Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
        
| 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | 
        ||
| 3 |   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | 
        ||
| 4 |   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | 
        ||
| 169 | pmbaty | 5 |   Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | 
        
| 96 | pmbaty | 6 | |
| 7 |   Stockfish is free software: you can redistribute it and/or modify | 
        ||
| 8 |   it under the terms of the GNU General Public License as published by | 
        ||
| 9 |   the Free Software Foundation, either version 3 of the License, or | 
        ||
| 10 |   (at your option) any later version. | 
        ||
| 11 | |||
| 12 |   Stockfish is distributed in the hope that it will be useful, | 
        ||
| 13 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | 
        ||
| 14 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
        ||
| 15 |   GNU General Public License for more details. | 
        ||
| 16 | |||
| 17 |   You should have received a copy of the GNU General Public License | 
        ||
| 18 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
        ||
| 19 | */ | 
        ||
| 20 | |||
| 21 | #include <algorithm> | 
        ||
| 22 | #include <cassert> | 
        ||
| 154 | pmbaty | 23 | #include <cstddef> // For offsetof() | 
        
| 24 | #include <cstring> // For std::memset, std::memcmp | 
        ||
| 96 | pmbaty | 25 | #include <iomanip> | 
        
| 26 | #include <sstream> | 
        ||
| 27 | |||
| 154 | pmbaty | 28 | #include "bitboard.h" | 
        
| 96 | pmbaty | 29 | #include "misc.h" | 
        
| 30 | #include "movegen.h" | 
        ||
| 31 | #include "position.h" | 
        ||
| 32 | #include "thread.h" | 
        ||
| 33 | #include "tt.h" | 
        ||
| 34 | #include "uci.h" | 
        ||
| 169 | pmbaty | 35 | #include "syzygy/tbprobe.h" | 
        
| 96 | pmbaty | 36 | |
| 37 | using std::string;  | 
        ||
| 38 | |||
| 154 | pmbaty | 39 | namespace PSQT {  | 
        
| 40 | extern Score psq[PIECE_NB][SQUARE_NB];  | 
        ||
| 41 | } | 
        ||
| 96 | pmbaty | 42 | |
| 43 | namespace Zobrist {  | 
        ||
| 44 | |||
| 154 | pmbaty | 45 | Key psq[PIECE_NB][SQUARE_NB];  | 
        
| 96 | pmbaty | 46 | Key enpassant[FILE_NB];  | 
        
| 47 | Key castling[CASTLING_RIGHT_NB];  | 
        ||
| 169 | pmbaty | 48 |   Key side, noPawns; | 
        
| 96 | pmbaty | 49 | } | 
        
| 50 | |||
| 51 | namespace {  | 
        ||
| 52 | |||
| 53 | const string PieceToChar(" PNBRQK pnbrqk");  | 
        ||
| 54 | |||
| 169 | pmbaty | 55 | const Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING,  | 
        
| 56 | B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING };  | 
        ||
| 57 | |||
| 58 | // min_attacker() is a helper function used by see_ge() to locate the least | 
        ||
| 96 | pmbaty | 59 | // valuable attacker for the side to move, remove the attacker we just found | 
        
| 60 | // from the bitboards and scan for new X-ray attacks behind it. | 
        ||
| 61 | |||
| 62 | template<int Pt>  | 
        ||
| 63 | PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers,  | 
        ||
| 64 | Bitboard& occupied, Bitboard& attackers) {  | 
        ||
| 65 | |||
| 66 | Bitboard b = stmAttackers & bb[Pt];  | 
        ||
| 67 | if (!b)  | 
        ||
| 169 | pmbaty | 68 | return min_attacker<Pt + 1>(bb, to, stmAttackers, occupied, attackers);  | 
        
| 96 | pmbaty | 69 | |
| 70 | occupied ^= b & ~(b - 1);  | 
        ||
| 71 | |||
| 72 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)  | 
        ||
| 73 | attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);  | 
        ||
| 74 | |||
| 75 | if (Pt == ROOK || Pt == QUEEN)  | 
        ||
| 76 | attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);  | 
        ||
| 77 | |||
| 78 | attackers &= occupied; // After X-ray that may add already processed pieces  | 
        ||
| 79 | return (PieceType)Pt;  | 
        ||
| 80 | } | 
        ||
| 81 | |||
| 82 | template<>  | 
        ||
| 83 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) {  | 
        ||
| 84 | return KING; // No need to update bitboards: it is the last cycle  | 
        ||
| 85 | } | 
        ||
| 86 | |||
| 87 | } // namespace  | 
        ||
| 88 | |||
| 89 | |||
| 90 | /// operator<<(Position) returns an ASCII representation of the position | 
        ||
| 91 | |||
| 92 | std::ostream& operator<<(std::ostream& os, const Position& pos) {  | 
        ||
| 93 | |||
| 94 | os << "\n +---+---+---+---+---+---+---+---+\n";  | 
        ||
| 95 | |||
| 96 | for (Rank r = RANK_8; r >= RANK_1; --r)  | 
        ||
| 97 |   { | 
        ||
| 98 | for (File f = FILE_A; f <= FILE_H; ++f)  | 
        ||
| 99 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))];  | 
        ||
| 100 | |||
| 101 | os << " |\n +---+---+---+---+---+---+---+---+\n";  | 
        ||
| 102 |   } | 
        ||
| 103 | |||
| 104 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase  | 
        ||
| 169 | pmbaty | 105 | << std::setfill('0') << std::setw(16) << pos.key()  | 
        
| 106 | << std::setfill(' ') << std::dec << "\nCheckers: ";  | 
        ||
| 96 | pmbaty | 107 | |
| 108 | for (Bitboard b = pos.checkers(); b; )  | 
        ||
| 109 | os << UCI::square(pop_lsb(&b)) << " ";  | 
        ||
| 110 | |||
| 169 | pmbaty | 111 | if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces())  | 
        
| 112 | && !pos.can_castle(ANY_CASTLING))  | 
        ||
| 113 |   { | 
        ||
| 114 |       StateInfo st; | 
        ||
| 115 |       Position p; | 
        ||
| 116 | p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread());  | 
        ||
| 117 | Tablebases::ProbeState s1, s2;  | 
        ||
| 118 | Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1);  | 
        ||
| 119 | int dtz = Tablebases::probe_dtz(p, &s2);  | 
        ||
| 120 | os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")"  | 
        ||
| 121 | << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")";  | 
        ||
| 122 |   } | 
        ||
| 123 | |||
| 96 | pmbaty | 124 | return os;  | 
        
| 125 | } | 
        ||
| 126 | |||
| 127 | |||
| 128 | /// Position::init() initializes at startup the various arrays used to compute | 
        ||
| 129 | /// hash keys. | 
        ||
| 130 | |||
| 131 | void Position::init() {  | 
        ||
| 132 | |||
| 133 | PRNG rng(1070372);  | 
        ||
| 134 | |||
| 154 | pmbaty | 135 | for (Piece pc : Pieces)  | 
        
| 136 | for (Square s = SQ_A1; s <= SQ_H8; ++s)  | 
        ||
| 137 | Zobrist::psq[pc][s] = rng.rand<Key>();  | 
        ||
| 96 | pmbaty | 138 | |
| 139 | for (File f = FILE_A; f <= FILE_H; ++f)  | 
        ||
| 140 | Zobrist::enpassant[f] = rng.rand<Key>();  | 
        ||
| 141 | |||
| 142 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr)  | 
        ||
| 143 |   { | 
        ||
| 144 | Zobrist::castling[cr] = 0;  | 
        ||
| 145 | Bitboard b = cr;  | 
        ||
| 146 | while (b)  | 
        ||
| 147 |       { | 
        ||
| 148 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)];  | 
        ||
| 149 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>();  | 
        ||
| 150 |       } | 
        ||
| 151 |   } | 
        ||
| 152 | |||
| 153 | Zobrist::side = rng.rand<Key>();  | 
        ||
| 169 | pmbaty | 154 | Zobrist::noPawns = rng.rand<Key>();  | 
        
| 96 | pmbaty | 155 | } | 
        
| 156 | |||
| 157 | |||
| 158 | /// Position::set() initializes the position object with the given FEN string. | 
        ||
| 159 | /// This function is not very robust - make sure that input FENs are correct, | 
        ||
| 160 | /// this is assumed to be the responsibility of the GUI. | 
        ||
| 161 | |||
| 154 | pmbaty | 162 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) {  | 
        
| 96 | pmbaty | 163 | /* | 
        
| 164 |    A FEN string defines a particular position using only the ASCII character set. | 
        ||
| 165 | |||
| 166 |    A FEN string contains six fields separated by a space. The fields are: | 
        ||
| 167 | |||
| 168 |    1) Piece placement (from white's perspective). Each rank is described, starting | 
        ||
| 169 |       with rank 8 and ending with rank 1. Within each rank, the contents of each | 
        ||
| 170 |       square are described from file A through file H. Following the Standard | 
        ||
| 171 |       Algebraic Notation (SAN), each piece is identified by a single letter taken | 
        ||
| 172 |       from the standard English names. White pieces are designated using upper-case | 
        ||
| 173 |       letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are | 
        ||
| 174 |       noted using digits 1 through 8 (the number of blank squares), and "/" | 
        ||
| 175 |       separates ranks. | 
        ||
| 176 | |||
| 177 |    2) Active color. "w" means white moves next, "b" means black. | 
        ||
| 178 | |||
| 179 |    3) Castling availability. If neither side can castle, this is "-". Otherwise, | 
        ||
| 180 |       this has one or more letters: "K" (White can castle kingside), "Q" (White | 
        ||
| 181 |       can castle queenside), "k" (Black can castle kingside), and/or "q" (Black | 
        ||
| 182 |       can castle queenside). | 
        ||
| 183 | |||
| 184 |    4) En passant target square (in algebraic notation). If there's no en passant | 
        ||
| 185 |       target square, this is "-". If a pawn has just made a 2-square move, this | 
        ||
| 169 | pmbaty | 186 |       is the position "behind" the pawn. This is recorded only if there is a pawn | 
        
| 187 |       in position to make an en passant capture, and if there really is a pawn | 
        ||
| 188 |       that might have advanced two squares. | 
        ||
| 96 | pmbaty | 189 | |
| 190 |    5) Halfmove clock. This is the number of halfmoves since the last pawn advance | 
        ||
| 191 |       or capture. This is used to determine if a draw can be claimed under the | 
        ||
| 192 |       fifty-move rule. | 
        ||
| 193 | |||
| 194 |    6) Fullmove number. The number of the full move. It starts at 1, and is | 
        ||
| 195 |       incremented after Black's move. | 
        ||
| 196 | */ | 
        ||
| 197 | |||
| 198 | unsigned char col, row, token;  | 
        ||
| 199 | size_t idx;  | 
        ||
| 200 | Square sq = SQ_A8;  | 
        ||
| 201 | std::istringstream ss(fenStr);  | 
        ||
| 202 | |||
| 154 | pmbaty | 203 | std::memset(this, 0, sizeof(Position));  | 
        
| 204 | std::memset(si, 0, sizeof(StateInfo));  | 
        ||
| 205 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE);  | 
        ||
| 206 | st = si;  | 
        ||
| 207 | |||
| 96 | pmbaty | 208 | ss >> std::noskipws;  | 
        
| 209 | |||
| 210 |   // 1. Piece placement | 
        ||
| 211 | while ((ss >> token) && !isspace(token))  | 
        ||
| 212 |   { | 
        ||
| 213 | if (isdigit(token))  | 
        ||
| 169 | pmbaty | 214 | sq += (token - '0') * EAST; // Advance the given number of files  | 
        
| 96 | pmbaty | 215 | |
| 216 | else if (token == '/')  | 
        ||
| 169 | pmbaty | 217 | sq += 2 * SOUTH;  | 
        
| 96 | pmbaty | 218 | |
| 219 | else if ((idx = PieceToChar.find(token)) != string::npos)  | 
        ||
| 220 |       { | 
        ||
| 154 | pmbaty | 221 | put_piece(Piece(idx), sq);  | 
        
| 96 | pmbaty | 222 | ++sq;  | 
        
| 223 |       } | 
        ||
| 224 |   } | 
        ||
| 225 | |||
| 226 |   // 2. Active color | 
        ||
| 227 | ss >> token;  | 
        ||
| 228 | sideToMove = (token == 'w' ? WHITE : BLACK);  | 
        ||
| 229 | ss >> token;  | 
        ||
| 230 | |||
| 231 |   // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, | 
        ||
| 232 |   // Shredder-FEN that uses the letters of the columns on which the rooks began | 
        ||
| 233 |   // the game instead of KQkq and also X-FEN standard that, in case of Chess960, | 
        ||
| 234 |   // if an inner rook is associated with the castling right, the castling tag is | 
        ||
| 235 |   // replaced by the file letter of the involved rook, as for the Shredder-FEN. | 
        ||
| 236 | while ((ss >> token) && !isspace(token))  | 
        ||
| 237 |   { | 
        ||
| 238 |       Square rsq; | 
        ||
| 239 | Color c = islower(token) ? BLACK : WHITE;  | 
        ||
| 240 | Piece rook = make_piece(c, ROOK);  | 
        ||
| 241 | |||
| 242 | token = char(toupper(token));  | 
        ||
| 243 | |||
| 244 | if (token == 'K')  | 
        ||
| 245 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {}  | 
        ||
| 246 | |||
| 247 | else if (token == 'Q')  | 
        ||
| 248 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {}  | 
        ||
| 249 | |||
| 250 | else if (token >= 'A' && token <= 'H')  | 
        ||
| 251 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1));  | 
        ||
| 252 | |||
| 253 |       else | 
        ||
| 254 | continue;  | 
        ||
| 255 | |||
| 256 | set_castling_right(c, rsq);  | 
        ||
| 257 |   } | 
        ||
| 258 | |||
| 259 |   // 4. En passant square. Ignore if no pawn capture is possible | 
        ||
| 260 | if ( ((ss >> col) && (col >= 'a' && col <= 'h'))  | 
        ||
| 261 | && ((ss >> row) && (row == '3' || row == '6')))  | 
        ||
| 262 |   { | 
        ||
| 263 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1'));  | 
        ||
| 264 | |||
| 169 | pmbaty | 265 | if ( !(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))  | 
        
| 266 | || !(pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove))))  | 
        ||
| 96 | pmbaty | 267 | st->epSquare = SQ_NONE;  | 
        
| 268 |   } | 
        ||
| 154 | pmbaty | 269 |   else | 
        
| 270 | st->epSquare = SQ_NONE;  | 
        ||
| 96 | pmbaty | 271 | |
| 272 |   // 5-6. Halfmove clock and fullmove number | 
        ||
| 273 | ss >> std::skipws >> st->rule50 >> gamePly;  | 
        ||
| 274 | |||
| 169 | pmbaty | 275 |   // Convert from fullmove starting from 1 to gamePly starting from 0, | 
        
| 96 | pmbaty | 276 |   // handle also common incorrect FEN with fullmove = 0. | 
        
| 277 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK);  | 
        ||
| 278 | |||
| 279 | chess960 = isChess960;  | 
        ||
| 280 | thisThread = th;  | 
        ||
| 281 | set_state(st);  | 
        ||
| 282 | |||
| 283 | assert(pos_is_ok());  | 
        ||
| 154 | pmbaty | 284 | |
| 285 | return *this;  | 
        ||
| 96 | pmbaty | 286 | } | 
        
| 287 | |||
| 288 | |||
| 289 | /// Position::set_castling_right() is a helper function used to set castling | 
        ||
| 290 | /// rights given the corresponding color and the rook starting square. | 
        ||
| 291 | |||
| 292 | void Position::set_castling_right(Color c, Square rfrom) {  | 
        ||
| 293 | |||
| 294 | Square kfrom = square<KING>(c);  | 
        ||
| 295 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;  | 
        ||
| 296 | CastlingRight cr = (c | cs);  | 
        ||
| 297 | |||
| 298 | st->castlingRights |= cr;  | 
        ||
| 299 | castlingRightsMask[kfrom] |= cr;  | 
        ||
| 300 | castlingRightsMask[rfrom] |= cr;  | 
        ||
| 301 | castlingRookSquare[cr] = rfrom;  | 
        ||
| 302 | |||
| 303 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);  | 
        ||
| 304 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);  | 
        ||
| 305 | |||
| 306 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s)  | 
        ||
| 307 | if (s != kfrom && s != rfrom)  | 
        ||
| 308 | castlingPath[cr] |= s;  | 
        ||
| 309 | |||
| 310 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s)  | 
        ||
| 311 | if (s != kfrom && s != rfrom)  | 
        ||
| 312 | castlingPath[cr] |= s;  | 
        ||
| 313 | } | 
        ||
| 314 | |||
| 315 | |||
| 154 | pmbaty | 316 | /// Position::set_check_info() sets king attacks to detect if a move gives check | 
        
| 317 | |||
| 318 | void Position::set_check_info(StateInfo* si) const {  | 
        ||
| 319 | |||
| 320 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinnersForKing[WHITE]);  | 
        ||
| 321 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinnersForKing[BLACK]);  | 
        ||
| 322 | |||
| 323 | Square ksq = square<KING>(~sideToMove);  | 
        ||
| 324 | |||
| 325 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove);  | 
        ||
| 326 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq);  | 
        ||
| 327 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq);  | 
        ||
| 328 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq);  | 
        ||
| 329 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK];  | 
        ||
| 330 | si->checkSquares[KING] = 0;  | 
        ||
| 331 | } | 
        ||
| 332 | |||
| 333 | |||
| 96 | pmbaty | 334 | /// Position::set_state() computes the hash keys of the position, and other | 
        
| 335 | /// data that once computed is updated incrementally as moves are made. | 
        ||
| 336 | /// The function is only used when a new position is set up, and to verify | 
        ||
| 337 | /// the correctness of the StateInfo data when running in debug mode. | 
        ||
| 338 | |||
| 339 | void Position::set_state(StateInfo* si) const {  | 
        ||
| 340 | |||
| 169 | pmbaty | 341 | si->key = si->materialKey = 0;  | 
        
| 342 | si->pawnKey = Zobrist::noPawns;  | 
        ||
| 96 | pmbaty | 343 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO;  | 
        
| 344 | si->psq = SCORE_ZERO;  | 
        ||
| 345 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove);  | 
        ||
| 346 | |||
| 154 | pmbaty | 347 | set_check_info(si);  | 
        
| 348 | |||
| 96 | pmbaty | 349 | for (Bitboard b = pieces(); b; )  | 
        
| 350 |   { | 
        ||
| 351 | Square s = pop_lsb(&b);  | 
        ||
| 352 | Piece pc = piece_on(s);  | 
        ||
| 154 | pmbaty | 353 | si->key ^= Zobrist::psq[pc][s];  | 
        
| 354 | si->psq += PSQT::psq[pc][s];  | 
        ||
| 96 | pmbaty | 355 |   } | 
        
| 356 | |||
| 357 | if (si->epSquare != SQ_NONE)  | 
        ||
| 358 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)];  | 
        ||
| 359 | |||
| 360 | if (sideToMove == BLACK)  | 
        ||
| 361 | si->key ^= Zobrist::side;  | 
        ||
| 362 | |||
| 363 | si->key ^= Zobrist::castling[si->castlingRights];  | 
        ||
| 364 | |||
| 365 | for (Bitboard b = pieces(PAWN); b; )  | 
        ||
| 366 |   { | 
        ||
| 367 | Square s = pop_lsb(&b);  | 
        ||
| 154 | pmbaty | 368 | si->pawnKey ^= Zobrist::psq[piece_on(s)][s];  | 
        
| 96 | pmbaty | 369 |   } | 
        
| 370 | |||
| 154 | pmbaty | 371 | for (Piece pc : Pieces)  | 
        
| 372 |   { | 
        ||
| 373 | if (type_of(pc) != PAWN && type_of(pc) != KING)  | 
        ||
| 374 | si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc];  | 
        ||
| 96 | pmbaty | 375 | |
| 154 | pmbaty | 376 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt)  | 
        
| 377 | si->materialKey ^= Zobrist::psq[pc][cnt];  | 
        ||
| 378 |   } | 
        ||
| 96 | pmbaty | 379 | } | 
        
| 380 | |||
| 381 | |||
| 169 | pmbaty | 382 | /// Position::set() is an overload to initialize the position object with | 
        
| 383 | /// the given endgame code string like "KBPKN". It is mainly a helper to | 
        ||
| 384 | /// get the material key out of an endgame code. | 
        ||
| 385 | |||
| 386 | Position& Position::set(const string& code, Color c, StateInfo* si) {  | 
        ||
| 387 | |||
| 388 | assert(code.length() > 0 && code.length() < 8);  | 
        ||
| 389 | assert(code[0] == 'K');  | 
        ||
| 390 | |||
| 391 | string sides[] = { code.substr(code.find('K', 1)), // Weak  | 
        ||
| 392 | code.substr(0, code.find('K', 1)) }; // Strong  | 
        ||
| 393 | |||
| 394 | std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);  | 
        ||
| 395 | |||
| 396 | string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/"  | 
        ||
| 397 | + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10";  | 
        ||
| 398 | |||
| 399 | return set(fenStr, false, si, nullptr);  | 
        ||
| 400 | } | 
        ||
| 401 | |||
| 402 | |||
| 96 | pmbaty | 403 | /// Position::fen() returns a FEN representation of the position. In case of | 
        
| 404 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. | 
        ||
| 405 | |||
| 406 | const string Position::fen() const {  | 
        ||
| 407 | |||
| 408 | int emptyCnt;  | 
        ||
| 409 | std::ostringstream ss;  | 
        ||
| 410 | |||
| 411 | for (Rank r = RANK_8; r >= RANK_1; --r)  | 
        ||
| 412 |   { | 
        ||
| 413 | for (File f = FILE_A; f <= FILE_H; ++f)  | 
        ||
| 414 |       { | 
        ||
| 415 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f)  | 
        ||
| 416 | ++emptyCnt;  | 
        ||
| 417 | |||
| 418 | if (emptyCnt)  | 
        ||
| 419 | ss << emptyCnt;  | 
        ||
| 420 | |||
| 421 | if (f <= FILE_H)  | 
        ||
| 422 | ss << PieceToChar[piece_on(make_square(f, r))];  | 
        ||
| 423 |       } | 
        ||
| 424 | |||
| 425 | if (r > RANK_1)  | 
        ||
| 426 | ss << '/';  | 
        ||
| 427 |   } | 
        ||
| 428 | |||
| 429 | ss << (sideToMove == WHITE ? " w " : " b ");  | 
        ||
| 430 | |||
| 431 | if (can_castle(WHITE_OO))  | 
        ||
| 432 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K');  | 
        ||
| 433 | |||
| 434 | if (can_castle(WHITE_OOO))  | 
        ||
| 435 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q');  | 
        ||
| 436 | |||
| 437 | if (can_castle(BLACK_OO))  | 
        ||
| 438 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k');  | 
        ||
| 439 | |||
| 440 | if (can_castle(BLACK_OOO))  | 
        ||
| 441 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q');  | 
        ||
| 442 | |||
| 443 | if (!can_castle(WHITE) && !can_castle(BLACK))  | 
        ||
| 444 | ss << '-';  | 
        ||
| 445 | |||
| 446 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ")  | 
        ||
| 447 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2;  | 
        ||
| 448 | |||
| 449 | return ss.str();  | 
        ||
| 450 | } | 
        ||
| 451 | |||
| 452 | |||
| 154 | pmbaty | 453 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) | 
        
| 454 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a | 
        ||
| 455 | /// slider if removing that piece from the board would result in a position where | 
        ||
| 456 | /// square 's' is attacked. For example, a king-attack blocking piece can be either | 
        ||
| 457 | /// a pinned or a discovered check piece, according if its color is the opposite | 
        ||
| 458 | /// or the same of the color of the slider. | 
        ||
| 96 | pmbaty | 459 | |
| 154 | pmbaty | 460 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const {  | 
        
| 96 | pmbaty | 461 | |
| 154 | pmbaty | 462 | Bitboard result = 0;  | 
        
| 463 | pinners = 0;  | 
        ||
| 96 | pmbaty | 464 | |
| 154 | pmbaty | 465 |   // Snipers are sliders that attack 's' when a piece is removed | 
        
| 169 | pmbaty | 466 | Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK))  | 
        
| 154 | pmbaty | 467 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders;  | 
        
| 96 | pmbaty | 468 | |
| 154 | pmbaty | 469 | while (snipers)  | 
        
| 96 | pmbaty | 470 |   { | 
        
| 154 | pmbaty | 471 | Square sniperSq = pop_lsb(&snipers);  | 
        
| 472 | Bitboard b = between_bb(s, sniperSq) & pieces();  | 
        ||
| 96 | pmbaty | 473 | |
| 154 | pmbaty | 474 | if (!more_than_one(b))  | 
        
| 475 |     { | 
        ||
| 476 | result |= b;  | 
        ||
| 477 | if (b & pieces(color_of(piece_on(s))))  | 
        ||
| 478 | pinners |= sniperSq;  | 
        ||
| 479 |     } | 
        ||
| 96 | pmbaty | 480 |   } | 
        
| 481 | return result;  | 
        ||
| 482 | } | 
        ||
| 483 | |||
| 484 | |||
| 485 | /// Position::attackers_to() computes a bitboard of all pieces which attack a | 
        ||
| 486 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. | 
        ||
| 487 | |||
| 488 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const {  | 
        ||
| 489 | |||
| 490 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))  | 
        ||
| 491 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))  | 
        ||
| 492 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT))  | 
        ||
| 169 | pmbaty | 493 | | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN))  | 
        
| 96 | pmbaty | 494 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN))  | 
        
| 495 | | (attacks_from<KING>(s) & pieces(KING));  | 
        ||
| 496 | } | 
        ||
| 497 | |||
| 498 | |||
| 499 | /// Position::legal() tests whether a pseudo-legal move is legal | 
        ||
| 500 | |||
| 154 | pmbaty | 501 | bool Position::legal(Move m) const {  | 
        
| 96 | pmbaty | 502 | |
| 503 | assert(is_ok(m));  | 
        ||
| 504 | |||
| 505 | Color us = sideToMove;  | 
        ||
| 506 | Square from = from_sq(m);  | 
        ||
| 507 | |||
| 508 | assert(color_of(moved_piece(m)) == us);  | 
        ||
| 509 | assert(piece_on(square<KING>(us)) == make_piece(us, KING));  | 
        ||
| 510 | |||
| 511 |   // En passant captures are a tricky special case. Because they are rather | 
        ||
| 512 |   // uncommon, we do it simply by testing whether the king is attacked after | 
        ||
| 513 |   // the move is made. | 
        ||
| 514 | if (type_of(m) == ENPASSANT)  | 
        ||
| 515 |   { | 
        ||
| 516 | Square ksq = square<KING>(us);  | 
        ||
| 517 | Square to = to_sq(m);  | 
        ||
| 518 | Square capsq = to - pawn_push(us);  | 
        ||
| 519 | Bitboard occupied = (pieces() ^ from ^ capsq) | to;  | 
        ||
| 520 | |||
| 521 | assert(to == ep_square());  | 
        ||
| 522 | assert(moved_piece(m) == make_piece(us, PAWN));  | 
        ||
| 523 | assert(piece_on(capsq) == make_piece(~us, PAWN));  | 
        ||
| 524 | assert(piece_on(to) == NO_PIECE);  | 
        ||
| 525 | |||
| 526 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK))  | 
        ||
| 527 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));  | 
        ||
| 528 |   } | 
        ||
| 529 | |||
| 530 |   // If the moving piece is a king, check whether the destination | 
        ||
| 531 |   // square is attacked by the opponent. Castling moves are checked | 
        ||
| 532 |   // for legality during move generation. | 
        ||
| 533 | if (type_of(piece_on(from)) == KING)  | 
        ||
| 534 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us));  | 
        ||
| 535 | |||
| 536 |   // A non-king move is legal if and only if it is not pinned or it | 
        ||
| 537 |   // is moving along the ray towards or away from the king. | 
        ||
| 154 | pmbaty | 538 | return !(pinned_pieces(us) & from)  | 
        
| 96 | pmbaty | 539 | || aligned(from, to_sq(m), square<KING>(us));  | 
        
| 540 | } | 
        ||
| 541 | |||
| 542 | |||
| 543 | /// Position::pseudo_legal() takes a random move and tests whether the move is | 
        ||
| 544 | /// pseudo legal. It is used to validate moves from TT that can be corrupted | 
        ||
| 545 | /// due to SMP concurrent access or hash position key aliasing. | 
        ||
| 546 | |||
| 547 | bool Position::pseudo_legal(const Move m) const {  | 
        ||
| 548 | |||
| 549 | Color us = sideToMove;  | 
        ||
| 550 | Square from = from_sq(m);  | 
        ||
| 551 | Square to = to_sq(m);  | 
        ||
| 552 | Piece pc = moved_piece(m);  | 
        ||
| 553 | |||
| 554 |   // Use a slower but simpler function for uncommon cases | 
        ||
| 555 | if (type_of(m) != NORMAL)  | 
        ||
| 556 | return MoveList<LEGAL>(*this).contains(m);  | 
        ||
| 557 | |||
| 558 |   // Is not a promotion, so promotion piece must be empty | 
        ||
| 559 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE)  | 
        ||
| 560 | return false;  | 
        ||
| 561 | |||
| 562 |   // If the 'from' square is not occupied by a piece belonging to the side to | 
        ||
| 563 |   // move, the move is obviously not legal. | 
        ||
| 564 | if (pc == NO_PIECE || color_of(pc) != us)  | 
        ||
| 565 | return false;  | 
        ||
| 566 | |||
| 567 |   // The destination square cannot be occupied by a friendly piece | 
        ||
| 568 | if (pieces(us) & to)  | 
        ||
| 569 | return false;  | 
        ||
| 570 | |||
| 571 |   // Handle the special case of a pawn move | 
        ||
| 572 | if (type_of(pc) == PAWN)  | 
        ||
| 573 |   { | 
        ||
| 574 |       // We have already handled promotion moves, so destination | 
        ||
| 575 |       // cannot be on the 8th/1st rank. | 
        ||
| 576 | if (rank_of(to) == relative_rank(us, RANK_8))  | 
        ||
| 577 | return false;  | 
        ||
| 578 | |||
| 579 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture  | 
        ||
| 580 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push  | 
        ||
| 581 | && !( (from + 2 * pawn_push(us) == to) // Not a double push  | 
        ||
| 582 | && (rank_of(from) == relative_rank(us, RANK_2))  | 
        ||
| 583 | && empty(to)  | 
        ||
| 584 | && empty(to - pawn_push(us))))  | 
        ||
| 585 | return false;  | 
        ||
| 586 |   } | 
        ||
| 169 | pmbaty | 587 | else if (!(attacks_from(type_of(pc), from) & to))  | 
        
| 96 | pmbaty | 588 | return false;  | 
        
| 589 | |||
| 590 |   // Evasions generator already takes care to avoid some kind of illegal moves | 
        ||
| 591 |   // and legal() relies on this. We therefore have to take care that the same | 
        ||
| 592 |   // kind of moves are filtered out here. | 
        ||
| 593 | if (checkers())  | 
        ||
| 594 |   { | 
        ||
| 595 | if (type_of(pc) != KING)  | 
        ||
| 596 |       { | 
        ||
| 597 |           // Double check? In this case a king move is required | 
        ||
| 598 | if (more_than_one(checkers()))  | 
        ||
| 599 | return false;  | 
        ||
| 600 | |||
| 601 |           // Our move must be a blocking evasion or a capture of the checking piece | 
        ||
| 602 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to))  | 
        ||
| 603 | return false;  | 
        ||
| 604 |       } | 
        ||
| 605 |       // In case of king moves under check we have to remove king so as to catch | 
        ||
| 606 |       // invalid moves like b1a1 when opposite queen is on c1. | 
        ||
| 607 | else if (attackers_to(to, pieces() ^ from) & pieces(~us))  | 
        ||
| 608 | return false;  | 
        ||
| 609 |   } | 
        ||
| 610 | |||
| 611 | return true;  | 
        ||
| 612 | } | 
        ||
| 613 | |||
| 614 | |||
| 615 | /// Position::gives_check() tests whether a pseudo-legal move gives a check | 
        ||
| 616 | |||
| 154 | pmbaty | 617 | bool Position::gives_check(Move m) const {  | 
        
| 96 | pmbaty | 618 | |
| 619 | assert(is_ok(m));  | 
        ||
| 620 | assert(color_of(moved_piece(m)) == sideToMove);  | 
        ||
| 621 | |||
| 622 | Square from = from_sq(m);  | 
        ||
| 623 | Square to = to_sq(m);  | 
        ||
| 624 | |||
| 625 |   // Is there a direct check? | 
        ||
| 154 | pmbaty | 626 | if (st->checkSquares[type_of(piece_on(from))] & to)  | 
        
| 96 | pmbaty | 627 | return true;  | 
        
| 628 | |||
| 629 |   // Is there a discovered check? | 
        ||
| 154 | pmbaty | 630 | if ( (discovered_check_candidates() & from)  | 
        
| 631 | && !aligned(from, to, square<KING>(~sideToMove)))  | 
        ||
| 96 | pmbaty | 632 | return true;  | 
        
| 633 | |||
| 634 | switch (type_of(m))  | 
        ||
| 635 |   { | 
        ||
| 636 | case NORMAL:  | 
        ||
| 637 | return false;  | 
        ||
| 638 | |||
| 639 | case PROMOTION:  | 
        ||
| 169 | pmbaty | 640 | return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove);  | 
        
| 96 | pmbaty | 641 | |
| 642 |   // En passant capture with check? We have already handled the case | 
        ||
| 643 |   // of direct checks and ordinary discovered check, so the only case we | 
        ||
| 644 |   // need to handle is the unusual case of a discovered check through | 
        ||
| 645 |   // the captured pawn. | 
        ||
| 646 | case ENPASSANT:  | 
        ||
| 647 |   { | 
        ||
| 648 | Square capsq = make_square(file_of(to), rank_of(from));  | 
        ||
| 649 | Bitboard b = (pieces() ^ from ^ capsq) | to;  | 
        ||
| 650 | |||
| 154 | pmbaty | 651 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK))  | 
        
| 652 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP));  | 
        ||
| 96 | pmbaty | 653 |   } | 
        
| 654 | case CASTLING:  | 
        ||
| 655 |   { | 
        ||
| 656 | Square kfrom = from;  | 
        ||
| 657 | Square rfrom = to; // Castling is encoded as 'King captures the rook'  | 
        ||
| 658 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1);  | 
        ||
| 659 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1);  | 
        ||
| 660 | |||
| 154 | pmbaty | 661 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove))  | 
        
| 662 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove));  | 
        ||
| 96 | pmbaty | 663 |   } | 
        
| 664 | default:  | 
        ||
| 665 | assert(false);  | 
        ||
| 666 | return false;  | 
        ||
| 667 |   } | 
        ||
| 668 | } | 
        ||
| 669 | |||
| 670 | |||
| 671 | /// Position::do_move() makes a move, and saves all information necessary | 
        ||
| 672 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal | 
        ||
| 673 | /// moves should be filtered out before this function is called. | 
        ||
| 674 | |||
| 675 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {  | 
        ||
| 676 | |||
| 677 | assert(is_ok(m));  | 
        ||
| 678 | assert(&newSt != st);  | 
        ||
| 679 | |||
| 169 | pmbaty | 680 | thisThread->nodes.fetch_add(1, std::memory_order_relaxed);  | 
        
| 96 | pmbaty | 681 | Key k = st->key ^ Zobrist::side;  | 
        
| 682 | |||
| 683 |   // Copy some fields of the old state to our new StateInfo object except the | 
        ||
| 684 |   // ones which are going to be recalculated from scratch anyway and then switch | 
        ||
| 685 |   // our state pointer to point to the new (ready to be updated) state. | 
        ||
| 686 | std::memcpy(&newSt, st, offsetof(StateInfo, key));  | 
        ||
| 687 | newSt.previous = st;  | 
        ||
| 688 | st = &newSt;  | 
        ||
| 689 | |||
| 690 |   // Increment ply counters. In particular, rule50 will be reset to zero later on | 
        ||
| 691 |   // in case of a capture or a pawn move. | 
        ||
| 692 | ++gamePly;  | 
        ||
| 693 | ++st->rule50;  | 
        ||
| 694 | ++st->pliesFromNull;  | 
        ||
| 695 | |||
| 696 | Color us = sideToMove;  | 
        ||
| 697 | Color them = ~us;  | 
        ||
| 698 | Square from = from_sq(m);  | 
        ||
| 699 | Square to = to_sq(m);  | 
        ||
| 154 | pmbaty | 700 | Piece pc = piece_on(from);  | 
        
| 701 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to);  | 
        ||
| 96 | pmbaty | 702 | |
| 154 | pmbaty | 703 | assert(color_of(pc) == us);  | 
        
| 704 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us));  | 
        ||
| 705 | assert(type_of(captured) != KING);  | 
        ||
| 96 | pmbaty | 706 | |
| 707 | if (type_of(m) == CASTLING)  | 
        ||
| 708 |   { | 
        ||
| 154 | pmbaty | 709 | assert(pc == make_piece(us, KING));  | 
        
| 710 | assert(captured == make_piece(us, ROOK));  | 
        ||
| 96 | pmbaty | 711 | |
| 712 |       Square rfrom, rto; | 
        ||
| 713 | do_castling<true>(us, from, to, rfrom, rto);  | 
        ||
| 714 | |||
| 154 | pmbaty | 715 | st->psq += PSQT::psq[captured][rto] - PSQT::psq[captured][rfrom];  | 
        
| 716 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto];  | 
        ||
| 717 | captured = NO_PIECE;  | 
        ||
| 96 | pmbaty | 718 |   } | 
        
| 719 | |||
| 720 | if (captured)  | 
        ||
| 721 |   { | 
        ||
| 722 | Square capsq = to;  | 
        ||
| 723 | |||
| 724 |       // If the captured piece is a pawn, update pawn hash key, otherwise | 
        ||
| 725 |       // update non-pawn material. | 
        ||
| 154 | pmbaty | 726 | if (type_of(captured) == PAWN)  | 
        
| 96 | pmbaty | 727 |       { | 
        
| 728 | if (type_of(m) == ENPASSANT)  | 
        ||
| 729 |           { | 
        ||
| 730 | capsq -= pawn_push(us);  | 
        ||
| 731 | |||
| 154 | pmbaty | 732 | assert(pc == make_piece(us, PAWN));  | 
        
| 96 | pmbaty | 733 | assert(to == st->epSquare);  | 
        
| 734 | assert(relative_rank(us, to) == RANK_6);  | 
        ||
| 735 | assert(piece_on(to) == NO_PIECE);  | 
        ||
| 736 | assert(piece_on(capsq) == make_piece(them, PAWN));  | 
        ||
| 737 | |||
| 738 | board[capsq] = NO_PIECE; // Not done by remove_piece()  | 
        ||
| 739 |           } | 
        ||
| 740 | |||
| 154 | pmbaty | 741 | st->pawnKey ^= Zobrist::psq[captured][capsq];  | 
        
| 96 | pmbaty | 742 |       } | 
        
| 743 |       else | 
        ||
| 744 | st->nonPawnMaterial[them] -= PieceValue[MG][captured];  | 
        ||
| 745 | |||
| 746 |       // Update board and piece lists | 
        ||
| 154 | pmbaty | 747 | remove_piece(captured, capsq);  | 
        
| 96 | pmbaty | 748 | |
| 749 |       // Update material hash key and prefetch access to materialTable | 
        ||
| 154 | pmbaty | 750 | k ^= Zobrist::psq[captured][capsq];  | 
        
| 751 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]];  | 
        ||
| 96 | pmbaty | 752 | prefetch(thisThread->materialTable[st->materialKey]);  | 
        
| 753 | |||
| 754 |       // Update incremental scores | 
        ||
| 154 | pmbaty | 755 | st->psq -= PSQT::psq[captured][capsq];  | 
        
| 96 | pmbaty | 756 | |
| 757 |       // Reset rule 50 counter | 
        ||
| 758 | st->rule50 = 0;  | 
        ||
| 759 |   } | 
        ||
| 760 | |||
| 761 |   // Update hash key | 
        ||
| 154 | pmbaty | 762 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to];  | 
        
| 96 | pmbaty | 763 | |
| 764 |   // Reset en passant square | 
        ||
| 765 | if (st->epSquare != SQ_NONE)  | 
        ||
| 766 |   { | 
        ||
| 767 | k ^= Zobrist::enpassant[file_of(st->epSquare)];  | 
        ||
| 768 | st->epSquare = SQ_NONE;  | 
        ||
| 769 |   } | 
        ||
| 770 | |||
| 771 |   // Update castling rights if needed | 
        ||
| 772 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to]))  | 
        ||
| 773 |   { | 
        ||
| 774 | int cr = castlingRightsMask[from] | castlingRightsMask[to];  | 
        ||
| 775 | k ^= Zobrist::castling[st->castlingRights & cr];  | 
        ||
| 776 | st->castlingRights &= ~cr;  | 
        ||
| 777 |   } | 
        ||
| 778 | |||
| 779 |   // Move the piece. The tricky Chess960 castling is handled earlier | 
        ||
| 780 | if (type_of(m) != CASTLING)  | 
        ||
| 154 | pmbaty | 781 | move_piece(pc, from, to);  | 
        
| 96 | pmbaty | 782 | |
| 783 |   // If the moving piece is a pawn do some special extra work | 
        ||
| 154 | pmbaty | 784 | if (type_of(pc) == PAWN)  | 
        
| 96 | pmbaty | 785 |   { | 
        
| 786 |       // Set en-passant square if the moved pawn can be captured | 
        ||
| 787 | if ( (int(to) ^ int(from)) == 16  | 
        ||
| 788 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN)))  | 
        ||
| 789 |       { | 
        ||
| 169 | pmbaty | 790 | st->epSquare = to - pawn_push(us);  | 
        
| 96 | pmbaty | 791 | k ^= Zobrist::enpassant[file_of(st->epSquare)];  | 
        
| 792 |       } | 
        ||
| 793 | |||
| 794 | else if (type_of(m) == PROMOTION)  | 
        ||
| 795 |       { | 
        ||
| 154 | pmbaty | 796 | Piece promotion = make_piece(us, promotion_type(m));  | 
        
| 96 | pmbaty | 797 | |
| 798 | assert(relative_rank(us, to) == RANK_8);  | 
        ||
| 154 | pmbaty | 799 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN);  | 
        
| 96 | pmbaty | 800 | |
| 154 | pmbaty | 801 | remove_piece(pc, to);  | 
        
| 802 | put_piece(promotion, to);  | 
        ||
| 96 | pmbaty | 803 | |
| 804 |           // Update hash keys | 
        ||
| 154 | pmbaty | 805 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to];  | 
        
| 806 | st->pawnKey ^= Zobrist::psq[pc][to];  | 
        ||
| 807 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1]  | 
        ||
| 808 | ^ Zobrist::psq[pc][pieceCount[pc]];  | 
        ||
| 96 | pmbaty | 809 | |
| 810 |           // Update incremental score | 
        ||
| 154 | pmbaty | 811 | st->psq += PSQT::psq[promotion][to] - PSQT::psq[pc][to];  | 
        
| 96 | pmbaty | 812 | |
| 813 |           // Update material | 
        ||
| 814 | st->nonPawnMaterial[us] += PieceValue[MG][promotion];  | 
        ||
| 815 |       } | 
        ||
| 816 | |||
| 817 |       // Update pawn hash key and prefetch access to pawnsTable | 
        ||
| 154 | pmbaty | 818 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to];  | 
        
| 169 | pmbaty | 819 | prefetch2(thisThread->pawnsTable[st->pawnKey]);  | 
        
| 96 | pmbaty | 820 | |
| 821 |       // Reset rule 50 draw counter | 
        ||
| 822 | st->rule50 = 0;  | 
        ||
| 823 |   } | 
        ||
| 824 | |||
| 825 |   // Update incremental scores | 
        ||
| 154 | pmbaty | 826 | st->psq += PSQT::psq[pc][to] - PSQT::psq[pc][from];  | 
        
| 96 | pmbaty | 827 | |
| 828 |   // Set capture piece | 
        ||
| 154 | pmbaty | 829 | st->capturedPiece = captured;  | 
        
| 96 | pmbaty | 830 | |
| 831 |   // Update the key with the final value | 
        ||
| 832 | st->key = k;  | 
        ||
| 833 | |||
| 834 |   // Calculate checkers bitboard (if move gives check) | 
        ||
| 835 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0;  | 
        ||
| 836 | |||
| 837 | sideToMove = ~sideToMove;  | 
        ||
| 838 | |||
| 154 | pmbaty | 839 |   // Update king attacks used for fast check detection | 
        
| 840 | set_check_info(st);  | 
        ||
| 841 | |||
| 96 | pmbaty | 842 | assert(pos_is_ok());  | 
        
| 843 | } | 
        ||
| 844 | |||
| 845 | |||
| 846 | /// Position::undo_move() unmakes a move. When it returns, the position should | 
        ||
| 847 | /// be restored to exactly the same state as before the move was made. | 
        ||
| 848 | |||
| 849 | void Position::undo_move(Move m) {  | 
        ||
| 850 | |||
| 851 | assert(is_ok(m));  | 
        ||
| 852 | |||
| 853 | sideToMove = ~sideToMove;  | 
        ||
| 854 | |||
| 855 | Color us = sideToMove;  | 
        ||
| 856 | Square from = from_sq(m);  | 
        ||
| 857 | Square to = to_sq(m);  | 
        ||
| 154 | pmbaty | 858 | Piece pc = piece_on(to);  | 
        
| 96 | pmbaty | 859 | |
| 860 | assert(empty(from) || type_of(m) == CASTLING);  | 
        ||
| 154 | pmbaty | 861 | assert(type_of(st->capturedPiece) != KING);  | 
        
| 96 | pmbaty | 862 | |
| 863 | if (type_of(m) == PROMOTION)  | 
        ||
| 864 |   { | 
        ||
| 865 | assert(relative_rank(us, to) == RANK_8);  | 
        ||
| 154 | pmbaty | 866 | assert(type_of(pc) == promotion_type(m));  | 
        
| 867 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN);  | 
        ||
| 96 | pmbaty | 868 | |
| 154 | pmbaty | 869 | remove_piece(pc, to);  | 
        
| 870 | pc = make_piece(us, PAWN);  | 
        ||
| 871 | put_piece(pc, to);  | 
        ||
| 96 | pmbaty | 872 |   } | 
        
| 873 | |||
| 874 | if (type_of(m) == CASTLING)  | 
        ||
| 875 |   { | 
        ||
| 876 |       Square rfrom, rto; | 
        ||
| 877 | do_castling<false>(us, from, to, rfrom, rto);  | 
        ||
| 878 |   } | 
        ||
| 879 |   else | 
        ||
| 880 |   { | 
        ||
| 154 | pmbaty | 881 | move_piece(pc, to, from); // Put the piece back at the source square  | 
        
| 96 | pmbaty | 882 | |
| 154 | pmbaty | 883 | if (st->capturedPiece)  | 
        
| 96 | pmbaty | 884 |       { | 
        
| 885 | Square capsq = to;  | 
        ||
| 886 | |||
| 887 | if (type_of(m) == ENPASSANT)  | 
        ||
| 888 |           { | 
        ||
| 889 | capsq -= pawn_push(us);  | 
        ||
| 890 | |||
| 154 | pmbaty | 891 | assert(type_of(pc) == PAWN);  | 
        
| 96 | pmbaty | 892 | assert(to == st->previous->epSquare);  | 
        
| 893 | assert(relative_rank(us, to) == RANK_6);  | 
        ||
| 894 | assert(piece_on(capsq) == NO_PIECE);  | 
        ||
| 154 | pmbaty | 895 | assert(st->capturedPiece == make_piece(~us, PAWN));  | 
        
| 96 | pmbaty | 896 |           } | 
        
| 897 | |||
| 154 | pmbaty | 898 | put_piece(st->capturedPiece, capsq); // Restore the captured piece  | 
        
| 96 | pmbaty | 899 |       } | 
        
| 900 |   } | 
        ||
| 901 | |||
| 902 |   // Finally point our state pointer back to the previous state | 
        ||
| 903 | st = st->previous;  | 
        ||
| 904 | --gamePly;  | 
        ||
| 905 | |||
| 906 | assert(pos_is_ok());  | 
        ||
| 907 | } | 
        ||
| 908 | |||
| 909 | |||
| 910 | /// Position::do_castling() is a helper used to do/undo a castling move. This | 
        ||
| 154 | pmbaty | 911 | /// is a bit tricky in Chess960 where from/to squares can overlap. | 
        
| 96 | pmbaty | 912 | template<bool Do>  | 
        
| 913 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) {  | 
        ||
| 914 | |||
| 915 | bool kingSide = to > from;  | 
        ||
| 916 | rfrom = to; // Castling is encoded as "king captures friendly rook"  | 
        ||
| 917 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);  | 
        ||
| 918 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);  | 
        ||
| 919 | |||
| 920 |   // Remove both pieces first since squares could overlap in Chess960 | 
        ||
| 154 | pmbaty | 921 | remove_piece(make_piece(us, KING), Do ? from : to);  | 
        
| 922 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto);  | 
        ||
| 96 | pmbaty | 923 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us  | 
        
| 154 | pmbaty | 924 | put_piece(make_piece(us, KING), Do ? to : from);  | 
        
| 925 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom);  | 
        ||
| 96 | pmbaty | 926 | } | 
        
| 927 | |||
| 928 | |||
| 929 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips | 
        ||
| 930 | /// the side to move without executing any move on the board. | 
        ||
| 931 | |||
| 932 | void Position::do_null_move(StateInfo& newSt) {  | 
        ||
| 933 | |||
| 934 | assert(!checkers());  | 
        ||
| 935 | assert(&newSt != st);  | 
        ||
| 936 | |||
| 937 | std::memcpy(&newSt, st, sizeof(StateInfo));  | 
        ||
| 938 | newSt.previous = st;  | 
        ||
| 939 | st = &newSt;  | 
        ||
| 940 | |||
| 941 | if (st->epSquare != SQ_NONE)  | 
        ||
| 942 |   { | 
        ||
| 943 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)];  | 
        ||
| 944 | st->epSquare = SQ_NONE;  | 
        ||
| 945 |   } | 
        ||
| 946 | |||
| 947 | st->key ^= Zobrist::side;  | 
        ||
| 948 | prefetch(TT.first_entry(st->key));  | 
        ||
| 949 | |||
| 950 | ++st->rule50;  | 
        ||
| 951 | st->pliesFromNull = 0;  | 
        ||
| 952 | |||
| 953 | sideToMove = ~sideToMove;  | 
        ||
| 954 | |||
| 154 | pmbaty | 955 | set_check_info(st);  | 
        
| 956 | |||
| 96 | pmbaty | 957 | assert(pos_is_ok());  | 
        
| 958 | } | 
        ||
| 959 | |||
| 960 | void Position::undo_null_move() {  | 
        ||
| 961 | |||
| 962 | assert(!checkers());  | 
        ||
| 963 | |||
| 964 | st = st->previous;  | 
        ||
| 965 | sideToMove = ~sideToMove;  | 
        ||
| 966 | } | 
        ||
| 967 | |||
| 968 | |||
| 969 | /// Position::key_after() computes the new hash key after the given move. Needed | 
        ||
| 970 | /// for speculative prefetch. It doesn't recognize special moves like castling, | 
        ||
| 971 | /// en-passant and promotions. | 
        ||
| 972 | |||
| 973 | Key Position::key_after(Move m) const {  | 
        ||
| 974 | |||
| 975 | Square from = from_sq(m);  | 
        ||
| 976 | Square to = to_sq(m);  | 
        ||
| 154 | pmbaty | 977 | Piece pc = piece_on(from);  | 
        
| 978 | Piece captured = piece_on(to);  | 
        ||
| 96 | pmbaty | 979 | Key k = st->key ^ Zobrist::side;  | 
        
| 980 | |||
| 981 | if (captured)  | 
        ||
| 154 | pmbaty | 982 | k ^= Zobrist::psq[captured][to];  | 
        
| 96 | pmbaty | 983 | |
| 154 | pmbaty | 984 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from];  | 
        
| 96 | pmbaty | 985 | } | 
        
| 986 | |||
| 987 | |||
| 154 | pmbaty | 988 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the | 
        
| 169 | pmbaty | 989 | /// SEE value of move is greater or equal to the given threshold. We'll use an | 
        
| 154 | pmbaty | 990 | /// algorithm similar to alpha-beta pruning with a null window. | 
        
| 96 | pmbaty | 991 | |
| 169 | pmbaty | 992 | bool Position::see_ge(Move m, Value threshold) const {  | 
        
| 96 | pmbaty | 993 | |
| 994 | assert(is_ok(m));  | 
        ||
| 995 | |||
| 169 | pmbaty | 996 |   // Only deal with normal moves, assume others pass a simple see | 
        
| 997 | if (type_of(m) != NORMAL)  | 
        ||
| 998 | return VALUE_ZERO >= threshold;  | 
        ||
| 96 | pmbaty | 999 | |
| 154 | pmbaty | 1000 | Square from = from_sq(m), to = to_sq(m);  | 
        
| 1001 | PieceType nextVictim = type_of(piece_on(from));  | 
        ||
| 1002 | Color stm = ~color_of(piece_on(from)); // First consider opponent's move  | 
        ||
| 1003 | Value balance; // Values of the pieces taken by us minus opponent's ones  | 
        ||
| 1004 |   Bitboard occupied, stmAttackers; | 
        ||
| 96 | pmbaty | 1005 | |
| 169 | pmbaty | 1006 |   // The opponent may be able to recapture so this is the best result | 
        
| 1007 |   // we can hope for. | 
        ||
| 1008 | balance = PieceValue[MG][piece_on(to)] - threshold;  | 
        ||
| 96 | pmbaty | 1009 | |
| 169 | pmbaty | 1010 | if (balance < VALUE_ZERO)  | 
        
| 154 | pmbaty | 1011 | return false;  | 
        
| 96 | pmbaty | 1012 | |
| 169 | pmbaty | 1013 |   // Now assume the worst possible result: that the opponent can | 
        
| 1014 |   // capture our piece for free. | 
        ||
| 154 | pmbaty | 1015 | balance -= PieceValue[MG][nextVictim];  | 
        
| 96 | pmbaty | 1016 | |
| 169 | pmbaty | 1017 | if (balance >= VALUE_ZERO) // Always true if nextVictim == KING  | 
        
| 154 | pmbaty | 1018 | return true;  | 
        
| 96 | pmbaty | 1019 | |
| 169 | pmbaty | 1020 | bool opponentToMove = true;  | 
        
| 1021 | occupied = pieces() ^ from ^ to;  | 
        ||
| 154 | pmbaty | 1022 | |
| 1023 |   // Find all attackers to the destination square, with the moving piece removed, | 
        ||
| 1024 |   // but possibly an X-ray attacker added behind it. | 
        ||
| 1025 | Bitboard attackers = attackers_to(to, occupied) & occupied;  | 
        ||
| 1026 | |||
| 1027 | while (true)  | 
        ||
| 96 | pmbaty | 1028 |   { | 
        
| 169 | pmbaty | 1029 |       // The balance is negative only because we assumed we could win | 
        
| 1030 |       // the last piece for free. We are truly winning only if we can | 
        ||
| 1031 |       // win the last piece _cheaply enough_. Test if we can actually | 
        ||
| 1032 |       // do this otherwise "give up". | 
        ||
| 1033 | assert(balance < VALUE_ZERO);  | 
        ||
| 1034 | |||
| 154 | pmbaty | 1035 | stmAttackers = attackers & pieces(stm);  | 
        
| 96 | pmbaty | 1036 | |
| 154 | pmbaty | 1037 |       // Don't allow pinned pieces to attack pieces except the king as long all | 
        
| 1038 |       // pinners are on their original square. | 
        ||
| 1039 | if (!(st->pinnersForKing[stm] & ~occupied))  | 
        ||
| 1040 | stmAttackers &= ~st->blockersForKing[stm];  | 
        ||
| 96 | pmbaty | 1041 | |
| 169 | pmbaty | 1042 |       // If we have no more attackers we must give up | 
        
| 154 | pmbaty | 1043 | if (!stmAttackers)  | 
        
| 169 | pmbaty | 1044 | break;  | 
        
| 96 | pmbaty | 1045 | |
| 154 | pmbaty | 1046 |       // Locate and remove the next least valuable attacker | 
        
| 1047 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);  | 
        ||
| 96 | pmbaty | 1048 | |
| 154 | pmbaty | 1049 | if (nextVictim == KING)  | 
        
| 169 | pmbaty | 1050 |       { | 
        
| 1051 |           // Our only attacker is the king. If the opponent still has | 
        ||
| 1052 |           // attackers we must give up. Otherwise we make the move and | 
        ||
| 1053 |           // (having no more attackers) the opponent must give up. | 
        ||
| 1054 | if (!(attackers & pieces(~stm)))  | 
        ||
| 1055 | opponentToMove = !opponentToMove;  | 
        ||
| 1056 | break;  | 
        ||
| 1057 |       } | 
        ||
| 96 | pmbaty | 1058 | |
| 169 | pmbaty | 1059 |       // Assume the opponent can win the next piece for free and switch sides | 
        
| 1060 | balance += PieceValue[MG][nextVictim];  | 
        ||
| 1061 | opponentToMove = !opponentToMove;  | 
        ||
| 96 | pmbaty | 1062 | |
| 169 | pmbaty | 1063 |       // If balance is negative after receiving a free piece then give up | 
        
| 1064 | if (balance < VALUE_ZERO)  | 
        ||
| 1065 | break;  | 
        ||
| 96 | pmbaty | 1066 | |
| 169 | pmbaty | 1067 |       // Complete the process of switching sides. The first line swaps | 
        
| 1068 |       // all negative numbers with non-negative numbers. The compiler | 
        ||
| 1069 |       // probably knows that it is just the bitwise negation ~balance. | 
        ||
| 1070 | balance = -balance-1;  | 
        ||
| 154 | pmbaty | 1071 | stm = ~stm;  | 
        
| 1072 |   } | 
        ||
| 169 | pmbaty | 1073 | |
| 1074 |   // If the opponent gave up we win, otherwise we lose. | 
        ||
| 1075 | return opponentToMove;  | 
        ||
| 96 | pmbaty | 1076 | } | 
        
| 1077 | |||
| 1078 | |||
| 1079 | /// Position::is_draw() tests whether the position is drawn by 50-move rule | 
        ||
| 1080 | /// or by repetition. It does not detect stalemates. | 
        ||
| 1081 | |||
| 169 | pmbaty | 1082 | bool Position::is_draw(int ply) const {  | 
        
| 96 | pmbaty | 1083 | |
| 1084 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))  | 
        ||
| 1085 | return true;  | 
        ||
| 1086 | |||
| 169 | pmbaty | 1087 | int end = std::min(st->rule50, st->pliesFromNull);  | 
        
| 1088 | |||
| 1089 | if (end < 4)  | 
        ||
| 1090 | return false;  | 
        ||
| 1091 | |||
| 1092 | StateInfo* stp = st->previous->previous;  | 
        ||
| 1093 | int cnt = 0;  | 
        ||
| 1094 | |||
| 1095 | for (int i = 4; i <= end; i += 2)  | 
        ||
| 96 | pmbaty | 1096 |   { | 
        
| 1097 | stp = stp->previous->previous;  | 
        ||
| 1098 | |||
| 169 | pmbaty | 1099 |       // Return a draw score if a position repeats once earlier but strictly | 
        
| 1100 |       // after the root, or repeats twice before or at the root. | 
        ||
| 1101 | if ( stp->key == st->key  | 
        ||
| 1102 | && ++cnt + (ply > i) == 2)  | 
        ||
| 1103 | return true;  | 
        ||
| 96 | pmbaty | 1104 |   } | 
        
| 1105 | |||
| 1106 | return false;  | 
        ||
| 1107 | } | 
        ||
| 1108 | |||
| 1109 | |||
| 1110 | /// Position::flip() flips position with the white and black sides reversed. This | 
        ||
| 1111 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. | 
        ||
| 1112 | |||
| 1113 | void Position::flip() {  | 
        ||
| 1114 | |||
| 1115 |   string f, token; | 
        ||
| 1116 | std::stringstream ss(fen());  | 
        ||
| 1117 | |||
| 1118 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement  | 
        ||
| 1119 |   { | 
        ||
| 1120 | std::getline(ss, token, r > RANK_1 ? '/' : ' ');  | 
        ||
| 1121 | f.insert(0, token + (f.empty() ? " " : "/"));  | 
        ||
| 1122 |   } | 
        ||
| 1123 | |||
| 1124 | ss >> token; // Active color  | 
        ||
| 1125 | f += (token == "w" ? "B " : "W "); // Will be lowercased later  | 
        ||
| 1126 | |||
| 1127 | ss >> token; // Castling availability  | 
        ||
| 1128 | f += token + " ";  | 
        ||
| 1129 | |||
| 1130 | std::transform(f.begin(), f.end(), f.begin(),  | 
        ||
| 1131 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); });  | 
        ||
| 1132 | |||
| 1133 | ss >> token; // En passant square  | 
        ||
| 1134 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));  | 
        ||
| 1135 | |||
| 1136 | std::getline(ss, token); // Half and full moves  | 
        ||
| 1137 | f += token;  | 
        ||
| 1138 | |||
| 154 | pmbaty | 1139 | set(f, is_chess960(), st, this_thread());  | 
        
| 96 | pmbaty | 1140 | |
| 1141 | assert(pos_is_ok());  | 
        ||
| 1142 | } | 
        ||
| 1143 | |||
| 1144 | |||
| 169 | pmbaty | 1145 | /// Position::pos_is_ok() performs some consistency checks for the | 
        
| 1146 | /// position object and raises an asserts if something wrong is detected. | 
        ||
| 96 | pmbaty | 1147 | /// This is meant to be helpful when debugging. | 
        
| 1148 | |||
| 169 | pmbaty | 1149 | bool Position::pos_is_ok() const {  | 
        
| 96 | pmbaty | 1150 | |
| 1151 | const bool Fast = true; // Quick (default) or full check?  | 
        ||
| 1152 | |||
| 169 | pmbaty | 1153 | if ( (sideToMove != WHITE && sideToMove != BLACK)  | 
        
| 1154 | || piece_on(square<KING>(WHITE)) != W_KING  | 
        ||
| 1155 | || piece_on(square<KING>(BLACK)) != B_KING  | 
        ||
| 1156 | || ( ep_square() != SQ_NONE  | 
        ||
| 1157 | && relative_rank(sideToMove, ep_square()) != RANK_6))  | 
        ||
| 1158 | assert(0 && "pos_is_ok: Default");  | 
        ||
| 96 | pmbaty | 1159 | |
| 169 | pmbaty | 1160 | if (Fast)  | 
        
| 1161 | return true;  | 
        ||
| 96 | pmbaty | 1162 | |
| 169 | pmbaty | 1163 | if ( pieceCount[W_KING] != 1  | 
        
| 1164 | || pieceCount[B_KING] != 1  | 
        ||
| 1165 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove))  | 
        ||
| 1166 | assert(0 && "pos_is_ok: Kings");  | 
        ||
| 96 | pmbaty | 1167 | |
| 169 | pmbaty | 1168 | if ( (pieces(PAWN) & (Rank1BB | Rank8BB))  | 
        
| 1169 | || pieceCount[W_PAWN] > 8  | 
        ||
| 1170 | || pieceCount[B_PAWN] > 8)  | 
        ||
| 1171 | assert(0 && "pos_is_ok: Pawns");  | 
        ||
| 96 | pmbaty | 1172 | |
| 169 | pmbaty | 1173 | if ( (pieces(WHITE) & pieces(BLACK))  | 
        
| 1174 | || (pieces(WHITE) | pieces(BLACK)) != pieces()  | 
        ||
| 1175 | || popcount(pieces(WHITE)) > 16  | 
        ||
| 1176 | || popcount(pieces(BLACK)) > 16)  | 
        ||
| 1177 | assert(0 && "pos_is_ok: Bitboards");  | 
        ||
| 96 | pmbaty | 1178 | |
| 169 | pmbaty | 1179 | for (PieceType p1 = PAWN; p1 <= KING; ++p1)  | 
        
| 1180 | for (PieceType p2 = PAWN; p2 <= KING; ++p2)  | 
        ||
| 1181 | if (p1 != p2 && (pieces(p1) & pieces(p2)))  | 
        ||
| 1182 | assert(0 && "pos_is_ok: Bitboards");  | 
        ||
| 96 | pmbaty | 1183 | |
| 169 | pmbaty | 1184 | StateInfo si = *st;  | 
        
| 1185 | set_state(&si);  | 
        ||
| 1186 | if (std::memcmp(&si, st, sizeof(StateInfo)))  | 
        ||
| 1187 | assert(0 && "pos_is_ok: State");  | 
        ||
| 96 | pmbaty | 1188 | |
| 169 | pmbaty | 1189 | for (Piece pc : Pieces)  | 
        
| 1190 |   { | 
        ||
| 1191 | if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc)))  | 
        ||
| 1192 | || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc))  | 
        ||
| 1193 | assert(0 && "pos_is_ok: Pieces");  | 
        ||
| 154 | pmbaty | 1194 | |
| 169 | pmbaty | 1195 | for (int i = 0; i < pieceCount[pc]; ++i)  | 
        
| 1196 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i)  | 
        ||
| 1197 | assert(0 && "pos_is_ok: Index");  | 
        ||
| 1198 |   } | 
        ||
| 96 | pmbaty | 1199 | |
| 169 | pmbaty | 1200 | for (Color c = WHITE; c <= BLACK; ++c)  | 
        
| 1201 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))  | 
        ||
| 1202 |       { | 
        ||
| 1203 | if (!can_castle(c | s))  | 
        ||
| 1204 | continue;  | 
        ||
| 96 | pmbaty | 1205 | |
| 169 | pmbaty | 1206 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)  | 
        
| 1207 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s)  | 
        ||
| 1208 | || (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s))  | 
        ||
| 1209 | assert(0 && "pos_is_ok: Castling");  | 
        ||
| 1210 |       } | 
        ||
| 96 | pmbaty | 1211 | |
| 1212 | return true;  | 
        ||
| 1213 | } |