Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
169 | pmbaty | 5 | Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
96 | pmbaty | 6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
154 | pmbaty | 23 | #include <cstddef> // For offsetof() |
24 | #include <cstring> // For std::memset, std::memcmp |
||
96 | pmbaty | 25 | #include <iomanip> |
26 | #include <sstream> |
||
27 | |||
154 | pmbaty | 28 | #include "bitboard.h" |
96 | pmbaty | 29 | #include "misc.h" |
30 | #include "movegen.h" |
||
31 | #include "position.h" |
||
32 | #include "thread.h" |
||
33 | #include "tt.h" |
||
34 | #include "uci.h" |
||
169 | pmbaty | 35 | #include "syzygy/tbprobe.h" |
96 | pmbaty | 36 | |
37 | using std::string; |
||
38 | |||
154 | pmbaty | 39 | namespace PSQT { |
40 | extern Score psq[PIECE_NB][SQUARE_NB]; |
||
41 | } |
||
96 | pmbaty | 42 | |
43 | namespace Zobrist { |
||
44 | |||
154 | pmbaty | 45 | Key psq[PIECE_NB][SQUARE_NB]; |
96 | pmbaty | 46 | Key enpassant[FILE_NB]; |
47 | Key castling[CASTLING_RIGHT_NB]; |
||
169 | pmbaty | 48 | Key side, noPawns; |
96 | pmbaty | 49 | } |
50 | |||
51 | namespace { |
||
52 | |||
53 | const string PieceToChar(" PNBRQK pnbrqk"); |
||
54 | |||
169 | pmbaty | 55 | const Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, |
56 | B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; |
||
57 | |||
58 | // min_attacker() is a helper function used by see_ge() to locate the least |
||
96 | pmbaty | 59 | // valuable attacker for the side to move, remove the attacker we just found |
60 | // from the bitboards and scan for new X-ray attacks behind it. |
||
61 | |||
62 | template<int Pt> |
||
63 | PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers, |
||
64 | Bitboard& occupied, Bitboard& attackers) { |
||
65 | |||
66 | Bitboard b = stmAttackers & bb[Pt]; |
||
67 | if (!b) |
||
169 | pmbaty | 68 | return min_attacker<Pt + 1>(bb, to, stmAttackers, occupied, attackers); |
96 | pmbaty | 69 | |
70 | occupied ^= b & ~(b - 1); |
||
71 | |||
72 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) |
||
73 | attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]); |
||
74 | |||
75 | if (Pt == ROOK || Pt == QUEEN) |
||
76 | attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]); |
||
77 | |||
78 | attackers &= occupied; // After X-ray that may add already processed pieces |
||
79 | return (PieceType)Pt; |
||
80 | } |
||
81 | |||
82 | template<> |
||
83 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { |
||
84 | return KING; // No need to update bitboards: it is the last cycle |
||
85 | } |
||
86 | |||
87 | } // namespace |
||
88 | |||
89 | |||
90 | /// operator<<(Position) returns an ASCII representation of the position |
||
91 | |||
92 | std::ostream& operator<<(std::ostream& os, const Position& pos) { |
||
93 | |||
94 | os << "\n +---+---+---+---+---+---+---+---+\n"; |
||
95 | |||
96 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
97 | { |
||
98 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
99 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; |
||
100 | |||
101 | os << " |\n +---+---+---+---+---+---+---+---+\n"; |
||
102 | } |
||
103 | |||
104 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase |
||
169 | pmbaty | 105 | << std::setfill('0') << std::setw(16) << pos.key() |
106 | << std::setfill(' ') << std::dec << "\nCheckers: "; |
||
96 | pmbaty | 107 | |
108 | for (Bitboard b = pos.checkers(); b; ) |
||
109 | os << UCI::square(pop_lsb(&b)) << " "; |
||
110 | |||
169 | pmbaty | 111 | if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces()) |
112 | && !pos.can_castle(ANY_CASTLING)) |
||
113 | { |
||
114 | StateInfo st; |
||
115 | Position p; |
||
116 | p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread()); |
||
117 | Tablebases::ProbeState s1, s2; |
||
118 | Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1); |
||
119 | int dtz = Tablebases::probe_dtz(p, &s2); |
||
120 | os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")" |
||
121 | << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")"; |
||
122 | } |
||
123 | |||
96 | pmbaty | 124 | return os; |
125 | } |
||
126 | |||
127 | |||
128 | /// Position::init() initializes at startup the various arrays used to compute |
||
129 | /// hash keys. |
||
130 | |||
131 | void Position::init() { |
||
132 | |||
133 | PRNG rng(1070372); |
||
134 | |||
154 | pmbaty | 135 | for (Piece pc : Pieces) |
136 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
137 | Zobrist::psq[pc][s] = rng.rand<Key>(); |
||
96 | pmbaty | 138 | |
139 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
140 | Zobrist::enpassant[f] = rng.rand<Key>(); |
||
141 | |||
142 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) |
||
143 | { |
||
144 | Zobrist::castling[cr] = 0; |
||
145 | Bitboard b = cr; |
||
146 | while (b) |
||
147 | { |
||
148 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; |
||
149 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); |
||
150 | } |
||
151 | } |
||
152 | |||
153 | Zobrist::side = rng.rand<Key>(); |
||
169 | pmbaty | 154 | Zobrist::noPawns = rng.rand<Key>(); |
96 | pmbaty | 155 | } |
156 | |||
157 | |||
158 | /// Position::set() initializes the position object with the given FEN string. |
||
159 | /// This function is not very robust - make sure that input FENs are correct, |
||
160 | /// this is assumed to be the responsibility of the GUI. |
||
161 | |||
154 | pmbaty | 162 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { |
96 | pmbaty | 163 | /* |
164 | A FEN string defines a particular position using only the ASCII character set. |
||
165 | |||
166 | A FEN string contains six fields separated by a space. The fields are: |
||
167 | |||
168 | 1) Piece placement (from white's perspective). Each rank is described, starting |
||
169 | with rank 8 and ending with rank 1. Within each rank, the contents of each |
||
170 | square are described from file A through file H. Following the Standard |
||
171 | Algebraic Notation (SAN), each piece is identified by a single letter taken |
||
172 | from the standard English names. White pieces are designated using upper-case |
||
173 | letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are |
||
174 | noted using digits 1 through 8 (the number of blank squares), and "/" |
||
175 | separates ranks. |
||
176 | |||
177 | 2) Active color. "w" means white moves next, "b" means black. |
||
178 | |||
179 | 3) Castling availability. If neither side can castle, this is "-". Otherwise, |
||
180 | this has one or more letters: "K" (White can castle kingside), "Q" (White |
||
181 | can castle queenside), "k" (Black can castle kingside), and/or "q" (Black |
||
182 | can castle queenside). |
||
183 | |||
184 | 4) En passant target square (in algebraic notation). If there's no en passant |
||
185 | target square, this is "-". If a pawn has just made a 2-square move, this |
||
169 | pmbaty | 186 | is the position "behind" the pawn. This is recorded only if there is a pawn |
187 | in position to make an en passant capture, and if there really is a pawn |
||
188 | that might have advanced two squares. |
||
96 | pmbaty | 189 | |
190 | 5) Halfmove clock. This is the number of halfmoves since the last pawn advance |
||
191 | or capture. This is used to determine if a draw can be claimed under the |
||
192 | fifty-move rule. |
||
193 | |||
194 | 6) Fullmove number. The number of the full move. It starts at 1, and is |
||
195 | incremented after Black's move. |
||
196 | */ |
||
197 | |||
198 | unsigned char col, row, token; |
||
199 | size_t idx; |
||
200 | Square sq = SQ_A8; |
||
201 | std::istringstream ss(fenStr); |
||
202 | |||
154 | pmbaty | 203 | std::memset(this, 0, sizeof(Position)); |
204 | std::memset(si, 0, sizeof(StateInfo)); |
||
205 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); |
||
206 | st = si; |
||
207 | |||
96 | pmbaty | 208 | ss >> std::noskipws; |
209 | |||
210 | // 1. Piece placement |
||
211 | while ((ss >> token) && !isspace(token)) |
||
212 | { |
||
213 | if (isdigit(token)) |
||
169 | pmbaty | 214 | sq += (token - '0') * EAST; // Advance the given number of files |
96 | pmbaty | 215 | |
216 | else if (token == '/') |
||
169 | pmbaty | 217 | sq += 2 * SOUTH; |
96 | pmbaty | 218 | |
219 | else if ((idx = PieceToChar.find(token)) != string::npos) |
||
220 | { |
||
154 | pmbaty | 221 | put_piece(Piece(idx), sq); |
96 | pmbaty | 222 | ++sq; |
223 | } |
||
224 | } |
||
225 | |||
226 | // 2. Active color |
||
227 | ss >> token; |
||
228 | sideToMove = (token == 'w' ? WHITE : BLACK); |
||
229 | ss >> token; |
||
230 | |||
231 | // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, |
||
232 | // Shredder-FEN that uses the letters of the columns on which the rooks began |
||
233 | // the game instead of KQkq and also X-FEN standard that, in case of Chess960, |
||
234 | // if an inner rook is associated with the castling right, the castling tag is |
||
235 | // replaced by the file letter of the involved rook, as for the Shredder-FEN. |
||
236 | while ((ss >> token) && !isspace(token)) |
||
237 | { |
||
238 | Square rsq; |
||
239 | Color c = islower(token) ? BLACK : WHITE; |
||
240 | Piece rook = make_piece(c, ROOK); |
||
241 | |||
242 | token = char(toupper(token)); |
||
243 | |||
244 | if (token == 'K') |
||
245 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} |
||
246 | |||
247 | else if (token == 'Q') |
||
248 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} |
||
249 | |||
250 | else if (token >= 'A' && token <= 'H') |
||
251 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); |
||
252 | |||
253 | else |
||
254 | continue; |
||
255 | |||
256 | set_castling_right(c, rsq); |
||
257 | } |
||
258 | |||
259 | // 4. En passant square. Ignore if no pawn capture is possible |
||
260 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) |
||
261 | && ((ss >> row) && (row == '3' || row == '6'))) |
||
262 | { |
||
263 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); |
||
264 | |||
169 | pmbaty | 265 | if ( !(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)) |
266 | || !(pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))) |
||
96 | pmbaty | 267 | st->epSquare = SQ_NONE; |
268 | } |
||
154 | pmbaty | 269 | else |
270 | st->epSquare = SQ_NONE; |
||
96 | pmbaty | 271 | |
272 | // 5-6. Halfmove clock and fullmove number |
||
273 | ss >> std::skipws >> st->rule50 >> gamePly; |
||
274 | |||
169 | pmbaty | 275 | // Convert from fullmove starting from 1 to gamePly starting from 0, |
96 | pmbaty | 276 | // handle also common incorrect FEN with fullmove = 0. |
277 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); |
||
278 | |||
279 | chess960 = isChess960; |
||
280 | thisThread = th; |
||
281 | set_state(st); |
||
282 | |||
283 | assert(pos_is_ok()); |
||
154 | pmbaty | 284 | |
285 | return *this; |
||
96 | pmbaty | 286 | } |
287 | |||
288 | |||
289 | /// Position::set_castling_right() is a helper function used to set castling |
||
290 | /// rights given the corresponding color and the rook starting square. |
||
291 | |||
292 | void Position::set_castling_right(Color c, Square rfrom) { |
||
293 | |||
294 | Square kfrom = square<KING>(c); |
||
295 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; |
||
296 | CastlingRight cr = (c | cs); |
||
297 | |||
298 | st->castlingRights |= cr; |
||
299 | castlingRightsMask[kfrom] |= cr; |
||
300 | castlingRightsMask[rfrom] |= cr; |
||
301 | castlingRookSquare[cr] = rfrom; |
||
302 | |||
303 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); |
||
304 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); |
||
305 | |||
306 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) |
||
307 | if (s != kfrom && s != rfrom) |
||
308 | castlingPath[cr] |= s; |
||
309 | |||
310 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) |
||
311 | if (s != kfrom && s != rfrom) |
||
312 | castlingPath[cr] |= s; |
||
313 | } |
||
314 | |||
315 | |||
154 | pmbaty | 316 | /// Position::set_check_info() sets king attacks to detect if a move gives check |
317 | |||
318 | void Position::set_check_info(StateInfo* si) const { |
||
319 | |||
320 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinnersForKing[WHITE]); |
||
321 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinnersForKing[BLACK]); |
||
322 | |||
323 | Square ksq = square<KING>(~sideToMove); |
||
324 | |||
325 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove); |
||
326 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq); |
||
327 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq); |
||
328 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq); |
||
329 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; |
||
330 | si->checkSquares[KING] = 0; |
||
331 | } |
||
332 | |||
333 | |||
96 | pmbaty | 334 | /// Position::set_state() computes the hash keys of the position, and other |
335 | /// data that once computed is updated incrementally as moves are made. |
||
336 | /// The function is only used when a new position is set up, and to verify |
||
337 | /// the correctness of the StateInfo data when running in debug mode. |
||
338 | |||
339 | void Position::set_state(StateInfo* si) const { |
||
340 | |||
169 | pmbaty | 341 | si->key = si->materialKey = 0; |
342 | si->pawnKey = Zobrist::noPawns; |
||
96 | pmbaty | 343 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; |
344 | si->psq = SCORE_ZERO; |
||
345 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); |
||
346 | |||
154 | pmbaty | 347 | set_check_info(si); |
348 | |||
96 | pmbaty | 349 | for (Bitboard b = pieces(); b; ) |
350 | { |
||
351 | Square s = pop_lsb(&b); |
||
352 | Piece pc = piece_on(s); |
||
154 | pmbaty | 353 | si->key ^= Zobrist::psq[pc][s]; |
354 | si->psq += PSQT::psq[pc][s]; |
||
96 | pmbaty | 355 | } |
356 | |||
357 | if (si->epSquare != SQ_NONE) |
||
358 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; |
||
359 | |||
360 | if (sideToMove == BLACK) |
||
361 | si->key ^= Zobrist::side; |
||
362 | |||
363 | si->key ^= Zobrist::castling[si->castlingRights]; |
||
364 | |||
365 | for (Bitboard b = pieces(PAWN); b; ) |
||
366 | { |
||
367 | Square s = pop_lsb(&b); |
||
154 | pmbaty | 368 | si->pawnKey ^= Zobrist::psq[piece_on(s)][s]; |
96 | pmbaty | 369 | } |
370 | |||
154 | pmbaty | 371 | for (Piece pc : Pieces) |
372 | { |
||
373 | if (type_of(pc) != PAWN && type_of(pc) != KING) |
||
374 | si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc]; |
||
96 | pmbaty | 375 | |
154 | pmbaty | 376 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) |
377 | si->materialKey ^= Zobrist::psq[pc][cnt]; |
||
378 | } |
||
96 | pmbaty | 379 | } |
380 | |||
381 | |||
169 | pmbaty | 382 | /// Position::set() is an overload to initialize the position object with |
383 | /// the given endgame code string like "KBPKN". It is mainly a helper to |
||
384 | /// get the material key out of an endgame code. |
||
385 | |||
386 | Position& Position::set(const string& code, Color c, StateInfo* si) { |
||
387 | |||
388 | assert(code.length() > 0 && code.length() < 8); |
||
389 | assert(code[0] == 'K'); |
||
390 | |||
391 | string sides[] = { code.substr(code.find('K', 1)), // Weak |
||
392 | code.substr(0, code.find('K', 1)) }; // Strong |
||
393 | |||
394 | std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); |
||
395 | |||
396 | string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/" |
||
397 | + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10"; |
||
398 | |||
399 | return set(fenStr, false, si, nullptr); |
||
400 | } |
||
401 | |||
402 | |||
96 | pmbaty | 403 | /// Position::fen() returns a FEN representation of the position. In case of |
404 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. |
||
405 | |||
406 | const string Position::fen() const { |
||
407 | |||
408 | int emptyCnt; |
||
409 | std::ostringstream ss; |
||
410 | |||
411 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
412 | { |
||
413 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
414 | { |
||
415 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) |
||
416 | ++emptyCnt; |
||
417 | |||
418 | if (emptyCnt) |
||
419 | ss << emptyCnt; |
||
420 | |||
421 | if (f <= FILE_H) |
||
422 | ss << PieceToChar[piece_on(make_square(f, r))]; |
||
423 | } |
||
424 | |||
425 | if (r > RANK_1) |
||
426 | ss << '/'; |
||
427 | } |
||
428 | |||
429 | ss << (sideToMove == WHITE ? " w " : " b "); |
||
430 | |||
431 | if (can_castle(WHITE_OO)) |
||
432 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); |
||
433 | |||
434 | if (can_castle(WHITE_OOO)) |
||
435 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); |
||
436 | |||
437 | if (can_castle(BLACK_OO)) |
||
438 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); |
||
439 | |||
440 | if (can_castle(BLACK_OOO)) |
||
441 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); |
||
442 | |||
443 | if (!can_castle(WHITE) && !can_castle(BLACK)) |
||
444 | ss << '-'; |
||
445 | |||
446 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") |
||
447 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; |
||
448 | |||
449 | return ss.str(); |
||
450 | } |
||
451 | |||
452 | |||
154 | pmbaty | 453 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) |
454 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a |
||
455 | /// slider if removing that piece from the board would result in a position where |
||
456 | /// square 's' is attacked. For example, a king-attack blocking piece can be either |
||
457 | /// a pinned or a discovered check piece, according if its color is the opposite |
||
458 | /// or the same of the color of the slider. |
||
96 | pmbaty | 459 | |
154 | pmbaty | 460 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { |
96 | pmbaty | 461 | |
154 | pmbaty | 462 | Bitboard result = 0; |
463 | pinners = 0; |
||
96 | pmbaty | 464 | |
154 | pmbaty | 465 | // Snipers are sliders that attack 's' when a piece is removed |
169 | pmbaty | 466 | Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK)) |
154 | pmbaty | 467 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; |
96 | pmbaty | 468 | |
154 | pmbaty | 469 | while (snipers) |
96 | pmbaty | 470 | { |
154 | pmbaty | 471 | Square sniperSq = pop_lsb(&snipers); |
472 | Bitboard b = between_bb(s, sniperSq) & pieces(); |
||
96 | pmbaty | 473 | |
154 | pmbaty | 474 | if (!more_than_one(b)) |
475 | { |
||
476 | result |= b; |
||
477 | if (b & pieces(color_of(piece_on(s)))) |
||
478 | pinners |= sniperSq; |
||
479 | } |
||
96 | pmbaty | 480 | } |
481 | return result; |
||
482 | } |
||
483 | |||
484 | |||
485 | /// Position::attackers_to() computes a bitboard of all pieces which attack a |
||
486 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. |
||
487 | |||
488 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { |
||
489 | |||
490 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) |
||
491 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) |
||
492 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) |
||
169 | pmbaty | 493 | | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN)) |
96 | pmbaty | 494 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) |
495 | | (attacks_from<KING>(s) & pieces(KING)); |
||
496 | } |
||
497 | |||
498 | |||
499 | /// Position::legal() tests whether a pseudo-legal move is legal |
||
500 | |||
154 | pmbaty | 501 | bool Position::legal(Move m) const { |
96 | pmbaty | 502 | |
503 | assert(is_ok(m)); |
||
504 | |||
505 | Color us = sideToMove; |
||
506 | Square from = from_sq(m); |
||
507 | |||
508 | assert(color_of(moved_piece(m)) == us); |
||
509 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); |
||
510 | |||
511 | // En passant captures are a tricky special case. Because they are rather |
||
512 | // uncommon, we do it simply by testing whether the king is attacked after |
||
513 | // the move is made. |
||
514 | if (type_of(m) == ENPASSANT) |
||
515 | { |
||
516 | Square ksq = square<KING>(us); |
||
517 | Square to = to_sq(m); |
||
518 | Square capsq = to - pawn_push(us); |
||
519 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; |
||
520 | |||
521 | assert(to == ep_square()); |
||
522 | assert(moved_piece(m) == make_piece(us, PAWN)); |
||
523 | assert(piece_on(capsq) == make_piece(~us, PAWN)); |
||
524 | assert(piece_on(to) == NO_PIECE); |
||
525 | |||
526 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) |
||
527 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); |
||
528 | } |
||
529 | |||
530 | // If the moving piece is a king, check whether the destination |
||
531 | // square is attacked by the opponent. Castling moves are checked |
||
532 | // for legality during move generation. |
||
533 | if (type_of(piece_on(from)) == KING) |
||
534 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); |
||
535 | |||
536 | // A non-king move is legal if and only if it is not pinned or it |
||
537 | // is moving along the ray towards or away from the king. |
||
154 | pmbaty | 538 | return !(pinned_pieces(us) & from) |
96 | pmbaty | 539 | || aligned(from, to_sq(m), square<KING>(us)); |
540 | } |
||
541 | |||
542 | |||
543 | /// Position::pseudo_legal() takes a random move and tests whether the move is |
||
544 | /// pseudo legal. It is used to validate moves from TT that can be corrupted |
||
545 | /// due to SMP concurrent access or hash position key aliasing. |
||
546 | |||
547 | bool Position::pseudo_legal(const Move m) const { |
||
548 | |||
549 | Color us = sideToMove; |
||
550 | Square from = from_sq(m); |
||
551 | Square to = to_sq(m); |
||
552 | Piece pc = moved_piece(m); |
||
553 | |||
554 | // Use a slower but simpler function for uncommon cases |
||
555 | if (type_of(m) != NORMAL) |
||
556 | return MoveList<LEGAL>(*this).contains(m); |
||
557 | |||
558 | // Is not a promotion, so promotion piece must be empty |
||
559 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) |
||
560 | return false; |
||
561 | |||
562 | // If the 'from' square is not occupied by a piece belonging to the side to |
||
563 | // move, the move is obviously not legal. |
||
564 | if (pc == NO_PIECE || color_of(pc) != us) |
||
565 | return false; |
||
566 | |||
567 | // The destination square cannot be occupied by a friendly piece |
||
568 | if (pieces(us) & to) |
||
569 | return false; |
||
570 | |||
571 | // Handle the special case of a pawn move |
||
572 | if (type_of(pc) == PAWN) |
||
573 | { |
||
574 | // We have already handled promotion moves, so destination |
||
575 | // cannot be on the 8th/1st rank. |
||
576 | if (rank_of(to) == relative_rank(us, RANK_8)) |
||
577 | return false; |
||
578 | |||
579 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture |
||
580 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push |
||
581 | && !( (from + 2 * pawn_push(us) == to) // Not a double push |
||
582 | && (rank_of(from) == relative_rank(us, RANK_2)) |
||
583 | && empty(to) |
||
584 | && empty(to - pawn_push(us)))) |
||
585 | return false; |
||
586 | } |
||
169 | pmbaty | 587 | else if (!(attacks_from(type_of(pc), from) & to)) |
96 | pmbaty | 588 | return false; |
589 | |||
590 | // Evasions generator already takes care to avoid some kind of illegal moves |
||
591 | // and legal() relies on this. We therefore have to take care that the same |
||
592 | // kind of moves are filtered out here. |
||
593 | if (checkers()) |
||
594 | { |
||
595 | if (type_of(pc) != KING) |
||
596 | { |
||
597 | // Double check? In this case a king move is required |
||
598 | if (more_than_one(checkers())) |
||
599 | return false; |
||
600 | |||
601 | // Our move must be a blocking evasion or a capture of the checking piece |
||
602 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) |
||
603 | return false; |
||
604 | } |
||
605 | // In case of king moves under check we have to remove king so as to catch |
||
606 | // invalid moves like b1a1 when opposite queen is on c1. |
||
607 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) |
||
608 | return false; |
||
609 | } |
||
610 | |||
611 | return true; |
||
612 | } |
||
613 | |||
614 | |||
615 | /// Position::gives_check() tests whether a pseudo-legal move gives a check |
||
616 | |||
154 | pmbaty | 617 | bool Position::gives_check(Move m) const { |
96 | pmbaty | 618 | |
619 | assert(is_ok(m)); |
||
620 | assert(color_of(moved_piece(m)) == sideToMove); |
||
621 | |||
622 | Square from = from_sq(m); |
||
623 | Square to = to_sq(m); |
||
624 | |||
625 | // Is there a direct check? |
||
154 | pmbaty | 626 | if (st->checkSquares[type_of(piece_on(from))] & to) |
96 | pmbaty | 627 | return true; |
628 | |||
629 | // Is there a discovered check? |
||
154 | pmbaty | 630 | if ( (discovered_check_candidates() & from) |
631 | && !aligned(from, to, square<KING>(~sideToMove))) |
||
96 | pmbaty | 632 | return true; |
633 | |||
634 | switch (type_of(m)) |
||
635 | { |
||
636 | case NORMAL: |
||
637 | return false; |
||
638 | |||
639 | case PROMOTION: |
||
169 | pmbaty | 640 | return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove); |
96 | pmbaty | 641 | |
642 | // En passant capture with check? We have already handled the case |
||
643 | // of direct checks and ordinary discovered check, so the only case we |
||
644 | // need to handle is the unusual case of a discovered check through |
||
645 | // the captured pawn. |
||
646 | case ENPASSANT: |
||
647 | { |
||
648 | Square capsq = make_square(file_of(to), rank_of(from)); |
||
649 | Bitboard b = (pieces() ^ from ^ capsq) | to; |
||
650 | |||
154 | pmbaty | 651 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) |
652 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); |
||
96 | pmbaty | 653 | } |
654 | case CASTLING: |
||
655 | { |
||
656 | Square kfrom = from; |
||
657 | Square rfrom = to; // Castling is encoded as 'King captures the rook' |
||
658 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); |
||
659 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); |
||
660 | |||
154 | pmbaty | 661 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove)) |
662 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove)); |
||
96 | pmbaty | 663 | } |
664 | default: |
||
665 | assert(false); |
||
666 | return false; |
||
667 | } |
||
668 | } |
||
669 | |||
670 | |||
671 | /// Position::do_move() makes a move, and saves all information necessary |
||
672 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal |
||
673 | /// moves should be filtered out before this function is called. |
||
674 | |||
675 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { |
||
676 | |||
677 | assert(is_ok(m)); |
||
678 | assert(&newSt != st); |
||
679 | |||
169 | pmbaty | 680 | thisThread->nodes.fetch_add(1, std::memory_order_relaxed); |
96 | pmbaty | 681 | Key k = st->key ^ Zobrist::side; |
682 | |||
683 | // Copy some fields of the old state to our new StateInfo object except the |
||
684 | // ones which are going to be recalculated from scratch anyway and then switch |
||
685 | // our state pointer to point to the new (ready to be updated) state. |
||
686 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); |
||
687 | newSt.previous = st; |
||
688 | st = &newSt; |
||
689 | |||
690 | // Increment ply counters. In particular, rule50 will be reset to zero later on |
||
691 | // in case of a capture or a pawn move. |
||
692 | ++gamePly; |
||
693 | ++st->rule50; |
||
694 | ++st->pliesFromNull; |
||
695 | |||
696 | Color us = sideToMove; |
||
697 | Color them = ~us; |
||
698 | Square from = from_sq(m); |
||
699 | Square to = to_sq(m); |
||
154 | pmbaty | 700 | Piece pc = piece_on(from); |
701 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); |
||
96 | pmbaty | 702 | |
154 | pmbaty | 703 | assert(color_of(pc) == us); |
704 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); |
||
705 | assert(type_of(captured) != KING); |
||
96 | pmbaty | 706 | |
707 | if (type_of(m) == CASTLING) |
||
708 | { |
||
154 | pmbaty | 709 | assert(pc == make_piece(us, KING)); |
710 | assert(captured == make_piece(us, ROOK)); |
||
96 | pmbaty | 711 | |
712 | Square rfrom, rto; |
||
713 | do_castling<true>(us, from, to, rfrom, rto); |
||
714 | |||
154 | pmbaty | 715 | st->psq += PSQT::psq[captured][rto] - PSQT::psq[captured][rfrom]; |
716 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; |
||
717 | captured = NO_PIECE; |
||
96 | pmbaty | 718 | } |
719 | |||
720 | if (captured) |
||
721 | { |
||
722 | Square capsq = to; |
||
723 | |||
724 | // If the captured piece is a pawn, update pawn hash key, otherwise |
||
725 | // update non-pawn material. |
||
154 | pmbaty | 726 | if (type_of(captured) == PAWN) |
96 | pmbaty | 727 | { |
728 | if (type_of(m) == ENPASSANT) |
||
729 | { |
||
730 | capsq -= pawn_push(us); |
||
731 | |||
154 | pmbaty | 732 | assert(pc == make_piece(us, PAWN)); |
96 | pmbaty | 733 | assert(to == st->epSquare); |
734 | assert(relative_rank(us, to) == RANK_6); |
||
735 | assert(piece_on(to) == NO_PIECE); |
||
736 | assert(piece_on(capsq) == make_piece(them, PAWN)); |
||
737 | |||
738 | board[capsq] = NO_PIECE; // Not done by remove_piece() |
||
739 | } |
||
740 | |||
154 | pmbaty | 741 | st->pawnKey ^= Zobrist::psq[captured][capsq]; |
96 | pmbaty | 742 | } |
743 | else |
||
744 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; |
||
745 | |||
746 | // Update board and piece lists |
||
154 | pmbaty | 747 | remove_piece(captured, capsq); |
96 | pmbaty | 748 | |
749 | // Update material hash key and prefetch access to materialTable |
||
154 | pmbaty | 750 | k ^= Zobrist::psq[captured][capsq]; |
751 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; |
||
96 | pmbaty | 752 | prefetch(thisThread->materialTable[st->materialKey]); |
753 | |||
754 | // Update incremental scores |
||
154 | pmbaty | 755 | st->psq -= PSQT::psq[captured][capsq]; |
96 | pmbaty | 756 | |
757 | // Reset rule 50 counter |
||
758 | st->rule50 = 0; |
||
759 | } |
||
760 | |||
761 | // Update hash key |
||
154 | pmbaty | 762 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
96 | pmbaty | 763 | |
764 | // Reset en passant square |
||
765 | if (st->epSquare != SQ_NONE) |
||
766 | { |
||
767 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
768 | st->epSquare = SQ_NONE; |
||
769 | } |
||
770 | |||
771 | // Update castling rights if needed |
||
772 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) |
||
773 | { |
||
774 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; |
||
775 | k ^= Zobrist::castling[st->castlingRights & cr]; |
||
776 | st->castlingRights &= ~cr; |
||
777 | } |
||
778 | |||
779 | // Move the piece. The tricky Chess960 castling is handled earlier |
||
780 | if (type_of(m) != CASTLING) |
||
154 | pmbaty | 781 | move_piece(pc, from, to); |
96 | pmbaty | 782 | |
783 | // If the moving piece is a pawn do some special extra work |
||
154 | pmbaty | 784 | if (type_of(pc) == PAWN) |
96 | pmbaty | 785 | { |
786 | // Set en-passant square if the moved pawn can be captured |
||
787 | if ( (int(to) ^ int(from)) == 16 |
||
788 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) |
||
789 | { |
||
169 | pmbaty | 790 | st->epSquare = to - pawn_push(us); |
96 | pmbaty | 791 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
792 | } |
||
793 | |||
794 | else if (type_of(m) == PROMOTION) |
||
795 | { |
||
154 | pmbaty | 796 | Piece promotion = make_piece(us, promotion_type(m)); |
96 | pmbaty | 797 | |
798 | assert(relative_rank(us, to) == RANK_8); |
||
154 | pmbaty | 799 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); |
96 | pmbaty | 800 | |
154 | pmbaty | 801 | remove_piece(pc, to); |
802 | put_piece(promotion, to); |
||
96 | pmbaty | 803 | |
804 | // Update hash keys |
||
154 | pmbaty | 805 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; |
806 | st->pawnKey ^= Zobrist::psq[pc][to]; |
||
807 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] |
||
808 | ^ Zobrist::psq[pc][pieceCount[pc]]; |
||
96 | pmbaty | 809 | |
810 | // Update incremental score |
||
154 | pmbaty | 811 | st->psq += PSQT::psq[promotion][to] - PSQT::psq[pc][to]; |
96 | pmbaty | 812 | |
813 | // Update material |
||
814 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; |
||
815 | } |
||
816 | |||
817 | // Update pawn hash key and prefetch access to pawnsTable |
||
154 | pmbaty | 818 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
169 | pmbaty | 819 | prefetch2(thisThread->pawnsTable[st->pawnKey]); |
96 | pmbaty | 820 | |
821 | // Reset rule 50 draw counter |
||
822 | st->rule50 = 0; |
||
823 | } |
||
824 | |||
825 | // Update incremental scores |
||
154 | pmbaty | 826 | st->psq += PSQT::psq[pc][to] - PSQT::psq[pc][from]; |
96 | pmbaty | 827 | |
828 | // Set capture piece |
||
154 | pmbaty | 829 | st->capturedPiece = captured; |
96 | pmbaty | 830 | |
831 | // Update the key with the final value |
||
832 | st->key = k; |
||
833 | |||
834 | // Calculate checkers bitboard (if move gives check) |
||
835 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; |
||
836 | |||
837 | sideToMove = ~sideToMove; |
||
838 | |||
154 | pmbaty | 839 | // Update king attacks used for fast check detection |
840 | set_check_info(st); |
||
841 | |||
96 | pmbaty | 842 | assert(pos_is_ok()); |
843 | } |
||
844 | |||
845 | |||
846 | /// Position::undo_move() unmakes a move. When it returns, the position should |
||
847 | /// be restored to exactly the same state as before the move was made. |
||
848 | |||
849 | void Position::undo_move(Move m) { |
||
850 | |||
851 | assert(is_ok(m)); |
||
852 | |||
853 | sideToMove = ~sideToMove; |
||
854 | |||
855 | Color us = sideToMove; |
||
856 | Square from = from_sq(m); |
||
857 | Square to = to_sq(m); |
||
154 | pmbaty | 858 | Piece pc = piece_on(to); |
96 | pmbaty | 859 | |
860 | assert(empty(from) || type_of(m) == CASTLING); |
||
154 | pmbaty | 861 | assert(type_of(st->capturedPiece) != KING); |
96 | pmbaty | 862 | |
863 | if (type_of(m) == PROMOTION) |
||
864 | { |
||
865 | assert(relative_rank(us, to) == RANK_8); |
||
154 | pmbaty | 866 | assert(type_of(pc) == promotion_type(m)); |
867 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); |
||
96 | pmbaty | 868 | |
154 | pmbaty | 869 | remove_piece(pc, to); |
870 | pc = make_piece(us, PAWN); |
||
871 | put_piece(pc, to); |
||
96 | pmbaty | 872 | } |
873 | |||
874 | if (type_of(m) == CASTLING) |
||
875 | { |
||
876 | Square rfrom, rto; |
||
877 | do_castling<false>(us, from, to, rfrom, rto); |
||
878 | } |
||
879 | else |
||
880 | { |
||
154 | pmbaty | 881 | move_piece(pc, to, from); // Put the piece back at the source square |
96 | pmbaty | 882 | |
154 | pmbaty | 883 | if (st->capturedPiece) |
96 | pmbaty | 884 | { |
885 | Square capsq = to; |
||
886 | |||
887 | if (type_of(m) == ENPASSANT) |
||
888 | { |
||
889 | capsq -= pawn_push(us); |
||
890 | |||
154 | pmbaty | 891 | assert(type_of(pc) == PAWN); |
96 | pmbaty | 892 | assert(to == st->previous->epSquare); |
893 | assert(relative_rank(us, to) == RANK_6); |
||
894 | assert(piece_on(capsq) == NO_PIECE); |
||
154 | pmbaty | 895 | assert(st->capturedPiece == make_piece(~us, PAWN)); |
96 | pmbaty | 896 | } |
897 | |||
154 | pmbaty | 898 | put_piece(st->capturedPiece, capsq); // Restore the captured piece |
96 | pmbaty | 899 | } |
900 | } |
||
901 | |||
902 | // Finally point our state pointer back to the previous state |
||
903 | st = st->previous; |
||
904 | --gamePly; |
||
905 | |||
906 | assert(pos_is_ok()); |
||
907 | } |
||
908 | |||
909 | |||
910 | /// Position::do_castling() is a helper used to do/undo a castling move. This |
||
154 | pmbaty | 911 | /// is a bit tricky in Chess960 where from/to squares can overlap. |
96 | pmbaty | 912 | template<bool Do> |
913 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { |
||
914 | |||
915 | bool kingSide = to > from; |
||
916 | rfrom = to; // Castling is encoded as "king captures friendly rook" |
||
917 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); |
||
918 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); |
||
919 | |||
920 | // Remove both pieces first since squares could overlap in Chess960 |
||
154 | pmbaty | 921 | remove_piece(make_piece(us, KING), Do ? from : to); |
922 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); |
||
96 | pmbaty | 923 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us |
154 | pmbaty | 924 | put_piece(make_piece(us, KING), Do ? to : from); |
925 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom); |
||
96 | pmbaty | 926 | } |
927 | |||
928 | |||
929 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips |
||
930 | /// the side to move without executing any move on the board. |
||
931 | |||
932 | void Position::do_null_move(StateInfo& newSt) { |
||
933 | |||
934 | assert(!checkers()); |
||
935 | assert(&newSt != st); |
||
936 | |||
937 | std::memcpy(&newSt, st, sizeof(StateInfo)); |
||
938 | newSt.previous = st; |
||
939 | st = &newSt; |
||
940 | |||
941 | if (st->epSquare != SQ_NONE) |
||
942 | { |
||
943 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
944 | st->epSquare = SQ_NONE; |
||
945 | } |
||
946 | |||
947 | st->key ^= Zobrist::side; |
||
948 | prefetch(TT.first_entry(st->key)); |
||
949 | |||
950 | ++st->rule50; |
||
951 | st->pliesFromNull = 0; |
||
952 | |||
953 | sideToMove = ~sideToMove; |
||
954 | |||
154 | pmbaty | 955 | set_check_info(st); |
956 | |||
96 | pmbaty | 957 | assert(pos_is_ok()); |
958 | } |
||
959 | |||
960 | void Position::undo_null_move() { |
||
961 | |||
962 | assert(!checkers()); |
||
963 | |||
964 | st = st->previous; |
||
965 | sideToMove = ~sideToMove; |
||
966 | } |
||
967 | |||
968 | |||
969 | /// Position::key_after() computes the new hash key after the given move. Needed |
||
970 | /// for speculative prefetch. It doesn't recognize special moves like castling, |
||
971 | /// en-passant and promotions. |
||
972 | |||
973 | Key Position::key_after(Move m) const { |
||
974 | |||
975 | Square from = from_sq(m); |
||
976 | Square to = to_sq(m); |
||
154 | pmbaty | 977 | Piece pc = piece_on(from); |
978 | Piece captured = piece_on(to); |
||
96 | pmbaty | 979 | Key k = st->key ^ Zobrist::side; |
980 | |||
981 | if (captured) |
||
154 | pmbaty | 982 | k ^= Zobrist::psq[captured][to]; |
96 | pmbaty | 983 | |
154 | pmbaty | 984 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; |
96 | pmbaty | 985 | } |
986 | |||
987 | |||
154 | pmbaty | 988 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the |
169 | pmbaty | 989 | /// SEE value of move is greater or equal to the given threshold. We'll use an |
154 | pmbaty | 990 | /// algorithm similar to alpha-beta pruning with a null window. |
96 | pmbaty | 991 | |
169 | pmbaty | 992 | bool Position::see_ge(Move m, Value threshold) const { |
96 | pmbaty | 993 | |
994 | assert(is_ok(m)); |
||
995 | |||
169 | pmbaty | 996 | // Only deal with normal moves, assume others pass a simple see |
997 | if (type_of(m) != NORMAL) |
||
998 | return VALUE_ZERO >= threshold; |
||
96 | pmbaty | 999 | |
154 | pmbaty | 1000 | Square from = from_sq(m), to = to_sq(m); |
1001 | PieceType nextVictim = type_of(piece_on(from)); |
||
1002 | Color stm = ~color_of(piece_on(from)); // First consider opponent's move |
||
1003 | Value balance; // Values of the pieces taken by us minus opponent's ones |
||
1004 | Bitboard occupied, stmAttackers; |
||
96 | pmbaty | 1005 | |
169 | pmbaty | 1006 | // The opponent may be able to recapture so this is the best result |
1007 | // we can hope for. |
||
1008 | balance = PieceValue[MG][piece_on(to)] - threshold; |
||
96 | pmbaty | 1009 | |
169 | pmbaty | 1010 | if (balance < VALUE_ZERO) |
154 | pmbaty | 1011 | return false; |
96 | pmbaty | 1012 | |
169 | pmbaty | 1013 | // Now assume the worst possible result: that the opponent can |
1014 | // capture our piece for free. |
||
154 | pmbaty | 1015 | balance -= PieceValue[MG][nextVictim]; |
96 | pmbaty | 1016 | |
169 | pmbaty | 1017 | if (balance >= VALUE_ZERO) // Always true if nextVictim == KING |
154 | pmbaty | 1018 | return true; |
96 | pmbaty | 1019 | |
169 | pmbaty | 1020 | bool opponentToMove = true; |
1021 | occupied = pieces() ^ from ^ to; |
||
154 | pmbaty | 1022 | |
1023 | // Find all attackers to the destination square, with the moving piece removed, |
||
1024 | // but possibly an X-ray attacker added behind it. |
||
1025 | Bitboard attackers = attackers_to(to, occupied) & occupied; |
||
1026 | |||
1027 | while (true) |
||
96 | pmbaty | 1028 | { |
169 | pmbaty | 1029 | // The balance is negative only because we assumed we could win |
1030 | // the last piece for free. We are truly winning only if we can |
||
1031 | // win the last piece _cheaply enough_. Test if we can actually |
||
1032 | // do this otherwise "give up". |
||
1033 | assert(balance < VALUE_ZERO); |
||
1034 | |||
154 | pmbaty | 1035 | stmAttackers = attackers & pieces(stm); |
96 | pmbaty | 1036 | |
154 | pmbaty | 1037 | // Don't allow pinned pieces to attack pieces except the king as long all |
1038 | // pinners are on their original square. |
||
1039 | if (!(st->pinnersForKing[stm] & ~occupied)) |
||
1040 | stmAttackers &= ~st->blockersForKing[stm]; |
||
96 | pmbaty | 1041 | |
169 | pmbaty | 1042 | // If we have no more attackers we must give up |
154 | pmbaty | 1043 | if (!stmAttackers) |
169 | pmbaty | 1044 | break; |
96 | pmbaty | 1045 | |
154 | pmbaty | 1046 | // Locate and remove the next least valuable attacker |
1047 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); |
||
96 | pmbaty | 1048 | |
154 | pmbaty | 1049 | if (nextVictim == KING) |
169 | pmbaty | 1050 | { |
1051 | // Our only attacker is the king. If the opponent still has |
||
1052 | // attackers we must give up. Otherwise we make the move and |
||
1053 | // (having no more attackers) the opponent must give up. |
||
1054 | if (!(attackers & pieces(~stm))) |
||
1055 | opponentToMove = !opponentToMove; |
||
1056 | break; |
||
1057 | } |
||
96 | pmbaty | 1058 | |
169 | pmbaty | 1059 | // Assume the opponent can win the next piece for free and switch sides |
1060 | balance += PieceValue[MG][nextVictim]; |
||
1061 | opponentToMove = !opponentToMove; |
||
96 | pmbaty | 1062 | |
169 | pmbaty | 1063 | // If balance is negative after receiving a free piece then give up |
1064 | if (balance < VALUE_ZERO) |
||
1065 | break; |
||
96 | pmbaty | 1066 | |
169 | pmbaty | 1067 | // Complete the process of switching sides. The first line swaps |
1068 | // all negative numbers with non-negative numbers. The compiler |
||
1069 | // probably knows that it is just the bitwise negation ~balance. |
||
1070 | balance = -balance-1; |
||
154 | pmbaty | 1071 | stm = ~stm; |
1072 | } |
||
169 | pmbaty | 1073 | |
1074 | // If the opponent gave up we win, otherwise we lose. |
||
1075 | return opponentToMove; |
||
96 | pmbaty | 1076 | } |
1077 | |||
1078 | |||
1079 | /// Position::is_draw() tests whether the position is drawn by 50-move rule |
||
1080 | /// or by repetition. It does not detect stalemates. |
||
1081 | |||
169 | pmbaty | 1082 | bool Position::is_draw(int ply) const { |
96 | pmbaty | 1083 | |
1084 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) |
||
1085 | return true; |
||
1086 | |||
169 | pmbaty | 1087 | int end = std::min(st->rule50, st->pliesFromNull); |
1088 | |||
1089 | if (end < 4) |
||
1090 | return false; |
||
1091 | |||
1092 | StateInfo* stp = st->previous->previous; |
||
1093 | int cnt = 0; |
||
1094 | |||
1095 | for (int i = 4; i <= end; i += 2) |
||
96 | pmbaty | 1096 | { |
1097 | stp = stp->previous->previous; |
||
1098 | |||
169 | pmbaty | 1099 | // Return a draw score if a position repeats once earlier but strictly |
1100 | // after the root, or repeats twice before or at the root. |
||
1101 | if ( stp->key == st->key |
||
1102 | && ++cnt + (ply > i) == 2) |
||
1103 | return true; |
||
96 | pmbaty | 1104 | } |
1105 | |||
1106 | return false; |
||
1107 | } |
||
1108 | |||
1109 | |||
1110 | /// Position::flip() flips position with the white and black sides reversed. This |
||
1111 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. |
||
1112 | |||
1113 | void Position::flip() { |
||
1114 | |||
1115 | string f, token; |
||
1116 | std::stringstream ss(fen()); |
||
1117 | |||
1118 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement |
||
1119 | { |
||
1120 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); |
||
1121 | f.insert(0, token + (f.empty() ? " " : "/")); |
||
1122 | } |
||
1123 | |||
1124 | ss >> token; // Active color |
||
1125 | f += (token == "w" ? "B " : "W "); // Will be lowercased later |
||
1126 | |||
1127 | ss >> token; // Castling availability |
||
1128 | f += token + " "; |
||
1129 | |||
1130 | std::transform(f.begin(), f.end(), f.begin(), |
||
1131 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); |
||
1132 | |||
1133 | ss >> token; // En passant square |
||
1134 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); |
||
1135 | |||
1136 | std::getline(ss, token); // Half and full moves |
||
1137 | f += token; |
||
1138 | |||
154 | pmbaty | 1139 | set(f, is_chess960(), st, this_thread()); |
96 | pmbaty | 1140 | |
1141 | assert(pos_is_ok()); |
||
1142 | } |
||
1143 | |||
1144 | |||
169 | pmbaty | 1145 | /// Position::pos_is_ok() performs some consistency checks for the |
1146 | /// position object and raises an asserts if something wrong is detected. |
||
96 | pmbaty | 1147 | /// This is meant to be helpful when debugging. |
1148 | |||
169 | pmbaty | 1149 | bool Position::pos_is_ok() const { |
96 | pmbaty | 1150 | |
1151 | const bool Fast = true; // Quick (default) or full check? |
||
1152 | |||
169 | pmbaty | 1153 | if ( (sideToMove != WHITE && sideToMove != BLACK) |
1154 | || piece_on(square<KING>(WHITE)) != W_KING |
||
1155 | || piece_on(square<KING>(BLACK)) != B_KING |
||
1156 | || ( ep_square() != SQ_NONE |
||
1157 | && relative_rank(sideToMove, ep_square()) != RANK_6)) |
||
1158 | assert(0 && "pos_is_ok: Default"); |
||
96 | pmbaty | 1159 | |
169 | pmbaty | 1160 | if (Fast) |
1161 | return true; |
||
96 | pmbaty | 1162 | |
169 | pmbaty | 1163 | if ( pieceCount[W_KING] != 1 |
1164 | || pieceCount[B_KING] != 1 |
||
1165 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) |
||
1166 | assert(0 && "pos_is_ok: Kings"); |
||
96 | pmbaty | 1167 | |
169 | pmbaty | 1168 | if ( (pieces(PAWN) & (Rank1BB | Rank8BB)) |
1169 | || pieceCount[W_PAWN] > 8 |
||
1170 | || pieceCount[B_PAWN] > 8) |
||
1171 | assert(0 && "pos_is_ok: Pawns"); |
||
96 | pmbaty | 1172 | |
169 | pmbaty | 1173 | if ( (pieces(WHITE) & pieces(BLACK)) |
1174 | || (pieces(WHITE) | pieces(BLACK)) != pieces() |
||
1175 | || popcount(pieces(WHITE)) > 16 |
||
1176 | || popcount(pieces(BLACK)) > 16) |
||
1177 | assert(0 && "pos_is_ok: Bitboards"); |
||
96 | pmbaty | 1178 | |
169 | pmbaty | 1179 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) |
1180 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) |
||
1181 | if (p1 != p2 && (pieces(p1) & pieces(p2))) |
||
1182 | assert(0 && "pos_is_ok: Bitboards"); |
||
96 | pmbaty | 1183 | |
169 | pmbaty | 1184 | StateInfo si = *st; |
1185 | set_state(&si); |
||
1186 | if (std::memcmp(&si, st, sizeof(StateInfo))) |
||
1187 | assert(0 && "pos_is_ok: State"); |
||
96 | pmbaty | 1188 | |
169 | pmbaty | 1189 | for (Piece pc : Pieces) |
1190 | { |
||
1191 | if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))) |
||
1192 | || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc)) |
||
1193 | assert(0 && "pos_is_ok: Pieces"); |
||
154 | pmbaty | 1194 | |
169 | pmbaty | 1195 | for (int i = 0; i < pieceCount[pc]; ++i) |
1196 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) |
||
1197 | assert(0 && "pos_is_ok: Index"); |
||
1198 | } |
||
96 | pmbaty | 1199 | |
169 | pmbaty | 1200 | for (Color c = WHITE; c <= BLACK; ++c) |
1201 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) |
||
1202 | { |
||
1203 | if (!can_castle(c | s)) |
||
1204 | continue; |
||
96 | pmbaty | 1205 | |
169 | pmbaty | 1206 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) |
1207 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) |
||
1208 | || (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) |
||
1209 | assert(0 && "pos_is_ok: Castling"); |
||
1210 | } |
||
96 | pmbaty | 1211 | |
1212 | return true; |
||
1213 | } |