard English names. White pieces are designated using upper-case |
||
211 | letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are |
||
212 | noted using digits 1 through 8 (the number of blank squares), and "/" |
||
213 | separates ranks. |
||
214 | |||
215 | 2) Active color. "w" means white moves next, "b" means black. |
||
216 | |||
217 | 3) Castling availability. If neither side can castle, this is "-". Otherwise, |
||
218 | this has one or more letters: "K" (White can castle kingside), "Q" (White |
||
219 | can castle queenside), "k" (Black can castle kingside), and/or "q" (Black |
||
220 | can castle queenside). |
||
221 | |||
222 | 4) En passant target square (in algebraic notation). If there's no en passant |
||
223 | target square, this is "-". If a pawn has just made a 2-square move, this |
||
169 | pmbaty | 224 | is the position "behind" the pawn. This is recorded only if there is a pawn |
225 | in position to make an en passant capture, and if there really is a pawn |
||
226 | that might have advanced two squares. |
||
96 | pmbaty | 227 | |
228 | 5) Halfmove clock. This is the number of halfmoves since the last pawn advance |
||
229 | or capture. This is used to determine if a draw can be claimed under the |
||
230 | fifty-move rule. |
||
231 | |||
232 | 6) Fullmove number. The number of the full move. It starts at 1, and is |
||
233 | incremented after Black's move. |
||
234 | */ |
||
235 | |||
236 | unsigned char col, row, token; |
||
237 | size_t idx; |
||
238 | Square sq = SQ_A8; |
||
239 | std::istringstream ss(fenStr); |
||
240 | |||
154 | pmbaty | 241 | std::memset(this, 0, sizeof(Position)); |
242 | std::memset(si, 0, sizeof(StateInfo)); |
||
243 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); |
||
244 | st = si; |
||
245 | |||
96 | pmbaty | 246 | ss >> std::noskipws; |
247 | |||
248 | // 1. Piece placement |
||
249 | while ((ss >> token) && !isspace(token)) |
||
250 | { |
||
251 | if (isdigit(token)) |
||
169 | pmbaty | 252 | sq += (token - '0') * EAST; // Advance the given number of files |
96 | pmbaty | 253 | |
254 | else if (token == '/') |
||
169 | pmbaty | 255 | sq += 2 * SOUTH; |
96 | pmbaty | 256 | |
257 | else if ((idx = PieceToChar.find(token)) != string::npos) |
||
258 | { |
||
154 | pmbaty | 259 | put_piece(Piece(idx), sq); |
96 | pmbaty | 260 | ++sq; |
261 | } |
||
262 | } |
||
263 | |||
264 | // 2. Active color |
||
265 | ss >> token; |
||
266 | sideToMove = (token == 'w' ? WHITE : BLACK); |
||
267 | ss >> token; |
||
268 | |||
269 | // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, |
||
270 | // Shredder-FEN that uses the letters of the columns on which the rooks began |
||
271 | // the game instead of KQkq and also X-FEN standard that, in case of Chess960, |
||
272 | // if an inner rook is associated with the castling right, the castling tag is |
||
273 | // replaced by the file letter of the involved rook, as for the Shredder-FEN. |
||
274 | while ((ss >> token) && !isspace(token)) |
||
275 | { |
||
276 | Square rsq; |
||
277 | Color c = islower(token) ? BLACK : WHITE; |
||
278 | Piece rook = make_piece(c, ROOK); |
||
279 | |||
280 | token = char(toupper(token)); |
||
281 | |||
282 | if (token == 'K') |
||
283 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} |
||
284 | |||
285 | else if (token == 'Q') |
||
286 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} |
||
287 | |||
288 | else if (token >= 'A' && token <= 'H') |
||
289 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); |
||
290 | |||
291 | else |
||
292 | continue; |
||
293 | |||
294 | set_castling_right(c, rsq); |
||
295 | } |
||
296 | |||
297 | // 4. En passant square. Ignore if no pawn capture is possible |
||
298 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) |
||
299 | && ((ss >> row) && (row == '3' || row == '6'))) |
||
300 | { |
||
301 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); |
||
302 | |||
169 | pmbaty | 303 | if ( !(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)) |
304 | || !(pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))) |
||
96 | pmbaty | 305 | st->epSquare = SQ_NONE; |
306 | } |
||
154 | pmbaty | 307 | else |
308 | st->epSquare = SQ_NONE; |
||
96 | pmbaty | 309 | |
310 | // 5-6. Halfmove clock and fullmove number |
||
311 | ss >> std::skipws >> st->rule50 >> gamePly; |
||
312 | |||
169 | pmbaty | 313 | // Convert from fullmove starting from 1 to gamePly starting from 0, |
96 | pmbaty | 314 | // handle also common incorrect FEN with fullmove = 0. |
315 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); |
||
316 | |||
317 | chess960 = isChess960; |
||
318 | thisThread = th; |
||
319 | set_state(st); |
||
320 | |||
321 | assert(pos_is_ok()); |
||
154 | pmbaty | 322 | |
323 | return *this; |
||
96 | pmbaty | 324 | } |
325 | |||
326 | |||
327 | /// Position::set_castling_right() is a helper function used to set castling |
||
328 | /// rights given the corresponding color and the rook starting square. |
||
329 | |||
330 | void Position::set_castling_right(Color c, Square rfrom) { |
||
331 | |||
332 | Square kfrom = square<KING>(c); |
||
333 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; |
||
334 | CastlingRight cr = (c | cs); |
||
335 | |||
336 | st->castlingRights |= cr; |
||
337 | castlingRightsMask[kfrom] |= cr; |
||
338 | castlingRightsMask[rfrom] |= cr; |
||
339 | castlingRookSquare[cr] = rfrom; |
||
340 | |||
341 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); |
||
342 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); |
||
343 | |||
344 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) |
||
345 | if (s != kfrom && s != rfrom) |
||
346 | castlingPath[cr] |= s; |
||
347 | |||
348 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) |
||
349 | if (s != kfrom && s != rfrom) |
||
350 | castlingPath[cr] |= s; |
||
351 | } |
||
352 | |||
353 | |||
154 | pmbaty | 354 | /// Position::set_check_info() sets king attacks to detect if a move gives check |
355 | |||
356 | void Position::set_check_info(StateInfo* si) const { |
||
357 | |||
185 | pmbaty | 358 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinners[BLACK]); |
359 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinners[WHITE]); |
||
154 | pmbaty | 360 | |
361 | Square ksq = square<KING>(~sideToMove); |
||
362 | |||
363 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove); |
||
364 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq); |
||
365 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq); |
||
366 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq); |
||
367 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; |
||
368 | si->checkSquares[KING] = 0; |
||
369 | } |
||
370 | |||
371 | |||
96 | pmbaty | 372 | /// Position::set_state() computes the hash keys of the position, and other |
373 | /// data that once computed is updated incrementally as moves are made. |
||
374 | /// The function is only used when a new position is set up, and to verify |
||
375 | /// the correctness of the StateInfo data when running in debug mode. |
||
376 | |||
377 | void Position::set_state(StateInfo* si) const { |
||
378 | |||
169 | pmbaty | 379 | si->key = si->materialKey = 0; |
380 | si->pawnKey = Zobrist::noPawns; |
||
96 | pmbaty | 381 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; |
382 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); |
||
383 | |||
154 | pmbaty | 384 | set_check_info(si); |
385 | |||
96 | pmbaty | 386 | for (Bitboard b = pieces(); b; ) |
387 | { |
||
388 | Square s = pop_lsb(&b); |
||
389 | Piece pc = piece_on(s); |
||
154 | pmbaty | 390 | si->key ^= Zobrist::psq[pc][s]; |
96 | pmbaty | 391 | } |
392 | |||
393 | if (si->epSquare != SQ_NONE) |
||
394 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; |
||
395 | |||
396 | if (sideToMove == BLACK) |
||
397 | si->key ^= Zobrist::side; |
||
398 | |||
399 | si->key ^= Zobrist::castling[si->castlingRights]; |
||
400 | |||
401 | for (Bitboard b = pieces(PAWN); b; ) |
||
402 | { |
||
403 | Square s = pop_lsb(&b); |
||
154 | pmbaty | 404 | si->pawnKey ^= Zobrist::psq[piece_on(s)][s]; |
96 | pmbaty | 405 | } |
406 | |||
154 | pmbaty | 407 | for (Piece pc : Pieces) |
408 | { |
||
409 | if (type_of(pc) != PAWN && type_of(pc) != KING) |
||
410 | si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc]; |
||
96 | pmbaty | 411 | |
154 | pmbaty | 412 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) |
413 | si->materialKey ^= Zobrist::psq[pc][cnt]; |
||
414 | } |
||
96 | pmbaty | 415 | } |
416 | |||
417 | |||
169 | pmbaty | 418 | /// Position::set() is an overload to initialize the position object with |
419 | /// the given endgame code string like "KBPKN". It is mainly a helper to |
||
420 | /// get the material key out of an endgame code. |
||
421 | |||
422 | Position& Position::set(const string& code, Color c, StateInfo* si) { |
||
423 | |||
424 | assert(code.length() > 0 && code.length() < 8); |
||
425 | assert(code[0] == 'K'); |
||
426 | |||
427 | string sides[] = { code.substr(code.find('K', 1)), // Weak |
||
428 | code.substr(0, code.find('K', 1)) }; // Strong |
||
429 | |||
430 | std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); |
||
431 | |||
432 | string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/" |
||
433 | + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10"; |
||
434 | |||
435 | return set(fenStr, false, si, nullptr); |
||
436 | } |
||
437 | |||
438 | |||
96 | pmbaty | 439 | /// Position::fen() returns a FEN representation of the position. In case of |
440 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. |
||
441 | |||
442 | const string Position::fen() const { |
||
443 | |||
444 | int emptyCnt; |
||
445 | std::ostringstream ss; |
||
446 | |||
447 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
448 | { |
||
449 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
450 | { |
||
451 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) |
||
452 | ++emptyCnt; |
||
453 | |||
454 | if (emptyCnt) |
||
455 | ss << emptyCnt; |
||
456 | |||
457 | if (f <= FILE_H) |
||
458 | ss << PieceToChar[piece_on(make_square(f, r))]; |
||
459 | } |
||
460 | |||
461 | if (r > RANK_1) |
||
462 | ss << '/'; |
||
463 | } |
||
464 | |||
465 | ss << (sideToMove == WHITE ? " w " : " b "); |
||
466 | |||
467 | if (can_castle(WHITE_OO)) |
||
468 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); |
||
469 | |||
470 | if (can_castle(WHITE_OOO)) |
||
471 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); |
||
472 | |||
473 | if (can_castle(BLACK_OO)) |
||
474 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); |
||
475 | |||
476 | if (can_castle(BLACK_OOO)) |
||
477 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); |
||
478 | |||
479 | if (!can_castle(WHITE) && !can_castle(BLACK)) |
||
480 | ss << '-'; |
||
481 | |||
482 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") |
||
483 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; |
||
484 | |||
485 | return ss.str(); |
||
486 | } |
||
487 | |||
488 | |||
154 | pmbaty | 489 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) |
490 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a |
||
491 | /// slider if removing that piece from the board would result in a position where |
||
492 | /// square 's' is attacked. For example, a king-attack blocking piece can be either |
||
493 | /// a pinned or a discovered check piece, according if its color is the opposite |
||
494 | /// or the same of the color of the slider. |
||
96 | pmbaty | 495 | |
154 | pmbaty | 496 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { |
96 | pmbaty | 497 | |
185 | pmbaty | 498 | Bitboard blockers = 0; |
154 | pmbaty | 499 | pinners = 0; |
96 | pmbaty | 500 | |
154 | pmbaty | 501 | // Snipers are sliders that attack 's' when a piece is removed |
169 | pmbaty | 502 | Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK)) |
154 | pmbaty | 503 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; |
96 | pmbaty | 504 | |
154 | pmbaty | 505 | while (snipers) |
96 | pmbaty | 506 | { |
154 | pmbaty | 507 | Square sniperSq = pop_lsb(&snipers); |
508 | Bitboard b = between_bb(s, sniperSq) & pieces(); |
||
96 | pmbaty | 509 | |
185 | pmbaty | 510 | if (b && !more_than_one(b)) |
154 | pmbaty | 511 | { |
185 | pmbaty | 512 | blockers |= b; |
154 | pmbaty | 513 | if (b & pieces(color_of(piece_on(s)))) |
514 | pinners |= sniperSq; |
||
515 | } |
||
96 | pmbaty | 516 | } |
185 | pmbaty | 517 | return blockers; |
96 | pmbaty | 518 | } |
519 | |||
520 | |||
521 | /// Position::attackers_to() computes a bitboard of all pieces which attack a |
||
522 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. |
||
523 | |||
524 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { |
||
525 | |||
526 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) |
||
527 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) |
||
528 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) |
||
169 | pmbaty | 529 | | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN)) |
96 | pmbaty | 530 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) |
531 | | (attacks_from<KING>(s) & pieces(KING)); |
||
532 | } |
||
533 | |||
534 | |||
535 | /// Position::legal() tests whether a pseudo-legal move is legal |
||
536 | |||
154 | pmbaty | 537 | bool Position::legal(Move m) const { |
96 | pmbaty | 538 | |
539 | assert(is_ok(m)); |
||
540 | |||
541 | Color us = sideToMove; |
||
542 | Square from = from_sq(m); |
||
543 | |||
544 | assert(color_of(moved_piece(m)) == us); |
||
545 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); |
||
546 | |||
547 | // En passant captures are a tricky special case. Because they are rather |
||
548 | // uncommon, we do it simply by testing whether the king is attacked after |
||
549 | // the move is made. |
||
550 | if (type_of(m) == ENPASSANT) |
||
551 | { |
||
552 | Square ksq = square<KING>(us); |
||
553 | Square to = to_sq(m); |
||
554 | Square capsq = to - pawn_push(us); |
||
555 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; |
||
556 | |||
557 | assert(to == ep_square()); |
||
558 | assert(moved_piece(m) == make_piece(us, PAWN)); |
||
559 | assert(piece_on(capsq) == make_piece(~us, PAWN)); |
||
560 | assert(piece_on(to) == NO_PIECE); |
||
561 | |||
562 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) |
||
563 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); |
||
564 | } |
||
565 | |||
566 | // If the moving piece is a king, check whether the destination |
||
567 | // square is attacked by the opponent. Castling moves are checked |
||
568 | // for legality during move generation. |
||
569 | if (type_of(piece_on(from)) == KING) |
||
570 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); |
||
571 | |||
572 | // A non-king move is legal if and only if it is not pinned or it |
||
573 | // is moving along the ray towards or away from the king. |
||
185 | pmbaty | 574 | return !(blockers_for_king(us) & from) |
96 | pmbaty | 575 | || aligned(from, to_sq(m), square<KING>(us)); |
576 | } |
||
577 | |||
578 | |||
579 | /// Position::pseudo_legal() takes a random move and tests whether the move is |
||
580 | /// pseudo legal. It is used to validate moves from TT that can be corrupted |
||
581 | /// due to SMP concurrent access or hash position key aliasing. |
||
582 | |||
583 | bool Position::pseudo_legal(const Move m) const { |
||
584 | |||
585 | Color us = sideToMove; |
||
586 | Square from = from_sq(m); |
||
587 | Square to = to_sq(m); |
||
588 | Piece pc = moved_piece(m); |
||
589 | |||
590 | // Use a slower but simpler function for uncommon cases |
||
591 | if (type_of(m) != NORMAL) |
||
592 | return MoveList<LEGAL>(*this).contains(m); |
||
593 | |||
594 | // Is not a promotion, so promotion piece must be empty |
||
595 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) |
||
596 | return false; |
||
597 | |||
598 | // If the 'from' square is not occupied by a piece belonging to the side to |
||
599 | // move, the move is obviously not legal. |
||
600 | if (pc == NO_PIECE || color_of(pc) != us) |
||
601 | return false; |
||
602 | |||
603 | // The destination square cannot be occupied by a friendly piece |
||
604 | if (pieces(us) & to) |
||
605 | return false; |
||
606 | |||
607 | // Handle the special case of a pawn move |
||
608 | if (type_of(pc) == PAWN) |
||
609 | { |
||
610 | // We have already handled promotion moves, so destination |
||
611 | // cannot be on the 8th/1st rank. |
||
612 | if (rank_of(to) == relative_rank(us, RANK_8)) |
||
613 | return false; |
||
614 | |||
615 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture |
||
616 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push |
||
617 | && !( (from + 2 * pawn_push(us) == to) // Not a double push |
||
618 | && (rank_of(from) == relative_rank(us, RANK_2)) |
||
619 | && empty(to) |
||
620 | && empty(to - pawn_push(us)))) |
||
621 | return false; |
||
622 | } |
||
169 | pmbaty | 623 | else if (!(attacks_from(type_of(pc), from) & to)) |
96 | pmbaty | 624 | return false; |
625 | |||
626 | // Evasions generator already takes care to avoid some kind of illegal moves |
||
627 | // and legal() relies on this. We therefore have to take care that the same |
||
628 | // kind of moves are filtered out here. |
||
629 | if (checkers()) |
||
630 | { |
||
631 | if (type_of(pc) != KING) |
||
632 | { |
||
633 | // Double check? In this case a king move is required |
||
634 | if (more_than_one(checkers())) |
||
635 | return false; |
||
636 | |||
637 | // Our move must be a blocking evasion or a capture of the checking piece |
||
638 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) |
||
639 | return false; |
||
640 | } |
||
641 | // In case of king moves under check we have to remove king so as to catch |
||
642 | // invalid moves like b1a1 when opposite queen is on c1. |
||
643 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) |
||
644 | return false; |
||
645 | } |
||
646 | |||
647 | return true; |
||
648 | } |
||
649 | |||
650 | |||
651 | /// Position::gives_check() tests whether a pseudo-legal move gives a check |
||
652 | |||
154 | pmbaty | 653 | bool Position::gives_check(Move m) const { |
96 | pmbaty | 654 | |
655 | assert(is_ok(m)); |
||
656 | assert(color_of(moved_piece(m)) == sideToMove); |
||
657 | |||
658 | Square from = from_sq(m); |
||
659 | Square to = to_sq(m); |
||
660 | |||
661 | // Is there a direct check? |
||
154 | pmbaty | 662 | if (st->checkSquares[type_of(piece_on(from))] & to) |
96 | pmbaty | 663 | return true; |
664 | |||
665 | // Is there a discovered check? |
||
185 | pmbaty | 666 | if ( (st->blockersForKing[~sideToMove] & from) |
154 | pmbaty | 667 | && !aligned(from, to, square<KING>(~sideToMove))) |
96 | pmbaty | 668 | return true; |
669 | |||
670 | switch (type_of(m)) |
||
671 | { |
||
672 | case NORMAL: |
||
673 | return false; |
||
674 | |||
675 | case PROMOTION: |
||
169 | pmbaty | 676 | return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove); |
96 | pmbaty | 677 | |
678 | // En passant capture with check? We have already handled the case |
||
679 | // of direct checks and ordinary discovered check, so the only case we |
||
680 | // need to handle is the unusual case of a discovered check through |
||
681 | // the captured pawn. |
||
682 | case ENPASSANT: |
||
683 | { |
||
684 | Square capsq = make_square(file_of(to), rank_of(from)); |
||
685 | Bitboard b = (pieces() ^ from ^ capsq) | to; |
||
686 | |||
154 | pmbaty | 687 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) |
688 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); |
||
96 | pmbaty | 689 | } |
690 | case CASTLING: |
||
691 | { |
||
692 | Square kfrom = from; |
||
693 | Square rfrom = to; // Castling is encoded as 'King captures the rook' |
||
694 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); |
||
695 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); |
||
696 | |||
154 | pmbaty | 697 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove)) |
698 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove)); |
||
96 | pmbaty | 699 | } |
700 | default: |
||
701 | assert(false); |
||
702 | return false; |
||
703 | } |
||
704 | } |
||
705 | |||
706 | |||
707 | /// Position::do_move() makes a move, and saves all information necessary |
||
708 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal |
||
709 | /// moves should be filtered out before this function is called. |
||
710 | |||
711 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { |
||
712 | |||
713 | assert(is_ok(m)); |
||
714 | assert(&newSt != st); |
||
715 | |||
169 | pmbaty | 716 | thisThread->nodes.fetch_add(1, std::memory_order_relaxed); |
96 | pmbaty | 717 | Key k = st->key ^ Zobrist::side; |
718 | |||
719 | // Copy some fields of the old state to our new StateInfo object except the |
||
720 | // ones which are going to be recalculated from scratch anyway and then switch |
||
721 | // our state pointer to point to the new (ready to be updated) state. |
||
722 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); |
||
723 | newSt.previous = st; |
||
724 | st = &newSt; |
||
725 | |||
726 | // Increment ply counters. In particular, rule50 will be reset to zero later on |
||
727 | // in case of a capture or a pawn move. |
||
728 | ++gamePly; |
||
729 | ++st->rule50; |
||
730 | ++st->pliesFromNull; |
||
731 | |||
732 | Color us = sideToMove; |
||
733 | Color them = ~us; |
||
734 | Square from = from_sq(m); |
||
735 | Square to = to_sq(m); |
||
154 | pmbaty | 736 | Piece pc = piece_on(from); |
737 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); |
||
96 | pmbaty | 738 | |
154 | pmbaty | 739 | assert(color_of(pc) == us); |
740 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); |
||
741 | assert(type_of(captured) != KING); |
||
96 | pmbaty | 742 | |
743 | if (type_of(m) == CASTLING) |
||
744 | { |
||
154 | pmbaty | 745 | assert(pc == make_piece(us, KING)); |
746 | assert(captured == make_piece(us, ROOK)); |
||
96 | pmbaty | 747 | |
748 | Square rfrom, rto; |
||
749 | do_castling<true>(us, from, to, rfrom, rto); |
||
750 | |||
154 | pmbaty | 751 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; |
752 | captured = NO_PIECE; |
||
96 | pmbaty | 753 | } |
754 | |||
755 | if (captured) |
||
756 | { |
||
757 | Square capsq = to; |
||
758 | |||
759 | // If the captured piece is a pawn, update pawn hash key, otherwise |
||
760 | // update non-pawn material. |
||
154 | pmbaty | 761 | if (type_of(captured) == PAWN) |
96 | pmbaty | 762 | { |
763 | if (type_of(m) == ENPASSANT) |
||
764 | { |
||
765 | capsq -= pawn_push(us); |
||
766 | |||
154 | pmbaty | 767 | assert(pc == make_piece(us, PAWN)); |
96 | pmbaty | 768 | assert(to == st->epSquare); |
769 | assert(relative_rank(us, to) == RANK_6); |
||
770 | assert(piece_on(to) == NO_PIECE); |
||
771 | assert(piece_on(capsq) == make_piece(them, PAWN)); |
||
772 | |||
773 | board[capsq] = NO_PIECE; // Not done by remove_piece() |
||
774 | } |
||
775 | |||
154 | pmbaty | 776 | st->pawnKey ^= Zobrist::psq[captured][capsq]; |
96 | pmbaty | 777 | } |
778 | else |
||
779 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; |
||
780 | |||
781 | // Update board and piece lists |
||
154 | pmbaty | 782 | remove_piece(captured, capsq); |
96 | pmbaty | 783 | |
784 | // Update material hash key and prefetch access to materialTable |
||
154 | pmbaty | 785 | k ^= Zobrist::psq[captured][capsq]; |
786 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; |
||
96 | pmbaty | 787 | prefetch(thisThread->materialTable[st->materialKey]); |
788 | |||
789 | // Reset rule 50 counter |
||
790 | st->rule50 = 0; |
||
791 | } |
||
792 | |||
793 | // Update hash key |
||
154 | pmbaty | 794 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
96 | pmbaty | 795 | |
796 | // Reset en passant square |
||
797 | if (st->epSquare != SQ_NONE) |
||
798 | { |
||
799 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
800 | st->epSquare = SQ_NONE; |
||
801 | } |
||
802 | |||
803 | // Update castling rights if needed |
||
804 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) |
||
805 | { |
||
806 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; |
||
807 | k ^= Zobrist::castling[st->castlingRights & cr]; |
||
808 | st->castlingRights &= ~cr; |
||
809 | } |
||
810 | |||
811 | // Move the piece. The tricky Chess960 castling is handled earlier |
||
812 | if (type_of(m) != CASTLING) |
||
154 | pmbaty | 813 | move_piece(pc, from, to); |
96 | pmbaty | 814 | |
815 | // If the moving piece is a pawn do some special extra work |
||
154 | pmbaty | 816 | if (type_of(pc) == PAWN) |
96 | pmbaty | 817 | { |
818 | // Set en-passant square if the moved pawn can be captured |
||
819 | if ( (int(to) ^ int(from)) == 16 |
||
820 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) |
||
821 | { |
||
169 | pmbaty | 822 | st->epSquare = to - pawn_push(us); |
96 | pmbaty | 823 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
824 | } |
||
825 | |||
826 | else if (type_of(m) == PROMOTION) |
||
827 | { |
||
154 | pmbaty | 828 | Piece promotion = make_piece(us, promotion_type(m)); |
96 | pmbaty | 829 | |
830 | assert(relative_rank(us, to) == RANK_8); |
||
154 | pmbaty | 831 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); |
96 | pmbaty | 832 | |
154 | pmbaty | 833 | remove_piece(pc, to); |
834 | put_piece(promotion, to); |
||
96 | pmbaty | 835 | |
836 | // Update hash keys |
||
154 | pmbaty | 837 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; |
838 | st->pawnKey ^= Zobrist::psq[pc][to]; |
||
839 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] |
||
840 | ^ Zobrist::psq[pc][pieceCount[pc]]; |
||
96 | pmbaty | 841 | |
842 | // Update material |
||
843 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; |
||
844 | } |
||
845 | |||
846 | // Update pawn hash key and prefetch access to pawnsTable |
||
154 | pmbaty | 847 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
169 | pmbaty | 848 | prefetch2(thisThread->pawnsTable[st->pawnKey]); |
96 | pmbaty | 849 | |
850 | // Reset rule 50 draw counter |
||
851 | st->rule50 = 0; |
||
852 | } |
||
853 | |||
854 | // Set capture piece |
||
154 | pmbaty | 855 | st->capturedPiece = captured; |
96 | pmbaty | 856 | |
857 | // Update the key with the final value |
||
858 | st->key = k; |
||
859 | |||
860 | // Calculate checkers bitboard (if move gives check) |
||
861 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; |
||
862 | |||
863 | sideToMove = ~sideToMove; |
||
864 | |||
154 | pmbaty | 865 | // Update king attacks used for fast check detection |
866 | set_check_info(st); |
||
867 | |||
96 | pmbaty | 868 | assert(pos_is_ok()); |
869 | } |
||
870 | |||
871 | |||
872 | /// Position::undo_move() unmakes a move. When it returns, the position should |
||
873 | /// be restored to exactly the same state as before the move was made. |
||
874 | |||
875 | void Position::undo_move(Move m) { |
||
876 | |||
877 | assert(is_ok(m)); |
||
878 | |||
879 | sideToMove = ~sideToMove; |
||
880 | |||
881 | Color us = sideToMove; |
||
882 | Square from = from_sq(m); |
||
883 | Square to = to_sq(m); |
||
154 | pmbaty | 884 | Piece pc = piece_on(to); |
96 | pmbaty | 885 | |
886 | assert(empty(from) || type_of(m) == CASTLING); |
||
154 | pmbaty | 887 | assert(type_of(st->capturedPiece) != KING); |
96 | pmbaty | 888 | |
889 | if (type_of(m) == PROMOTION) |
||
890 | { |
||
891 | assert(relative_rank(us, to) == RANK_8); |
||
154 | pmbaty | 892 | assert(type_of(pc) == promotion_type(m)); |
893 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); |
||
96 | pmbaty | 894 | |
154 | pmbaty | 895 | remove_piece(pc, to); |
896 | pc = make_piece(us, PAWN); |
||
897 | put_piece(pc, to); |
||
96 | pmbaty | 898 | } |
899 | |||
900 | if (type_of(m) == CASTLING) |
||
901 | { |
||
902 | Square rfrom, rto; |
||
903 | do_castling<false>(us, from, to, rfrom, rto); |
||
904 | } |
||
905 | else |
||
906 | { |
||
154 | pmbaty | 907 | move_piece(pc, to, from); // Put the piece back at the source square |
96 | pmbaty | 908 | |
154 | pmbaty | 909 | if (st->capturedPiece) |
96 | pmbaty | 910 | { |
911 | Square capsq = to; |
||
912 | |||
913 | if (type_of(m) == ENPASSANT) |
||
914 | { |
||
915 | capsq -= pawn_push(us); |
||
916 | |||
154 | pmbaty | 917 | assert(type_of(pc) == PAWN); |
96 | pmbaty | 918 | assert(to == st->previous->epSquare); |
919 | assert(relative_rank(us, to) == RANK_6); |
||
920 | assert(piece_on(capsq) == NO_PIECE); |
||
154 | pmbaty | 921 | assert(st->capturedPiece == make_piece(~us, PAWN)); |
96 | pmbaty | 922 | } |
923 | |||
154 | pmbaty | 924 | put_piece(st->capturedPiece, capsq); // Restore the captured piece |
96 | pmbaty | 925 | } |
926 | } |
||
927 | |||
928 | // Finally point our state pointer back to the previous state |
||
929 | st = st->previous; |
||
930 | --gamePly; |
||
931 | |||
932 | assert(pos_is_ok()); |
||
933 | } |
||
934 | |||
935 | |||
936 | /// Position::do_castling() is a helper used to do/undo a castling move. This |
||
154 | pmbaty | 937 | /// is a bit tricky in Chess960 where from/to squares can overlap. |
96 | pmbaty | 938 | template<bool Do> |
939 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { |
||
940 | |||
941 | bool kingSide = to > from; |
||
942 | rfrom = to; // Castling is encoded as "king captures friendly rook" |
||
943 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); |
||
944 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); |
||
945 | |||
946 | // Remove both pieces first since squares could overlap in Chess960 |
||
154 | pmbaty | 947 | remove_piece(make_piece(us, KING), Do ? from : to); |
948 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); |
||
96 | pmbaty | 949 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us |
154 | pmbaty | 950 | put_piece(make_piece(us, KING), Do ? to : from); |
951 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom); |
||
96 | pmbaty | 952 | } |
953 | |||
954 | |||
955 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips |
||
956 | /// the side to move without executing any move on the board. |
||
957 | |||
958 | void Position::do_null_move(StateInfo& newSt) { |
||
959 | |||
960 | assert(!checkers()); |
||
961 | assert(&newSt != st); |
||
962 | |||
963 | std::memcpy(&newSt, st, sizeof(StateInfo)); |
||
964 | newSt.previous = st; |
||
965 | st = &newSt; |
||
966 | |||
967 | if (st->epSquare != SQ_NONE) |
||
968 | { |
||
969 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
970 | st->epSquare = SQ_NONE; |
||
971 | } |
||
972 | |||
973 | st->key ^= Zobrist::side; |
||
974 | prefetch(TT.first_entry(st->key)); |
||
975 | |||
976 | ++st->rule50; |
||
977 | st->pliesFromNull = 0; |
||
978 | |||
979 | sideToMove = ~sideToMove; |
||
980 | |||
154 | pmbaty | 981 | set_check_info(st); |
982 | |||
96 | pmbaty | 983 | assert(pos_is_ok()); |
984 | } |
||
985 | |||
986 | void Position::undo_null_move() { |
||
987 | |||
988 | assert(!checkers()); |
||
989 | |||
990 | st = st->previous; |
||
991 | sideToMove = ~sideToMove; |
||
992 | } |
||
993 | |||
994 | |||
995 | /// Position::key_after() computes the new hash key after the given move. Needed |
||
996 | /// for speculative prefetch. It doesn't recognize special moves like castling, |
||
997 | /// en-passant and promotions. |
||
998 | |||
999 | Key Position::key_after(Move m) const { |
||
1000 | |||
1001 | Square from = from_sq(m); |
||
1002 | Square to = to_sq(m); |
||
154 | pmbaty | 1003 | Piece pc = piece_on(from); |
1004 | Piece captured = piece_on(to); |
||
96 | pmbaty | 1005 | Key k = st->key ^ Zobrist::side; |
1006 | |||
1007 | if (captured) |
||
154 | pmbaty | 1008 | k ^= Zobrist::psq[captured][to]; |
96 | pmbaty | 1009 | |
154 | pmbaty | 1010 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; |
96 | pmbaty | 1011 | } |
1012 | |||
1013 | |||
154 | pmbaty | 1014 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the |
169 | pmbaty | 1015 | /// SEE value of move is greater or equal to the given threshold. We'll use an |
154 | pmbaty | 1016 | /// algorithm similar to alpha-beta pruning with a null window. |
96 | pmbaty | 1017 | |
169 | pmbaty | 1018 | bool Position::see_ge(Move m, Value threshold) const { |
96 | pmbaty | 1019 | |
1020 | assert(is_ok(m)); |
||
1021 | |||
169 | pmbaty | 1022 | // Only deal with normal moves, assume others pass a simple see |
1023 | if (type_of(m) != NORMAL) |
||
1024 | return VALUE_ZERO >= threshold; |
||
96 | pmbaty | 1025 | |
185 | pmbaty | 1026 | Bitboard stmAttackers; |
154 | pmbaty | 1027 | Square from = from_sq(m), to = to_sq(m); |
1028 | PieceType nextVictim = type_of(piece_on(from)); |
||
185 | pmbaty | 1029 | Color us = color_of(piece_on(from)); |
1030 | Color stm = ~us; // First consider opponent's move |
||
1031 | Value balance; // Values of the pieces taken by us minus opponent's ones |
||
96 | pmbaty | 1032 | |
169 | pmbaty | 1033 | // The opponent may be able to recapture so this is the best result |
1034 | // we can hope for. |
||
1035 | balance = PieceValue[MG][piece_on(to)] - threshold; |
||
96 | pmbaty | 1036 | |
169 | pmbaty | 1037 | if (balance < VALUE_ZERO) |
154 | pmbaty | 1038 | return false; |
96 | pmbaty | 1039 | |
169 | pmbaty | 1040 | // Now assume the worst possible result: that the opponent can |
1041 | // capture our piece for free. |
||
154 | pmbaty | 1042 | balance -= PieceValue[MG][nextVictim]; |
96 | pmbaty | 1043 | |
185 | pmbaty | 1044 | // If it is enough (like in PxQ) then return immediately. Note that |
1045 | // in case nextVictim == KING we always return here, this is ok |
||
1046 | // if the given move is legal. |
||
1047 | if (balance >= VALUE_ZERO) |
||
154 | pmbaty | 1048 | return true; |
96 | pmbaty | 1049 | |
185 | pmbaty | 1050 | // Find all attackers to the destination square, with the moving piece |
1051 | // removed, but possibly an X-ray attacker added behind it. |
||
1052 | Bitboard occupied = pieces() ^ from ^ to; |
||
154 | pmbaty | 1053 | Bitboard attackers = attackers_to(to, occupied) & occupied; |
1054 | |||
1055 | while (true) |
||
96 | pmbaty | 1056 | { |
154 | pmbaty | 1057 | stmAttackers = attackers & pieces(stm); |
96 | pmbaty | 1058 | |
185 | pmbaty | 1059 | // Don't allow pinned pieces to attack (except the king) as long as |
1060 | // all pinners are on their original square. |
||
1061 | if (!(st->pinners[~stm] & ~occupied)) |
||
154 | pmbaty | 1062 | stmAttackers &= ~st->blockersForKing[stm]; |
96 | pmbaty | 1063 | |
185 | pmbaty | 1064 | // If stm has no more attackers then give up: stm loses |
154 | pmbaty | 1065 | if (!stmAttackers) |
169 | pmbaty | 1066 | break; |
96 | pmbaty | 1067 | |
185 | pmbaty | 1068 | // Locate and remove the next least valuable attacker, and add to |
1069 | // the bitboard 'attackers' the possibly X-ray attackers behind it. |
||
154 | pmbaty | 1070 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); |
96 | pmbaty | 1071 | |
185 | pmbaty | 1072 | stm = ~stm; // Switch side to move |
1073 | |||
1074 | // Negamax the balance with alpha = balance, beta = balance+1 and |
||
1075 | // add nextVictim's value. |
||
1076 | // |
||
1077 | // (balance, balance+1) -> (-balance-1, -balance) |
||
1078 | // |
||
1079 | assert(balance < VALUE_ZERO); |
||
1080 | |||
1081 | balance = -balance - 1 - PieceValue[MG][nextVictim]; |
||
1082 | |||
1083 | // If balance is still non-negative after giving away nextVictim then we |
||
1084 | // win. The only thing to be careful about it is that we should revert |
||
1085 | // stm if we captured with the king when the opponent still has attackers. |
||
1086 | if (balance >= VALUE_ZERO) |
||
169 | pmbaty | 1087 | { |
185 | pmbaty | 1088 | if (nextVictim == KING && (attackers & pieces(stm))) |
1089 | stm = ~stm; |
||
169 | pmbaty | 1090 | break; |
1091 | } |
||
185 | pmbaty | 1092 | assert(nextVictim != KING); |
154 | pmbaty | 1093 | } |
185 | pmbaty | 1094 | return us != stm; // We break the above loop when stm loses |
96 | pmbaty | 1095 | } |
1096 | |||
1097 | |||
1098 | /// Position::is_draw() tests whether the position is drawn by 50-move rule |
||
1099 | /// or by repetition. It does not detect stalemates. |
||
1100 | |||
169 | pmbaty | 1101 | bool Position::is_draw(int ply) const { |
96 | pmbaty | 1102 | |
1103 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) |
||
1104 | return true; |
||
1105 | |||
169 | pmbaty | 1106 | int end = std::min(st->rule50, st->pliesFromNull); |
1107 | |||
1108 | if (end < 4) |
||
1109 | return false; |
||
1110 | |||
1111 | StateInfo* stp = st->previous->previous; |
||
1112 | int cnt = 0; |
||
1113 | |||
1114 | for (int i = 4; i <= end; i += 2) |
||
96 | pmbaty | 1115 | { |
1116 | stp = stp->previous->previous; |
||
1117 | |||
169 | pmbaty | 1118 | // Return a draw score if a position repeats once earlier but strictly |
1119 | // after the root, or repeats twice before or at the root. |
||
1120 | if ( stp->key == st->key |
||
1121 | && ++cnt + (ply > i) == 2) |
||
1122 | return true; |
||
96 | pmbaty | 1123 | } |
1124 | |||
1125 | return false; |
||
1126 | } |
||
1127 | |||
1128 | |||
185 | pmbaty | 1129 | // Position::has_repeated() tests whether there has been at least one repetition |
1130 | // of positions since the last capture or pawn move. |
||
1131 | |||
1132 | bool Position::has_repeated() const { |
||
1133 | |||
1134 | StateInfo* stc = st; |
||
1135 | while (true) |
||
1136 | { |
||
1137 | int i = 4, end = std::min(stc->rule50, stc->pliesFromNull); |
||
1138 | |||
1139 | if (end < i) |
||
1140 | return false; |
||
1141 | |||
1142 | StateInfo* stp = stc->previous->previous; |
||
1143 | |||
1144 | do { |
||
1145 | stp = stp->previous->previous; |
||
1146 | |||
1147 | if (stp->key == stc->key) |
||
1148 | return true; |
||
1149 | |||
1150 | i += 2; |
||
1151 | } while (i <= end); |
||
1152 | |||
1153 | stc = stc->previous; |
||
1154 | } |
||
1155 | } |
||
1156 | |||
1157 | |||
1158 | /// Position::has_game_cycle() tests if the position has a move which draws by repetition, |
||
1159 | /// or an earlier position has a move that directly reaches the current position. |
||
1160 | |||
1161 | bool Position::has_game_cycle(int ply) const { |
||
1162 | |||
1163 | int j; |
||
1164 | |||
1165 | int end = std::min(st->rule50, st->pliesFromNull); |
||
1166 | |||
1167 | if (end < 3) |
||
1168 | return false; |
||
1169 | |||
1170 | Key originalKey = st->key; |
||
1171 | StateInfo* stp = st->previous; |
||
1172 | |||
1173 | for (int i = 3; i <= end; i += 2) |
||
1174 | { |
||
1175 | stp = stp->previous->previous; |
||
1176 | |||
1177 | Key moveKey = originalKey ^ stp->key; |
||
1178 | if ( (j = H1(moveKey), cuckoo[j] == moveKey) |
||
1179 | || (j = H2(moveKey), cuckoo[j] == moveKey)) |
||
1180 | { |
||
1181 | Move move = cuckooMove[j]; |
||
1182 | Square s1 = from_sq(move); |
||
1183 | Square s2 = to_sq(move); |
||
1184 | |||
1185 | if (!(between_bb(s1, s2) & pieces())) |
||
1186 | { |
||
1187 | // In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in the same |
||
1188 | // location. We select the legal one by reversing the move variable if necessary. |
||
1189 | if (empty(s1)) |
||
1190 | move = make_move(s2, s1); |
||
1191 | |||
1192 | if (ply > i) |
||
1193 | return true; |
||
1194 | |||
1195 | // For repetitions before or at the root, require one more |
||
1196 | StateInfo* next_stp = stp; |
||
1197 | for (int k = i + 2; k <= end; k += 2) |
||
1198 | { |
||
1199 | next_stp = next_stp->previous->previous; |
||
1200 | if (next_stp->key == stp->key) |
||
1201 | return true; |
||
1202 | } |
||
1203 | } |
||
1204 | } |
||
1205 | } |
||
1206 | return false; |
||
1207 | } |
||
1208 | |||
1209 | |||
96 | pmbaty | 1210 | /// Position::flip() flips position with the white and black sides reversed. This |
1211 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. |
||
1212 | |||
1213 | void Position::flip() { |
||
1214 | |||
1215 | string f, token; |
||
1216 | std::stringstream ss(fen()); |
||
1217 | |||
1218 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement |
||
1219 | { |
||
1220 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); |
||
1221 | f.insert(0, token + (f.empty() ? " " : "/")); |
||
1222 | } |
||
1223 | |||
1224 | ss >> token; // Active color |
||
1225 | f += (token == "w" ? "B " : "W "); // Will be lowercased later |
||
1226 | |||
1227 | ss >> token; // Castling availability |
||
1228 | f += token + " "; |
||
1229 | |||
1230 | std::transform(f.begin(), f.end(), f.begin(), |
||
1231 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); |
||
1232 | |||
1233 | ss >> token; // En passant square |
||
1234 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); |
||
1235 | |||
1236 | std::getline(ss, token); // Half and full moves |
||
1237 | f += token; |
||
1238 | |||
154 | pmbaty | 1239 | set(f, is_chess960(), st, this_thread()); |
96 | pmbaty | 1240 | |
1241 | assert(pos_is_ok()); |
||
1242 | } |
||
1243 | |||
1244 | |||
169 | pmbaty | 1245 | /// Position::pos_is_ok() performs some consistency checks for the |
1246 | /// position object and raises an asserts if something wrong is detected. |
||
96 | pmbaty | 1247 | /// This is meant to be helpful when debugging. |
1248 | |||
169 | pmbaty | 1249 | bool Position::pos_is_ok() const { |
96 | pmbaty | 1250 | |
185 | pmbaty | 1251 | constexpr bool Fast = true; // Quick (default) or full check? |
96 | pmbaty | 1252 | |
169 | pmbaty | 1253 | if ( (sideToMove != WHITE && sideToMove != BLACK) |
1254 | || piece_on(square<KING>(WHITE)) != W_KING |
||
1255 | || piece_on(square<KING>(BLACK)) != B_KING |
||
1256 | || ( ep_square() != SQ_NONE |
||
1257 | && relative_rank(sideToMove, ep_square()) != RANK_6)) |
||
1258 | assert(0 && "pos_is_ok: Default"); |
||
96 | pmbaty | 1259 | |
169 | pmbaty | 1260 | if (Fast) |
1261 | return true; |
||
96 | pmbaty | 1262 | |
169 | pmbaty | 1263 | if ( pieceCount[W_KING] != 1 |
1264 | || pieceCount[B_KING] != 1 |
||
1265 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) |
||
1266 | assert(0 && "pos_is_ok: Kings"); |
||
96 | pmbaty | 1267 | |
169 | pmbaty | 1268 | if ( (pieces(PAWN) & (Rank1BB | Rank8BB)) |
1269 | || pieceCount[W_PAWN] > 8 |
||
1270 | || pieceCount[B_PAWN] > 8) |
||
1271 | assert(0 && "pos_is_ok: Pawns"); |
||
96 | pmbaty | 1272 | |
169 | pmbaty | 1273 | if ( (pieces(WHITE) & pieces(BLACK)) |
1274 | || (pieces(WHITE) | pieces(BLACK)) != pieces() |
||
1275 | || popcount(pieces(WHITE)) > 16 |
||
1276 | || popcount(pieces(BLACK)) > 16) |
||
1277 | assert(0 && "pos_is_ok: Bitboards"); |
||
96 | pmbaty | 1278 | |
169 | pmbaty | 1279 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) |
1280 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) |
||
1281 | if (p1 != p2 && (pieces(p1) & pieces(p2))) |
||
1282 | assert(0 && "pos_is_ok: Bitboards"); |
||
96 | pmbaty | 1283 | |
169 | pmbaty | 1284 | StateInfo si = *st; |
1285 | set_state(&si); |
||
1286 | if (std::memcmp(&si, st, sizeof(StateInfo))) |
||
1287 | assert(0 && "pos_is_ok: State"); |
||
96 | pmbaty | 1288 | |
169 | pmbaty | 1289 | for (Piece pc : Pieces) |
1290 | { |
||
1291 | if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))) |
||
1292 | || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc)) |
||
1293 | assert(0 && "pos_is_ok: Pieces"); |
||
154 | pmbaty | 1294 | |
169 | pmbaty | 1295 | for (int i = 0; i < pieceCount[pc]; ++i) |
1296 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) |
||
1297 | assert(0 && "pos_is_ok: Index"); |
||
1298 | } |
||
96 | pmbaty | 1299 | |
169 | pmbaty | 1300 | for (Color c = WHITE; c <= BLACK; ++c) |
1301 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) |
||
1302 | { |
||
1303 | if (!can_castle(c | s)) |
||
1304 | continue; |
||
96 | pmbaty | 1305 | |
169 | pmbaty | 1306 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) |
1307 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) |
||
1308 | || (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) |
||
1309 | assert(0 && "pos_is_ok: Castling"); |
||
1310 | } |
||
96 | pmbaty | 1311 | |
1312 | return true; |
||
1313 | } |