Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
154 | pmbaty | 23 | #include <cstddef> // For offsetof() |
24 | #include <cstring> // For std::memset, std::memcmp |
||
96 | pmbaty | 25 | #include <iomanip> |
26 | #include <sstream> |
||
27 | |||
154 | pmbaty | 28 | #include "bitboard.h" |
96 | pmbaty | 29 | #include "misc.h" |
30 | #include "movegen.h" |
||
31 | #include "position.h" |
||
32 | #include "thread.h" |
||
33 | #include "tt.h" |
||
34 | #include "uci.h" |
||
35 | |||
36 | using std::string; |
||
37 | |||
154 | pmbaty | 38 | namespace PSQT { |
39 | extern Score psq[PIECE_NB][SQUARE_NB]; |
||
40 | } |
||
96 | pmbaty | 41 | |
42 | namespace Zobrist { |
||
43 | |||
154 | pmbaty | 44 | Key psq[PIECE_NB][SQUARE_NB]; |
96 | pmbaty | 45 | Key enpassant[FILE_NB]; |
46 | Key castling[CASTLING_RIGHT_NB]; |
||
47 | Key side; |
||
48 | } |
||
49 | |||
50 | namespace { |
||
51 | |||
52 | const string PieceToChar(" PNBRQK pnbrqk"); |
||
53 | |||
54 | // min_attacker() is a helper function used by see() to locate the least |
||
55 | // valuable attacker for the side to move, remove the attacker we just found |
||
56 | // from the bitboards and scan for new X-ray attacks behind it. |
||
57 | |||
58 | template<int Pt> |
||
59 | PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers, |
||
60 | Bitboard& occupied, Bitboard& attackers) { |
||
61 | |||
62 | Bitboard b = stmAttackers & bb[Pt]; |
||
63 | if (!b) |
||
64 | return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers); |
||
65 | |||
66 | occupied ^= b & ~(b - 1); |
||
67 | |||
68 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) |
||
69 | attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]); |
||
70 | |||
71 | if (Pt == ROOK || Pt == QUEEN) |
||
72 | attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]); |
||
73 | |||
74 | attackers &= occupied; // After X-ray that may add already processed pieces |
||
75 | return (PieceType)Pt; |
||
76 | } |
||
77 | |||
78 | template<> |
||
79 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { |
||
80 | return KING; // No need to update bitboards: it is the last cycle |
||
81 | } |
||
82 | |||
83 | } // namespace |
||
84 | |||
85 | |||
86 | /// operator<<(Position) returns an ASCII representation of the position |
||
87 | |||
88 | std::ostream& operator<<(std::ostream& os, const Position& pos) { |
||
89 | |||
90 | os << "\n +---+---+---+---+---+---+---+---+\n"; |
||
91 | |||
92 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
93 | { |
||
94 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
95 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; |
||
96 | |||
97 | os << " |\n +---+---+---+---+---+---+---+---+\n"; |
||
98 | } |
||
99 | |||
100 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase |
||
101 | << std::setfill('0') << std::setw(16) << pos.key() << std::dec << "\nCheckers: "; |
||
102 | |||
103 | for (Bitboard b = pos.checkers(); b; ) |
||
104 | os << UCI::square(pop_lsb(&b)) << " "; |
||
105 | |||
106 | return os; |
||
107 | } |
||
108 | |||
109 | |||
110 | /// Position::init() initializes at startup the various arrays used to compute |
||
111 | /// hash keys. |
||
112 | |||
113 | void Position::init() { |
||
114 | |||
115 | PRNG rng(1070372); |
||
116 | |||
154 | pmbaty | 117 | for (Piece pc : Pieces) |
118 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
119 | Zobrist::psq[pc][s] = rng.rand<Key>(); |
||
96 | pmbaty | 120 | |
121 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
122 | Zobrist::enpassant[f] = rng.rand<Key>(); |
||
123 | |||
124 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) |
||
125 | { |
||
126 | Zobrist::castling[cr] = 0; |
||
127 | Bitboard b = cr; |
||
128 | while (b) |
||
129 | { |
||
130 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; |
||
131 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); |
||
132 | } |
||
133 | } |
||
134 | |||
135 | Zobrist::side = rng.rand<Key>(); |
||
136 | } |
||
137 | |||
138 | |||
139 | /// Position::set() initializes the position object with the given FEN string. |
||
140 | /// This function is not very robust - make sure that input FENs are correct, |
||
141 | /// this is assumed to be the responsibility of the GUI. |
||
142 | |||
154 | pmbaty | 143 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { |
96 | pmbaty | 144 | /* |
145 | A FEN string defines a particular position using only the ASCII character set. |
||
146 | |||
147 | A FEN string contains six fields separated by a space. The fields are: |
||
148 | |||
149 | 1) Piece placement (from white's perspective). Each rank is described, starting |
||
150 | with rank 8 and ending with rank 1. Within each rank, the contents of each |
||
151 | square are described from file A through file H. Following the Standard |
||
152 | Algebraic Notation (SAN), each piece is identified by a single letter taken |
||
153 | from the standard English names. White pieces are designated using upper-case |
||
154 | letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are |
||
155 | noted using digits 1 through 8 (the number of blank squares), and "/" |
||
156 | separates ranks. |
||
157 | |||
158 | 2) Active color. "w" means white moves next, "b" means black. |
||
159 | |||
160 | 3) Castling availability. If neither side can castle, this is "-". Otherwise, |
||
161 | this has one or more letters: "K" (White can castle kingside), "Q" (White |
||
162 | can castle queenside), "k" (Black can castle kingside), and/or "q" (Black |
||
163 | can castle queenside). |
||
164 | |||
165 | 4) En passant target square (in algebraic notation). If there's no en passant |
||
166 | target square, this is "-". If a pawn has just made a 2-square move, this |
||
167 | is the position "behind" the pawn. This is recorded regardless of whether |
||
168 | there is a pawn in position to make an en passant capture. |
||
169 | |||
170 | 5) Halfmove clock. This is the number of halfmoves since the last pawn advance |
||
171 | or capture. This is used to determine if a draw can be claimed under the |
||
172 | fifty-move rule. |
||
173 | |||
174 | 6) Fullmove number. The number of the full move. It starts at 1, and is |
||
175 | incremented after Black's move. |
||
176 | */ |
||
177 | |||
178 | unsigned char col, row, token; |
||
179 | size_t idx; |
||
180 | Square sq = SQ_A8; |
||
181 | std::istringstream ss(fenStr); |
||
182 | |||
154 | pmbaty | 183 | std::memset(this, 0, sizeof(Position)); |
184 | std::memset(si, 0, sizeof(StateInfo)); |
||
185 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); |
||
186 | st = si; |
||
187 | |||
96 | pmbaty | 188 | ss >> std::noskipws; |
189 | |||
190 | // 1. Piece placement |
||
191 | while ((ss >> token) && !isspace(token)) |
||
192 | { |
||
193 | if (isdigit(token)) |
||
194 | sq += Square(token - '0'); // Advance the given number of files |
||
195 | |||
196 | else if (token == '/') |
||
197 | sq -= Square(16); |
||
198 | |||
199 | else if ((idx = PieceToChar.find(token)) != string::npos) |
||
200 | { |
||
154 | pmbaty | 201 | put_piece(Piece(idx), sq); |
96 | pmbaty | 202 | ++sq; |
203 | } |
||
204 | } |
||
205 | |||
206 | // 2. Active color |
||
207 | ss >> token; |
||
208 | sideToMove = (token == 'w' ? WHITE : BLACK); |
||
209 | ss >> token; |
||
210 | |||
211 | // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, |
||
212 | // Shredder-FEN that uses the letters of the columns on which the rooks began |
||
213 | // the game instead of KQkq and also X-FEN standard that, in case of Chess960, |
||
214 | // if an inner rook is associated with the castling right, the castling tag is |
||
215 | // replaced by the file letter of the involved rook, as for the Shredder-FEN. |
||
216 | while ((ss >> token) && !isspace(token)) |
||
217 | { |
||
218 | Square rsq; |
||
219 | Color c = islower(token) ? BLACK : WHITE; |
||
220 | Piece rook = make_piece(c, ROOK); |
||
221 | |||
222 | token = char(toupper(token)); |
||
223 | |||
224 | if (token == 'K') |
||
225 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} |
||
226 | |||
227 | else if (token == 'Q') |
||
228 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} |
||
229 | |||
230 | else if (token >= 'A' && token <= 'H') |
||
231 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); |
||
232 | |||
233 | else |
||
234 | continue; |
||
235 | |||
236 | set_castling_right(c, rsq); |
||
237 | } |
||
238 | |||
239 | // 4. En passant square. Ignore if no pawn capture is possible |
||
240 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) |
||
241 | && ((ss >> row) && (row == '3' || row == '6'))) |
||
242 | { |
||
243 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); |
||
244 | |||
245 | if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))) |
||
246 | st->epSquare = SQ_NONE; |
||
247 | } |
||
154 | pmbaty | 248 | else |
249 | st->epSquare = SQ_NONE; |
||
96 | pmbaty | 250 | |
251 | // 5-6. Halfmove clock and fullmove number |
||
252 | ss >> std::skipws >> st->rule50 >> gamePly; |
||
253 | |||
254 | // Convert from fullmove starting from 1 to ply starting from 0, |
||
255 | // handle also common incorrect FEN with fullmove = 0. |
||
256 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); |
||
257 | |||
258 | chess960 = isChess960; |
||
259 | thisThread = th; |
||
260 | set_state(st); |
||
261 | |||
262 | assert(pos_is_ok()); |
||
154 | pmbaty | 263 | |
264 | return *this; |
||
96 | pmbaty | 265 | } |
266 | |||
267 | |||
268 | /// Position::set_castling_right() is a helper function used to set castling |
||
269 | /// rights given the corresponding color and the rook starting square. |
||
270 | |||
271 | void Position::set_castling_right(Color c, Square rfrom) { |
||
272 | |||
273 | Square kfrom = square<KING>(c); |
||
274 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; |
||
275 | CastlingRight cr = (c | cs); |
||
276 | |||
277 | st->castlingRights |= cr; |
||
278 | castlingRightsMask[kfrom] |= cr; |
||
279 | castlingRightsMask[rfrom] |= cr; |
||
280 | castlingRookSquare[cr] = rfrom; |
||
281 | |||
282 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); |
||
283 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); |
||
284 | |||
285 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) |
||
286 | if (s != kfrom && s != rfrom) |
||
287 | castlingPath[cr] |= s; |
||
288 | |||
289 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) |
||
290 | if (s != kfrom && s != rfrom) |
||
291 | castlingPath[cr] |= s; |
||
292 | } |
||
293 | |||
294 | |||
154 | pmbaty | 295 | /// Position::set_check_info() sets king attacks to detect if a move gives check |
296 | |||
297 | void Position::set_check_info(StateInfo* si) const { |
||
298 | |||
299 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinnersForKing[WHITE]); |
||
300 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinnersForKing[BLACK]); |
||
301 | |||
302 | Square ksq = square<KING>(~sideToMove); |
||
303 | |||
304 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove); |
||
305 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq); |
||
306 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq); |
||
307 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq); |
||
308 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; |
||
309 | si->checkSquares[KING] = 0; |
||
310 | } |
||
311 | |||
312 | |||
96 | pmbaty | 313 | /// Position::set_state() computes the hash keys of the position, and other |
314 | /// data that once computed is updated incrementally as moves are made. |
||
315 | /// The function is only used when a new position is set up, and to verify |
||
316 | /// the correctness of the StateInfo data when running in debug mode. |
||
317 | |||
318 | void Position::set_state(StateInfo* si) const { |
||
319 | |||
320 | si->key = si->pawnKey = si->materialKey = 0; |
||
321 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; |
||
322 | si->psq = SCORE_ZERO; |
||
323 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); |
||
324 | |||
154 | pmbaty | 325 | set_check_info(si); |
326 | |||
96 | pmbaty | 327 | for (Bitboard b = pieces(); b; ) |
328 | { |
||
329 | Square s = pop_lsb(&b); |
||
330 | Piece pc = piece_on(s); |
||
154 | pmbaty | 331 | si->key ^= Zobrist::psq[pc][s]; |
332 | si->psq += PSQT::psq[pc][s]; |
||
96 | pmbaty | 333 | } |
334 | |||
335 | if (si->epSquare != SQ_NONE) |
||
336 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; |
||
337 | |||
338 | if (sideToMove == BLACK) |
||
339 | si->key ^= Zobrist::side; |
||
340 | |||
341 | si->key ^= Zobrist::castling[si->castlingRights]; |
||
342 | |||
343 | for (Bitboard b = pieces(PAWN); b; ) |
||
344 | { |
||
345 | Square s = pop_lsb(&b); |
||
154 | pmbaty | 346 | si->pawnKey ^= Zobrist::psq[piece_on(s)][s]; |
96 | pmbaty | 347 | } |
348 | |||
154 | pmbaty | 349 | for (Piece pc : Pieces) |
350 | { |
||
351 | if (type_of(pc) != PAWN && type_of(pc) != KING) |
||
352 | si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc]; |
||
96 | pmbaty | 353 | |
154 | pmbaty | 354 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) |
355 | si->materialKey ^= Zobrist::psq[pc][cnt]; |
||
356 | } |
||
96 | pmbaty | 357 | } |
358 | |||
359 | |||
360 | /// Position::fen() returns a FEN representation of the position. In case of |
||
361 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. |
||
362 | |||
363 | const string Position::fen() const { |
||
364 | |||
365 | int emptyCnt; |
||
366 | std::ostringstream ss; |
||
367 | |||
368 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
369 | { |
||
370 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
371 | { |
||
372 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) |
||
373 | ++emptyCnt; |
||
374 | |||
375 | if (emptyCnt) |
||
376 | ss << emptyCnt; |
||
377 | |||
378 | if (f <= FILE_H) |
||
379 | ss << PieceToChar[piece_on(make_square(f, r))]; |
||
380 | } |
||
381 | |||
382 | if (r > RANK_1) |
||
383 | ss << '/'; |
||
384 | } |
||
385 | |||
386 | ss << (sideToMove == WHITE ? " w " : " b "); |
||
387 | |||
388 | if (can_castle(WHITE_OO)) |
||
389 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); |
||
390 | |||
391 | if (can_castle(WHITE_OOO)) |
||
392 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); |
||
393 | |||
394 | if (can_castle(BLACK_OO)) |
||
395 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); |
||
396 | |||
397 | if (can_castle(BLACK_OOO)) |
||
398 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); |
||
399 | |||
400 | if (!can_castle(WHITE) && !can_castle(BLACK)) |
||
401 | ss << '-'; |
||
402 | |||
403 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") |
||
404 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; |
||
405 | |||
406 | return ss.str(); |
||
407 | } |
||
408 | |||
409 | |||
410 | /// Position::game_phase() calculates the game phase interpolating total non-pawn |
||
411 | /// material between endgame and midgame limits. |
||
412 | |||
413 | Phase Position::game_phase() const { |
||
414 | |||
415 | Value npm = st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK]; |
||
416 | |||
417 | npm = std::max(EndgameLimit, std::min(npm, MidgameLimit)); |
||
418 | |||
419 | return Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); |
||
420 | } |
||
421 | |||
422 | |||
154 | pmbaty | 423 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) |
424 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a |
||
425 | /// slider if removing that piece from the board would result in a position where |
||
426 | /// square 's' is attacked. For example, a king-attack blocking piece can be either |
||
427 | /// a pinned or a discovered check piece, according if its color is the opposite |
||
428 | /// or the same of the color of the slider. |
||
96 | pmbaty | 429 | |
154 | pmbaty | 430 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { |
96 | pmbaty | 431 | |
154 | pmbaty | 432 | Bitboard result = 0; |
433 | pinners = 0; |
||
96 | pmbaty | 434 | |
154 | pmbaty | 435 | // Snipers are sliders that attack 's' when a piece is removed |
436 | Bitboard snipers = ( (PseudoAttacks[ROOK ][s] & pieces(QUEEN, ROOK)) |
||
437 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; |
||
96 | pmbaty | 438 | |
154 | pmbaty | 439 | while (snipers) |
96 | pmbaty | 440 | { |
154 | pmbaty | 441 | Square sniperSq = pop_lsb(&snipers); |
442 | Bitboard b = between_bb(s, sniperSq) & pieces(); |
||
96 | pmbaty | 443 | |
154 | pmbaty | 444 | if (!more_than_one(b)) |
445 | { |
||
446 | result |= b; |
||
447 | if (b & pieces(color_of(piece_on(s)))) |
||
448 | pinners |= sniperSq; |
||
449 | } |
||
96 | pmbaty | 450 | } |
451 | return result; |
||
452 | } |
||
453 | |||
454 | |||
455 | /// Position::attackers_to() computes a bitboard of all pieces which attack a |
||
456 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. |
||
457 | |||
458 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { |
||
459 | |||
460 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) |
||
461 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) |
||
462 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) |
||
463 | | (attacks_bb<ROOK >(s, occupied) & pieces(ROOK, QUEEN)) |
||
464 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) |
||
465 | | (attacks_from<KING>(s) & pieces(KING)); |
||
466 | } |
||
467 | |||
468 | |||
469 | /// Position::legal() tests whether a pseudo-legal move is legal |
||
470 | |||
154 | pmbaty | 471 | bool Position::legal(Move m) const { |
96 | pmbaty | 472 | |
473 | assert(is_ok(m)); |
||
474 | |||
475 | Color us = sideToMove; |
||
476 | Square from = from_sq(m); |
||
477 | |||
478 | assert(color_of(moved_piece(m)) == us); |
||
479 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); |
||
480 | |||
481 | // En passant captures are a tricky special case. Because they are rather |
||
482 | // uncommon, we do it simply by testing whether the king is attacked after |
||
483 | // the move is made. |
||
484 | if (type_of(m) == ENPASSANT) |
||
485 | { |
||
486 | Square ksq = square<KING>(us); |
||
487 | Square to = to_sq(m); |
||
488 | Square capsq = to - pawn_push(us); |
||
489 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; |
||
490 | |||
491 | assert(to == ep_square()); |
||
492 | assert(moved_piece(m) == make_piece(us, PAWN)); |
||
493 | assert(piece_on(capsq) == make_piece(~us, PAWN)); |
||
494 | assert(piece_on(to) == NO_PIECE); |
||
495 | |||
496 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) |
||
497 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); |
||
498 | } |
||
499 | |||
500 | // If the moving piece is a king, check whether the destination |
||
501 | // square is attacked by the opponent. Castling moves are checked |
||
502 | // for legality during move generation. |
||
503 | if (type_of(piece_on(from)) == KING) |
||
504 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); |
||
505 | |||
506 | // A non-king move is legal if and only if it is not pinned or it |
||
507 | // is moving along the ray towards or away from the king. |
||
154 | pmbaty | 508 | return !(pinned_pieces(us) & from) |
96 | pmbaty | 509 | || aligned(from, to_sq(m), square<KING>(us)); |
510 | } |
||
511 | |||
512 | |||
513 | /// Position::pseudo_legal() takes a random move and tests whether the move is |
||
514 | /// pseudo legal. It is used to validate moves from TT that can be corrupted |
||
515 | /// due to SMP concurrent access or hash position key aliasing. |
||
516 | |||
517 | bool Position::pseudo_legal(const Move m) const { |
||
518 | |||
519 | Color us = sideToMove; |
||
520 | Square from = from_sq(m); |
||
521 | Square to = to_sq(m); |
||
522 | Piece pc = moved_piece(m); |
||
523 | |||
524 | // Use a slower but simpler function for uncommon cases |
||
525 | if (type_of(m) != NORMAL) |
||
526 | return MoveList<LEGAL>(*this).contains(m); |
||
527 | |||
528 | // Is not a promotion, so promotion piece must be empty |
||
529 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) |
||
530 | return false; |
||
531 | |||
532 | // If the 'from' square is not occupied by a piece belonging to the side to |
||
533 | // move, the move is obviously not legal. |
||
534 | if (pc == NO_PIECE || color_of(pc) != us) |
||
535 | return false; |
||
536 | |||
537 | // The destination square cannot be occupied by a friendly piece |
||
538 | if (pieces(us) & to) |
||
539 | return false; |
||
540 | |||
541 | // Handle the special case of a pawn move |
||
542 | if (type_of(pc) == PAWN) |
||
543 | { |
||
544 | // We have already handled promotion moves, so destination |
||
545 | // cannot be on the 8th/1st rank. |
||
546 | if (rank_of(to) == relative_rank(us, RANK_8)) |
||
547 | return false; |
||
548 | |||
549 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture |
||
550 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push |
||
551 | && !( (from + 2 * pawn_push(us) == to) // Not a double push |
||
552 | && (rank_of(from) == relative_rank(us, RANK_2)) |
||
553 | && empty(to) |
||
554 | && empty(to - pawn_push(us)))) |
||
555 | return false; |
||
556 | } |
||
557 | else if (!(attacks_from(pc, from) & to)) |
||
558 | return false; |
||
559 | |||
560 | // Evasions generator already takes care to avoid some kind of illegal moves |
||
561 | // and legal() relies on this. We therefore have to take care that the same |
||
562 | // kind of moves are filtered out here. |
||
563 | if (checkers()) |
||
564 | { |
||
565 | if (type_of(pc) != KING) |
||
566 | { |
||
567 | // Double check? In this case a king move is required |
||
568 | if (more_than_one(checkers())) |
||
569 | return false; |
||
570 | |||
571 | // Our move must be a blocking evasion or a capture of the checking piece |
||
572 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) |
||
573 | return false; |
||
574 | } |
||
575 | // In case of king moves under check we have to remove king so as to catch |
||
576 | // invalid moves like b1a1 when opposite queen is on c1. |
||
577 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) |
||
578 | return false; |
||
579 | } |
||
580 | |||
581 | return true; |
||
582 | } |
||
583 | |||
584 | |||
585 | /// Position::gives_check() tests whether a pseudo-legal move gives a check |
||
586 | |||
154 | pmbaty | 587 | bool Position::gives_check(Move m) const { |
96 | pmbaty | 588 | |
589 | assert(is_ok(m)); |
||
590 | assert(color_of(moved_piece(m)) == sideToMove); |
||
591 | |||
592 | Square from = from_sq(m); |
||
593 | Square to = to_sq(m); |
||
594 | |||
595 | // Is there a direct check? |
||
154 | pmbaty | 596 | if (st->checkSquares[type_of(piece_on(from))] & to) |
96 | pmbaty | 597 | return true; |
598 | |||
599 | // Is there a discovered check? |
||
154 | pmbaty | 600 | if ( (discovered_check_candidates() & from) |
601 | && !aligned(from, to, square<KING>(~sideToMove))) |
||
96 | pmbaty | 602 | return true; |
603 | |||
604 | switch (type_of(m)) |
||
605 | { |
||
606 | case NORMAL: |
||
607 | return false; |
||
608 | |||
609 | case PROMOTION: |
||
154 | pmbaty | 610 | return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & square<KING>(~sideToMove); |
96 | pmbaty | 611 | |
612 | // En passant capture with check? We have already handled the case |
||
613 | // of direct checks and ordinary discovered check, so the only case we |
||
614 | // need to handle is the unusual case of a discovered check through |
||
615 | // the captured pawn. |
||
616 | case ENPASSANT: |
||
617 | { |
||
618 | Square capsq = make_square(file_of(to), rank_of(from)); |
||
619 | Bitboard b = (pieces() ^ from ^ capsq) | to; |
||
620 | |||
154 | pmbaty | 621 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) |
622 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); |
||
96 | pmbaty | 623 | } |
624 | case CASTLING: |
||
625 | { |
||
626 | Square kfrom = from; |
||
627 | Square rfrom = to; // Castling is encoded as 'King captures the rook' |
||
628 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); |
||
629 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); |
||
630 | |||
154 | pmbaty | 631 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove)) |
632 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove)); |
||
96 | pmbaty | 633 | } |
634 | default: |
||
635 | assert(false); |
||
636 | return false; |
||
637 | } |
||
638 | } |
||
639 | |||
640 | |||
641 | /// Position::do_move() makes a move, and saves all information necessary |
||
642 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal |
||
643 | /// moves should be filtered out before this function is called. |
||
644 | |||
645 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { |
||
646 | |||
647 | assert(is_ok(m)); |
||
648 | assert(&newSt != st); |
||
649 | |||
650 | ++nodes; |
||
651 | Key k = st->key ^ Zobrist::side; |
||
652 | |||
653 | // Copy some fields of the old state to our new StateInfo object except the |
||
654 | // ones which are going to be recalculated from scratch anyway and then switch |
||
655 | // our state pointer to point to the new (ready to be updated) state. |
||
656 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); |
||
657 | newSt.previous = st; |
||
658 | st = &newSt; |
||
659 | |||
660 | // Increment ply counters. In particular, rule50 will be reset to zero later on |
||
661 | // in case of a capture or a pawn move. |
||
662 | ++gamePly; |
||
663 | ++st->rule50; |
||
664 | ++st->pliesFromNull; |
||
665 | |||
666 | Color us = sideToMove; |
||
667 | Color them = ~us; |
||
668 | Square from = from_sq(m); |
||
669 | Square to = to_sq(m); |
||
154 | pmbaty | 670 | Piece pc = piece_on(from); |
671 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); |
||
96 | pmbaty | 672 | |
154 | pmbaty | 673 | assert(color_of(pc) == us); |
674 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); |
||
675 | assert(type_of(captured) != KING); |
||
96 | pmbaty | 676 | |
677 | if (type_of(m) == CASTLING) |
||
678 | { |
||
154 | pmbaty | 679 | assert(pc == make_piece(us, KING)); |
680 | assert(captured == make_piece(us, ROOK)); |
||
96 | pmbaty | 681 | |
682 | Square rfrom, rto; |
||
683 | do_castling<true>(us, from, to, rfrom, rto); |
||
684 | |||
154 | pmbaty | 685 | st->psq += PSQT::psq[captured][rto] - PSQT::psq[captured][rfrom]; |
686 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; |
||
687 | captured = NO_PIECE; |
||
96 | pmbaty | 688 | } |
689 | |||
690 | if (captured) |
||
691 | { |
||
692 | Square capsq = to; |
||
693 | |||
694 | // If the captured piece is a pawn, update pawn hash key, otherwise |
||
695 | // update non-pawn material. |
||
154 | pmbaty | 696 | if (type_of(captured) == PAWN) |
96 | pmbaty | 697 | { |
698 | if (type_of(m) == ENPASSANT) |
||
699 | { |
||
700 | capsq -= pawn_push(us); |
||
701 | |||
154 | pmbaty | 702 | assert(pc == make_piece(us, PAWN)); |
96 | pmbaty | 703 | assert(to == st->epSquare); |
704 | assert(relative_rank(us, to) == RANK_6); |
||
705 | assert(piece_on(to) == NO_PIECE); |
||
706 | assert(piece_on(capsq) == make_piece(them, PAWN)); |
||
707 | |||
708 | board[capsq] = NO_PIECE; // Not done by remove_piece() |
||
709 | } |
||
710 | |||
154 | pmbaty | 711 | st->pawnKey ^= Zobrist::psq[captured][capsq]; |
96 | pmbaty | 712 | } |
713 | else |
||
714 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; |
||
715 | |||
716 | // Update board and piece lists |
||
154 | pmbaty | 717 | remove_piece(captured, capsq); |
96 | pmbaty | 718 | |
719 | // Update material hash key and prefetch access to materialTable |
||
154 | pmbaty | 720 | k ^= Zobrist::psq[captured][capsq]; |
721 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; |
||
96 | pmbaty | 722 | prefetch(thisThread->materialTable[st->materialKey]); |
723 | |||
724 | // Update incremental scores |
||
154 | pmbaty | 725 | st->psq -= PSQT::psq[captured][capsq]; |
96 | pmbaty | 726 | |
727 | // Reset rule 50 counter |
||
728 | st->rule50 = 0; |
||
729 | } |
||
730 | |||
731 | // Update hash key |
||
154 | pmbaty | 732 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
96 | pmbaty | 733 | |
734 | // Reset en passant square |
||
735 | if (st->epSquare != SQ_NONE) |
||
736 | { |
||
737 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
738 | st->epSquare = SQ_NONE; |
||
739 | } |
||
740 | |||
741 | // Update castling rights if needed |
||
742 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) |
||
743 | { |
||
744 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; |
||
745 | k ^= Zobrist::castling[st->castlingRights & cr]; |
||
746 | st->castlingRights &= ~cr; |
||
747 | } |
||
748 | |||
749 | // Move the piece. The tricky Chess960 castling is handled earlier |
||
750 | if (type_of(m) != CASTLING) |
||
154 | pmbaty | 751 | move_piece(pc, from, to); |
96 | pmbaty | 752 | |
753 | // If the moving piece is a pawn do some special extra work |
||
154 | pmbaty | 754 | if (type_of(pc) == PAWN) |
96 | pmbaty | 755 | { |
756 | // Set en-passant square if the moved pawn can be captured |
||
757 | if ( (int(to) ^ int(from)) == 16 |
||
758 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) |
||
759 | { |
||
760 | st->epSquare = (from + to) / 2; |
||
761 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
762 | } |
||
763 | |||
764 | else if (type_of(m) == PROMOTION) |
||
765 | { |
||
154 | pmbaty | 766 | Piece promotion = make_piece(us, promotion_type(m)); |
96 | pmbaty | 767 | |
768 | assert(relative_rank(us, to) == RANK_8); |
||
154 | pmbaty | 769 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); |
96 | pmbaty | 770 | |
154 | pmbaty | 771 | remove_piece(pc, to); |
772 | put_piece(promotion, to); |
||
96 | pmbaty | 773 | |
774 | // Update hash keys |
||
154 | pmbaty | 775 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; |
776 | st->pawnKey ^= Zobrist::psq[pc][to]; |
||
777 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] |
||
778 | ^ Zobrist::psq[pc][pieceCount[pc]]; |
||
96 | pmbaty | 779 | |
780 | // Update incremental score |
||
154 | pmbaty | 781 | st->psq += PSQT::psq[promotion][to] - PSQT::psq[pc][to]; |
96 | pmbaty | 782 | |
783 | // Update material |
||
784 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; |
||
785 | } |
||
786 | |||
787 | // Update pawn hash key and prefetch access to pawnsTable |
||
154 | pmbaty | 788 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
96 | pmbaty | 789 | prefetch(thisThread->pawnsTable[st->pawnKey]); |
790 | |||
791 | // Reset rule 50 draw counter |
||
792 | st->rule50 = 0; |
||
793 | } |
||
794 | |||
795 | // Update incremental scores |
||
154 | pmbaty | 796 | st->psq += PSQT::psq[pc][to] - PSQT::psq[pc][from]; |
96 | pmbaty | 797 | |
798 | // Set capture piece |
||
154 | pmbaty | 799 | st->capturedPiece = captured; |
96 | pmbaty | 800 | |
801 | // Update the key with the final value |
||
802 | st->key = k; |
||
803 | |||
804 | // Calculate checkers bitboard (if move gives check) |
||
805 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; |
||
806 | |||
807 | sideToMove = ~sideToMove; |
||
808 | |||
154 | pmbaty | 809 | // Update king attacks used for fast check detection |
810 | set_check_info(st); |
||
811 | |||
96 | pmbaty | 812 | assert(pos_is_ok()); |
813 | } |
||
814 | |||
815 | |||
816 | /// Position::undo_move() unmakes a move. When it returns, the position should |
||
817 | /// be restored to exactly the same state as before the move was made. |
||
818 | |||
819 | void Position::undo_move(Move m) { |
||
820 | |||
821 | assert(is_ok(m)); |
||
822 | |||
823 | sideToMove = ~sideToMove; |
||
824 | |||
825 | Color us = sideToMove; |
||
826 | Square from = from_sq(m); |
||
827 | Square to = to_sq(m); |
||
154 | pmbaty | 828 | Piece pc = piece_on(to); |
96 | pmbaty | 829 | |
830 | assert(empty(from) || type_of(m) == CASTLING); |
||
154 | pmbaty | 831 | assert(type_of(st->capturedPiece) != KING); |
96 | pmbaty | 832 | |
833 | if (type_of(m) == PROMOTION) |
||
834 | { |
||
835 | assert(relative_rank(us, to) == RANK_8); |
||
154 | pmbaty | 836 | assert(type_of(pc) == promotion_type(m)); |
837 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); |
||
96 | pmbaty | 838 | |
154 | pmbaty | 839 | remove_piece(pc, to); |
840 | pc = make_piece(us, PAWN); |
||
841 | put_piece(pc, to); |
||
96 | pmbaty | 842 | } |
843 | |||
844 | if (type_of(m) == CASTLING) |
||
845 | { |
||
846 | Square rfrom, rto; |
||
847 | do_castling<false>(us, from, to, rfrom, rto); |
||
848 | } |
||
849 | else |
||
850 | { |
||
154 | pmbaty | 851 | move_piece(pc, to, from); // Put the piece back at the source square |
96 | pmbaty | 852 | |
154 | pmbaty | 853 | if (st->capturedPiece) |
96 | pmbaty | 854 | { |
855 | Square capsq = to; |
||
856 | |||
857 | if (type_of(m) == ENPASSANT) |
||
858 | { |
||
859 | capsq -= pawn_push(us); |
||
860 | |||
154 | pmbaty | 861 | assert(type_of(pc) == PAWN); |
96 | pmbaty | 862 | assert(to == st->previous->epSquare); |
863 | assert(relative_rank(us, to) == RANK_6); |
||
864 | assert(piece_on(capsq) == NO_PIECE); |
||
154 | pmbaty | 865 | assert(st->capturedPiece == make_piece(~us, PAWN)); |
96 | pmbaty | 866 | } |
867 | |||
154 | pmbaty | 868 | put_piece(st->capturedPiece, capsq); // Restore the captured piece |
96 | pmbaty | 869 | } |
870 | } |
||
871 | |||
872 | // Finally point our state pointer back to the previous state |
||
873 | st = st->previous; |
||
874 | --gamePly; |
||
875 | |||
876 | assert(pos_is_ok()); |
||
877 | } |
||
878 | |||
879 | |||
880 | /// Position::do_castling() is a helper used to do/undo a castling move. This |
||
154 | pmbaty | 881 | /// is a bit tricky in Chess960 where from/to squares can overlap. |
96 | pmbaty | 882 | template<bool Do> |
883 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { |
||
884 | |||
885 | bool kingSide = to > from; |
||
886 | rfrom = to; // Castling is encoded as "king captures friendly rook" |
||
887 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); |
||
888 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); |
||
889 | |||
890 | // Remove both pieces first since squares could overlap in Chess960 |
||
154 | pmbaty | 891 | remove_piece(make_piece(us, KING), Do ? from : to); |
892 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); |
||
96 | pmbaty | 893 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us |
154 | pmbaty | 894 | put_piece(make_piece(us, KING), Do ? to : from); |
895 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom); |
||
96 | pmbaty | 896 | } |
897 | |||
898 | |||
899 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips |
||
900 | /// the side to move without executing any move on the board. |
||
901 | |||
902 | void Position::do_null_move(StateInfo& newSt) { |
||
903 | |||
904 | assert(!checkers()); |
||
905 | assert(&newSt != st); |
||
906 | |||
907 | std::memcpy(&newSt, st, sizeof(StateInfo)); |
||
908 | newSt.previous = st; |
||
909 | st = &newSt; |
||
910 | |||
911 | if (st->epSquare != SQ_NONE) |
||
912 | { |
||
913 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; |
||
914 | st->epSquare = SQ_NONE; |
||
915 | } |
||
916 | |||
917 | st->key ^= Zobrist::side; |
||
918 | prefetch(TT.first_entry(st->key)); |
||
919 | |||
920 | ++st->rule50; |
||
921 | st->pliesFromNull = 0; |
||
922 | |||
923 | sideToMove = ~sideToMove; |
||
924 | |||
154 | pmbaty | 925 | set_check_info(st); |
926 | |||
96 | pmbaty | 927 | assert(pos_is_ok()); |
928 | } |
||
929 | |||
930 | void Position::undo_null_move() { |
||
931 | |||
932 | assert(!checkers()); |
||
933 | |||
934 | st = st->previous; |
||
935 | sideToMove = ~sideToMove; |
||
936 | } |
||
937 | |||
938 | |||
939 | /// Position::key_after() computes the new hash key after the given move. Needed |
||
940 | /// for speculative prefetch. It doesn't recognize special moves like castling, |
||
941 | /// en-passant and promotions. |
||
942 | |||
943 | Key Position::key_after(Move m) const { |
||
944 | |||
945 | Square from = from_sq(m); |
||
946 | Square to = to_sq(m); |
||
154 | pmbaty | 947 | Piece pc = piece_on(from); |
948 | Piece captured = piece_on(to); |
||
96 | pmbaty | 949 | Key k = st->key ^ Zobrist::side; |
950 | |||
951 | if (captured) |
||
154 | pmbaty | 952 | k ^= Zobrist::psq[captured][to]; |
96 | pmbaty | 953 | |
154 | pmbaty | 954 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; |
96 | pmbaty | 955 | } |
956 | |||
957 | |||
154 | pmbaty | 958 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the |
959 | /// SEE value of move is greater or equal to the given value. We'll use an |
||
960 | /// algorithm similar to alpha-beta pruning with a null window. |
||
96 | pmbaty | 961 | |
154 | pmbaty | 962 | bool Position::see_ge(Move m, Value v) const { |
96 | pmbaty | 963 | |
964 | assert(is_ok(m)); |
||
965 | |||
154 | pmbaty | 966 | // Castling moves are implemented as king capturing the rook so cannot be |
967 | // handled correctly. Simply assume the SEE value is VALUE_ZERO that is always |
||
968 | // correct unless in the rare case the rook ends up under attack. |
||
969 | if (type_of(m) == CASTLING) |
||
970 | return VALUE_ZERO >= v; |
||
96 | pmbaty | 971 | |
154 | pmbaty | 972 | Square from = from_sq(m), to = to_sq(m); |
973 | PieceType nextVictim = type_of(piece_on(from)); |
||
974 | Color stm = ~color_of(piece_on(from)); // First consider opponent's move |
||
975 | Value balance; // Values of the pieces taken by us minus opponent's ones |
||
976 | Bitboard occupied, stmAttackers; |
||
96 | pmbaty | 977 | |
154 | pmbaty | 978 | if (type_of(m) == ENPASSANT) |
979 | { |
||
980 | occupied = SquareBB[to - pawn_push(~stm)]; // Remove the captured pawn |
||
981 | balance = PieceValue[MG][PAWN]; |
||
982 | } |
||
983 | else |
||
984 | { |
||
985 | balance = PieceValue[MG][piece_on(to)]; |
||
986 | occupied = 0; |
||
987 | } |
||
96 | pmbaty | 988 | |
154 | pmbaty | 989 | if (balance < v) |
990 | return false; |
||
96 | pmbaty | 991 | |
154 | pmbaty | 992 | if (nextVictim == KING) |
993 | return true; |
||
96 | pmbaty | 994 | |
154 | pmbaty | 995 | balance -= PieceValue[MG][nextVictim]; |
96 | pmbaty | 996 | |
154 | pmbaty | 997 | if (balance >= v) |
998 | return true; |
||
96 | pmbaty | 999 | |
154 | pmbaty | 1000 | bool relativeStm = true; // True if the opponent is to move |
1001 | occupied ^= pieces() ^ from ^ to; |
||
1002 | |||
1003 | // Find all attackers to the destination square, with the moving piece removed, |
||
1004 | // but possibly an X-ray attacker added behind it. |
||
1005 | Bitboard attackers = attackers_to(to, occupied) & occupied; |
||
1006 | |||
1007 | while (true) |
||
96 | pmbaty | 1008 | { |
154 | pmbaty | 1009 | stmAttackers = attackers & pieces(stm); |
96 | pmbaty | 1010 | |
154 | pmbaty | 1011 | // Don't allow pinned pieces to attack pieces except the king as long all |
1012 | // pinners are on their original square. |
||
1013 | if (!(st->pinnersForKing[stm] & ~occupied)) |
||
1014 | stmAttackers &= ~st->blockersForKing[stm]; |
||
96 | pmbaty | 1015 | |
154 | pmbaty | 1016 | if (!stmAttackers) |
1017 | return relativeStm; |
||
96 | pmbaty | 1018 | |
154 | pmbaty | 1019 | // Locate and remove the next least valuable attacker |
1020 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); |
||
96 | pmbaty | 1021 | |
154 | pmbaty | 1022 | if (nextVictim == KING) |
1023 | return relativeStm == bool(attackers & pieces(~stm)); |
||
96 | pmbaty | 1024 | |
154 | pmbaty | 1025 | balance += relativeStm ? PieceValue[MG][nextVictim] |
1026 | : -PieceValue[MG][nextVictim]; |
||
96 | pmbaty | 1027 | |
154 | pmbaty | 1028 | relativeStm = !relativeStm; |
96 | pmbaty | 1029 | |
154 | pmbaty | 1030 | if (relativeStm == (balance >= v)) |
1031 | return relativeStm; |
||
96 | pmbaty | 1032 | |
154 | pmbaty | 1033 | stm = ~stm; |
1034 | } |
||
96 | pmbaty | 1035 | } |
1036 | |||
1037 | |||
1038 | /// Position::is_draw() tests whether the position is drawn by 50-move rule |
||
1039 | /// or by repetition. It does not detect stalemates. |
||
1040 | |||
1041 | bool Position::is_draw() const { |
||
1042 | |||
1043 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) |
||
1044 | return true; |
||
1045 | |||
1046 | StateInfo* stp = st; |
||
1047 | for (int i = 2, e = std::min(st->rule50, st->pliesFromNull); i <= e; i += 2) |
||
1048 | { |
||
1049 | stp = stp->previous->previous; |
||
1050 | |||
1051 | if (stp->key == st->key) |
||
1052 | return true; // Draw at first repetition |
||
1053 | } |
||
1054 | |||
1055 | return false; |
||
1056 | } |
||
1057 | |||
1058 | |||
1059 | /// Position::flip() flips position with the white and black sides reversed. This |
||
1060 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. |
||
1061 | |||
1062 | void Position::flip() { |
||
1063 | |||
1064 | string f, token; |
||
1065 | std::stringstream ss(fen()); |
||
1066 | |||
1067 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement |
||
1068 | { |
||
1069 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); |
||
1070 | f.insert(0, token + (f.empty() ? " " : "/")); |
||
1071 | } |
||
1072 | |||
1073 | ss >> token; // Active color |
||
1074 | f += (token == "w" ? "B " : "W "); // Will be lowercased later |
||
1075 | |||
1076 | ss >> token; // Castling availability |
||
1077 | f += token + " "; |
||
1078 | |||
1079 | std::transform(f.begin(), f.end(), f.begin(), |
||
1080 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); |
||
1081 | |||
1082 | ss >> token; // En passant square |
||
1083 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); |
||
1084 | |||
1085 | std::getline(ss, token); // Half and full moves |
||
1086 | f += token; |
||
1087 | |||
154 | pmbaty | 1088 | set(f, is_chess960(), st, this_thread()); |
96 | pmbaty | 1089 | |
1090 | assert(pos_is_ok()); |
||
1091 | } |
||
1092 | |||
1093 | |||
1094 | /// Position::pos_is_ok() performs some consistency checks for the position object. |
||
1095 | /// This is meant to be helpful when debugging. |
||
1096 | |||
1097 | bool Position::pos_is_ok(int* failedStep) const { |
||
1098 | |||
1099 | const bool Fast = true; // Quick (default) or full check? |
||
1100 | |||
1101 | enum { Default, King, Bitboards, State, Lists, Castling }; |
||
1102 | |||
1103 | for (int step = Default; step <= (Fast ? Default : Castling); step++) |
||
1104 | { |
||
1105 | if (failedStep) |
||
1106 | *failedStep = step; |
||
1107 | |||
1108 | if (step == Default) |
||
1109 | if ( (sideToMove != WHITE && sideToMove != BLACK) |
||
1110 | || piece_on(square<KING>(WHITE)) != W_KING |
||
1111 | || piece_on(square<KING>(BLACK)) != B_KING |
||
1112 | || ( ep_square() != SQ_NONE |
||
1113 | && relative_rank(sideToMove, ep_square()) != RANK_6)) |
||
1114 | return false; |
||
1115 | |||
1116 | if (step == King) |
||
1117 | if ( std::count(board, board + SQUARE_NB, W_KING) != 1 |
||
1118 | || std::count(board, board + SQUARE_NB, B_KING) != 1 |
||
1119 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) |
||
1120 | return false; |
||
1121 | |||
1122 | if (step == Bitboards) |
||
1123 | { |
||
1124 | if ( (pieces(WHITE) & pieces(BLACK)) |
||
1125 | ||(pieces(WHITE) | pieces(BLACK)) != pieces()) |
||
1126 | return false; |
||
1127 | |||
1128 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) |
||
1129 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) |
||
1130 | if (p1 != p2 && (pieces(p1) & pieces(p2))) |
||
1131 | return false; |
||
1132 | } |
||
1133 | |||
1134 | if (step == State) |
||
1135 | { |
||
1136 | StateInfo si = *st; |
||
1137 | set_state(&si); |
||
1138 | if (std::memcmp(&si, st, sizeof(StateInfo))) |
||
1139 | return false; |
||
1140 | } |
||
1141 | |||
1142 | if (step == Lists) |
||
154 | pmbaty | 1143 | for (Piece pc : Pieces) |
1144 | { |
||
1145 | if (pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc)))) |
||
1146 | return false; |
||
1147 | |||
1148 | for (int i = 0; i < pieceCount[pc]; ++i) |
||
1149 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) |
||
96 | pmbaty | 1150 | return false; |
154 | pmbaty | 1151 | } |
96 | pmbaty | 1152 | |
1153 | if (step == Castling) |
||
1154 | for (Color c = WHITE; c <= BLACK; ++c) |
||
1155 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) |
||
1156 | { |
||
1157 | if (!can_castle(c | s)) |
||
1158 | continue; |
||
1159 | |||
1160 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) |
||
1161 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) |
||
1162 | ||(castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) |
||
1163 | return false; |
||
1164 | } |
||
1165 | } |
||
1166 | |||
1167 | return true; |
||
1168 | } |